
IJIS (2001) 1: 14–35 / Digital Object Identifier (DOI) 10.1007/s102070100001

Intrusion and intrusiondetection

John McHugh

CERTCoordination Center∗, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
E-mail: jmchugh@cert.org

Published online: 27 July 2001 – Springer-Verlag 2001

Abstract. Assurance technologies for computer security
have failed to have significant impacts in the marketplace,
with the result that most of the computers connected to
the internet are vulnerable to attack. This paper looks at
the problem of malicious users from both a historical and
practical standpoint. It traces the history of intrusion and
intrusion detection from the early 1970s to the present
day, beginning with a historical overview. The paper de-
scribes the two primary intrusion detection techniques,
anomaly detection and signature-based misuse detection,
in some detail and describes a number of contemporary
research and commercial intrusion detection systems. It
ends with a brief discussion of the problems associated
with evaluating intrusion detection systems and a dis-
cussion of the difficulties associated with making further
progress in the field. With respect to the latter, it notes
that, like many fields, intrusion detection has been based
on a combination of intuition and brute-force techniques.
We suspect that these have carried the field as far as they
can and that further significant progress will depend on
the development of an underlying theoretical basis for the
field.

Keywords: Computer misuse – Intrusion detection – In-
trusive anomalies – Intrusion signatures – Intrusion de-
tection systems (IDS) – IDS evaluation

1 Introduction

The principal unsolved technical problem
found by the working group was that of how
to provide multilevel resource and information
sharing systems secure against the threat from
a malicious user. This problem is neither hopeless
nor solved. It is, however, perfectly clear to the

∗ CERT and CERT Coordination Center are registered service
marks of Carnegie Mellon University

panel that solutions to the problem will not occur
spontaneously, nor will they come from the various
well-intentioned attempts to provide security as an
add-on to existing systems.

Although these words could have been written today,
they come from one of the seminal documents in com-
puter security, a report [3, Preface] prepared by James P.
Anderson & Co. for then Major Roger R. Schell of the
USAF in 1972. In the nearly 30 years since the prepar-
ation of the Anderson report, little has changed, except
that we are, perhaps, less sanguine about the solvabil-
ity of the problem. The line of research and development
proposed in the report has produced a few fairly secure
systems, but none that have achieved commercial success
or wide-scale deployment. The problems posed by mali-
cious users are rampant, and the inability of commodity
operating systems to provide more than minimal protec-
tion has led to a variety of attempts to secure computing
systems through add-on or external means. Firewalls and
similar mechanisms form the principle line of defense for
many installations. Intrusion Detection Systems (IDSs),
the primary topic of this paper, are an attempt to iden-
tify both successful and unsuccessful attempts to abuse
computer systems.

The paper begins with a discussion of intrusive activi-
ties and the kinds of flaws or vulnerabilities in computing
systems that enable them. This is followed by a historical
overview of the intrusion detection field, illustrated with
descriptions of systems of both historical and current in-
terest. With the historical view to give perspective, the
paper takes an in-depth look at the technologies involved
in intrusion detection, considering both their strengths
and weaknesses. This is illustrated with descriptions of
current commercial, research and public-domain systems.
The problems associated with evaluating IDSs are consid-
ered briefly. The paper concludes with a discussion of the
current state of the intrusion detection technology and its
prospects for future improvement.

J. McHugh: Intrusion and intrusion detection 15

2 Intrusions, intrusive activities, penetrations,
and exploits

From the earliest days of computer security, the possibil-
ity that malicious users could defeat protection mechan-
isms was an area of serious concern. Due to the relatively
limited networking of early systems and the prevalence of
multiuser batch systems, coupled with the fact that pub-
licly accessible services (such as present-day web servers)
were almost unknown, most of the early efforts con-
centrated on mechanisms that untrusted insiders could
use to access sensitive materials on multi-level secure
systems.1 Under this model, the primary threat is from
legitimate users of the system who try to gain access to
material for which they do not have authorization. By
the early 1970s, timesharing and other multiuser systems
were well established and there were growing pressures to
support multi-level operations on these systems, whether
they were actually capable of supporting them or not. In
1970, the Defense Science Board’s Task Force on Com-
puter Security supported byWillis H. Ware of the RAND
Corporation issued a report [81] that laid the groundwork
for the development of adequate computer systems for the
processing of multi-level data. As noted in the Anderson
report [3], the Ware report did not get the attention it
deserved,2 and systematic approaches to building multi-
level secure systems did not emerge until the mid 1970s.

Early multi-user operating systems provided minimal
security features and those that were present were often
directed towards protecting the data associated with one
task from accidental corruption by another. While mod-
erately successful in this respect, such mechanisms were
often trivial to defeat. For example, in the mid-1960s,
the resident engineer for a site where the author was em-
ployed gave him a list of about a dozen techniques that
a job could use to gain supervisor mode with complete ad-
dressability to all physical memory on systems running
the IBM OS-360 MFT operating system.

In the meantime, security flaws that could be ex-
ploited by untrusted users were discovered in a number of
systems that were considered to be secure. Paul Karger
and Roger Schell performed an evaluation [44] of the Mul-
tics operating system and discovered flaws that would
allow an untrusted user to access or modify protected in-
formation. Work at the Naval Research Laboratory [74]
uncovered flaws in the sharing mechanisms of Univac’s
Exec-VIII operating system for the 1108 that would al-
low users of a language processor such as the FORTRAN

1 A multi-level secure computing system is one that is capable
of supporting a mandatory access control policy that bases access
decisions on the classifications assigned to the information objects
that it stores and clearances given to users on whose behalf pro-
cesses seek access.
2 Although the Ware report contained no sensitive information,
it was classified at the CONFIDENTIAL level to control dissemi-
nation of its contents. This, combined with its emphasis on stating
requirements rather than suggesting solutions probably reduced its
impact substantially.

compiler to capture files from other concurrent users of
the same processor. Experiences such as these led to sys-
tematic investigations of flaws and exploitations as well as
techniques to design and build secure systems.

Although there are earlier discussions of the issues
associated with malicious users, James P. Anderson’s
1980 report “Computer Security Threat Monitoring and
Surveillance” [5] set up the first coherent framework for
an investigation of intrusions and intrusion detection. We
will use the following definitions, given by Anderson in
this paper, supplementing them later, as necessary.

Threat: The potential possibility of a delib-
erate, unauthorized attempt to:
(a) Access information
(b) Manipulate information
(c) Render a system unreliable or

unusable
Risk: Accidental and unpredictable ex-

posure of information, or violation
of operations integrity due to mal-
function of hardware or incomplete
or incorrect software design.

Vulnerability: A known or suspected flaw in the
hardware or software design or op-
eration of a system that exposes the
system to penetration or its infor-
mation to accidental disclosure.

Attack: A specific formulation or execution
of a plan to carry out a threat.

Penetration: A successful attack; the ability to
obtain (unauthorized) access to
files and programs or the control
state of a computer system.

Note that threat class (c) includes what are commonly
called “denial of service” attacks today. Attacks that mis-
appropriate computing resources also fall into this cate-
gory.

Anderson classifies threats as shown in Fig. 1. The first
task faced by an external penetrator is to gain access to
the system in question. Note that the true external pen-
etrator may be either an outsider with no connection to
the organization that owns or controls the system being
attacked or it may be someone associated with the organi-
zation who is not authorized to use the system. In today’s
world of networked systems, it could also be someone who
has legitimate access to systems on the network, but not
to the target of the attack. While there are certain classes
of attacks, notably some denial of service attacks, that do
not require the penetrator to actually become a recognized
user of the attacked system, most attacks aimed at either
accessing or manipulating information require the pene-
trator to take on a user role, even though it may be limited
to using (and abusing) a public service offered by the sys-
tem. Anderson further characterizes internal penetrators
as masqueraders, legitimate users, or clandestine users.

16 J. McHugh: Intrusion and intrusion detection

Penetrator
Not Authorized
to use
Data/Program
Resource

Penetrator
Authorized
to use
Data/Program
Resource

Penetrator
Not Authorized
Use Of Computer

Case A:

External
Penetration

Penetrator
Authorized
Use Of Computer

Case B:

Internal
Penetration

Case C:

Misfeasance

Fig. 1. General cases of threats (after [5])

Masqueraders are internal users by definition, but
they may be successful external penetrators who have
assumed an internal identity or legitimate users who as-
sume the identity of another for whatever reason. Pen-
etrations by legitimate users typically involve abuses of
the privileges that are necessary to carry out their regu-
lar duties. Clandestine users are typically highly skilled
in the technical aspects of penetration and take steps to
erase or disguise the traces of their penetrations. They
typically achieve complete control of the penetrated com-
puting system and modify its operating system so as to
make subsequent discovery very difficult.

Early descriptions of vulnerabilities typically assume
that the penetrator has obtained an internal identity and
is capable of writing programs to exploit the vulnera-
bility. Two vulnerabilities from the early 1970s serve to
illustrate the approaches of the time.

2.1 Multics

In performing a vulnerability analysis of Multics, Karger
and Schell found a number of flaws that might be ex-
ploited by penetrators. One of these allowed ordinary
users to change the access time stamps on segments allow-
ing clandestine users to cover their tracks. Another was
more subtle and serves to illustrate ways in which vulner-
abilities are introduced and propagated, even in systems
that have security as a strong design goal [44, P. 20].

While experimenting with the hardware
subverter,3 a sequence of code was observed
which would cause the hardware of the 645 to
bypass access checking. Specifically, the execute
instruction in certain cases described below
would permit the executed instruction to access
a segment for reading or writing without the
corresponding permissions in the SDW. . . .

3 The hardware subverter was a program that periodically
probed security sensitive and potentially troublesome hardware in-
structions on the host hardware. It looked for hardware failures and

This hardware bug represents a violation of one
of the most fundamental rules of the Multics de-
sign – the checking of every reference to a seg-
ment by the hardware. This bug was not caused
by fundamental design problems. Rather, it was
caused by carelessness by the hardware engineer-
ing personnel.

The bug was introduced as a field change thus es-
caping the design analysis processes associated with the
Multics hardware and software development.

2.2 Exec-VIII

Exec-VIII was a multiprocessing operating system for the
Univac 1108 series of mainframes. Univac claimed that
Exec-VIII was secure in the sense that it enforced an
isolation policy that prevented one job from accessing
resources belonging to another job. On the strength of
these claims, some government agencies considered use of
Exec-VIII in environments with a mix of classified and
unclassified computing.

Executing programs on the 1108 used two address
segments, one for code and one for data by convention.
By making the code reentrant, code for a single pro-
gram, such as a compiler, could be shared among a num-
ber of simultaneous jobs. Univac assumed that the code
segments were immutable, but the segmentation hard-
ware provided no mechanism for enforcing this while al-
lowing the necessary write access to the corresponding
data segment. Mike Lay of the University of Maryland
Computer Science Faculty discovered a mechanism [74]
whereby a re-entrant processor (or REP) could be forced
to transfer control to an error handler in a user program
that would then be able to modify the core image of the
REP. Code to carry out the penetration was developed by
David Stryker of NRL. The code inserted in the modifica-
tion could, for example, access or modify any files owned
by any user who invoked the REP. Once modified, the
REP would persist in its modified state until no jobs were
using it. Since REPs are never swapped out, the exploit
would have to be repeated periodically, however, this was
done by having the breaking code awaken periodically,
determine if the target REPwas still modified, and repeat
the modification, if necessary.

Both the 1108 and the Multics penetrations required
deep knowledge of the relevant hardware and software
features of the targeted systems. While none of the
Multics flaws were carried beyond the demonstration
stage, Stryker’s penetration appears to have been reduced
to a fairly simple tool that could have been (but was
not) widely distributed and used by relatively unskilled
insiders.

other anomalies. In some 1100 h of operation, the subverter discov-
ered one undocumented instruction and the access checking failure
described in the quotation.

J. McHugh: Intrusion and intrusion detection 17

It was not until the mid-to-late 1980s that networked
computing became sufficiently ubiquitous for penetra-
tions to become widespread. Network-wide penetrations
were a subject of Science Fiction in the 1970s, John Brun-
ner’s 1975 novel [12] “The Shockwave Rider” being one of
the best known examples. Early research work at highly
networked enclaves such as Xerox PARC developed pro-
grams [69] that may have served as the prototypes (or
at least inspiration) for similar malicious efforts during
the late 1980s. Many of the penetrations or intrusions
of the early-to-mid-1980s were enabled by gross negli-
gence on the part of vendors and system administrators.
Many vendors shipped systems with predefined admin-
istration or maintenance accounts (User name: system,
Password: manager was used by one vendor) and many
system operators neglected to change the passwords on
these accounts. The widespread use of the Unix operating
system among academic sites contributed to the problem
since the BSD Unix networking model created large net-
works of trusted peer machines, simplifying the spread of
compromises from one machine to another. A 1987 note
by Brian Reid [65] describes an episode of break-ins that
originated with a machine serving as a mail gateway be-
tween Unix and IBM systems at Stanford University. This
machine had a guest account (User name: guest, Pass-
word: guest) as well as a directory /usr/spool/at that
was universally writable. Commands placed in this di-
rectory could easily be made to execute with superuser
privileges. The intruder was thus able to assume the iden-
tity of any user on the gateway machine, and by taking
advantage of peer accounts on other machines was able
to masquerade as that user on the peers. Reid estimates
that 30 to 60machines at Stanford were compromised and
that at least 15 Silicon Valley companies, nine universi-
ties, and three government laboratories were penetrated
in this way.

Another line of intrusive activity began in the mid-
1980s. Computer viruses spread through floppy disks ap-
parently appeared on Apple II computers as early as
1981 [70]. In 1985, Fred Cohen published a book [19]
entitled “Computer Viruses”. The first MS-DOS viruses
appeared in 1986 and virus writing (and shortly after
the development of anti-virus products as well) became
a growth industry that persists to this day. Until fairly
recently, most PC-class machines were not networked
and early viruses spread primarily through physical con-
tact involving infected floppy disks. Infections via the
downloading of infected executables from dial-up bulletin
boards was a secondary infection mechanism. Until the
advent ofWindows macro and scripting viruses in the late
1990s, virus penetrations were largely considered disjoint
frommore traditional intrusions, and we will not consider
them further at this time.

In addition to penetrations enabled by poor adminis-
trative practices, direct attacks on system software and
services in the spirit of the earlier Multics and Exec-VIII
attacks continued to be developed in the late 1980s. The

first “race condition” exploit took advantage of the fact
that file creation on Unix is not an atomic action but
requires separate system calls to create an “i-node” for
the file and to link it into the directory structure; this
apparently took place in the summer of 1988. It is pos-
sible for a process other than the one creating the file to
gain access to the i-node if a context switch between the
creating and intervening process occurs between the two
system calls. Robert T. Morris, Sr., then Chief Scientist
at the National Computer Security Center, hypothesized
the exploit, but doubted its feasibility. His son, Robert T.
Morris, Jr., implemented the exploit [56] on a machine in
the Morris home.

On 2 November 1988, the first internet-wide attack
and penetration occurred. This attack took the form of
a self-replicating program or “worm” that propagated it-
self from system to system using a variety of transmission
techniques. The worm is attributed to Robert T. Morris,
Jr., who was prosecuted and convicted of federal crimes in
connection with the incident. The “MorrisWorm,” as it is
now known, exploited a misconfiguration in the sendmail
program that allowed mailed commands to be executed
on a remote system. The feature used was intended for
debugging the sendmail program, but was enabled in
binary versions distributed by several vendors. In add-
ition, the worm also spread by overflowing a string vari-
able in the finger daemon, a service widely available on
Unix systems that allowed outsiders to obtain informa-
tion about system users. The worm code also contained
an efficient password cracking program that attempted
to determine user passwords on systems that it infected.
It used the trusted peer relationships reflected in .rhosts
files to spread itself as well. Details of the worm and its
impact on the internet appear in a number of publica-
tions, including papers by Spafford [73] and Seely [68].
It is worth noting that none of the penetration mech-
anisms used by the Morris Worm can be considered as
security flaws, per se. Reid had already commented [65]
on the folly of the peer trust represented by the .rhosts
mechanism. The sendmail misconfiguration was due to
the extreme difficulties involved in configuring sendmail
properly, reducing it to a trial-and-error process that was
facilitated by the ability to execute remote commands.
The overflow potential in fingerd reflects a software en-
gineering failure of a kind that persists to this date.

In response to the Morris Worm, DARPA established
the Computer Emergency Response Team, now known
as the CERT Coordination Center of CERT/CC at the
Software Engineering Institute (SEI). The CERT advis-
ories4, which started in late 1988, allow major thrusts of
intrusive activities on the internet to be traced.5 From

4 Available online at http://www.cert.org.
5 More recently, Mitre, in cooperation with the CERT/CC and
others, has established a comprehensive listing of Vulnerabili-
ties and Exposures, the CVE, in an effort to foster the use
of a standardized vocabulary by the security community. See
http://cve.mitre.org for more information.

18 J. McHugh: Intrusion and intrusion detection

1988 through late 1996, there appear to have been rela-
tively few intrusions enabled by buffer overflows. In late
1996, the online magazine Phrack published a cookbook
for buffer overflows [59] and the number of such incidents
rose dramatically. A search of the CERT advisories shows
buffer overflows becoming increasingly important, start-
ing in early 1997. A keyword search of the CVE for the
term “buffer overflow” results in about 25% of the entries
and candidate entries6 being identified. A substantial per-
centage of the incidents reported to the CERT/CCduring
the past few years have involved a buffer overflow exploit
of some kind. There are several reasons for the popularity
of these exploits:
– The vulnerabilities are ubiquitous, as seen above. This
increases the likelihood that attacks against random
targets will succeed.

– A successful attack has a high probability of yielding
administrator or superuser privileges on the target,
since the subverted process typically runs with these
privileges.

– Exploit scripts or programs for these attacks are read-
ily available on the internet and require minimal skills
to execute.
As is the case with many other classes of attacks,

buffer overflows have evolved in complexity and sophis-

6 The search was made against version 20001013 of the CVE
which contains 1077 entries and 678 candidate entries. Of these,
434 or 24.7% contain the terms “buffer” and “overflow”.

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

hijacking
sessions

sniffers

packet
spoofing

GUI
intruder

tools

automated
widespread

attacks

widespread
denial-of-

service attacks

"stealth"/
advanced
scanning

techniques

email
propagation
of malicious
code

distributed
attack
tools

distributed
denial-of-

service
tools

executable
code attacks

(against
browsers)

widespread
attacks on DNS
infrastructure

increase in wide-
scale Trojan
horse distribution

automated
probes/
scans

Internet
social
engineering
attacks

techniques to
analyse code for

vuls without source

widespread
attacks using
NNTP to
distribute attack

windows-based
remote controllable

Trojans (back
orifice)

Sophistication of
attacks

Intruder knowledge
needed to execute

attacks

dates indicate major
release of tools or
widespread use of a type
of attack

Fig. 2. The evolution of attack sophistication and devolution of attacker skill

tication. Early attacks involved data explicitly read by
the target program. Subsequently, it was discovered that
variables used to hold the values of environment variables
could also be used as attack vectors. Recently overflows
based on format strings have been used.

In 1992, the first widespread appearances of what are
now known as “root kits” started to appear [15]. Intruders
would gain access to a system as an ordinary user, typ-
ically by obtaining a password to a user account through
guessing, social engineering, or other means. They would
then attempt to become root by exploiting a vulnerability
on the system. Once root access was obtained, subverted
versions of various system utilities such as su, ftp and
ftpd would be installed and remote access permissions
enabled to facilitate subsequent reentry by the intruder.
This line of intrusion has been refined over time with the
addition of numerous modified utilities intended to hide
the intruder’s activities from other users, administrators
and auditors.

Often, substantial time elapses between the discovery
of a potential vulnerability and the development of an ex-
ploit. Bellovin hypothesized TCP hijacking in 1989 [11],
but exploits did not actually appear until 1995 [16]. As
noted above, Morris demonstrated a race condition vul-
nerability in 1988, but the first widespread incident of this
kind apparently occurred in 1991 [14].

Figure 2 illustrates the increasing sophistication of at-
tacks from the mid-1980s to the present. As the attacks

J. McHugh: Intrusion and intrusion detection 19

have grown in complexity, they have been increasingly
automated. This has reduced the skill required to launch
the attacks. Recent research using CERT/CC data [7] in-
dicates that this automation may be the trigger for large-
scale intrusive activity on the internet.

Over the years, there have been a number of attempts
to create taxonomies for classifying vulnerabilities. One
of the most complete was developed by Krsul [48]. Krsul
notes that about 63% of the vulnerabilities in his database
resulted from invalid assumptions made by the program-
mer about the environment in which the program will
run. A recent examination of the CERT/CC vulnerability
database found that 58% of the vulnerabilities it contains
have a similar origin [37], a figure that is in good agree-
ment with Krusl. Interestingly enough, many of the Mul-
tics vulnerabilities found by Karger and Schell fall into
this category, indicating the persistence of the problem.
Of the remaining vulnerabilities in the CERT database,
configuration problems, either with default configurations
that are never changed or due to the complexity of config-
uring the system securely, account for another 10%, while
inherently insecure protocols contribute about 5%. Imple-
mentation errors account for only about 2%.

3 The early history of intrusion detection

The history of an area of endeavor ultimately becomes
a trace of recorded (usually written) documents. In the
early stages, scholars may be able to draw on direct ac-
counts from participants as well as on the writings of
those who were present or involved in the field from
the start. The author is fortunate to know many of the
early visionaries and practitioners in the intrusion de-
tection field. In addition to first-hand accounts and the
(sometimes obscure) writings of these individuals, recent
books, such as Rebecca Bace’s excellent “IntrusionDetec-
tion” [10] contain a wealth of material on and references
to the early developments in the field. In preparing this
survey, I have relied on Bace’s book and the sources she
cites, supplemented by accounts from some of the early
participants in the field.

In the beginning, there was audit. Financial systems
have been designed to provide information that allows a
specialized auditor to inspect the records with an eye to
detecting fraud and error. As computers replaced ledgers
in the 1950s and 1960s, it was natural to include auditing
functionality as part of the programs. By the mid-to-late
1960s financial auditing of computer programs was well
established. Since computer time was expensive, it was an
obvious and logical extension to collect audit information
on the usage of the computer as well. With the advent of
multiuser systems, detailed records of user resource con-
sumption were required to determine how to spread the
computer costs among users in an equitable fashion.

The Ware report [81] defines requirements for audit-
ing, noting that activities such as accessing files, changing

their contents or classification, etc., must be recorded.
Ware also notes that trusted individuals such as secu-
rity administrators, system operators, and maintenance
personnel should have their actions audited along with
those of normal users. Anderson’s 1972 Computer Secu-
rity Technology Planning study also called for the provi-
sion of a security surveillance system [4, PP. 51–52] for the
collection of data that may indicate attempted or actual
security violations. The questions raised by Anderson –
what to detect, how to analyze it, and how to protect the
surveillance system and its data from attack – remain at
the heart of IDS research today.

The late 1970s produced a number of government-led
computer security initiatives, both within DoD (Depart-
ment of Defense) and at NIST (National Institute of Stan-
dards and Technology). Security audit was a considera-
tion in these studies. In 1980, James Anderson produced
another report [5], this time for an Air Force customer
who processed large amounts of classified data using
mainframe computers. The customer’s security staff per-
formed a detailed manual review of audit data, looking for
information that would indicate security violations. As
the volume of processing increased, this task consumed
excessive amounts of time. The task was also complicated
by the facts that some necessary information was not cap-
tured, lots of unnecessary information was captured and
some information was captured many times. Anderson in-
troduced the threat taxonomy that is illustrated in Fig. 1
and categorized internal intruders as masqueraders, legit-
imate users, or clandestine users. The report then goes
on to characterize computer usage and to define the sorts
of activities that should be recorded for surveillance pur-
poses. He then suggests ways in which the amount of data
to be analyzed can be reduced, suggesting that statisti-
cal data on user and group behavior can be compared to
summary observations, i.e., counts of activities, to detect
abnormal behavior. The security officer would be alerted
when either a clear security violation (or attempted vio-
lation) occurred or when an abnormal statistic was com-
puted. The detailed observations would be available for
subsequent evaluation by the security officer. The Ander-
son report served as a blueprint for early work at SRI
and at TRW [6], and much of the work in intrusion de-
tection carried out through the mid-1980s was strongly
influenced by his approach.

3.1 The early 1980s

Bace [10, Chapt. 1] provides a summary of the most sig-
nificant projects of the 1980s. A 1988 survey by Lunt [53]
also covers many of the same systems, giving some-
what more detail and supplying additional references.
From 1984 to 1985, Sytex conducted an audit analy-
sis project for SPAWAR (U.S. Navy). The project was
based on shell-level audit data from a Unix system and
demonstrated that this data was capable of discrimi-
nating between “normal” and “abnormal” usage. Teresa

20 J. McHugh: Intrusion and intrusion detection

Lunt worked on the project at Sytex and later went to
SRI, where she joined and led the IDES project which
had been started in 1984 by Dorothy Denning and Pe-
ter Neumann. The IDES (Intrusion Detection Expert
System) project at SRI was one of the most significant
(and persistent7) of the early IDS research efforts. The
SRI work resulted in Dorothy Denning’s seminal paper
(discussed below) first presented at the IEEE Security
and Privacy Symposium in 1986 [24] and subsequently
elaborated upon in 1987 [25]. The IDES model is based
on the assumption that it is possible to establish pro-
files to characterize the normal interactions of subjects
(typically users) with objects (typically files, programs,
or devices). The profiles are actually statistical models
of subject behavior and the system attempts to detect
anomalous behaviors, i.e., those sufficiently unusual with
respect to the profile to be considered suspect. The pro-
files have both static (long-term stable) and dynamic
properties (computed over relatively short intervals) to
allow the system to accommodate changing user behav-
ior. The profiles are supplemented by an expert system
that uses a rule base that describes activities that repre-
sent known security violations. This prevents a user from
gradually training the system to accept illegal behaviors
as normal.

TRW was involved in two, apparently unrelated, in-
trusion detection efforts. One, performed for a govern-
ment customer [53, Sect. 3.4], used an expert system with
the knowledge base coming from the expertise of seasoned
system security experts provided by the customer. The
system was applied to existing audit data and mimicked
the behavior of human security officers, building a case
against the intruder. In early tests, it performed well,
finding the one planted intrusion in a set of actual au-
dit data as well as identifying a previously undetected
problem.

While the previous projects were motivated by the
problems associated with protecting classified material
in a DoD environment, the customer for TRW’s Discov-
ery [75] system was internal. Discovery was directed to-
wards detecting intrusions and misuse of the online data-
base that supported TRW’s credit system. In particular,
the system was intended to discover unauthorized in-
quiries. Audit data was collected from the some 400000
inquiries made on the system each day and processed in
batch mode using a hybrid system that provided both
statistical and expert system rules. Discovery represents
the first applications-based IDS where intrusions against
an application as opposed to a platform or network are
sought.

3.2 IDES and Denning’s model

Dorothy Denning’s 1987 paper [25] “An Intrusion Detec-
tion Model” reflects the work done at SRI in the early-to-

7 IDES led to NIDES, which led to today’s Emerald System.
These subsequent systems are discussed further in Sect. 4.8.1.

mid-1980s.8 Although the paper has been highly influen-
tial, reading it now is somewhat disappointing, primarily
because many of the questions that it raises (and leaves
unanswered) remain unanswered to this day.

As was the case with many early workers in the IDS
field, Denning assumes that intrusive activities are dis-
tinct from normal activities and that the IDS task is
largely the discovery of appropriate models for normal
behavior so that intrusive activity can easily be distin-
guished. Much of the motivation in the introduction to
the paper is speculative and, although intuitively appeal-
ing, offered without supporting evidence. The list of ex-
amples given includes the following:

Leakage by legitimate user: A user trying to leak
sensitive documents might log into the system
at unusual times or route data to remote print-
ers not normally used.

Inference by legitimate user: A user attempting
to obtain unauthorized data from a database
through aggregation or inference might retrieve
more records than usual.

Denning then goes on to describe the six primary com-
ponents of the model: subjects, objects, audit records,
profiles, anomaly records and activity rules. The profiles
characterize subject behavior and are the key to the de-
tection aspects of the model. Activity rules describe the
actions to be taken by the system when certain condi-
tions are recognized. They can “...update profiles, detect
abnormal behavior, relate anomalies to suspected intru-
sions and produce reports”. Audit records are triggered
by an action and record the subject attempting the ac-
tion, the action, the object targeted by the action, any ex-
ception condition which may have resulted, the resource
consumption of the action and a uniquely identifying time
stamp. Audit records are compared to the profiles and,
using the appropriate rules, events that correspond to ab-
normal conditions are identified. The model is purely op-
erational and has no explicit knowledge of security mech-
anisms or of vulnerabilities and exploits.

The measures that enter into the profiles are relatively
simple consisting of event counters (e.g., logins per hour
or commands per session), interval timers (e.g., time be-
tween compile commands or time between logins), and
resource usage measures (e.g., pages printed per day or
cpu usage per session). There are a variety of models
based on these measures that can be part of a profile.
The simplest may represent fixed limits. For example,
more than four password failures for a given account in
a 5min period may indicate a guessing attack. Other
models reflect statistical properties of single measures.

8 The original submission of the paper to TSE occurred in De-
cember 1985. This was probably nearly concurrent with the sub-
mission to the 1986 IEEE symposium [24], where the work was
presented in May. The TSE version was revised in August 1986,
which represents the latest date that can be assigned to the work.

J. McHugh: Intrusion and intrusion detection 21

For example, a user may remain logged in an average of
37 min per session with a standard deviation of 10min.
Assuming that the distribution is fairly normal, sessions
longer than 57min or shorter than 17min should occur
less than 5% of the time. Multivariate statistical, Markov
process and complex time series models are also possible.
The profile mechanism allows models to be kept at the
level of individual users and to be aggregated to create
classes of users. This allows detection of users whose ac-
tions are internally consistent, but at odds with those
of peers in similar positions. The aggregations can be
performed to aggregate the objects affected by actions
as well. Subject-class aggregation might group privileged
users while object-class aggregation might group exe-
cutable files. This would permit a subject-class–object-
class profile that considered how privileged subjects as
a group interact with executable files as a class.

Profiles can be created in a variety of ways, manually
by a security officer, explicitly but automatically when
a subject or object is introduced into the system, or au-
tomatically from a template when a subject first uses a
given object. Since profiles have a per-subject, per-object,
per-action granularity, the number of profiles to be main-
tained is proportional to the product of the numbers of
subjects, objects and actions. This is mitigated by the
fact that most subjects access only a subset of the system
objects and not all actions are applicable to all subject–
object pairs, but can still pose problems.

Denning suggests a number of profiles that should be
useful for detecting intrusions. These include things such
as login and session activity, with models for frequency
of login, session duration, login location, etc., command
or program execution behavior, with models for execu-
tion frequency for various commands, resource usage for
commands, permission failures and resource exhaustion
records, and file-access activity, with models for access
frequencies, read and write behavior, access failures, and
resource exhaustion.

Activity rules serve to both detect anomalous behav-
ior and update profiles so that the system can track the
evolution of user and system behavior. Rules are triggered
by a number of actions. Audit-record rules are triggered
by the creation of a new audit record that matches an ac-
tivity profile. They may result in the update of the profile
and or the issuance of an anomaly record. Periodic ac-
tivity update rules are triggered by the expiration of a
counter and result in the update of period-based activ-
ity profiles, e.g., logins per hour, and possibly issuance
of an anomaly record. Anomaly record rules are trig-
gered by the creation of an anomaly record and bring it
to the immediate attention of the security officer. Peri-
odic anomaly analysis rules generate summary reports of
anomalous activity for the period covered.

Thus far, the paper seems to be setting the framework
for an experimental evaluation of the proposed model,
but it ends abruptly with conclusions that offer questions
rather than answers.

There are several open questions:

– Soundness of Approach: Does the approach ac-
tually detect intrusions? Is it possible to dis-
tinguish anomalies related to intrusions from
those related to other factors?

– Completeness of Approach: Does the approach
detect most, if not all intrusions, or is a signifi-
cant proportion of intrusions undetectable by
this method?

– Timeliness of Approach: Canwe detect most in-
trusions before significant damage is done?

– Choice of Metrics, Statistical Models, and Pro-
files: What metrics, models, and profiles pro-
vide the best discriminating power? Which are
cost-effective? What are the relationships be-
tween certain types of anomalies and different
methods of intrusion?

– System Design: How should a system based on
the model be designed and implemented?

– Feedback: What effect should detection of an
intrusion have on the target system? Should
IDES automatically direct the system to take
certain actions?

– Social Implications: How will an intrusion-
detection system affect the user community
it monitors? Will it deter intrusions? Will the
users feel that their data is better protected?
Will it be regarded as a step towards “big
brother”? Will its capabilities be misused to
that end?

For the most part, these questions remain unanswered
today. In addition to these questions, the issue of false
alarms should also be raised, though it may be being
obliquely addressed under the soundness issue. As we will
see below, the problem is a difficult one. The ad hoc na-
ture of the IDES and other early approaches is indicated
by the lack of any sort of underlying theory that might
shed light on the first four of Denning’s questions. Later
research, like the early work, seems to be based almost
entirely on intuition.

3.3 The late 1980s and early 1990s

In the late 1980s, a number of other notable systems were
developed, mostly relying on a combination of statistical
and expert systems approaches. In several cases, notably
Haystack [71] and NADIR [38], the analysis engines incor-
porated commercial database management systems such
as Oracle and Sybase, taking advantage of their abili-
ties to organize the underlying audit data and to gener-
ate triggers when certain criteria were met by the data.
NADIR remains in use at Los Alamos and is under active
refinement to accommodate new threats and to adapt it
to new target systems.

MIDAS was developed by the National Computer Se-
curity Center at NSA to monitor its Multics system,

22 J. McHugh: Intrusion and intrusion detection

Dockmaster [67]. It used a hybrid expert system and sta-
tistical analysis approach and examined audit log data
from the Multics “Answering System”, which controlled
user logins augmented with data from other sources. MI-
DAS is notable in being one of the first systems deployed
on a system connected to the internet and was in use
from 1989 until the mid-1990s when Dockmaster was
retired.

Wisdom and Sense, developed at Los Alamos and
Oak Ridge, was another hybrid statistical and expert sys-
tem [77]. It used nonparametric (distribution-insensitive)
statistical techniques to derive its rule base from histor-
ical audit data. Like many other machine learning ap-
proaches, it suffered from a number of problems, includ-
ing the difficulty of obtaining training data known to be
intrusion free, high false alarm rates, and excessive mem-
ory requirements for manipulating the rule bases. The
first two problems persist to the present time.

Up until this time, IDS systems used some form of au-
dit data collected from the hosts being protected. The
Network System Monitor, developed at the University of
California at Davis changed this. NSM-monitored net-
work traffic directly on an ethernet segment and used
this as its primary source of data for analysis [36]. In
the 2-month test reported in their paper, NSMmonitored
over 100,000 network connections and identified over 300
of them as being intrusive. Only a few of these connec-
tions were discovered by the administrators of the af-
fected systems. Today, most commercial IDS systems use
directly sensed network data as their primary (or only)
data source.

4 Approaches to intrusion detection

In order to detect intrusions, some source of informa-
tion in which the intrusion is manifest must be observed
and some analysis that can reveal the intrusion must
be performed. The first efforts at intrusion detection
used operating-system auditing mechanisms to provide
the data to be analyzed. This was soon augmented with
additional auditing that was believed to be security
relevant. In addition, applications can be enhanced to
provide audit data that might contain evidence of at-
tacks on the application. Systems that obtain the data
to analyze from the operating system or applications
subject to attack are called host based. The alterna-
tive to host-based sensing is to observe the traffic that
goes to and from the system or systems being moni-
tored and look for signs of intrusion in that data. In
this section, we will first examine the issues associated
with host/applications and network-based sensing. We
will then examine the two primary analytical approaches,
misuse detection and anomaly-based intrusion detection.
This will be followed by brief (and necessarily incom-
plete) surveys of some current commercial and research
systems.

4.1 Host/applications-based data collection

As we have seen, the earliest proposals for intrusion de-
tection were based on the use of audit data from the
host being monitored. Initially, the audit data used was
that provided by the system to support its administra-
tion and to provide for proper user accounting. It was
soon realized that additional information was needed.
The Trusted Computer System Evaluation Criteria [27]
(TCSEC or “Orange Book”) set forth audit criteria,
starting with class C2, listing the events to be audited.
These included the use of identification and authenti-
cation mechanisms (logins etc.), introduction of objects
into the program’s address space (file opens and program
executions), deletion of objects, administrative actions,
and “other security relevant events.” The requirements
included protecting the audit trail from unauthorized
access or tampering and specified in some detail the
information that the audit records should contain. In
addition, the audit mechanism was required to support
selective auditing of individual users. Additional require-
ments, primarily having to do with classification labels
(B1) and covert channels (B2), and cumulative audit
thresholds (B3) appear at higher levels of the TCSEC,
but any systems that claim to support C2-level secu-
rity should have the basic auditing capabilities described
above. These include Windows NT and Solaris.9 It is
also possible to supplement the general purpose logging
mechanisms of many operating systems with specialized
logging. CERT/CC provides guidelines for configuring
some of these specialized logging mechanisms as a part
of its “Security Improvement Module” series [13, De-
tecting Signs of Intrusion]. Most host-based systems col-
lect data continuously as the system is operating, but
periodic snapshots of the system state can also pro-
vide data that has the potential to reveal unexpected
changes.

The early intrusion detection literature makes the as-
sumption that some sort of audit data will be sufficient to
detect intrusions, but provides no basis, other than intu-
ition, to justify the assumption. Intrusions can manifest
themselves in many ways. Even if the intrusive activity
does not directly manifest itself in the audit trail,10 it
may be possible to infer something about the activity
from the activity that is audited. For example, if a badly
formed input to a process (such as the finger daemon)
that monitors a network port causes the process to termi-
nate abnormally, we would be much more likely to audit
the abnormal termination rather than the message caus-
ing it. At the same time, not logging the message reduces

9 The Solaris BSM audit mechanism provides the ability to col-
lect detailed security relevant data at the system call level. Unfor-
tunately, the data is difficult to use and poorly documented. IDS
projects that have attempted to use this source have had to reverse
engineer the data and write specialized tools for it [32, 52].
10 During the Lincoln Lab IDS evaluation, it was noted that
certain attacks do not manifest themselves in the Solaris BSM
data [52, Sect. 8.2].

J. McHugh: Intrusion and intrusion detection 23

our ability to learn its source or to make a determination
as to whether it was maliciously constructed or the re-
sult of an error in some other software component. On the
other hand, unselective logging of messages may greatly
increase the audit and analysis burdens, while selective
logging requires both detailed knowledge of the correct
message formats and possibly substantial computing on
each input to determine if the input should be logged.
The information necessary to determine this is often not
available.

The choice of items to audit and the level of detail
to record introduce a bias into the intrusion detection
process. If the analysis technique involves looking for par-
ticular patterns in the audit trail as indications of intru-
sion, failing to audit the necessary material will make it
impossible to detect certain intrusions. For systems that
attempt to detect unusual usage patterns, the effects of
this bias may be more subtle, but we know of no re-
search that addresses the problem directly, although the
recent work of Maxion and Tan [54] addresses the issue
indirectly.

Wherever the information is obtained, there are
choices to be made. Most modern operating systems pro-
vide for a substantial amount of auditing; however, the
more detail collected, the more the collection activity is
likely to impact system performance and the more stor-
age space will be required to store the audit data. If the
data is analyzed on the collecting host (or on a host that
is part of the monitored environment and used for other
processing) in real time, the analytical effort may create
a substantial performance impact on top of the sens-
ing impact. Offline analysis will also be affected by the
amount of data collected. At the same time, collecting too
little data raises the risk that attack manifestations will
be missed. In the absence of a theoretical basis for charac-
terizing intrusive activity, only ad hoc techniques, guided
by experience, are available.

4.2 Network-based data collection

The alternative to host-based sensing is to observe the
traffic that goes to and from the system or systems be-
ing monitored and look for signs of intrusion in that data.
This approach has the advantage that a single sensor,
properly placed, can monitor a number of hosts and can
look for attacks that target multiple hosts. It has the dis-
advantage that it cannot see attacks such as those made
from a system console, those made from a dial-up mo-
dem connected directly to the host, or those arriving over
a path that does not traverse the network segment be-
ing monitored. Encrypted connections are also difficult to
monitor.

Nonetheless, network monitoring is the method of
choice for many commercial intrusion detection systems.
There are a number of reasons, including the ease of
constructing a dedicated platform that combines net-
work sensing with data reduction and analysis. We exam-

ine one such platform, Snort, in Sect. 4.7. Constructing
a network-based data-collection system is fairly straight-
forward. All that is required is a network interface de-
vice that can be placed in promiscuous mode, so that it
will see all the traffic on the network segment to which
it is connected, and some mechanism for recording the
traffic or portions of it. The libpcap [40] library is of-
ten used for this purpose. For modest data rates, com-
modity platforms, such as PCs, suffice as network sens-
ing devices. Unfortunately, network data rates are ris-
ing rapidly, with most network segments being upgraded
from 10megabits/s to 100megabits/s, and gigabit seg-
ments are becoming common. While the speed of the
segment does not necessarily indicate the amount of traf-
fic carried on the segment, traffic rates are increasing to
consume the available bandwidth. Figure 3 illustrates the
nature of the problem. It shows the number of memory
cycles available to process each packet for a variety of
packet lengths (in bytes) and data rates (in megabits/s)
for two modes of processing, the first in which only the
68 bytes of header information is input and processed and
one in which the entire packet is transferred and pro-
cessed. These figures assume a 100MHz processor bus
that transfers 32 bits per memory cycle. The processing
time available is calculated by subtracting the time re-
quired to transfer the packet or packet header into mem-
ory from the packet duration and converting to mem-
ory cycles at 10 ns per cycle. For the kinds of process-
ing algorithms used in IDSs, memory cycles are more
likely than CPU cycles to be the limiting factor. Mem-
ory speeds seem to increase at a much slower rate than
CPU clock speeds. For reference purposes, 5 megabits/s
is near the useful capacity of a 10baseT ethernet while 50
and 500megabits/s probably represent useful capacities
for 100baseT and gigabit network segments.

The shortest packet length, 68 bytes, essentially rep-
resents header information only. If only the header is
transferred into processor memory, 17 cycles will be re-
quired, leaving the remaining cycles available to process
the header. This means that some processing can be ac-
complished for the headers of longer packets, even at
network speeds of up to a gigabit. On the other hand,
no realistic processing of the packet contents is likely
to be possible for data rates above 50megabits/s, since
even a simple pattern match against a single pattern is
likely to require more memory cycles per byte than are
available.

Network sensors are also subject to attack. It is typi-
cal to combine sensing and analysis on a single platform.
If the platform performs a stateful analysis that requires
it to retain state information associated with many ses-
sions, it can be subject to a resource exhaustion attack.
Such platforms may not develop the same “world view”
as the systems they are guarding. The TCP/IP protocol
suite has a number of ambiguities that are resolved dif-
ferently by different operating systems. By using overlap-
ping, retransmitted, packet fragments, the intruder may

24 J. McHugh: Intrusion and intrusion detection

Data rate Packet length Cycles per Processing cycles
(Mb/s) (bytes) packet per packet per byte

1 68 54400 54383 800
400 320000 320000 800
1600 1280000 1280000 800

5 68 10880 10863 160
400 64000 63900 160
1600 256000 255600 160

10 68 5440 5423 80
400 32000 31900 80
1600 128000 127600 80

50 68 1088 1071 16
400 6400 6300 16
1600 25600 25200 16

100 68 544 527 8
400 3200 3100 8
1600 12800 12400 8

500 68 109 92 2
400 640 540 2
1600 2560 2160 2

1000 68 54 37 1
400 320 220 1
1600 1280 880 1

Fig. 3. Memory cycles per packet processing time (100 MHz, 32-bit bus)

be able to present different results to the IDS and the tar-
get system. If an attacker becomes aware of the presence
of a network IDS, he may attempt to disable the IDS be-
fore attacking the target network. These and other issues
associated with network sensing are discussed in detail by
Ptacek and Newsham [62].

4.3 Intrusion detection and the signal detection problem

Intrusion detection can be viewed as an instance of the
general signal detection problem [9, 31]. In this case, in-
trusion manifestations are viewed as the signal to be de-
tected while manifestations of “normal” operations are
considered to be noise. In classical signal detection ap-
proaches, both the signal and the noise distributions are
known, and a decision process must determine if a given
observation belongs to the signal-plus-noise distribution
or to the noise distribution. Classical signal detectors use
knowledge of both distributions in making a decision, but
intrusion detectors typically base their decisions either
on signal (signature-based detectors) or noise (anomaly-
based detectors) characterizations. Each approach has
strengths and weaknesses. Both suffer from the difficulty
of characterizing the distributions. A recent technical re-
port by Stefan Axelsson [9] develops a useful taxonomy of
intrusion detection techniques. In our discussions of the
primary approaches, we will generally follow the Axelsson
taxonomy.

4.4 Anomaly-based intrusion detection – is strange bad?

Anomaly-based intrusion detectors equate “unusual” or
“abnormal” with intrusions. Given a complete character-
ization of the noise distribution, an anomaly-based de-
tector recognizes as an intrusion any observation that
does not appear to be noise alone. Characterizing the
noise distribution so as to support detection is non triv-
ial. Characterization approaches have ranged from sta-
tistical models of component/system behavior to neural
networks and other AI techniques to approaches inspired
by the human immune system. The primary strength of
anomaly detection is its ability to recognize novel at-
tacks. Its drawbacks include the necessity of training the
system on noise, with the attendant difficulties of track-
ing natural changes in the noise distribution. Changes
may cause false alarms while intrusive activities that ap-
pear to be normal may cause missed detections. It is
difficult for anomaly-based systems to classify or name
attacks.

The portion of the Axelsson taxonomy that deals
with anomaly-based detection is summarized in Fig. 4.
In general, the anomaly systems are based on the as-
sumption that intrusive activities are necessarily different
from non-intrusive activities at some level of observation.
Early work such as that represented in the IDES [26]
and others was based on the assumption that statistical
models of user behavior were adequate for the purpose.
While these systems were apparently able to detect some

J. McHugh: Intrusion and intrusion detection 25

Style Model Method Examples

Self-learning Non time series Rule-modeling W&S [77]

Descriptive statistics IDES [26]
NIDES [41]
EMERALD [61]
JiNao [42]
Haystack [71]

Time series Neural net Hyperview(1) [21]

Immune inspired Forrest, et al. [82]

Programmed Descriptive statistics Simple statistics MIDAS(1) [67]
NADIR(1) [38]
Haystack(1) [71]

Simple rule based NSM [36, 57]

Threshold ComputerWatch [28]
Tripwire [45]

Default deny State series modeling DEPM [46, 47]
JANUS [33]
Bro [60]

Fig. 4. Anomaly-based intrusion detectors (after [8]). The number in parenthesis indicates the level
for a multilevel detection scheme

intrusions, they often raised an excessive number of false
alarms. Part of the problem is that neither the noise char-
acteristics (normal usage) nor the signal characteristics
(intrusions) have been adequately studied. Maxion and
Tan [54] have taken steps towards matching data char-
acteristics to anomaly detector characteristics in ways
that are useful in predicting detector behavior. Although
most of their results were obtained from artificial data,
they performed one experiment on natural data obtained
from Solaris BSM audit logs. They noted that the dif-
ferences in the regularity of the data from user to user
in their data set would make it difficult to use the same
detector to detect anomalous behaviors across the en-
tire user set. The signal/detector mismatch could trans-
late into a substantial false alarm rate. This is consis-
tent with other experiences with anomaly detection ap-
proaches. More work of this kind is needed to determine
the effective limits of the anomaly detection approach in
practice.

In addition to assuming that anomalies equate to in-
trusions, the anomaly detection approach to intrusion
detection makes another, more subtle assumption. It as-
sumes that intrusions will be accompanied by manifesta-
tions that are sufficiently unusual so as to permit detec-
tion. It is unclear that this is necessarily the case. As was
pointed out by both Anderson [5] and Myers [58], we need
to be concerned with the highly skilled intruder who takes
steps to understand the system under attack and to avoid
detection. We suspect that little appears in the literature
concerning the practices of such intruders and that the
data used to test or evaluate IDSs does not reflect their
approaches.

4.5 Misuse detection – patterns of misbehavior

In order for a signature-based IDS to detect attacks, it
must possess an attack description that can be matched
to sensed attack manifestations. This can be as simple
as a specific pattern that matches a portion of a net-
work packet or as complex as a state machine or neural
network description that maps multiple sensor outputs
to abstract attack representations. If an appropriate ab-
straction can be found, signature-based systems can iden-
tify previously unseen attacks that are abstractly equiva-
lent to known patterns. They are inherently unable to
detect truly novel attacks and suffer from false alarms
when signatures match both intrusive and non-intrusive
sensor outputs. Signatures can be developed in a variety
of ways, from hand translation of attackmanifestations to
automatic training or learning using labeled sensor data.
Because a given signature is associated with a known at-
tack abstraction, it is relatively easy for a signature-based
detector to assign names (e.g., Smurf, Ping-of-Death) to
attacks.

The portion of the Axelsson taxonomy that deals with
signature-based systems is shown in Fig. 5. These systems
range from very simple to quite elaborate. At the sim-
ple end of the spectrum are systems that do simple string
matching or that follow simple rules. Many of these sys-
tems are able to base decisions on single network packets.
For a large class of attacks, particularly those targeting
specific vulnerabilities such as buffer overflow possibili-
ties in programs that read inputs from the network, this is
sufficient. Similarly, attacks that involve packet patholo-
gies such as identical source and destination addresses

26 J. McHugh: Intrusion and intrusion detection

Style Model Method Examples

Programmed State modeling State transition USTAT [39]

Petri net IDIOT [20]

Expert system NIDES [41]

EMERALD [61]

MIDAS-direct [67]

DIDS [72]

MIDAS(2) [67]

String matching NSM [36, 57]

Simple rule-based NADIR [38]

NADIR(2) [38]

ASAX [34]

Bro [60]

JiNao [42]

Haystack(2) [71]

Fig. 5. Signature-based intrusion detectors (after [8]). The number in parenthesis indicates
the level for a multilevel detection scheme

can be detected on a single packet basis. Exploits that
require multiple steps to be carried out require the IDS
to consider multiple data items, whether a series of net-
work packets or a set of audit records. All of the ap-
proaches represented in Fig. 5 encode some representa-
tion of known attacks into a form that can be compared
against the sensed data. An attack is recognized when
the sensed data matches a pattern. With relatively few
exceptions, signature-based systems operate with fairly
concrete data representations. Signatures that are too
specific will miss minor variations on a known attack,
while those that are too general can generate large num-
bers of false alarms. Some of the more successful systems,
such at the STAT family [80], use a sufficiently abstract
representation for some classes of attacks to be able to
recognize attacks that are “new” in the sense that they
were unknown at the time the signature was created. This
behavior is the exception and, in general, signature-based
IDSs, like virus detectors, have to be updated when new
attacks are discovered. Most commercial systems fall into
this category and the ease and frequency of updates is an
issue in choosing the system to deploy.

4.5.1 Signatures are hard – an example

To illustrate some of the problems associated with defin-
ing and using signatures, we consider an example, based
loosely on the Morris Worm’s fingerd attack [68, 73].
This was one of the first buffer overflow attacks. The
finger service listens for requests on port 79 and, when
a connection is established, reads a single line, terminated
with a CRLF pair. Neither the current standard (RFC-
1288 [83]) nor the original (RFC-742 [35]) specify the

length of the line. In the original implementation, charac-
ters were read with a gets input routine which continued
to transfer characters until a null character was encoun-
tered. In describing the attack, Seeley [68] notes:

Probably the neatest hack in the worm is its co-
opting of the TCP finger service to gain entry to
a system. Finger reports information about a user
on a host, usually including things like the user’s
full name, where their office is, the number of their
phone extension and so on. The Berkeley version of
the finger server is a really trivial program: it reads
a request from the originating host, then runs the
local finger program with the request as an argu-
ment and ships the output back. Unfortunately the
finger server reads the remote request with gets(),
a standard C library routine that dates from the
dawn of time and which does not check for over-
flow of the server’s 512-byte request buffer on the
stack. The worm supplies the finger server with
a request that is 536 bytes long; the bulk of the
request is some VAX machine code that asks the
system to execute the command interpreter sh, and
the extra 24 bytes represent just enough data to
write over the server’s stack frame for the main
routine. When the main routine of the server exits,
the calling function’s program counter is supposed
to be restored from the stack, but the worm wrote
over this program counter with one that points
to the VAX code in the request buffer. The pro-
gram jumps to the worm’s code and runs the com-
mand interpreter, which the worm uses to enter its
bootstrap.

J. McHugh: Intrusion and intrusion detection 27

The most straightforward signature for detecting this
attack would be one that alerts on all messages with a
content length greater than 512 that are destined for the
finger port, port 79. Now, what if observations of net-
work traffic indicated that due to malfunctioning soft-
ware elsewhere in the network, malformed packets with
lengths greater than 512 destined for port 79 were com-
mon? These packets would probably effect a denial of
service attack on the finger service if they overwrote the
return address with a “random” value, but the precise ef-
fect might be unpredictable. If we assume that we only
want to deal with serious intrusions rather than acciden-
tal denial of service, a more specific signature is needed.

Looking for the hand-crafted code that executes the
shell seems to be an obvious approach. We could look for
this pattern in the body of the message so that the com-
bination of excessive length and identifiable code would
constitute the signature. Since the message will modify
the program stack to replace the return address of the
affected subroutine with an address that lies within the
buffer, i.e., the address of the sequence of instructions
that executes the shell, another possibility would be to
look for the address of this code in the portion of the mes-
sage that overlays the return address. This will require
some computation, since variations on the attack could
place code anywhere in the buffer, and any number that
falls between the origin of the buffer and the end of the
message is suspect. Since most IDS signature description
languages do not have this power, the code itself is proba-
bly the best bet.

A clever attacker could attempt to hide the code that
calls the shell by adding code to modify the region in
which it is stored prior to executing it. A simple loop to
“XOR” the code region with a constant would suffice.
Since this kind of modification can be performed in ar-
bitrary ways, there is no pattern that can easily detect
variations on the original attack. Given that distinguish-
ing malicious messages from garbage is hard, how easy
is it to observe the effects of the attack? When the at-
tack code is executed, a command interpreter or shell
(/bin/sh) inherits port 79 and awaits further input. The
shell typically issues a prompt to indicate that it is await-
ing input, and since it is operating with root or superuser
privileges, by convention, its prompt consists of a “#”.
By looking for this output from the supplanted fingerd,
we might be able to detect the fact that fingerd has
been replaced by a root shell. However, on most systems,
the attacker can specify the prompt to be used as an ar-
gument to the shell when it is started. The command
can be set to some arbitrary value, even perhaps to a re-
sponse that fingerd might emit such as “User list un-
available”.

If host-based sensing rather than network-based sens-
ing is used, a different picture is presented. Packets that
crash fingerd will probably create log entries indicat-
ing the abnormal termination of the process, with reasons
for the termination that might include illegal instruction

execution, segmentation faults, or other illegal address
failures. A successful buffer overflow attack results in an
exec call which should also be logged. From the descrip-
tion of fingerd given above, it is clear that finger uses
the exec system call to execute the local finger program.
If this is the only use of exec, its presence in the log with
any other argument is a clear intrusion signature. How-
ever, the intruder has the ability to modify log files at this
point, and unless the logs are adequately protected from
modification, the intruder may be able to erase this signa-
ture before it is detected.

This scenario presents a sort of “cat and mouse” game
between the intruder and the IDS. While the bulk of
present-day intrusions appear to come from scripts [7]
that repeat exactly the same set of actions on many ma-
chines, a more sophisticated intruder can easily modify
the attack to avoid simple signature-based detection as
seen above.

4.6 Commercial systems

Beginning in the late 1980s, IDSs moved from the labora-
tory to the commercial arena. Today, there is a thriving
commercial market which is in a constant state of flux.
Any attempt at a comprehensive survey is almost certain
to be out of date as soon as it is finished. In addition,
objective data concerning the performance of commer-
cial systems is often difficult to find, and the information
available from vendors is usually more marketing oriented
that technical. In many cases, the algorithms, data files,
etc., used in commercial systems are proprietary. Over
the next few years, we can anticipate further mergers of
IDS companies accompanied by rapid evolution of the
systems that they field. More and more, IDS is being
viewed as a component in a more comprehensive security
solution, and companies that build multiple security com-
ponents such as vulnerability scanners and firewalls are
starting to integrate these components into comprehen-
sive system management systems.

There is also a movement towards interoperability
of components from multiple vendors. The IETF Intru-
sion Detection Working Group (IDWG) is in the process
of defining a protocol for exchanging alert information
among IDS systems. Major vendors in the system man-
agement area are now supporting IDS systems as part of
their management suites.

In the fall of 1999, CERT/CC published a compre-
hensive survey [2] of the state of practice in intrusion
detection. While the information on particular systems
is somewhat out of date, the general commentary con-
cerning commercial systems in general is still valid. In
general, the systems examined were somewhat difficult to
install and configure. For the most part, the signatures
that they used to define intrusions were either not avail-
able for the user to inspect and modify or were difficult
to understand. Updates of signatures were infrequent, in
some cases requiring a new release of the IDS, making

28 J. McHugh: Intrusion and intrusion detection

it difficult to react to new attacks quickly. False alarms
are a significant problem in many commercial systems. In
a recent presentation at RAID 2000, Julisch reports [43]
false alarm rates of tens of thousands per month for one
commercial system (NetRanger) deployed on an opera-
tional network.

In the following paragraphs, several systems are de-
scribed briefly to give the reader a feeling for the variety
of systems currently available. The choices are largely
arbitrary.

4.6.1 ISS

RealSecurefrom Internet Security Systems11 is a real-
time IDS. It uses a three-part architecture consisting of a
network-based recognition engine, a host-based recogni-
tion engine and an administrator’s module. The network
recognition engine runs on dedicated workstations to
provide network intrusion detection and response. Each
network recognition engine monitors a network segment
looking for packets that match attack signatures. When
a network recognition engine detects intrusive activity,
it can respond by terminating the connection, sending
alerts, recording the session, reconfiguring firewalls, etc.
It also passes an alarm to the administrator’s module or
a third-party management console.

The host-based engines analyze log data to recognize
attacks. Each host engine examines its system’s logs for
evidence of intrusions and security breaches. Log data
may contain information that is difficult or impossible to
infer from network packet data. The host engine may pre-
vent further incursions by terminating user processes or
suspending user accounts. It may also take actions similar
to those performed by a network engine.

Multiple recognition engines are managed by an ad-
ministrative module. The result is comprehensive protec-
tion, easily configured and administered from a single lo-
cation. The administrative module is supplied with both
recognition engines and is also available as a plug-in mod-
ule for a variety of network and systems management
environments.

ISS also makes a vulnerability scanner which it is in
the process of integrating with its intrusion detection sys-
tem. This will allow the IDS to be configured in such a
way that alerts for attacks against vulnerabilities known
not to exist in the protected network can be suppressed.

4.6.2 Cisco Systems

In the past several years, Cisco’s IDS products have
evolved from a stand-alone hardware/software platform
known as NetRanger to an enterprise-wide system con-
sisting of sensors and management facilities. Audit trails
from Cisco’s routing products can also be fed into the

11 http://www.iss.net.

management and analysis facilities. In addition to raising
alarms or alerts, the Cisco IDS products can also be used
to reconfigure routing tables to block attacking sources
as seen in the following quotation from the current online
product data [18]:

– Reset TCP connections after an attack begins.
The Sensor can reset individual TCP connec-
tions after an attack to eliminate the threat.
Communication between all other connections
continues, thereby decreasing the likelihood of
denial of service problems that can occur after
shunning TCP-based attacks.

– Shun the attack. Shunning is a term that refers
to the Sensor’s ability to use a network device
to deny entry to a specific network host or an
entire network. To implement shunning, the
Sensor dynamically reconfigures and reloads
a network device’s access control lists. This
type of automated response by the Sensor
should only be configured for attack signatures
with a low probability of false positive
detection, such as an unambiguous SATAN
attack. In case of any suspicious activity that
does not trigger automatic shunning, you can
use a Director menu function to shun manually.
Caution Shunning requires careful review be-
fore it is deployed, whether as a set of automatic
rules or operational guidelines for staff. In case
an alarm is generated from a critical host or
network, NetRanger can be configured to never
shun that host or network. This safety mechan-
ism prevents denial of service attacks using the
NetRanger infrastructure.

The caution is indicative of an unsolved problem in
intrusion response. If the system reacts automatically by
refusing connections from the network or host believed to
be responsible for the intrusion, attackers have the oppor-
tunity to create denial of service attacks by spoofing an
attack from a critical source. Accidental false alarms can
have a similar effect.

4.6.3 Tripwire

Tripwireis a file integrity assessment tool12 that is useful
for detecting the effects of an intrusion. Tripwire creates
a database of critical system file information which in-
cludes file lengths and cryptographic checksums based
on each file’s contents. Tripwire compares current infor-
mation with a previously generated baseline and identi-
fies changed files. Tripwire will report modified files, but
the user must decide whether the modifications resulted
from an intrusion. Since most monitored files are not

12 http://www.tripwire.com. Both commercial and public-
domain versions are available.

J. McHugh: Intrusion and intrusion detection 29

expected to change except when new software versions
are installed, changes usually indicate an unexpected or
unauthorized activity.

For reliable Tripwire results, the database and pro-
gram must be protected from tampering. This can be
accomplished by maintaining them offline or online using
read-only storage media. Configuring Tripwire can be
problematic, especially for large, multi-use systems since
it is not easy to determine which files associated with
some services and applications are expected to change
and which are not.

4.7 A public-domain system – Snort

Snort [66] is a recent open-source, public-domain effort
to build a lightweight, efficient, ID tool that can be de-
ployed on a wide variety of Unix platforms. According
to the Snort web site13: “Snort is a libpcap-based packet
sniffer/logger which can be used as a lightweight network
IDS. It features rules-based logging and can perform pro-
tocol analysis, content searching/matching and can be
used to detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, SMB
probes, OS fingerprinting attempts, and much more.
Snort has a real-time alerting capability, with alerts be-
ing sent to syslog, a separate ‘alert’ file, or as aWinPopup
message via Samba’s smbclient”.

Snort is currently undergoing rapid development. The
user community is contributing auxiliary tools for ana-
lyzing and summarizing snort logs, providing additional
capabilities. More importantly, there is a large group of
users who contribute new signatures. As a result, new at-
tacks are quickly represented in the signature database.
The Snort community has embraced the IDWG effort to
standardize alert messages so that Snort sensors will be
able to interoperate easily with other IDS systems and
system management consoles that support the standard.
In its present form, Snort is stateless and can only exam-
ine single packets; however that could change. Port scan
and packet reassembly capabilities are planned for the
next major release.

4.8 Research systems of the 1990s

4.8.1 NIDES and EMERALD

SRI’s pioneering intrusion detection work began in 1983
when a multivariate statistical algorithm was developed
to characterize user behaviors [61]. EMERALD (Event
Monitoring Enabling Responses to Anomalous Live
Disturbances)14 builds on this earlier work at SRI and
uses both deviations from normal user behavior (anoma-
lies) and known intrusion patterns (signatures).

13 http://www.snort.org.
14 http://www.sdl.sri.com/emerald/.

A major goal of EMERALD is to provide intrusion
detection for large, loosely coupled enterprise networks.
Such environments are more difficult to monitor and ana-
lyze due to the distributed nature of the incoming infor-
mation. EMERALD structures users into a federation of
independently administered domains, each with its own
network services and trust relationships with other do-
mains. In this context, a centralized repository or analysis
facility is likely to result in significant performance degra-
dation. EMERALD uses a hierarchical “divide and con-
quer” approach to address these issues.

The hierarchical approach provides three levels of an-
alysis performed by a three-tiered system of monitors:
service monitors, domain monitors and enterprise mon-
itors. These monitors have the same basic architecture:
a set of profiler engines (for anomaly detection), signa-
ture engines (for signature analysis) and a resolver com-
ponent for integrating the results generated from the
engines.

EMERALD is an example of the direction that future
IDSs may take. As intruders become more sophisticated
in their attacks, they will be increasingly likely to disperse
the evidence of their work across networks, making it dif-
ficult to sense when a distributed/coordinated attack is
occurring. In such situations, the ability to collect, assim-
ilate, correlate, and analyze information emanating from
diverse sources in real-time becomes essential.

4.8.2 The STAT family

The State Transition Analysis Technique [80] (STAT)15

developed at UCSB is a method for representing the se-
quence of actions that an attacker performs to achieve
a security violation. The technique provides a general
framework in which host-based (USTAT) [39], network-
based (NETSTAT) [78, 79], and distributed multi-host
(NSTAT) tools have been built.

State transition analysis uses a graphical notation to
represent a penetration, precisely identifying its require-
ments and the nature of the compromise. Analysis tools
use information contained in a system’s audit trail or net-
work traffic to compare the state changes represented in
the data to the state transition diagrams of known pene-
trations. State transition analysis assumes that (a) pen-
etrations require the attacker to possess some minimum
prerequisite access to the target system (the initial state),
and (b) all penetrations lead to the acquisition of some
previously unheld ability (the compromised state).

After the initial and compromised states of a pene-
tration scenario have been identified, signature actions
are identified. Recent work resulted in the develop-
ment of STATL [30], a language for specifying intrusive
actions. Tools are under development to generate de-
tectors for members of the STAT family from STATL
descriptions.

15 http://www.cs.ucsb.edu/∼kemm/netstat.html/.

30 J. McHugh: Intrusion and intrusion detection

4.8.3 Integrity checkers

Tripwire has been discussed in Sect. 4.6.3. The DERBI
(Diagnosis, Explanation and Recovery from computer
Break-Ins) system was built at the AI lab at SRI as an
ex post facto mechanism for analyzing the residue left by
successful break-ins. DERBI can be viewed as giving a se-
mantic interpretation to raw data of the kind produced
by Tripwire. As far as we can tell, the DERBI project
resulted in no accessible publications, but the materials
used in several briefings given on the project are available
at the DERBI web site16. The system is described briefly
in the abstract for a talk given by the PI, Mabry Tyson, in
May of 1999 [76]:

DERBI has three major components. The “head”
is the intelligent part that directs the search and
processes the evidence. The head is implemented
as a PRS graph. The “feet” are the data collectors,
or sensors, that scour the file system looking for
evidence. The “body” interfaces between the high-
level requests of the head and the low-level details
of the feet.
DERBI searches for the fragmentary tracks of the
cracker and tries to match these with a model of
expected behaviors of crackers. Crackers may cam-
ouflage their tracks but in doing so they often leave
other, less-obvious traces. DERBI looks for sec-
ondary effects of the crackers presence on the sys-
tem. The evidence found is accumulated and en-
tered into a generic model of an attack. As pieces
fall into place, probabilities are calculated to give
a system administrator a better idea as to whether
an attack has occurred. DERBI’s design allows for
searching harder for evidence for missing pieces of
an attack.
After accumulating evidence, DERBI uses the at-
tack model to explain to the system administrators
what it has found and why this evidence leads to
conclusions about the integrity of the system. As
it explains what has happened (or what it cannot
know), it can also recommend courses of action to
be taken to recover from the intrusion.
Real-time monitoring systems should be better
than DERBI at detecting and stopping attacks
earlier. However, at a recent DARPA-sponsored
evaluation17, DERBI performed as well as the
other systems in detecting attacks.

4.8.4 Data-mining approaches and learning approaches

Data-mining approaches are based on the automatic ex-
traction of features from a large set of data. They develop

16 http://www.ai.sri.com/∼derbi.
17 Slides showing the results of the 1998 and 1999 evaluations are
available at http://www.ai.sri.com/∼derbi as presentations at
the PI meetings in December of those years.

rules that can describe various relationships among the
data items. Lee has applied these techniques [49] to net-
work and host audit data to develop models that support
intrusion detection. He reports that several types of algo-
rithms are particularly useful for mining audit data.

Classification: maps a data item into one of several
predefined categories. These algo-
rithms normally output “classifiers”,
for example, in the form of decision
trees or rules. An ideal application in
intrusion detection will be to gather
sufficient “normal” and “abnormal”
audit data for a user or a program and
then apply a classification algorithm
to learn a classifier that can label or
predict new unseen audit data as be-
longing to the normal class or the
abnormal class;

Link analysis: determines relations between fields in
the database records. Correlations of
system features in audit data, for ex-
ample, the correlation between com-
mand and argument in the shell com-
mand history data of a user, can serve
as the basis for constructing normal
usage profiles. A programmer, for ex-
ample, may have “emacs” highly as-
sociated with “C” files;

Sequence analysis: models sequential patterns. These
algorithms can discover what time-
based sequences of audit events are
frequently occurring together. These
frequent event patterns provide guide-
lines for incorporating temporal sta-
tistical measures into intrusion detec-
tion models. For example, patterns
from audit data containing network-
based denial-of-service (DOS) at-
tacks suggest that several per-host
and per-service measures should be
included.

Lee’s approach performed very well for detecting
known attacks during the 1998 DARPA evaluation, but,
like most other approaches, did fairly poorly on sev-
eral categories of new attacks. The features that the
data-mining approach associated with certain attack cat-
egories are also somewhat suspect, since they are most
likely to be associated with fairly naive attack patterns.
For example, obtaining a root shell18 without a root login
or su to root seems to be the defining pattern for user to
root attacks [49, Sect. 5.2.4]. While this is a sufficient con-
dition for such an attack, it is far from necessary. Attacks
are known that can execute specific commands as root,

18 These techniques assume that obtaining a root shell is indi-
cated by a change in the shell prompt to a string ending in “#”.

J. McHugh: Intrusion and intrusion detection 31

obviating the need for a root shell. Similarly, it is simple
for an ordinary user19 to spoof a legitimate su command,
and then perform an exploit that results in an apparently
legitimate root shell. While the approach looks promis-
ing, it remains to be seen as to whether it can be used in
practice. Like all machine learning approaches of which
we are aware, it requires a substantial amount of data for
which the “ground truth” is known or can be determined.
The relatively poor results obtained by Lee on data that
was very different from the labeled training data seems
to indicate that the approach will not adapt to new en-
vironments and attacks without a substantial amount of
“hand holding”. If mining done in one environment does
not transfer to another, the laboratory results may not be
of practical use.

5 Evaluating IDSs

There is relatively little work prior to 1998 in the field of
evaluating intrusion systems. The work of Puketza and
others at the University of California at Davis [63, 64]
is the only reported work that clearly predates the Lin-
coln Lab effort that began in 1998. These papers describe
a methodology and software platform for the purpose of
testing IDSs. The methodology consists of using scripts
to generate both background traffic and intrusions with
provisions for multiple, interleaved streams of activity.
These provide a (more or less) repeatable environment in
which real-time tests of an IDS can be performed. Only
a single IDS, the Network Security Monitor [36], seems
to have been tested, and the tests reported could not
be seen as any sort of a systematic evaluation. The ear-
lier work [63], dating from 1993, reports the ability of
NSM to detect several simple intrusions, both in isola-
tion and in the presence of stresses. One form of stress
is induced by system loading. Load is measured in terms
of the number of concurrent jobs running on the host
supporting NSM, and NSM is reported to drop pack-
ets under high load averages (42% byte stream loss at
a load average of about 14.5). Other forms of stress in-
clude background noise (non-intrusive network activity),
session volume (the number of commands issued during
an intrusive session) and intensity (number of concurrent
sessions on the link being monitored). No experimental
results are given for these forms of stress. In their later
paper [64], the Davis group concentrates on the ability of
the test facility to support factoring of sequential attacks
into a number of concurrent or overlapping sessions. They
report that NSM assigns lower scores to some attacks
that have been factored, noting that NMS’s independent
evaluation of individual network connections may allow
attacks to be hidden in this way.

19 The user in question may be either a misbehaving legitimate
user of the system or an intruder who has penetrated the system
to the point of assuming an unprivileged user role.

The most comprehensive evaluations of IDSs reported
to date were the 1998 [50] and 1999 [51] offline evalua-
tions performed by the Lincoln Laboratory at MIT. The
systems evaluated are the results of research funded by
DARPA. In these evaluations, investigators were given
sensor data in the form of sniffed network traffic, Solaris
BSM audit data,Windows NT audit data (added in 1999)
and file-system snapshots and asked to identify the in-
trusions that had been carried out against a test network
during the data-collection period. The test network con-
sisted of a mix of real and simulated machines, and the
background traffic (noise) was artificially generated by
the real and simulated machines, while the attacks were
carried out against the real machines. Training data was
supplied that contained a variety of attacks that were
identified in the corresponding documentation. The data
used for evaluation contained a mix of attacks that had
been present in the training data and previously unseen
attacks.

An analysis of this evaluation shows a number of seri-
ous flaws [55], including failures to appropriately validate
the background data used (especially with respect to its
ability to cause false alarms), the lack of an appropriate
unit of analysis for reporting false alarms and the use of
questionable or inappropriate data analysis and presen-
tation techniques. The data rate represented by the test
data is not given, but calculations based on the data-set
sizes indicate an average rate of a few 10s of kilobits per
second.

A total of 32 attack types were present in 1998. These
were organized, according to an attacker centric tax-
onomy, into four categories – denial of service, remote
to local, user to root, and probing/surveillance – with-
out regard to manifestation. The best system was only
able to detect about 75% of the 120 attacks present in
the evaluation data. The percentage of the attack types
detected is not reported in the 1998 results [50]. False
alarms are reported “per day” rather than as a percent-
age. The best system generated two false alarms per day,
while most systems produced some tens of false alarms
per day. These figures are problematic for several reasons.
The noise component of the data is responsible for the
false alarms, but no comparison was made between real
and artificial data with respect to false alarm characteris-
tics and any given “natural” environment might produce
more (or fewer) false alarms at the data rate used. If the
false-alarm characteristics of the data are proportional to
the data rate, deploying the evaluated systems on net-
works carrying a few megabits per second of traffic could
result in a hundredfold increase in the number of false
alarms reported per day. The 1999 evaluation produced
similar, but slightly better, results for detection and false-
alarm performance, but over a substantially broader base
of attacks. The real improvement is one in breadth of cov-
erage rather than in effectiveness.

Despite its shortcomings, the Lincoln evaluation in-
dicates that even the best of the research IDSs falls far

32 J. McHugh: Intrusion and intrusion detection

short of the DARPA goals for detection and false-alarm
performance. The Air Force Rome Lab has built a real-
time test bed [29] based on the system used by Lincoln
to generate its offline evaluation data. This system has
been used to evaluate a few of the research systems, with
results similar to those obtained in the offline evaluation.

In 1998, while the Lincoln group was developing and
carrying out its test methodology, a group at the IBM
Research Division in Zurich issued a technical report [22]
describing another experimental facility for comparing
IDSs. As the previous work, the Zurich group reports on
the design and implementation of a real-time test bed.
The Zurich test bed consists of several client machines
and several server machines under the control of a work-
station used as the workbench controller. The report dis-
cusses a number of issues associated with the generation
of suitable background traffic, noting the difficulties as-
sociated with alternatives, including developing accurate
models of user and server behavior, using test suites de-
signed by operating system developers to exercise server
behavior and using recorded “live” data. The authors
tend to favor the test-suite approach, but recognize that
it may bias results with respect to false alarms. Attacks
are obtained from an internally maintained vulnerability
database which makes hundreds of attack scripts avail-
able although only a few are applicable to the initial work-
bench configuration which only supports FTP services.
The paper describes several of the attacks on FTP. Con-
siderable attention is given to the controller component
of the workbench, which allows the systems under eval-
uation to be configured and administered from a single
console. The controller also allows the results from several
IDSs to be compared. Unfortunately, the report does not
present any results obtained from the workbench. Sev-
eral observations from the paper are worth noting. The
first is that “generating realistic, normal behavior is a
time-consuming task when working in a heterogeneous
environment”. The second is that “it is worth noting that
the definition of a set of criteria to evaluate the effective-
ness of existing IDSs remains an open issue which we will
have to address if we want to perform pertinent compara-
tive studies”.

Both anecdotal evidence and the results from the few
evaluations that have been performed indicate that cur-
rent IDSs are not as effective as could be desired. No com-
prehensive evaluation of commercial products has been
performed so that it is difficult to obtain comparative
figures. In 1999 IBM Zurich tested two commercial sys-
tems [23], RealSecure 3.0.x and NetRanger 2.1.2, using
exploit scripts and tools available in their vulnerability
database that were compatible with their test environ-
ment and for which the IDS claimed coverage in its doc-
umentation. RealSecure detected 30 of 42 attacks, while
NetRanger detected 18 of 32. Deployed in an operational
setting, RealSecure issued some 8000 alarms in a month,
over half of which were due to a weekly scan of the net-
work performed for maintenance purposes. Comparable

figures are not given for NetRanger, apparently because
of performance problems. Both systems had fairly high
false alarm rates, but issued false alarms for different
classes of activity.

Recent work at Zurich [1] addresses the potential of
IDS systems to detect certain classes of intrusions using
an analysis of design principles rather than an evaluation
based on an actual implementation. The paper develops
a technique for describing activities which may be either
intrusive or benign and describes the features that an IDS
must have in order to successfully detect the intrusive ac-
tivities while rejecting benign ones. Although this work
is in its early stages, the author claims that it is generic
and easily extends to a wide variety of intrusive activities,
including those for which signatures have not yet been
developed.

Reviews and comparisons of commercial IDSs appear
from time to time, usually at the web sites of online
publications.20 The reviews are generally superficial and
lack details concerning the test methods used. The rapid
rate at which new products are introduced and exist-
ing products modified gives these reviews a limited win-
dow of utility. This is discussed in a recent SEI technical
report [2].

All of the evaluations performed to date indicate that
IDSs are only moderately successful at identifying known
intrusions and quite a bit worse at identifying those that
have not been seen before. This renders automatic re-
sponse to intrusions, a goal of both the research and com-
mercial communities, a dubious prospect. Blocking an at-
tack by dynamically reconfiguring a firewall to block the
intruding source carries with it the risk of a self-imposed
denial of service attack if it is done in response to an event
wrongly identified as intrusive. Anecdotal evidence sug-
gests that legitimate network diagnostic activities have
resulted in the temporary blockage of network traffic on
at least one US military application system.

6 The future of intrusion detection

Over the past several years, DARPA has sponsored a
substantial number of intrusion detection projects. Their
goal has been stated in a number of ways, but in gen-
eral, it is to develop systems (or aggregates of systems)
that can detect more than 99% of the attacks (or cover
more than 99% of the potential attack space) with a false
alarm rate of less than 1% (sometimes stated as less than
0.1%). These systems are intended to be effective against
both known and previously seen attacks as well as against
new or unknown attacks. The results of the most recent
DARPA-sponsored evaluation fall far short of this goal,

20 Unfortunately, these reports tend to be transient in nature.
One such source cited by a reviewer of another paper by the author
was invalid by the time the review reached the author. Only two
of the three sites mentioned in the SEI report were still valid as of
November 2000.

J. McHugh: Intrusion and intrusion detection 33

as noted above. Although commercial systems have not
been evaluated using the criteria and test data developed
by Lincoln Lab for DARPA, anecdotal data indicates that
commercial systems are even further from the goal, espe-
cially with respect to false-alarm performance.

While the reasons for this situation are not entirely
clear, it is our opinion that they reflect a fundamental
problem. Early work in the intrusion detection field was
based on two assumptions. One was that the manifesta-
tions of certain kinds of intrusions would be so obvious
that rules for detecting them could be written and detec-
tors could easily find them. The other was that deviations
from “normal” behaviors by users or programswould usu-
ally be definite indications of malicious or intrusive ac-
tivity. While the intuitions behind these assumptions are
sound, they have led to increasingly ad hoc approaches
to intrusion detection. There is no underlying theory that
relates detection approaches to detections or that allows
useful predictions to be made concerning the relative
powers of various techniques. Even against the relatively
naive attacks that dominate current internet incident re-
ports, most of the systems fare poorly. The Lincoln Lab
evaluation showed that no system exhibited acceptable
performance against new attacks. We suspect that none
of the current research approaches will show themselves
capable of reaching DARPA’s goals and that incremental
improvements will be limited.

There are two areas in which substantial work is ne-
cessary. One is the characterization of “normal” behav-
ior. It is generally agreed that there is no such thing as
a “typical” system; however, it may be possible to de-
velopmethods for characterizing a given environment suf-
ficiently well so that optimal anomaly detectors for that
environment can be defined. Such work may also allow
the limits of a detector, in terms of expected false-alarm
rates, to be determined a priori. This would be useful in
deciding deployment approaches.

Another area in which work is needed is the develop-
ment of a suitable theory of intrusive behavior that could
be used to guide the design of detectors that can abstract
concrete behaviors sufficiently well to detect classes of at-
tacks rather than individual instantiations. It is not clear
that such a theory is feasible; but, if it is, it might offer an
opportunity for significant progress.

One of the more frustrating aspects of intrusion detec-
tion is that many of the common attacks are enabled by
easily avoidable vulnerabilities. The kinds of errors that
are rampant in commonly used software should not be
present at all.

Acknowledgements. I want to thank many members of the intru-
sion detection community for the insights that have made this
paper possible. Roy Maxion of CMU has been a constant source
of inspiration and support. Dick Kemmerer and Giovanni Vigna of
UCSB and Phil Porras of SRI International have provided useful
inputs, as well. Stefan Axelsson of Chalmers University provided
valuable insights into intrusion detection as a signal detection
problem and has been extremely generous in sharing his exten-

sive bibliography and other works. Julia Allen, Tom Longstaff, and
Rich Pethia of CERT/CC have been most supportive. Richard
Lippmann and the other members of the evaluation effort at Lin-
coln Laboratory provided the opportunity for my work on IDS
evaluation. I am fortunate in knowing many of the pioneers in the
IDS field. Jim Anderson provided additional background on his
early reports. Ann Marmor-Squires and Peter Neumann provided
additional background on early work at TRW and SRI. Teresa
Lunt and Dorothy Denning have been helpful on numerous past oc-
casions. This work was sponsored by the United States Department
of Defense.

References

1. Alessandri D (2000) Using rule-based activity descriptions to
evaluate intrusion-detection systems. In: Raid 2000, number
1907 in LNCS. Springer, Berlin Heidelberg New York, pp 183–
196

2. Allen J, Christie A, Fithen W, McHugh J, Pickel J, Stoner
E (2000) State of the practice of intrusion detection tech-
nologies. Technical Report CMU/SEI–99–TR-028, Carnegie
Mellon University, Software Engineering Institute

3. Anderson JP (1972) Computer security technology planning
study, Vol. I. Technical Report ESC–TR–73–51, ESD/AFSC,
Hanscom AFB, Bedford. [NTIS AD-758-206] - Available on-
line at http://seclab.cs.ucdavis.edu/projects/history/
CD/ande72.pdf

4. Anderson JP (1972) Computer security technology planning
study, Vol. II. Technical Report ESC–TR–73–51, ESD/AFSC,
Hanscom AFB, Bedford. [NTIS AD-758-206] – Available on-
line at http://seclab.cs.ucdavis.edu/projects/history/
CD/ande72.pdf

5. Anderson JP (1980) Computer security threat monitoring and
surveillance. Technical report, James P Anderson Co, Fort
Washington. Available online at http://seclab.cs.ucdavis.
edu/projects/history/CD/ande80.pdf

6. Anderson JP (2000) Personal communication
7. Arbaugh WA, Fithen WL, McHugh J (2000) Windows of vul-
nerability: A case study analysis. IEEE Comput 33(12):52–59

8. Axelsson S (2000) Intrusion detection systems: A taxomomy
and survey. Technical Report 99–15, Dept of Computer Engin-
eering, Chalmers University of Technology, Göteborg

9. Axelsson S (2000) A preliminary attempt to apply detec-
tion and estimation theory to intrusion detection. Technical
Report 00–4, Dept of Computer Engineering, Chalmers Uni-
versity of Technology, Göteborg

10. Bace RG (2000) Intrusion Detection. Technology Series.
Macmillan, London

11. Bellovin SM (1989) Security problems in the TCP/IP protocol
suite. Comput Commun Rev 19(2):32–48

12. Brunner J (1975) The Shockwave Rider. Ballantine, New York
13. CERT (2000) Cert security improvement modules. Available

online at http://www.cert.org/security-improvement/
14. CERT Coordination Center (1991) Cert advisory CA-91.20.

rdist.vulnerability. Available online at http://www.cert.org/
advisories/CA-91.20.rdist.vulnerability.html.
Superseded by CA-96-14 [17]

15. CERT Coordination Center (1992) Cert advisory CA-1992-03
Internet intruder activity. Available online at
http://www.cert.org/advisories/CA-1992-03

16. CERT Coordination Center (1995) Cert advisory CA-1995-01
IP spoofing attacks and hijacked terminal connections. Avail-
able online at http://www.cert.org/advisories/CA-1995-01

17. CERT Coordination Center (1996) Cert advisory CA-1996-14
Vulnerability in rdist. Available online at
http://www.cert.org/advisories/CA-1996-14.html

18. Cisco Systems, Inc (2000) Cisco secure intrusion detection
system overview. Available online at http://www.cisco.com/
univercd/cc/td/doc/product/iaabu/csids/csids1/csidsug/
overview.htm

19. Cohen F (1985) Computer Viruses. ASP Press, Pittsburgh
20. Crosbie M, Dole B, Ellis T, Krsul I, Spafford E (1996) ID-

IOT users guide. Technical Report TR-96-050, The COAST

34 J. McHugh: Intrusion and intrusion detection

Project, Dept of Computer Science, Purdue University, West
Lafayette

21. Debar H, Becker M, Siboni D (1992) A neural network com-
ponent for an intrusion detection system. In: Proceedings of
the 1992 IEEE Computer Society Symposium on Research
in Security and Privacy, Oakland. IEEE Computer Society
Press, Los Alamitos, pp 40–250

22. Debar H, Dacier M, Wespi A, Lampart S (1998) An exper-
imentation workbench for intrusion detection systems. Re-
search Report RZ–2998 (# 93044), IBM Research Division,
Zurich Research Laboratory

23. Debar H (1999) Testing intrusion detection systems. Pre-
sentation to Groupe OSSIR, July 1999. Available online at
http://www.ossir.org/ftp/supports/99/debar/index1.html

24. Denning D (1986) An intrusion detection model. In: Proceed-
ings of the 1986 IEEE Symposium on Security and Privacy.
IEEE Press, pp 119–131

25. Denning DE (1987) An intrusion detection model. IEEE Trans
Software Eng SE-13(2):222–232

26. Denning DE, Edwards DL, Jagannathan R, Lunt TF, Neu-
mann PG (1987) A prototype IDES: A real-time intrusion-
detection expert system. Technical report, Computer Science
Laboratory, SRI International, Menlo Park

27. Department of Defense (1985) Trusted computer system eval-
uation criteria. DoD 5200.28-STD. Also known as the “Orange
Book”. Available online at http://seclab.cs.ucdavis.edu/
projects/history/CD/dod85.pdf

28. Dowel C, Ramstedt P (1990) The computer watch data re-
duction tool. In: Proceedings of the 13th National Computer
Security Conference, Washington, DC, October 1990, pp 99–
108

29. Durst R, Champion T, Witten B, Miller E, Spanguolo L
(1999) Testing and evaluating computer intrusion detection
systems. Commun ACM 42(7):53–61

30. Eckmann ST, Vigna G, Kemmerer R (2000) STATL: An
Attack Language for State-based Intrusion Detection. In:
Proceedings of the ACM Workshop on Intrusion Detection,
Athens, November 2000. ACM

31. Egan JP (1975) Signal detection Theory and ROC Analysis.
Academic, New York

32. Flack C, Atallah MJ (2000) Better logging through formality:
Applying formal specification techniques to improve audit logs
and log consumers. In: Recent Advances in Intrusion Detec-
tion, Third International Workshop, RAID 2000, number 1907
in LNCS, Toulouse. Springer, Berlin Heidelberg New York, pp
1–16

33. Goldberg I, Wagner D, Thomans R, Brewer E (1996) A secure
environment for untrusted helper applications (confining the
wily hacker). In: The Sixth USENIX Security Symposium Pro-
ceedings, San Jose, Calif., July 1996. USENIX Association,
Berkeley

34. Habra J, Le Charlier B, Mounji A, Mathieu I (1992) ASAX:
Software architecture and rule-based language for universal
audit trail analysis. In: Proceedings of ESORICS 92, Vol. 648
in LNCS, Toulouse, November 1992. Springer, Berlin Heidel-
berg New York, pp 435–450

35. Harrenstein K (1997) RFC 0742 – NAME/FINGER. Internet
Engineering Task Force Request for Comments, December. In-
ternet Society, Reston

36. Heberlein T, Dias G, Levitt K, Mukherjee B, Wood J, Wol-
ber D (1990) A network security monitor. In: Proceedings of
the 1990 IEEE Symposium on Security and Privacy, Oakland.
IEEE Computer Society Press, pp 296–304

37. Hernan SV (2000) Personal communication
38. Hochberg J, Jackson K, Stallings C, McClary JF, DuBois D,

Ford J (1993) Nadir, an automated system for detecting
network intrusion and misuse. Comput Secur 12(3):235–
248

39. Ilgun K (1993) USTAT: A real-time intrusion detection sys-
tem for Unix. In: Proceedings of the 1993 IEEE Symposium
on Security and Privacy, Oakland. IEEE Computer Society
Press, pp. 16–28

40. Jacobson V, Leres C, McCanne S (1994) libpcap. Lawrence
Berkeley National Laboratory. Available at
http://www-nrg.ee.lbl.gov/

41. Jagannathan R, Lunt TF, Anderson D, Dodd C, Gil-
ham F, Jalali C, Javitz HS, Neumann PG, Tamaru A,
Valdes A (1993) System Design Document: Next-gene-
ration intrusion-detection expert system (NIDES). Techni-
cal report, Computer Science Laboratory, SRI International,
Menlo Park

42. Jou YF, Gong F, Sargor C, Wu SF, Cleaveland RW (1997) Ar-
chitecture design of a scalable intrusion detection system for
the emerging network infrastructure. Technical Report CDRL
A005, Dept of Computer Science, North Carolina State Uni-
versity, Raleigh

43. Julisch K (2000) Dealing with false positives in intrusion de-
tection. Presentation at RAID 2000. Extended abstract avail-
able online at http://www.raid-symposium.org/raid2000/
Materials/Abstracts/50/50.pdf

44. Karger PA, Schell RR (1974) MULTICS security evaluation:
Vulnerability analysis. Technical Report ESD-TR-74-193,
Vol. II, ESD/AFSC, Hanscom AFB, Bedford. Available on-
line at http://seclab.cs.ucdavis.edu/projects/history/
CD/karg74.pdf

45. Kim G, Spafford EH (1993) The design of a system in-
tegrity monitor: Tripwire. Technical Report CSD-TR-93-071,
COAST-TR 93-01. Dept of Computer Sciences, Purdue Uni-
versity, West Lafayette

46. Ko C (1996) Execution Monitoring of Security-critical Pro-
grams in a Distributed System: A Specification-based Ap-
proach. PhD thesis, Dept of Computer Science, University of
California at Davis

47. Ko C, Ruschitzka M, Levitt K (1997) Execution monitor-
ing of security-critical programs in distributed systems: A
specification-based approach. In: Proceedings of the 1997
IEEE Symposium on Security and Privacy, Oakland. IEEE
Computer Society Press, pp 175–187

48. Krsul IV (1998) Software Vulnerability Analysis. PhD thesis,
Purdue University, West Lafayette

49. Lee W, Stolfo S, Mok K (1999) A data mining framework
for building intrusion detection models. In: Proceedings of
the 1999 IEEE Symposium on Security and Privacy, Oakland.
IEEE Computer Society Press, pp 120–132

50. Lippmann R, Fried DJ, Graf I, Haines JW, Kendall KR,
McClung D, Weber D, Webster SH, Wyschograd D, Cunning-
ham RK, Zissman MA (2000) Evaluating intrusion detection
systems: The 1998 DARPA off-line intrusion detection evalu-
ation. In: Discex 2000, Vol. 2. IEEE Computer Society Press,
pp 12–26

51. Lippmann R, Haines JW, Fried DJ, Korba J, Das K (2000)
The 1999 DARPA off-line intrusion detection evaluation. In:
Raid 2000, number 1907 in LNCS. Springer, Berlin Heidelberg
New York, pp 162–182

52. Lippmann RP, Fried DJ, Haines JW, Graf I, Kendall KR,
McClung D, Weber D, Webster SE, Cunningham RK,
Wyschogrod D, Zissman MA (2000) Evaluating intrusion de-
tection systems: The 1998 DARPA off-line intrusion detection
evaluation. In: Proceedings of DARPA Information Surviv-
ability Conference and Exposition, Vol. 2. IEEE Computer
Society Press, Los Alamitos, pp 12–26

53. Lunt TF (1988) Automated audit-trail analysis and intrusion
detection: A survey. In: Proceedings of the Eleventh National
Computer Security Conference, pp 188–193

54. Maxion RA, Tan KMC (2000) Benchmarking anomaly-based
detection systems. In: International Conference on Depend-
able Systems and Networks. IEEE Computer Society Press,
Los Alamitos, pp 623–630

55. McHugh J (2000) The 1998 Lincoln Lab IDS evaluation –
a critique. In: Raid 2000, number 1907 in LNCS. Springer,
Berlin Heidelberg New York, pp 145–161

56. Morris RT, Sr (1988) Personal communication. This anecdote
was told to the author and to George Dinolt of Ford Aerospace
when they visited Morris at the NCSC to brief him on some
research results. We found it particularly interesting in light of
the events of the following November

57. Mukherjee B, Heberlein LT, Levitt KN (1994) Network intru-
sion detection. IEEE Network 8(3):26–41

58. Myers P (1980) Subversion: The neglected aspect of computer
security. Master’s thesis, Naval Postgraduate School, Mon-

J. McHugh: Intrusion and intrusion detection 35

terey. Available online at http://seclab.cs.ucdavis.edu/
projects/history/CD/myer80.pdf

59. Aleph One (1996) Smashing the stack for fun and profit.
Phrack 7(47):File 14 of 16. Available online at, for example,
http://www.shmoo.com/phrack/Phrack49/p49-14 and
http://www.codetalker.com/whitepapers/other/
p49-14.html

60. Paxon V (1988) Bro: A system for detecting network intrud-
ers in real-time. In: Proceedings of the 7th USENIX Security
Symposium, San Antonio. USENIX Association, Berkeley, pp
31–51 (Corrected version, original overstated the traffic level
on the FDDI ring by a factor of two)

61. Porras PA, Neumann PG (1997) Emerald: Event monitoring
enabling responses to anomalous live disturbances. In: Pro-
ceedings of the 20th National Information Systems Security
Conference. pp 353–365

62. Ptacek TH, Newsham TN (2000) Insertion, evasion, and
denial of service: Eluding network intrusion detection. Re-
port from Network Associates Laboratories, 1998. This
paper can often be found online by searching for the
first author. As of November, it was available online at
http://www.secinf.net/info/ids/idspaper/idspaper.html.
It has also been seen in the publications directory of
http:www.snort.org

63. Puketza N, Zhang K, Chung M, Mukherjee B, Olsson RA
(1996) A methodology for testing intrusion detection systems.
IEEE Trans Software Eng SE-22(10):719–729. Authors are
with the University of California, Davis. Available online at
http://seclab.cs.ucdavis.edu/papers.html

64. Puketza N, Chung M, Olsson RA, Mukherjee B (1997) A soft-
ware platform for testing intrusion detection systems. IEEE
Software 14(5):43–51. Available online at
http://seclab.cs.ucdavis.edu/papers.html

65. Reed B (1987) Reflections on some recent widespread com-
puter break-ins. CACM 30(2):103–105 (“Viewpoint” column)

66. Roesch M (1999) Snort – lightweight intrusion detection for
networks. In: Proceedings of USENIX LISA 99. USENIX
Association, Berkeley, pp 229–238. Also available online at
http://www.snort.org (Documents page)

67. Sebring MM, Shellhouse E, Hanna ME, Whitehurst RA
(1988) Expert systems in intrusion detection: A case study.
In: Proceedings of the Eleventh National Computer Secu-
rity Conference, Washington, DC, October 1988, pp 74–
81

68. Seeley D (1989) A tour of the worm. In: Proceedings of the
1989 Winter USENIX Conference, San Diego, February 1989.
Usenix Association, Berkeley, pp 287–304

69. ShochJF,HuppJA(1982)The“worm”programs–early experi-
ence with a distributed computation. CACM25(3):172–180

70. Slade RM (1992) History of computer viruses. Available online
at http://www.bocklabs.wisc.edu/janda/sladehis.html

71. Smaha SE (1988) An intrusion detection system for the Air
Force. In: Proceedings of the Fourth Aerospace Computer
Security Applications Conference, Orlando. IEEE Computer
Society Press, Los Alamitos, pp 37–44

72. Snapp SR, Smaha SE, Teal DM, Grance T (1992) The DIDS
(Distributed Intrusion Detection System) prototype. In: Pro-
ceedings of the Summer USENIX Conference. USENIX Asso-
ciation, Berkeley, pp 227–233

73. Spaford EH (1989) The internet worm: Crisis and aftermath.
CACM 32(6):678–687

74. Stryker D (1974) Subversion of a “secure” operating sys-
tem. Memorandum Report 2821, Naval Research Laboratory,
Washington

75. TennerWT (1990) Discovery: An expert system in the commer-
cial data security environment. Comput Secur J 6(1):45–53

76. Tyson M (1999) DERBI (Diagnosis, Explanation and Recov-
ery from computer Break-Ins). Abstract for seminar available
online at http://www.ai.sri.com/ai-seminars/abstracts/
tyson-990506.html

77. Vaccaro HS, Liepins GE (1989) Detection of annomolous com-
puter session activity. In: Proceedings of the 1989 IEEE Sym-
posium on Security and Privacy, Oakland, IEEE Computer
Society Press, Los Alamitos, pp 280–289

78. Vigna G, Kemmerer RA (1998) NetSTAT: A network-based
intrusion detection approach. In: Proceedings of the 14th An-
nual Computer Security Application Conference, Scottsdale

79. Vigna G, Kemmerer RA (1999) NetSTAT: A network-based
intrusion detection system. J Comput Secur 7(1):37–71

80. Vigna G, Eckmann ST, Kemmerer RA (2000) The STAT Tool
Suite. In: Proceedings of DARPA Information Survivability
Conference and Exposition, Vol. 2. IEEE Press, Los Alamitos,
pp 46–55

81. Ware W (1970) Security controls for computer systems (U):
Report of Defense Science Board task force on computer se-
curity. Rand Report R609–1, The RAND Corporation, Santa
Monica Available online at http://seclab.cs.ucdavis.edu/
projects/history/CD/ware70.pdf

82. Warrender C, Forrest S, Perlmutter B (1999) Detecting intru-
sions using system calls: Alternative data models. In: IEEE
Symposium on Security and Privacy, Berkeley, pp 133–145

83. Zimmerman D (1991) RFC 1288 – The finger user information
protocol. Internet Engineering Task Force Request for Com-
ments. Internet Society, Reston

