Rate-Based Execution Models For Real-Time Multimedia Computing

On the Duality of Proportional Share and Liu & Layland Style Resource Allocation

Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill *jeffay@cs.unc.edu* September 26, 1997

http://www.cs.unc.edu/~jeffay/courses/pisa

Proportional Share Resource Allocation Outline

- Fluid-flow resource allocation models
 - » Packet schduling in a network
- Proportional share resource allocation models
 » CPU scheduling in an operating system
- On the duality of proportional share and traditional real-time resource allocation models
 - » How to make a provably real-time general purpose operating system

On Proportional Share Allocation *v***. Traditional Real-Time Scheduling**

- Proportional share allocation
 - » Uniform rate of execution
 - » "Firm" real-time response
 - » Provides fault containment in the time domain
 - » Easy to implement in an operating system
- Traditional real-time scheduling
 - » Hard-real-time response
 - » Isolation from non-real-time processes

The Essence of Real-Time Resource Allocation

 Real-time processes are allocated a *fraction* of the CPU's capacity (an *absolute share*) 3

- » Canonical real-time, periodic process model: $f_i = \frac{c_i}{p_i}$
 - * c_i is the execution time of process i
 - * p_i is the period of process *i*

• Process *i* executes c_i time units every p_i time units

Integrating Proportional Share & Traditional Real-Time Resource Allocation

• Weights and shares are *duals*

$$f_i = \frac{w_i}{\sum_j w_j}$$

» Fixing the weight w results in proportional share allocation

» Fixing the share f results in real-time execution

Therefore, characterize each process by a pair (w, f), where

» w — weight, the cost the process is willing to pay for execution

» f — fraction (share) of the CPU the process should receive

Exploiting the Weight/Share Duality Predictability v. Cost

- Interpret w as the rate at which a process is charged for service
 - » A process with a fixed weight is charged $w \times \Delta t$ to use the resource over a time interval of length Δt
- Under proportional share resource allocation, *cost* is fixed and *execution rate* is variable

» a process knows how much it is charged over any future time interval, but doesn't know how much service time it will receive

- Under traditional real-time allocation, *execution rate* is fixed and *cost* is variable
 - » a process knows how much service time it will receive over any future time interval, but doesn't know how much it will be charged

Scheduling Hierarchy Example

Admitting a new real-time process

Exploiting the Scheduling Hierarchy Layering a real-time scheduler on top of a PS scheduler

- Proportional share scheduling can provide a virtual CPU abstraction to other operating systems
- Example: Execute a realtime operating system as a process within a general purpose, proportional share system

Exploiting the Scheduling Hierarchy

Layering a real-time scheduler on top of a PS scheduler

• Feasability test for a set of periodic tasks scheduled with an earliest deadline first scheduler on top of a proportional share scheduler:

Experimental Evaluation EEVDF Implementation in FreeBSD

Platform

» PC compatible, 75 Mhz Pentium processor, 16 MB RAM

Implementation

- » Replaced FreeBSD CPU scheduler
- » Time quantum = 10 ms

Experiments

- » Non-real-time tasks making uniform progress
- » Speeding up and slowing down task progress by manipulating weights
- » Real-time execution (of non-real-time programs!)

Summary & Conclusions

Proportional share v. traditional real-time scheduling

- Weights and shares are duals
- There exists a simple framework to integrate proportional share and real-time resource allocation
 » Subsumes traditional priority and real-time scheduling
- By using EEVDF, we've implemented a CPU scheduler that provides support for
 - » real-time
 - » interactive, &
 - » batch applications

Rate-Based Execution Models For Real-Time Multimedia Computing

Summary

- Multimedia services are greatly enhanced by the existence of real-time communication and computation support
- Traditional approaches to real-time OS support are too hard to apply and don't fit requirements well
- We're experimenting with new programming models and new implementation paradigms
- Stay tuned!

Rate-Based Execution Models For Real-Time Multimedia Computing

Summary

- Rate-based execution models are more robust models for real-time multidedia computing
 - » Seamless integration of real-time & non-real-time requirements
 - » Simple "tuning knobs"
 - » Graceful degradation
 - » A dual of existing periodic models

Easy to implement

(In the case of proportional share allocation)