
1

Rate-Based Execution Models For
Real-Time Multimedia Computing

http://www.cs.unc.edu/~jeffay/courses/pisa

On the Duality of Proportional Share and
Liu & Layland Style Resource

Allocation

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
jeffay@cs.unc.edu

September 26, 1997

2

Proportional Share Resource Allocation
Outline

◆ Fluid-flow resource allocation models
» Packet schduling in a network

◆ Proportional share resource allocation models
» CPU scheduling in an operating system

◆ On the duality of proportional share and traditional
real-time resource allocation models
» How to make a provably real-time general purpose

operating system

3

On Proportional Share Allocation v.
Traditional Real-Time Scheduling

◆ Proportional share allocation
» Uniform rate of execution

» “Firm” real-time response

» Provides fault containment in the time domain

» Easy to implement in an operating system

◆ Traditional real-time scheduling
» Hard-real-time response

» Isolation from non-real-time processes

4

The Essence of Real-Time Resource
Allocation

◆ Real-time processes are allocated a fraction of the
CPU’s capacity (an absolute share)
» Canonical real-time, periodic process model: fi =

❖ ci is the execution time of process i

❖ pi is the period of process i

◆ Process i executes ci time units every pi time units

ci
pi

0 p1
p2

2p1
2p2

3p1
3p2 4p2

6p15p14p1

T1 = (c1, p1)

T2 = (c2, p2)

5

Integrating Proportional Share &
Traditional Real-Time Resource Allocation

◆ Weights and shares are duals

 fi =

» Fixing the weight w results in proportional share allocation

» Fixing the share f results in real-time execution

◆ Therefore, characterize each process by a pair (w, f),
where
» w — weight, the cost the process is willing to pay for execution

» f — fraction (share) of the CPU the process should receive

Σj wj

wi

6

Exploiting the Weight/Share Duality
Predictability v. Cost

◆ Interpret w as the rate at which a process is charged for
service
» A process with a fixed weight is charged w × ∆t to use the resource

over a time interval of length ∆t

◆ Under proportional share resource allocation, cost is fixed
and execution rate is variable
» a process knows how much it is charged over any future time

interval, but doesn’t know how much service time it will receive

◆ Under traditional real-time allocation, execution rate is
fixed and cost is variable
» a process knows how much service time it will receive over any

future time interval, but doesn’t know how much it will be charged

7

Exploiting the Weight/Share Duality
Trading off cost for quality-of-service

(10, 1/2)

(10, 1/2) (20, 1/2)

(10, 1/4)

(10, 1/4)
(6, 3/8)

(10, 5/8)
(10, 5/12)

Process 1

0 1 2Time 0 1 2

Process 2 Process 3

◆ Fix a weight, receive a
variable share
» Process 1’s:

 service time = 3/4
 cost = 20

◆ Fix a share, pay a variable
cost

» Process 1’s:
 service time = 3/4
 cost = 24

1

0

.5

Resource
Capacity

(18, 3/8)

(20, 5/24)

8

Exploiting the Weight/Share Duality
Trading off cost for response time

(10, 1/2)

(10, 1/2)

Process 1: Service time = 1
 Cost = 20

Process 1

0 1 2Time

Process 2

(5, 1/3)

(10, 2/3)

Process 1: Service time = 1
 Cost = 15

0 1 32

9

Exploiting the Weight/Share Duality
Scheduling class hierarchy

(W, 1)

Proportional
share class

Real-time
class

... ...

WPS

WRT

=
FPS

FRT

(ΣwPS, ΣfPS) (ΣwRT, ΣfRT)

(wn+1, fn+1) (wn+m, fn+m)(wn, fn)(w1, f1)

10

Scheduling Hierarchy Example
Admitting a new proportional share process

(20, .2)

(100, 1)

(15, .15) (5, .05)

(60, .6)(20, ?)

+
=

(20, .4)

Proportional
share class

Real-Time
class

(50, 1)

(15, .3) (5, .1)

(30, .6)

(5, .1) (25, .5)

(10, .1) (50, .5)

Adding a PS process halves
the execution rate of other
PS processes
» doubles the cost of real-time

processes

(40, .4)

11

(80, .8)

Scheduling Hierarchy Example
Admitting a new real-time process

+
=

(100, 1)

(15, .15) (5, .05)

Proportional
share class

Real-time
class

(50, 1)

(5, .1)

(30, .6)

(5, .1) (25, .5)

(?, .2)

(10, .1) (50, .5) (20, .2)

Adding a real-time process
has the same effect
» PS processes halve their share
» real-time processes pay twice as

much

(20, .2)

(15, .3)

(20, .4)

12

Exploiting the Scheduling Hierarchy
Layering a real-time scheduler on top of a PS scheduler

◆ Proportional share
scheduling can provide a
virtual CPU abstraction to
other operating systems

◆ Example: Execute a real-
time operating system as
a process within a general
purpose, proportional
share system

(W, 1)

(ΣwPS, ΣfPS) (wRT, fRT)

(wn, fn)(w1, f1) RTK

T1 T2 Tm...

13

Exploiting the Scheduling Hierarchy
Layering a real-time scheduler on top of a PS scheduler

◆ Feasability test for a set of periodic tasks scheduled
with an earliest deadline first scheduler on top of a
proportional share scheduler:

14

Experimental Evaluation
EEVDF Implementation in FreeBSD

◆ Platform
» PC compatible, 75 Mhz Pentium processor, 16 MB RAM

◆ Implementation
» Replaced FreeBSD CPU scheduler

» Time quantum = 10 ms

◆ Experiments
» Non-real-time tasks making uniform progress

» Speeding up and slowing down task progress by
manipulating weights

» Real-time execution (of non-real-time programs!)

15

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)

client 1

client 2

client 3

Proportional Share Scheduling Example
Uniform allocation to non-real-time processes

Number
of

Dhrystone
Iterations
(x 1,000)

Elapsed Time (secs)

Process 2
w = 2

Process 3
w = 1

Process 1
w = 3

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)

client 1

client 2

client 3

Proportional Share Scheduling Example
Dynamic share redistribution

Number
of

Dhrystone
Iterations
(x 1,000)

Σwi = 6 Σwi = 11

Elapsed Time (secs)

w2 = 2

w3 = 1

w3 = 6

w1 = 3

17

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)
client 1

client 2

client 3

Proportional Share Scheduling Example
Mixed workload: 1 real-time & 2 ps processes

Process 2’s
share

remains
fixed

throughout
at 1/3

Number
of

Dhrystone
Iterations
(x 1,000)

Σwi = 6 Σwi = 13.5

w2 = 2

w3 = 1

w1 = 3

Elapsed Time (secs)

w2 = 4.5

w3 = 6

18

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time (sec.)

N
um

be
r

of
 F

ra
m

es

client 1 −.−

client 2 −−−

client 3 − −

client 2 −−

MPEG Player Example
2 Proportional share players, 1 real-time player

Number
of

Frames
Played

Elapsed Time (secs)

Player 1
w = 3

Player 3
w = 2

Player 2
f = 1/2

19

Summary & Conclusions
Proportional share v. traditional real-time scheduling

◆ Weights and shares are duals

◆ There exists a simple framework to integrate
proportional share and real-time resource allocation
» Subsumes traditional priority and real-time scheduling

◆ By using EEVDF, we’ve implemented a CPU
scheduler that provides support for
» real-time

» interactive, &

» batch applications

20

Rate-Based Execution Models For
Real-Time Multimedia Computing

◆ Multimedia services are greatly enhanced by the existence
of real-time communication and computation support

◆ Traditional approaches to real-time OS support are too
hard to apply and don’t fit requirements well

◆ We’re experimenting with new programming models and
new implementation paradigms

◆ Stay tuned!

Summary

21

Rate-Based Execution Models For
Real-Time Multimedia Computing

◆ Rate-based execution models are more robust models for
real-time multidedia computing
» Seamless integration of real-time & non-real-time requirements

» Simple “tuning knobs”

» Graceful degradation

» A dual of existing periodic models

◆ Easy to implement
(In the case of proportional share allocation)

Summary

