Proportional Share Resource Allocation
Outline

0 Fluid-flow resource allocation models
» Packet scheduling in a network

0 Proportional share resource allocation models
» CPU scheduling in an operating system

0 On the duality of proportional share and traditional
real-time resource allocation models

» How to make a provably real-time general purpose
operating system

Proportional Share Resource Allocation
Concept

01 Processes are allocated a share of a shared resource
» arelative percentage of the resource’ stotal capacity
0 Processes make progress at a uniform rate according
to their share
0 OS Example — time sharing tasks allocated an equal
share (1/nt") of the processor’ s capacity
» round robin scheduling, fixed size quantum

P, 1 1 1 4
P, L L 4
T S S

| I I I | I I I I I | I I : »
0 g 29 39 49 59 6g 79 8g 9g 10g 1llg 12g 13qg

Proportional Share Resource Allocation
Formal model

0 Processes are allocated a share of the processor’'s
capacity

» Processi isassigned aweight w,
» Processi’s share of the CPU at timetis

f(t) = Zw

0 If processes weights remain constant in [t;, t,] then
processi receives

St [(M= 5o

i

units of executiontimein [ty t,]

Proportional Share Resource Allocation
Real-time scheduling example

0 Periodic tasks allocated a share equal to their processor
utilization c/p

» round robin scheduling with infinitesimally small quantum

1(28)+0J5J I
(36)MJJJJJ*JJJJJJ~J

O l 2 3 4 5 6 7 8 9 lO 11 12 13

-

» With integer quantum = 2 time units

T,=(28) v _ 03 | . N N
T,=(3,6) V10| | | N | &

0 1 2 3 4 5 6 7 8 9 10 11 12 13

4

Proportional Share Resource Allocation
Task scheduling metrics & goals

s(tyty)

S(tt) J ‘|)
dyyl 11 14 Quanm |4
Allocation | . . . - AIIocatlonl | . . . -

0 Schedule tasks such that their performanceis as close
as possible to their performance in the fluid system
L dr
W

S(tuty) = _[g
1 1)

1 Definethe allocation error for task | at timet as
lag;(t) = S(to.t) —s(to.t)

Proportional Share Resource Allocation
Task scheduling metrics & goals

s(tyt)

S(tl’tZ) * ‘ *
Fluid v Quantum - A
Allocation | . . . - Allocation | |

lag;(t) = S(to,t) — s(to,t)

0 Because alocation is qguantum-based, tasks can be either
behind or ahead of the fluid schedule

» if lag is negative then atask has received more service time
than it would have received in the fluid system

» If lag is pogitive then atask has received less service time than
it would have received in the fluid system

Proportional Share Resource Allocation
Task scheduling metrics & goals

s(tyty)

S(tt) J \I)
dyyl 11 14 Quanm |4
Allocation | . . . - AIIocatlonl | . . . -

lag;(t) = S(to,t) — s(to,t)

0 Goal: Schedule tasks such that their performanceis
as close as possible to that in the fluid system

0 Schedule tasks such that the lag is:
» bounded, and
» minimized over all tasks and time intervals

Scheduling to Bound L ag

Thevirtual time domain

0 Tasks are scheduled in avirtual time domain

V(t) = f ST
0 2w,
Virtual

.ﬂ 2wt .ﬂ .a
Time

V() t1 t 1 t+

Real-Time

Scheduling to Bound L ag

Thevirtual time domain

1 Slope of virtual time Vinual A
changes are tasks enter V(1)

and leave the system

V(1) = f L r - —
0 ZJWJ Real-Time
v o
LWy
v il
i W,
v |
Scheduling to Bound L ag
Thevirtual timedomain
0 Task’s execute for w; real-time 1f
time unitsin each virtual-time
time unit V()
» Thusidedly, task i executes for
: —>
S(t,t,) = w f 21 4 Real-Time 2w,
b ZJWJ iwl |
|
= (V(tp) = V(t))w, + W, |

time unitsin any real-time
interval

10

Scheduling to Bound Lag

Virtual time scheduling principles

q

—A lag, = Sitl,tz) —s(ty,t)
* | + t. t) = 2 W
—_—t St ./t’lzjwj dr

0 Schedule tasks only when their lag is non-negative
» |f atask with negative lag makes arequest for execution at
timet, it isnot considered until afuturetimet' when lag(t') =0

» Let e>t bethe earliest time atask can be scheduled
0 the time at which

St,e) = s, 1)
» Thistime occursin the virtual time domain at time
St,e) = s(t;, 1)

(V(e) - V(t)w;, = s(t, t)
V(e) = V(t) + s(ti,b/w,

11

Scheduling to Bound Lag

Virtual time scheduling principles

0 Task requests should not be considered before their
“eligible” timee
0 Requests should be completed by virtual time
V(d) = V(e) + c/w.
» where ¢ isthe cost of executing the request

0 Our candidate scheduling algorithm: Earliest Eligible
Virtual Deadline First (EEVDF)

At each scheduling point, a new quantum
Is allocated to the eligible process with
the nearest earliest virtual deadline

12

Earliest Eligible Virtual Deadline First Scheduling
Example: Two taskswith equal weight =2 (q=1)

Cost=2
v & | &
(Ue),V(d)) =(0,1) (1,2) (2,3)
Cost=1
(5,1) (1,1.5) (1.5,2) (2,2.5)
real-time | : : : : ; : : >
0 1 2 3 4 5 6 7
virtual time
attimeO | i —
0 0.5 1
attimel 1 : : t : >
0 0.5 1 15 2

V(e) = V(t,) + S(ty, ty/w

t 1
V)= ——
'é 2w ar V(d) = V(e) + c/w

13

Proportional Share Resource Allocation
| ssues

0 How to use proportional share scheduling for real-time
computing
» How to ensure deadlines are respected in the real-time domain
» Bounding the allocation error

0 Practical considerations — Maintaining virtual time
» Policing errant tasks
» Dealing with tasks that complete “early”

14

Using Proportional Share Allocation
For Real-Time Computing

0 Deadlinesin a proportional share system ensure
uniformity of allocation, not timeliness

0 Weights are used to allocate arelative fraction of the
CPU'’ s capacity to atask
2 W

fi(t) =
iV
0 Real-time tasks require a constant fraction of aresource's
capacity

W,

fit) = i

0 Thus real-time performance can be achieved by adjusting
weights dynamically so that the share remains constant

15

Supporting Real-Time Computing
Dynamically adjusting weights

+’ \ | V(e) = V(1) + S(t, H/w: = V(1)
— I ———— V(d) = V() + clw,
t t+d

0 Consider task i that arrives at timet with a deadline
atimet+d

» Intheinterval [t, t+d] the task requires a share of the
processor equal to c/d

Wi £
C
ZJWJ d d mej
W, =
C _C
Wi =g (Zj,tiwj "'Wi) 1 d

16

Supporting Real-Time Computing

Admission control

0 If real-time tasks require a fixed share of the CPU’s
capacity, only afinite number of tasks may be

guaranteed to execute real-time

0 Admission criterion:
» asimple sufficient condition — 2.

|
» anecessary condition??
O it depends...

()

L <1
i

17

Supporting Real-Time Computing

Bounding the allocation error

0 Isatask guaranteed to complete before its
deadline?

0 How late can atask be?
» Theorem: By at most g time units

18

Supporting Real-Time Computing

Bounding the allocation error

0 Consider atask system wherein tasks always terminate
with zero lag

0 Theorem: Let d be the current deadline of a request made
by task k. Let f be the actual time the request is fulfilled.
» f<d+q (therequest isfulfilled no later than timed + Q)
» if f>dthenforalt,d<t<f, lag(t) <q

Y | 4 S
; N

Y A

19

Bounding the Allocation Error
Some properties of lag(t)

V(e) = V(t t,, t)/
290 =560 =500y v ony

0 lag;(t) < O impliesthat task i has received “too much”
service, lag;(t) > O impliesthat it has received “too little”

0 Eligibility law 0 Preserved lateness law
» |f atask has non-negative lag » |f atask that missesa
thenitiseligible deadline at d completes

_ execution at T, then
0 Lag conservation law o foralt, T>t>d,lag(t) >0

» Foralt, 2jlag(t) =0 o lagy(t) > remaining service

1 Missed deadline law time

» If atask missesits deadline d
then lag(t) = remaining
required servicetime

20

Bounding the Allocation Error

Proof sketch of Theorem

0 Lett' <fbethelatest time atask with deadline after d
receives a quantum

0 At any timet partition tasks into those with requests
with deadlines before d and those with deadlines after d

2 in betore(e) 12Gi(1) <0 2, i atterry 12G(t) >0

21

Bounding the Allocation Error
Proof sketch of Theorem

after(d) { | !

before(d) { * +

t' t" d t f

0 2 veforety 1 20;(1) <0, 2iin atterry 120 (1) >0
2 aterty 129 (D) > -G, 2iin veforety 120i(D) <q, lag(t) <q

020 vefore(d) 120(d) <,
Thisimpliesthat all requests in before(d) must be completed
by timed + q

22

Supporting Real-Time Computing

Bounding the allocation error

0 Theorem: Let ¢ be the size of the current request of task
k. Task k'slag is bounded by

¢ < lagy(t) < max(c, g)

23

Proportional Share Resource Allocation
| ssues

0 How to use proportional share scheduling for real-time
computing
» How to ensure deadlines are respected in the real-time domain
» Bounding the allocation error

0 Practical considerations — Maintaining virtual time
» Policing errant tasks
» Dealing with tasks that complete “early”

24

Practical Considerations
Maintaining virtual time

Y & 4
Y 4 4
Y A

=

1 What happens when atask completes after its deadline?
» Preserved lateness law: Ut, T >t >d, lagi(t) >0

0 If the task makes another request immediately, the request
Iseligible

0 If the task terminates the total lag in the system is negative
» Lag conservation law requiresthat Ot, 2.lag(t) =0

25

Maintaining Virtual Time
A task terminates with positive lag

b 'S /
Virtual Virtual
Time Time /
- — -
Rea £t —t ea
Time ;1 2 (1) Time
| mm m
| Y o

Actual system

26

Maintaining Virtual Time
A task terminates with positive lag

0 When task k terminates with positive lag we must:

» update virtual time to the next point in time V(t) at
which lag,(t) =0

» update each task’ s lag to reflect the discontinuitiesin
virtual time

0 If t, isthe time atask with positive lag terminates,

then ot
V(L) = V(L) + ng :
AN

lag;(t,) = lagi(t,) + w, lag,(t,)

A

27

Practical Considerations
Maintaining virtual time

: g |
— !

=

0 What happens when a task completes before its deadline?
» Task’slag will be negative

0 If the task makes another request immediately, the
request isineligible

0 If the task terminates, the termination can be delayed

until thetask’slagisO
» |f the task correctly estimated its execution time this will occur

at the task’ s deadline
» Otherwise, thistime may be either before or after its deadline

28

Practical Consider ations
Policing tasks

0 What happens when atask is not complete by its
deadline but itslag is negative?
» Thetask under estimated its execution time

1 Severa aternatives:

» Have the operating system issue a new request on
behalf of the task

» |ssue anew request for the task but penalize it by
reducing its weight

0 In all cases, the “errant” task has no effect on the
performance of other tasks!

29

Practical Considerations
Bounding the allocation error in practice

0 Theorem: Let ¢ be the size of the current request of task
k. Task k'slag is bounded by

-Cc < lag,(t) < max(c, q)

0 Theorem: If tasks terminate with positive lag then a task
K'slag is bounded by

-C < lag(t) < max(Cp0 0)

where ¢, 1S the largest request made by any task in the
system

30

Practical Considerations
Bounding the allocation error in practice

0 Theorem: If tasks terminate with positive lag then a task
k'slag isbounded by -c <lag,(t) < max(C,)

A

Virtual
Time

/

Virtual
Time

b/
-~
Lot -t) Ree
-
[
v N

31

Practical Considerations
Bounding the allocation error in practice

0 Theorem: If tasks terminate with positive lag then a
task k'slag is bounded by -c <lag,(t) < max(C, d)

» Thus atrade-off exists between the size of atask’s request
(i.e., scheduling overhead) and the accuracy of allocation

0 Corollary: If tasks requests are always less than a
quantum then for all tasks k, then -q < lag,(t) < q

32

Experimental Evaluation
EEVDF Implementation in FreeBSD

0 Platform
» PC compatible, 75 Mhz Pentium processor, 16 MB RAM

0 Implementation
» Replaced FreeBSD CPU scheduler
» Time quantum =10 ms

0 Experiments
» Non-real-time tasks making uniform progress

» Speeding up and slowing down task progress by
manipulating weights

» Real-time execution (of non-real-time programs!)

33

Proportional Share Scheduling Example

Uniform allocation to non-real-time processes

50 T T T T T T T T T 2
o Task 1
— z 9]
s
W=~ latd =0 - - rrmrmre e]
35} s
- 5*%? o’/G/? /o,/? 1
‘301) - .XXT i .e’ XXX \. x /MKO’,Q y i)
25} 9- X’e\/x;&{?fx)%x | *Xxébf(jd;)%xx L ‘ij\’
y ’Tag(z 7 ;//**x*%% ;;K* X 2 j%x
20 W=2 b):‘ : ‘1/*%/*/3(/ ;§/*¥//* n,/*/*\% ’ */** *
A | - ") BT T %/ R F e L
| " w=1
GO 160 260 360 460 560 660 760 860 960 1000 2 0 160 260 360 460 560 660 760 860 960 1000
Number of Elapsed - d
apse
Dhrystone = e Measured T'p
lterations (secs) Lag : e
(x 1,000) (secs)

Proportional Share Resource Allocation
Summary

0 A “real-time’ neutral model
» Supports both real-time and non-real-time

0 EEVDF scheduling provides optimal lag bounds (q)

» Allocation error & hence timeliness guarantees are as good
as possible

0 But maintaining virtual timeis non-trivial
» Better than sorting but O(n) in the worst case

0 Unclear how to solve the integrated systems problem

35

