
1

Proportional Share Resource Allocation
Outline

◆ Fluid-flow resource allocation models
» Packet scheduling in a network

◆ Proportional share resource allocation models
» CPU scheduling in an operating system

◆ On the duality of proportional share and traditional
real-time resource allocation models
» How to make a provably real-time general purpose

operating system

2

Proportional Share Resource Allocation
Concept

◆ Processes are allocated a share of a shared resource
» a relative percentage of the resource’s total capacity

◆ Processes make progress at a uniform rate according
to their share

◆ OS Example — time sharing tasks allocated an equal
share (1/nth) of the processor’s capacity
» round robin scheduling, fixed size quantum

0

P1

P2

q 2q 3q 4q 5q 6q 7q 8q 9q 10q 11q 12q 13q

P3

3

Proportional Share Resource Allocation
Formal model

◆ Processes are allocated a share of the processor’s
capacity
» Process i is assigned a weight wi

» Process i’s share of the CPU at time t is

 fi(t) =

◆ If processes’ weights remain constant in [t1, t2] then
process i receives

units of execution time in [t1, t2]

Σj wj

wi

Si(t1,t2) = ∫ t2
fi(τ) dt = (t2 - t1)

t1 Σj wj

wi

4

◆ Periodic tasks allocated a share equal to their processor
utilization c/p
» round robin scheduling with infinitesimally small quantum

» with integer quantum = 2 time units

Proportional Share Resource Allocation
Real-time scheduling example

0

T1 = (2, 8)

T2 = (3, 6)

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5

1.0

0

T1 = (2, 8)

T2 = (3, 6)

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5

0.25

5

◆ Schedule tasks such that their performance is as close
as possible to their performance in the fluid system

◆ Define the allocation error for task i at time t as

 lagi(t) = Si(t0,t) – si(t0,t)

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
Allocation

Fluid
Allocation

Si(t1,t2)

si(t1,t2)

Si(t1,t2) = dτ
Σjwj

wi∫
t1

t2

6

◆ Because allocation is quantum-based, tasks can be either
behind or ahead of the fluid schedule

» if lag is negative then a task has received more service time
than it would have received in the fluid system

» if lag is positive then a task has received less service time than
it would have received in the fluid system

Proportional Share Resource Allocation
Task scheduling metrics & goals

 lagi(t) = Si(t0,t) – si(t0,t)

Quantum
Allocation

Fluid
Allocation

Si(t1,t2)

si(t1,t2)

7

◆ Goal: Schedule tasks such that their performance is
as close as possible to that in the fluid system

◆ Schedule tasks such that the lag is:
» bounded, and
» minimized over all tasks and time intervals

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
Allocation

Fluid
Allocation

Si(t1,t2)

si(t1,t2)

 lagi(t) = Si(t0,t) – si(t0,t)

8

◆ Tasks are scheduled in a virtual time domain

Scheduling to Bound Lag
The virtual time domain

V(t) = dτ
Σjwj

1∫
0

t

Virtual
Time
V(t)

t

t

Real-Time

t t

Σjwj

1 = 1

Σjwj t

Σjwj t

Σjwj

1 > 1 Σjwj

1 < 1

t t

9

◆ Slope of virtual time
changes are tasks enter
and leave the system

Scheduling to Bound Lag
The virtual time domain

V(t) = dτ
Σjwj

1∫
0

t

Virtual
Time
V(t)

Real-Time

Σjwj

1 < 1

w1

w2

w3

10

◆ Task’s execute for wi real-time
time units in each virtual-time
time unit
» Thus ideally, task i executes for

time units in any real-time
interval

Scheduling to Bound Lag
The virtual time domain

Si(t1,t2) = wi dτ

 = (V(t2) – V(t1))wi

Σjwj

1∫
t1

t2

V(t)

Real-Time

1

Σjwj

Σjwj

1 < 1

w1

w2

w3

11

Scheduling to Bound Lag
Virtual time scheduling principles

◆ Schedule tasks only when their lag is non-negative
» If a task with negative lag makes a request for execution at

time t, it is not considered until a future time t' when lag(t') ≥ 0
» Let e > t be the earliest time a task can be scheduled

❖ the time at which
 S(ti, e) = s(ti, t)

» This time occurs in the virtual time domain at time
 S(ti, e) = s(ti, t)
 (V(e) – V(ti))wi = s(ti, t)
 V(e) = V(ti) + s(ti,t)/wi

q
lagi = Si(t1,t2) – si(t1,t2)

∫ t2 dτΣj wj

wi

t1
Si(t1,t2) =

12

Scheduling to Bound Lag
Virtual time scheduling principles

◆ Task requests should not be considered before their
“eligible” time e

◆ Requests should be completed by virtual time
V(d) = V(e) + ci/wi

» where ci is the cost of executing the request

◆ Our candidate scheduling algorithm: Earliest Eligible
Virtual Deadline First (EEVDF)

At each scheduling point, a new quantum
is allocated to the eligible process with

the nearest earliest virtual deadline

13

Earliest Eligible Virtual Deadline First Scheduling
Example: Two tasks with equal weight = 2 (q = 1)

Cost = 2

0
real-time

1 2 3 4 5 6 7

(V(e),V(d)) = (0,1) (1,2) (2,3)

(.5,1) (1,1.5) (1.5,2) (2,2.5)

virtual time
at time 0

0 0.5 1

V(d) = V(e) + c/w

V(e) = V(t0) + s(t0 , t)/w

Cost = 1

at time 1
0 0.5 1 1.5 2

∫ t
 dτΣj wj

1

0
V(t) =

14

Proportional Share Resource Allocation
Issues

◆ How to use proportional share scheduling for real-time
computing
» How to ensure deadlines are respected in the real-time domain

» Bounding the allocation error

◆ Practical considerations — Maintaining virtual time
» Policing errant tasks

» Dealing with tasks that complete “early”

15

Using Proportional Share Allocation
For Real-Time Computing

◆ Deadlines in a proportional share system ensure
uniformity of allocation, not timeliness

◆ Weights are used to allocate a relative fraction of the
CPU’s capacity to a task
 fi(t) =

◆ Real-time tasks require a constant fraction of a resource’s
capacity
 fi(t) =

◆ Thus real-time performance can be achieved by adjusting
weights dynamically so that the share remains constant

Σj wj

wi

pi

ci

16

Supporting Real-Time Computing
Dynamically adjusting weights

◆ Consider task i that arrives at time t with a deadline
at time t + d
» In the interval [t, t+d] the task requires a share of the

processor equal to c/d

t t + d

V(d) = V(e) + c/wi

V(e) = V(t) + s(t , t)/wi = V(t)

c

Σjwj

wi

d
c=

wi = (Σj≠iwj + wi)d
c

d
c Σj≠iwj

d
c

1 –
wi =

17

Supporting Real-Time Computing
Admission control

◆ If real-time tasks require a fixed share of the CPU’s
capacity, only a finite number of tasks may be
guaranteed to execute real-time

◆ Admission criterion:
» a simple sufficient condition —

» a necessary condition??
❖ it depends...

Σi ≤ 1di

ci

18

Supporting Real-Time Computing
Bounding the allocation error

◆ Is a task guaranteed to complete before its
deadline?

◆ How late can a task be?
» Theorem: By at most q time units

q

19

Supporting Real-Time Computing
Bounding the allocation error

◆ Consider a task system wherein tasks always terminate
with zero lag

◆ Theorem: Let d be the current deadline of a request made
by task k. Let f be the actual time the request is fulfilled.
» f < d + q (the request is fulfilled no later than time d + q)

» if f > d then for all t, d ≤ t < f, lagk(t) < q

δ < q

20

◆ Eligibility law
» If a task has non-negative lag

then it is eligible

◆ Lag conservation law
» For all t,

◆ Missed deadline law
» If a task misses its deadline d

then lagi(t) = remaining
required service time

Bounding the Allocation Error
Some properties of lag(t)

◆ lagi(t) < 0 implies that task i has received “too much”
service, lagi(t) > 0 implies that it has received “too little”

Σilagi(t) = 0

◆ Preserved lateness law
» If a task that misses a

deadline at d completes
execution at T, then

❖ for all t, T ≥ t > d, lagi(t) > 0
❖ lagi(t) > remaining service

time

 lagi(t) = Si(t0,t) – si(t0,t) V(d) = V(e) + c/w
V(e) = V(t0) + s(t0 , t)/w

21

Bounding the Allocation Error
Proof sketch of Theorem

◆ Let t' < f be the latest time a task with deadline after d
receives a quantum

◆ At any time t partition tasks into those with requests
with deadlines before d and those with deadlines after d

t' d t f

after(d)

before(d)

Σi in before(t') lagi(t') < 0 Σi in after(t') lagi(t') > 0

task k does not complete
before its deadline

22

Bounding the Allocation Error
Proof sketch of Theorem

◆

◆

◆

t' t" d t f

after(d)

before(d)

Σi in before(t') lagi(t') < 0, Σi in after(t') lagi(t') > 0

Σi in after(t) lagi(t) > -q, Σi in before(t) lagi(t) < q, lagk(t) < q

Σi in before(d) lagi(d) < q,

This implies that all requests in before(d) must be completed
by time d + q

23

Supporting Real-Time Computing
Bounding the allocation error

◆ Theorem: Let c be the size of the current request of task
k. Task k’s lag is bounded by

-c < lagk(t) < max(c, q)

24

Proportional Share Resource Allocation
Issues

◆ How to use proportional share scheduling for real-time
computing
» How to ensure deadlines are respected in the real-time domain

» Bounding the allocation error

◆ Practical considerations — Maintaining virtual time
» Policing errant tasks

» Dealing with tasks that complete “early”

25

Practical Considerations
Maintaining virtual time

◆ What happens when a task completes after its deadline?
» Preserved lateness law: ∀ t, Τ ≥ t > d, lagi(t) > 0

◆ If the task makes another request immediately, the request
is eligible

◆ If the task terminates the total lag in the system is negative
» Lag conservation law requires that ∀ t, Σilagi(t) = 0

26

Maintaining Virtual Time
A task terminates with positive lag

Virtual
Time

Real
Time

t1 t1' t2 t2'

Virtual
Time

t1 t2+(t1' – t1) Real
Time

Ideal system Actual system

27

Maintaining Virtual Time
A task terminates with positive lag

◆ When task k terminates with positive lag we must:
» update virtual time to the next point in time V(t) at

which lagk(t) = 0

» update each task’s lag to reflect the discontinuities in
virtual time

◆ If tk is the time a task with positive lag terminates,
then

V(tk) = V(tk') + Σj≠kwj

lagk(tk)

lagi(tk) = lagi(tk') + wi Σj≠kwj

lagk(tk)

28

Practical Considerations
Maintaining virtual time

◆ What happens when a task completes before its deadline?
» Task’s lag will be negative

◆ If the task makes another request immediately, the
request is ineligible

◆ If the task terminates, the termination can be delayed
until the task’s lag is 0
» If the task correctly estimated its execution time this will occur

at the task’s deadline
» Otherwise, this time may be either before or after its deadline

29

Practical Considerations
Policing tasks

◆ What happens when a task is not complete by its
deadline but its lag is negative?
» The task under estimated its execution time

◆ Several alternatives:
» Have the operating system issue a new request on

behalf of the task

» Issue a new request for the task but penalize it by
reducing its weight

◆ In all cases, the “errant” task has no effect on the
performance of other tasks!

30

Practical Considerations
Bounding the allocation error in practice

◆ Theorem: Let c be the size of the current request of task
k. Task k’s lag is bounded by

-c < lagk(t) < max(c, q)

◆ Theorem: If tasks terminate with positive lag then a task
k’s lag is bounded by

-c < lagk(t) < max(cmax, q)

where cmax is the largest request made by any task in the
system

31

Practical Considerations
Bounding the allocation error in practice

◆ Theorem: If tasks terminate with positive lag then a task
k’s lag is bounded by -c < lagk(t) < max(cmax, q)

Virtual
Time

Real
Time

t1 t1' t2 t2'

Virtual
Time

t1 t2+(t1' – t1) Real
Time

32

Practical Considerations
Bounding the allocation error in practice

◆ Theorem: If tasks terminate with positive lag then a
task k’s lag is bounded by -c < lagk(t) < max(cmax, q)
» Thus a trade-off exists between the size of a task’s request

(i.e., scheduling overhead) and the accuracy of allocation

◆ Corollary: If tasks requests are always less than a
quantum then for all tasks k, then -q < lagk(t) < q

33

Experimental Evaluation
EEVDF Implementation in FreeBSD

◆ Platform
» PC compatible, 75 Mhz Pentium processor, 16 MB RAM

◆ Implementation
» Replaced FreeBSD CPU scheduler

» Time quantum = 10 ms

◆ Experiments
» Non-real-time tasks making uniform progress

» Speeding up and slowing down task progress by
manipulating weights

» Real-time execution (of non-real-time programs!)

34

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

 (
x

10
00

)

client 1

client 2

client 3

Task 3
w = 1

Task 2
w = 2

Task 1
w = 3

Proportional Share Scheduling Example
Uniform allocation to non-real-time processes

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

Time (msec.)

La
g

(m
se

c.
)

client 1 −x− client 2 −*− client 3 −o−

Number of
Dhrystone
Iterations
(x 1,000)

Elapsed
Time
(secs)

v. Measured
Lag

Elapsed
Time
(secs)

v.

lagi = -q

lagi = q

35

Proportional Share Resource Allocation
Summary

◆ A “real-time” neutral model
» Supports both real-time and non-real-time

◆ EEVDF scheduling provides optimal lag bounds (± q)
» Allocation error & hence timeliness guarantees are as good

as possible

◆ But maintaining virtual time is non-trivial
» Better than sorting but O(n) in the worst case

◆ Unclear how to solve the integrated systems problem

