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Proportional Share Resource Allocation
Outline

◆ Fluid-flow resource allocation models
» Packet scheduling in a network

◆ Proportional share resource allocation models
» CPU scheduling in an operating system

◆ On the duality of proportional share and traditional 
real-time resource allocation models
» How to make a provably real-time general purpose 

operating system
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Proportional Share Resource Allocation
Concept

◆ Processes are allocated a share of a shared resource
» a relative percentage of the resource’s total capacity

◆ Processes make progress at a uniform rate according 
to their share

◆ OS Example — time sharing tasks allocated an equal 
share (1/nth) of the processor’s capacity
» round robin scheduling, fixed size quantum
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Proportional Share Resource Allocation
Formal model

◆ Processes are allocated a share of the processor’s 
capacity
» Process i is assigned a weight wi

» Process i’s share of the CPU at time t is

                                fi(t)  = 

◆ If processes’ weights remain constant in [t1, t2] then 
process i receives

units of execution time in [t1, t2]

Σj wj

wi

Si(t1,t2) = ∫ t2
fi(τ) dt  =             (t2 - t1)

t1 Σj wj

wi
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◆ Periodic tasks allocated a share equal to their processor 
utilization c/p
» round robin scheduling with infinitesimally small quantum

» with integer quantum = 2 time units

Proportional Share Resource Allocation
Real-time scheduling example
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◆ Schedule tasks such that their performance is as close 
as possible to their performance in the fluid system

◆ Define the allocation error for task i at time t as 

 lagi(t) = Si(t0,t) – si(t0,t)

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
Allocation

Fluid
Allocation

Si(t1,t2)

si(t1,t2)

Si(t1,t2) =                 dτ 
Σjwj

wi∫
t1

t2
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◆ Because allocation is quantum-based, tasks can be either 
behind or ahead of the fluid schedule

» if lag is negative then a task has received more service time 
than it would have received in the fluid system

» if lag is positive then a task has received less service time than 
it would have received in the fluid system

Proportional Share Resource Allocation
Task scheduling metrics & goals

 lagi(t) = Si(t0,t) – si(t0,t)

Quantum
Allocation

Fluid
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◆ Goal: Schedule tasks such that their performance is 
as close as possible to that in the fluid system

◆ Schedule tasks such that the lag is:
» bounded, and
» minimized over all tasks and time intervals

Proportional Share Resource Allocation
Task scheduling metrics & goals

Quantum
Allocation

Fluid
Allocation

Si(t1,t2)

si(t1,t2)

 lagi(t) = Si(t0,t) – si(t0,t)
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◆ Tasks are scheduled in a virtual time domain

Scheduling to Bound Lag
The virtual time domain

V(t) =                   dτ
Σjwj

1∫
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◆ Slope of virtual time 
changes are tasks enter 
and leave the system

Scheduling to Bound Lag
The virtual time domain

V(t) =                   dτ
Σjwj
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◆ Task’s execute for wi real-time 
time units in each virtual-time 
time unit
» Thus ideally, task i executes for

time units in any real-time 
interval

Scheduling to Bound Lag
The virtual time domain

Si(t1,t2) = wi                  dτ  

            

            =  (V(t2) – V(t1))wi

Σjwj

1∫
t1

t2
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Real-Time
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Scheduling to Bound Lag
Virtual time scheduling principles

◆ Schedule tasks only when their lag is non-negative
» If a task with negative lag makes a request for execution at 

time t, it is not considered until a future time t' when lag(t') ≥ 0
» Let e > t be the earliest time a task can be scheduled

❖ the time at which
                                    S(ti, e)  =  s(ti, t)

» This time occurs in the virtual time domain at time
                                    S(ti, e)  =  s(ti, t)
                      (V(e) – V(ti))wi  =  s(ti, t)
                                        V(e) = V(ti)  +  s(ti,t)/wi

q
lagi = Si(t1,t2) – si(t1,t2)

∫ t2        dτΣj  wj

wi

t1
Si(t1,t2) =  
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Scheduling to Bound Lag
Virtual time scheduling principles

◆ Task requests should not be considered before their 
“eligible” time e

◆ Requests should be completed by virtual time
V(d) = V(e)  +  ci/wi 

» where ci is the cost of executing the request

◆ Our candidate scheduling algorithm: Earliest Eligible 
Virtual Deadline First (EEVDF)

At each scheduling point, a new quantum 
is allocated to the eligible process with 

the nearest earliest virtual deadline
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Earliest Eligible Virtual Deadline First Scheduling
Example: Two tasks with equal weight = 2 (q = 1)

Cost = 2
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Proportional Share Resource Allocation
Issues

◆ How to use proportional share scheduling for real-time 
computing
» How to ensure deadlines are respected in the real-time domain

» Bounding the allocation error

◆ Practical considerations — Maintaining virtual time
» Policing errant tasks

» Dealing with tasks that complete “early”
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Using Proportional Share Allocation 
For Real-Time Computing

◆ Deadlines in a proportional share system ensure 
uniformity of allocation, not timeliness 

◆ Weights are used to allocate a relative fraction of the 
CPU’s capacity to a task
                               fi(t)  =

◆ Real-time tasks require a constant fraction of a resource’s 
capacity
                              fi(t)  =

◆ Thus real-time performance can be achieved by adjusting 
weights dynamically so that the share remains constant

Σj wj

wi

pi

ci
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Supporting Real-Time Computing
Dynamically adjusting weights

◆ Consider task i that arrives at time t with a deadline 
at time t + d
» In the interval [t, t+d] the task requires a share of the 

processor equal to c/d

t                                    t + d

V(d) = V(e) + c/wi

V(e) = V(t) + s(t , t)/wi = V(t)

c

Σjwj

wi

d
c=

wi  = (Σj≠iwj + wi)d
c

d
c Σj≠iwj

d
c

1 –   
wi  = 
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Supporting Real-Time Computing
Admission control

◆ If real-time tasks require a fixed share of the CPU’s 
capacity, only a finite number of tasks may be 
guaranteed to execute real-time

◆ Admission criterion:
» a simple sufficient condition —

» a necessary condition?? 
❖ it depends...

Σi        ≤ 1di

ci
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Supporting Real-Time Computing
Bounding the allocation error

◆ Is a task guaranteed to complete before its 
deadline?

◆ How late can a task be?
» Theorem: By at most q time units

q
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Supporting Real-Time Computing
Bounding the allocation error

◆ Consider a task system wherein tasks always terminate 
with zero lag

◆ Theorem: Let d be the current deadline of a request made 
by task k.  Let f be the actual time the request is fulfilled.
» f < d + q  (the request is fulfilled no later than time d + q)

» if f > d then for all t, d ≤ t < f,  lagk(t) < q

δ < q
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◆ Eligibility law
» If a task has non-negative lag 

then it is eligible

◆ Lag conservation law
» For all t,

◆ Missed deadline law
» If a task misses its deadline d 

then lagi(t) = remaining 
required service time

Bounding the Allocation Error
Some properties of lag(t)

◆ lagi(t) < 0 implies that task i has received “too much” 
service, lagi(t) > 0 implies that it has received “too little”

Σilagi(t)  = 0

◆ Preserved lateness law
» If a task that misses a 

deadline at d completes 
execution at T, then 

❖ for all t, T ≥ t > d, lagi(t) > 0
❖ lagi(t) > remaining service 

time

 lagi(t) = Si(t0,t) – si(t0,t) V(d) = V(e) + c/w
V(e) = V(t0) + s(t0 , t)/w
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Bounding the Allocation Error
Proof sketch of Theorem

◆ Let t' < f be the latest time a task with deadline after d 
receives a quantum

◆ At any time t partition tasks into those with requests 
with deadlines before d and those with deadlines after d

t'                                             d              t              f

after(d)

before(d)

Σi in before(t') lagi(t')  < 0 Σi in after(t') lagi(t')  > 0

task k does not complete
before its deadline
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Bounding the Allocation Error
Proof sketch of Theorem

◆

◆

◆

t'             t"                             d              t              f

after(d)

before(d)

Σi in before(t') lagi(t')  < 0, Σi in after(t') lagi(t')  > 0

Σi in after(t) lagi(t)  > -q, Σi in before(t) lagi(t)  < q, lagk(t)  < q

Σi in before(d) lagi(d)  < q,  

This implies that all requests in before(d) must be completed 
by time d + q
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Supporting Real-Time Computing
Bounding the allocation error

◆ Theorem: Let c be the size of the current request of task 
k.  Task k’s lag is bounded by

-c  <  lagk(t)  <  max(c, q)
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Proportional Share Resource Allocation
Issues

◆ How to use proportional share scheduling for real-time 
computing
» How to ensure deadlines are respected in the real-time domain

» Bounding the allocation error

◆ Practical considerations — Maintaining virtual time
» Policing errant tasks

» Dealing with tasks that complete “early”
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Practical Considerations
Maintaining virtual time

◆ What happens when a task completes after its deadline?
» Preserved lateness law: ∀ t, Τ ≥ t > d, lagi(t) > 0

◆ If the task makes another request immediately, the request 
is eligible

◆ If the task terminates the total lag in the system is negative
» Lag conservation law requires that ∀ t, Σilagi(t)  = 0
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Maintaining Virtual Time
A task terminates with positive lag

Virtual
Time

Real
Time
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Virtual
Time
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Time
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Maintaining Virtual Time
A task terminates with positive lag

◆ When task k terminates with positive lag we must:
» update virtual time to the next point in time V(t) at 

which lagk(t) = 0

» update each task’s lag to reflect the discontinuities in 
virtual time

◆ If tk is the time a task with positive lag terminates, 
then

V(tk) = V(tk')  + Σj≠kwj

lagk(tk)

lagi(tk) = lagi(tk')  +  wi Σj≠kwj

lagk(tk)

28

Practical Considerations
Maintaining virtual time

◆ What happens when a task completes before its deadline?
» Task’s lag will be negative

◆ If the task makes another request immediately, the 
request is ineligible

◆ If the task terminates, the termination can be delayed 
until the task’s lag is 0
» If the task correctly estimated its execution time this will occur 

at the task’s deadline
» Otherwise, this time may be either before or after its deadline
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Practical Considerations
Policing tasks

◆ What happens when a task is not complete by its 
deadline but its lag is negative?
» The task under estimated its execution time

◆ Several alternatives:
» Have the operating system issue a new request on 

behalf of the task

» Issue a new request for the task but penalize it by 
reducing its weight

◆ In all cases, the “errant” task has no effect on the 
performance of other tasks!
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Practical Considerations
Bounding the allocation error in practice

◆ Theorem: Let c be the size of the current request of task 
k.  Task k’s lag is bounded by

-c  <  lagk(t)  <  max(c, q)

◆ Theorem: If tasks terminate with positive lag then a task 
k’s lag is bounded by

-c  <  lagk(t)  <  max(cmax, q)

where cmax is the largest request made by any task in the 
system
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Practical Considerations
Bounding the allocation error in practice

◆ Theorem: If tasks terminate with positive lag then a task 
k’s lag is bounded by  -c < lagk(t) < max(cmax, q)

Virtual
Time

Real
Time

t1   t1'       t2   t2' 

Virtual
Time

t1   t2+(t1' – t1) Real
Time

32

Practical Considerations
Bounding the allocation error in practice

◆ Theorem: If tasks terminate with positive lag then a 
task k’s lag is bounded by  -c < lagk(t) < max(cmax, q)
» Thus a trade-off exists between the size of a task’s request 

(i.e., scheduling overhead) and the accuracy of allocation

◆ Corollary: If tasks requests are always less than a 
quantum then for all tasks k, then -q < lagk(t) < q
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Experimental Evaluation
EEVDF Implementation in FreeBSD

◆ Platform
» PC compatible, 75 Mhz Pentium processor, 16 MB RAM

◆ Implementation
» Replaced FreeBSD CPU scheduler

» Time quantum = 10 ms

◆ Experiments
» Non-real-time tasks making uniform progress

» Speeding up and slowing down task progress by 
manipulating weights

» Real-time execution (of non-real-time programs!)
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Proportional Share Scheduling Example
Uniform allocation to non-real-time processes
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Proportional Share Resource Allocation 
Summary

◆ A “real-time” neutral model
» Supports both real-time and non-real-time

◆ EEVDF scheduling provides optimal lag bounds (± q)
» Allocation error & hence timeliness guarantees are as good 

as possible

◆ But maintaining virtual time is non-trivial
» Better than sorting but O(n) in the worst case

◆ Unclear how to solve the integrated systems problem


