Proportional Share Resource Allocation

Outline

◆ Fluid-flow resource allocation models
  » Packet scheduling in a network

◆ Proportional share resource allocation models
  » CPU scheduling in an operating system

◆ On the duality of proportional share and traditional real-time resource allocation models
  » How to make a provably real-time general purpose operating system

Proportional Share Resource Allocation Concept

◆ Processes are allocated a share of a shared resource
  » a relative percentage of the resource’s total capacity

◆ Processes make progress at a uniform rate according to their share

◆ OS Example — time sharing tasks allocated an equal share \(1/n^{th}\) of the processor’s capacity
  » round robin scheduling, fixed size quantum

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td></td>
</tr>
<tr>
<td>(P_2)</td>
<td></td>
</tr>
<tr>
<td>(P_3)</td>
<td></td>
</tr>
</tbody>
</table>

0  q  2q  3q  4q  5q  6q  7q  8q  9q  10q  11q  12q  13q
Proportional Share Resource Allocation

Formal model

- Processes are allocated a *share* of the processor’s capacity
  - Process $i$ is assigned a *weight* $w_i$
  - Process $i$’s *share* of the CPU at time $t$ is
    \[ f_i(t) = \frac{w_i}{\sum_j w_j} \]

- If processes’ weights remain constant in $[t_1, t_2]$ then process $i$ receives
  \[ S_i(t_1, t_2) = \int_{t_1}^{t_2} f_i(\tau) \, d\tau = \frac{w_i}{\sum_j w_j} (t_2 - t_1) \]
  units of execution time in $[t_1, t_2]$

Proportional Share Resource Allocation

Real-time scheduling example

- Periodic tasks allocated a share equal to their processor utilization $c/p$
  - round robin scheduling with infinitesimally small quantum
    \[ T_1 = (2, 8) \]
    \[ T_2 = (3, 6) \]
  - with integer quantum = 2 time units
    \[ T_1 = (2, 8) \]
    \[ T_2 = (3, 6) \]
Schedule tasks such that their performance is as close as possible to their performance in the fluid system:

\[
S_i(t_1,t_2) = \int_{t_1}^{t_2} \frac{w_i}{\sum_j w_j} \, d\tau
\]

Define the allocation error for task \(i\) at time \(t\) as

\[
lag_i(t) = S_i(t_0,t) - s_i(t_0,t)
\]

Because allocation is quantum-based, tasks can be either behind or ahead of the fluid schedule:

- If lag is negative, then a task has received more service time than it would have received in the fluid system.
- If lag is positive, then a task has received less service time than it would have received in the fluid system.
**Goal**: Schedule tasks such that their performance is as close as possible to that in the *fluid* system.

- Schedule tasks such that the lag is:
  - bounded, and
  - minimized over all tasks and time intervals.

**Scheduling to Bound Lag**

**The virtual time domain**

- Tasks are scheduled in a *virtual time* domain

\[
V(t) = \frac{1}{\sum_{j} w_j} \int_{0}^{t} d\tau
\]

**Fluid Allocation**

**Quantum Allocation**

\[
lag_i(t) = S_i(t_0, t) - s_i(t_0, t)
\]
Scheduling to Bound Lag
The virtual time domain

◆ Slope of virtual time changes are tasks enter and leave the system

\[ V(t) = \int_{0}^{t} \frac{1}{\sum w_j} \, d\tau \]

Scheduling to Bound Lag
The virtual time domain

◆ Task’s execute for \( w_i \) real-time time units in each virtual-time time unit

» Thus ideally, task \( i \) executes for

\[ S_i(t_1, t_2) = w_i \int_{t_1}^{t_2} \frac{1}{\sum w_j} \, d\tau \]

\[ = (V(t_2) - V(t_1))w_i \]

time units in any real-time interval
Scheduling to Bound Lag
Virtual time scheduling principles

- Schedule tasks only when their lag is non-negative
  » If a task with negative lag makes a request for execution at time $t$, it is not considered until a future time $t'$ when $\text{lag}(t') \geq 0$
  » Let $e > t$ be the earliest time a task can be scheduled
    ✤ the time at which
    $$S(t_i, e) = s(t_i, t)$$
  » This time occurs in the virtual time domain at time
    $$S(t_i, e) = s(t_i, t)$$
    $$(V(e) - V(t_i))w_i = s(t_i, t)$$
    $$V(e) = V(t_i) + \frac{S(t_i, t)}{w_i}$$

Scheduling to Bound Lag
Virtual time scheduling principles

- Task requests should not be considered before their “eligible” time $e$
- Requests should be completed by virtual time
  $$V(d) = V(e) + \frac{c_i}{w_i}$$
  » where $c_i$ is the cost of executing the request

- Our candidate scheduling algorithm: Earliest Eligible Virtual Deadline First (EEVDF)

At each scheduling point, a new quantum is allocated to the eligible process with the nearest earliest virtual deadline
Earliest Eligible Virtual Deadline First Scheduling

Example: Two tasks with equal weight = 2 \((q = 1)\)

\[
(V(e), V(d)) = (0,1) \quad (1,2) \quad (2,3)
\]

Cost = 2

\[
\text{at time } 0 \quad 0 \quad 0.5 \quad 1
\]

\[
\text{at time } 1 \quad 0 \quad 0.5 \quad 1 \quad 1.5 \quad 2
\]

Proportional Share Resource Allocation

Issues

- How to use proportional share scheduling for real-time computing
  - How to ensure deadlines are respected in the real-time domain
  - Bounding the allocation error

- Practical considerations — Maintaining virtual time
  - Policing errant tasks
  - Dealing with tasks that complete “early”
Using Proportional Share Allocation For Real-Time Computing

- Deadlines in a proportional share system ensure *uniformity of allocation*, not *timeliness*

- Weights are used to allocate a *relative* fraction of the CPU’s capacity to a task
  \[ f_i(t) = \frac{w_i}{\sum_j w_j} \]

- Real-time tasks require a *constant* fraction of a resource’s capacity
  \[ f_i(t) = \frac{c_i}{p_i} \]

- Thus real-time performance can be achieved by adjusting weights dynamically so that the share remains constant

Supporting Real-Time Computing

**Dynamically adjusting weights**

- Consider task \( i \) that arrives at time \( t \) with a deadline at time \( t + d \)
  - In the interval \([t, t+d]\) the task requires a share of the processor equal to \( c/d \)
  \[
  \frac{w_i}{\sum_j w_j} = \frac{c}{d} \quad \text{and} \quad \quad w_i = \frac{c}{d} \left( \sum_{j \neq i} w_j + w_i \right)
  \]

\[
V(e) = V(t) + s(t, t)\frac{c}{w_i} = V(t)
\]
\[
V(d) = V(e) + c/w_i
\]
Supporting Real-Time Computing

Admission control

- If real-time tasks require a fixed share of the CPU’s capacity, only a finite number of tasks may be guaranteed to execute real-time

- Admission criterion:
  » a simple sufficient condition — \( \sum_i \frac{c_i}{d_i} \leq 1 \)
  » a necessary condition??
    - it depends...

Supporting Real-Time Computing

Bounding the allocation error

- Is a task guaranteed to complete before its deadline?

```
\[ q \]
```

- How late can a task be?
  » **Theorem**: By at most \( q \) time units
Supporting Real-Time Computing
Bounding the allocation error

- Consider a task system wherein tasks always terminate with zero lag

- Theorem: Let $d$ be the current deadline of a request made by task $k$. Let $f$ be the actual time the request is fulfilled.
  
  » $f < d + q$ (the request is fulfilled no later than time $d + q$)
  
  » If $f > d$ then for all $t$, $d \leq t < f$, $\text{lag}_k(t) < q$

Bounding the Allocation Error
Some properties of $\text{lag}(t)$

$$\text{lag}_i(t) = S_i(t_0, t) - s_i(t_0, t)$$

- Eligibility law
  » If a task has non-negative lag then it is eligible

- Lag conservation law
  » For all $t$, $\sum_i \text{lag}_i(t) = 0$

- Missed deadline law
  » If a task misses its deadline $d$ then $\text{lag}_i(t) = \text{remaining required service time}$

- Preserved lateness law
  » If a task that misses a deadline at $d$ completes execution at $T$, then
    
    » for all $t$, $T \geq t > d$, $\text{lag}_i(t) > 0$
    
    » $\text{lag}_i(t) > \text{remaining service time}$
Bounding the Allocation Error
Proof sketch of Theorem

\[ \text{Let } t' < f \text{ be the latest time a task with deadline after } d \text{ receives a quantum} \]

\[ \text{At any time } t \text{ partition tasks into those with requests with deadlines before } d \text{ and those with deadlines after } d \]

\[ \sum_{i \in \text{before}(t')} \text{lag}_i(t') < 0 \quad \sum_{i \in \text{after}(t')} \text{lag}_i(t') > 0 \]

Bounding the Allocation Error
Proof sketch of Theorem

\[ \sum_{i \in \text{before}(t')} \text{lag}_i(t') < 0, \quad \sum_{i \in \text{after}(t')} \text{lag}_i(t') > 0 \]

\[ \sum_{i \in \text{after}(t)} \text{lag}_i(t) > -q, \quad \sum_{i \in \text{before}(t)} \text{lag}_i(t) < q, \quad \text{lag}_k(t) < q \]

\[ \sum_{i \in \text{before}(d)} \text{lag}_i(d) < q, \]

This implies that all requests in \text{before}(d) must be completed by time \( d + q \)
Supporting Real-Time Computing

Bounding the allocation error

◆ Theorem: Let $c$ be the size of the current request of task $k$. Task $k$’s lag is bounded by

$$-c < \text{lag}_k(t) < \max(c, q)$$

Proportional Share Resource Allocation

Issues

◆ How to use proportional share scheduling for real-time computing
  » How to ensure deadlines are respected in the real-time domain
  » Bounding the allocation error

◆ Practical considerations — Maintaining virtual time
  » Policing errant tasks
  » Dealing with tasks that complete “early”
Practical Considerations
Maintaining virtual time

- What happens when a task completes after its deadline?
  » Preserved lateness law: \( \forall t, T \geq t > d, lag_i(t) > 0 \)

- If the task makes another request immediately, the request is eligible

- If the task terminates the total lag in the system is negative
  » Lag conservation law requires that \( \forall t, \sum_i lag_i(t) = 0 \)

Maintaining Virtual Time
A task terminates with positive lag
Maintaining Virtual Time
A task terminates with positive lag

- When task $k$ terminates with positive lag we must:
  » update virtual time to the next point in time $V(t)$ at which $\text{lag}_k(t) = 0$
  » update each task’s lag to reflect the discontinuities in virtual time

- If $t_k$ is the time a task with positive lag terminates, then
  \[
  V(t_k) = V(t_k') + \frac{\text{lag}_k(t_k)}{\sum_{j \neq k} w_j}
  \]
  \[
  \text{lag}_i(t_k) = \text{lag}_i(t_k') + w_i \frac{\text{lag}_k(t_k)}{\sum_{j \neq k} w_j}
  \]

Practical Considerations
Maintaining virtual time

- What happens when a task completes before its deadline?
  » Task’s lag will be negative

- If the task makes another request immediately, the request is ineligible

- If the task terminates, the termination can be delayed until the task’s lag is 0
  » If the task correctly estimated its execution time this will occur at the task’s deadline
  » Otherwise, this time may be either before or after its deadline
Practical Considerations

Policing tasks

- What happens when a task is not complete by its deadline but its lag is negative?
  - The task under estimated its execution time

- Several alternatives:
  - Have the operating system issue a new request on behalf of the task
  - Issue a new request for the task but penalize it by reducing its weight

- In all cases, the “errant” task has no effect on the performance of other tasks!

Practical Considerations

Bounding the allocation error in practice

- Theorem: Let $c$ be the size of the current request of task $k$. Task $k$’s lag is bounded by
  \[ -c < lag_k(t) < \max(c, q) \]

- Theorem: If tasks terminate with positive lag then a task $k$’s lag is bounded by
  \[ -c < lag_k(t) < \max(c_{\text{max}}, q) \]

where $c_{\text{max}}$ is the largest request made by any task in the system
Practical Considerations
Bounding the allocation error in practice

- **Theorem:** If tasks terminate with positive lag then a task $k$’s lag is bounded by $-c < \text{lag}_k(t) < \max(c_{\text{max}}, q)$

Thus a trade-off exists between the size of a task’s request (i.e., scheduling overhead) and the accuracy of allocation.

- **Corollary:** If tasks requests are always less than a quantum then for all tasks $k$, then $-q < \text{lag}_k(t) < q$
Experimental Evaluation
EEVDF Implementation in FreeBSD

- **Platform**
  - PC compatible, 75 Mhz Pentium processor, 16 MB RAM

- **Implementation**
  - Replaced FreeBSD CPU scheduler
  - Time quantum = 10 ms

- **Experiments**
  - Non-real-time tasks making uniform progress
  - Speeding up and slowing down task progress by manipulating weights
  - Real-time execution (of non-real-time programs!)

---

Proportional Share Scheduling Example
Uniform allocation to non-real-time processes

![Graph showing proportional share scheduling example](image)

- Task 1: \( w = 3 \)
- Task 2: \( w = 2 \)
- Task 3: \( w = 1 \)

![Graph showing measured lag vs elapsed time](image)

- Measured Lag \( v. \) Elapsed Time (secs)
- \( \text{lag}_i = q \)
- \( \text{lag}_i = -q \)
Proportional Share Resource Allocation

Summary

- A “real-time” neutral model
  » Supports both real-time and non-real-time

- EEVDF scheduling provides optimal lag bounds (± $q$)
  » Allocation error & hence timeliness guarantees are as good as possible

- But maintaining virtual time is non-trivial
  » Better than sorting but $O(n)$ in the worst case

- Unclear how to solve the integrated systems problem