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Rate-Based Execution Models For Real-
Time Multimedia Computing

Qutline

0 Rate Based Execution: The case against Liu & Layland
style models of real-time computing

0 A Liu & Layland extension for rate-based execution?

0 Fluid-flow models of resource allocation for real-time
services

0 Proportional share CPU scheduling

0 On the duality of proportional share and traditional Liu
& Layland style resource allocation




Proportional Share Resource Allocation
Outline

0 Fluid-flow resource allocation models
» Packet schduling in a network

0 Proportional share resource allocation models
» CPU scheduling in an operating system

0 On the duality of proportional share and traditional
real-time resource allocation models

» How to make a provably real-time general purpose
operating system

Fluid-Flow Resour ce Allocation M odels
Packet/Cell scheduling in a networ k
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» 1 output queue per logical network

1 Consider anetwork switch with ™.
output link buffering
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Fluid-Flow Resour ce Allocation M odels
Packet/Cell scheduling in a network
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0 Generalized processor sharing (GPS)
» service proceedsin bit-by-bit rounds
» service 1 bit from queuei during each round
» providesfair allocation
» providesisolation from other connections

Fluid-Flow Resour ce Allocation M odels
Generalized processor scheduling
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0 Connections can be differentiated by integer weights
» W; bits transmitted from connection i during each round
» each connection recieves afair share of the link’ s capacity
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Approximationsto GPS
Packet-by-packet generalized processor sharing (PGPS)
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0 Transmit packets as whole units rather than bit-by-bit

0 Simulate GPS by scheduling packets by finish number
» the time a packet would have completed transmitted in a GPS
system
0 Packets with smaller finish number are scheduled before
packets with larger finish numbers

Packet-by-Packet GPS

Finish numbers example
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0 Model GPS as proceeding in rounds
» w; bits are transmitted in each round

» finish number = round number in which the last bit of a
packet is transmitted




Packet-by-Packet GPS

Finish numbers example
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0 Rounds proceed at a variable rate depending on the
availability of work
» thus finish numbers do not necessarily deterministically
map onto real-time values
Packet-by-Packet GPS
Finish numbers example
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0 Finish numbers of packets are:
» Py = » P, =
» Py =
» Py =

(Assume the second packet from connection g, arrives at
time 4)
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Packet-by-Packet to GPS

Finish number computation
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0 Transmit packets by finish number F
Fic = max(Fy o, R(M) + pudwg
» wheret isthe arrival time of the packet
» R(t) isthe round number at time't
» Py Isthe size of packet P;,

Packet-by-Packet GPS Example
Comparison with GPS
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1 GPS schedule for 5 connections
» Packets for connection 1 arrive every 2 time units




Packet-by-Packet GPS Example
Comparison with GPS
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0 Example: PGPS schedule for 5 connections
» Packets for connection 1 arrive every 2 time units
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Packet-by-Packet GPS Example
Comparison with GPS
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0 Example: PGPS schedule for 5 connections
» connection 1 has a single packet that is 5 times as large
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Packet-by-Packet to GPS

Summary
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0 PGPS allocates link capacity fairly and uniformly

» aconnection is guaranteed to receive a share of the
link’ s capacity equal to
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Packet-by-Packet GPS

What doesthis haveto do with real-time?!

0 Under certain assumptions about the distribution of
packet arrivals...

0 Connections can acheive bounded end-to-end delay
in anetwork of PGPS scheduled switches

0 And this bound is (asymptotically) independent of:
» the number of connections in the network
» the number of switchesin the network
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