
1

Rate-Based Execution Models For
Real-Time Multimedia Computing

http://www.cs.unc.edu/~jeffay/courses/pisa

Extensions to Liu & Layland Scheduling
Models For Rate-Based Execution

Kevin Jeffay
Department of Computer Science

University of North Carolina at Chapel Hill
jeffay@cs.unc.edu

September 23, 1997

2

Rate-Based Execution Models For Real-
Time Multimedia Computing

◆ Rate Based Execution: The case against Liu & Layland
style models of real-time computing

◆ A Liu & Layland extension for rate-based execution?

◆ Fluid-flow models of resource allocation for real-time
services

◆ Proportional share CPU scheduling

◆ On the duality of proportional share and traditional Liu
& Layland style resource allocation

Outline

3

Extensions of the Liu & Layland Model
Objectives

◆ Support notions of execution rate that are more
general than periodic execution

◆ Support integrated real-time device and application
processing

◆ Support responsive non-real-time computing

4

Rate-Based Computing
Concept

◆ Schedule tasks at the average rate at which they are
expected to be invoked
» Make buffering a first-class concept in the model

» Understand the fundamental relationships between
feasibility, latency, and processing rate

◆ Develop a model of tasks wherein:
» Tasks complete execution before a well-defined deadline

» Tasks make progress at application-specified rates

» No constraints are placed on the external environment

5

Rate-Based Computing
Beyond periodic & sporadic models

◆ An event-based model — rate-based execution
» Process make progress at the rate of processing x events

every y time units, each event is processed within d time
units

◆ A time-sharing model — proportional share resource
allocation
» Processes make progress at a precise, uniform rate — as if

executing on a dedicated processor with 1/nth original
capacity

6

Rate-Based Computing
Overview of results

◆ We will demonstrate that
» the theory of dynamic priority task systems extends nicely to

handle rate-based execution

» unless constraints are placed on the external environment,
no static priority scheduling algorithm can guarantee that a
set of rate-based tasks execute in real-time

7

Rate-Based Execution
Formal model

◆ Process make progress at the rate of processing x
events every y time units, each event is processed
within d time units

◆ For task i with rate specification (xi, yi, di), the jth event
for task i, arriving at time ti,j, will be processed by time

» Deadlines separated by at least y time units

» Deadlines occur at least y time units after a job is released

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

8

Rate-Based Execution
Example: Periodic arrivals, periodic service

◆ Task with rate specification (x = 1, y = 2, d = 2)

J1,1 J1,2 J1,4 J1,5 J1,6 J1,7 J1,8 J1,9 J1,10 J1,11 J1,12

0 2 4 6 8 10 12 14 16 18 20 22 24 26

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

J1,3

9

Rate-Based Execution
Example: Periodic arrivals, deadline ≠ period

◆ Task with rate specification (x = 1, y = 2, d = 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

J1,10

J1,11

J1,12

ti,j + di if 1 ≤ j ≤ xi

MAX(ti,j + di , D(i, j–xi)+yi) if j > xi

D(i, j) =

10

Rate-Based Execution
Bursty arrivals

◆ Task with rate specification (x = 1, y = 2, d = 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

11

Rate-Based Execution
Bursty arrivals

◆ Task with rate specification (x = 3, y = 6, d = 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

J1,7

J1,8

J1,9

12

Rate-Based Execution
Comparison

Rate specification

(x = 1, y = 2, d = 6)

Rate specification

(x = 3, y = 6, d = 6)

J1,1
J1,2
J1,3

J1,4
J1,5

J1,6
J1,7

J1,8
J1,9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

J1,1
J1,2
J1,3

J1,4
J1,5

J1,6
J1,7

J1,8
J1,9

0 2 4 6 8 10 12 14 16 18 20 22 24 26

13

Using RBE Tasks
What problems do they solve?

◆ Provides better response
time for non-real-time
activities by
integrating
application-level
buffering with the
system run queue

Receiver’s
Processing

Pipeline Display
Network

Reception

0 2 4 6 8 10 12

Rate specification
(x = 1, y = 2, d = 6)

J1,1

J1,2

J1,3

J1,4

14

Using RBE Tasks
What problems do they solve?

◆ Provides a more natural
way of modeling
inbound packet
processing of
fragmented messages

0 2 4 6 8 10 12

Rate specification
(x = 3, y = 6, d = 6)

Acquire

Display
Display Initiation Time

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

15

Rate-Based Execution
Conjectures

◆ Captures the essence of real-time computing on
the desktop

◆ Provides a framework for tuning application
performance to network performance

◆ Minimizes response time for non-real-time
activities

◆ One can precisely characterize the conditions
under which a rate-specification is realizable

16

Rate-Based Execution
Is it new?

◆ RBE is an amalgam of three technologies
» the Synthesis operating system (Columbia)

❖ software phased-lockedloops

» the Dash operating system (Berkeley)
❖ a “leaky bucket” model applied to operating system processes

❖ processes characterized by an average rate and a “burst” size

» the YARTOS real-time operating system (UNC)
❖ the producer/consumer data-flow model of computation

◆ Novel aspects
» separation of throughput and response time specifications

» provably real-time

17

A Theory of Rate-Based Execution
Goal and basic concepts

◆ The goal is to develop conditions on model parameters
which, if satisfied by a set of tasks, imply that every
job of every task will complete execution before its
deadline

◆ Feasibility and schedulability analysis
» feasibility — conditions under which a set of tasks are

guaranteed to execute correctly
❖ an absolute measure of correctness

» schedulability — conditions under which a set of tasks are
guaranteed to execute correctly when scheduled by a given
algorithm

❖ a relative measure of correctness

18

A Theory of Rate-Based Execution
Review

◆ Schedulability analysis of periodic tasks Ti = (ci, pi)
» Static priority assignment: “Level i busy period analysis”

» Dynamic priority assignment: “Processor demand analysis”

∀ L, L > 0: L ≥ Σ
i=1

n

ci

L

pi

∀ i, 1 ≤ i ≤ n, ∃ L, 1 ≤ L ≤ pi: L ≥ Σ
j=1

i

cj

L

pj

0 L

T3

T2

T1

19

A Theory of Rate-Based Execution
Review

◆ Feasibility analysis of periodic tasks with
deadline ≠ period
» Under earliest deadline first scheduling

0 L

T3

T2

T1

∀ L, L > 0: L ≥ Σ
i=1

n

ci

L – di + pi

pi

20

A Theory of Rate-Based Execution
Feasibility analysis

◆ Consider a set of RBE tasks with rate specification
(x, y, c, d)

◆ Feasibility conditions are precisely the same as for
periodic tasks

0 L

T3

T2

T1

∀ L, L > 0: L ≥ Σ
i=1

n

xici

L – di + yi

yi

21

A Theory of Rate-Based Execution
Feasibility proof sketch

◆ What is the maximum number of jobs of an RBE
task with deadlines in an interval [0, L], L ≥ d?

0 L

T = (x, y, d)
 = (3, 6, 6)

x =
L – d

y
x +

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

x
L – d + y

y

L – d

y
+ 1 x =

22

A Theory of Rate-Based Execution
Feasibility proof sketch

◆ When scheduled by an EDF scheduler

t0 td

Tk

Ti

Ti–1

T1

T2

Σ
i=1

 n

xici

td – t0 – di + yi

yi

 > td – t0

23

A Theory of Rate-Based Execution
On the relationship to periodic tasks

◆ What is the maximum number of jobs of an RBE task
with deadlines in an interval [0, L], L ≥ d?
» It can never be greater than the corresponding periodic task

» In the RBE model, “early” task invocations receive the same
deadlines they would have had they been invoked “on time”

0 L

T = (x, y, d)
 = (3, 6, 6)

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

24

A Theory of Rate-Based Execution
On the relationship to periodic tasks

◆ But can’t an RBE task be modeled as x instances of a
periodic task (with some appropriate precedence
relationship between instances)?

0 L

T = (x, y, d)
 = (3, 6, 6)

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

25

A Theory of Rate-Based Execution
A corollary on static priority scheduling

◆ Under a static priority scheduling scheme, the
processor demand in any interval can be unbounded
» thus event driven, rate-based execution is not possible

under static priority scheduling schemes

0 L

J1,1

J1,2

J1,3

J1,4

J1,5

J1,6

L ≥ Σ
j=1

i

cj

L

pj

26

A Theory of Rate-Based Execution
Feasibility analysis under preemption constraints

◆ When preemption is allowed at arbitrary points,
feasibility conditions are precisely the same as for
periodic tasks

◆ The same holds for non-preemptive systems

∀ L, L > 0: L ≥ Σ
i=1

n

xici

L – di + yi

yi

Σ
j=1

i–1

xjcj

L – 1 – dj + yj

yj

L ≥ ci +
∀ i, 1 < i ≤ n
∀ L, d1 < L < di

27

A Theory of Rate-Based Execution
Feasibility analysis under preemption constraints

◆ Non-preemptive scheduling conditions
t1 t2

Tk

Ti

Ti–1

T1

T2

Σ
j=1

i–1

cj

L – 1

pj

L ≥ ci +
∀ i, 1 < i ≤ n
∀ L, p1 < L < pi

28

A Theory of Rate-Based Execution
Feasibility analysis under preemption constraints

◆ Non-preemptive scheduling conditions
t1 t2

Tk

Ti

Ti–1

T1

T2

Σ
j=1

i–1

xjcj

L – 1 – dj + yj

yj

L ≥ ci +
∀ i, 1 < i ≤ n
∀ L, d1 < L < di

29

A Theory of Rate-Based Execution
Summary

◆ There exists an efficient (pseudo-polynomial time)
decision procedure for determining both feasibility and
schedulability
» If processor utilization less than 1.0

◆ The earliest-deadline-first scheduling algorithm is
optimal

◆ The feasibility and schedulability of a set of “periodic
tasks” was never inherently tied to the fact that tasks
are invoked strictly periodically
» The only requirement is that deadlines be separated by at

least a constant amount of time

30

Rate-Based Execution
Applying the theory

◆ Kernel issues
» RBE task implementation

» admission control

» rate enforcement

» rate negotiation

◆ Application issues
» rate specifications

» mechanisms for rate feedback and adaptation

31

Applying the Theory
Latency comparison (latency v. CPU utilization)

30 40 50 60 70 80 90 100

Minimum latency

Average Latency

Maximum Latency

0
200

600

1000

1400

1800

30 40 50 60 70 80 90 100

0
200

600

1000

1400

1800

RBE
Execution

Periodic
Server

32

Applying the Theory
Non-real-time task response time comparison

75%
Real-time

task
utilization

0

200

400

600

800

1000

8 13 17 22

0

200

400

600

800

9 15 19 24

0

200

400

600

9 15 19 24

Response time

Non-real-time task utilization

50%
Real-time

task
utilization

25%
Real-time

task
utilization

33

Rate-Based Execution
Warts

◆ Requires extensive kernel modifications to support
» Defining a new, event-based programming model

◆ Intel: This is really great stuff. Will it work in
Windows?

