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Abstract

Maintaining high throughput in large bandwidth-delay product
networks is widely known problem arising from TCP’s additive in-
crease, multiplicitive decrease (AIMD) algorithm. Several alternatives
to AIMD have been proposed, some of the most popular being High-
Speed TCP (HSTCP), Fast TCP, Scalable TCP (STCP), CUBIC, and
HTCP. Evaluating how each of these alternatives operates on a real
network (not simulated) helps us see how each will behave in the wild,
against each other, and against current TCP implementations. This
in turn helps us improve upon our work and bring us one step closer
toward releasing high-speed TCP (in the general sense) for public con-
sumption.

1 Introduction

My semester project involved three components:

• Implementing high-speed variants in the FreeBSD 6.0 kernel

• Porting Usernet to the FreeBSD 6.0 kernel

• Calibrate our test-bed and dummynet, which we use setup link char-
acteristics

It is in the third item that I spent a gross majority of my time. The
remainer of this technical report is devoted to the painful process of kernel
debugging, the FreeBSD network stack, and howto maintain high throughput
in large bandwidth-delay product networks.
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Socket kern/uipc socket.c
TCP Output netinet/tcp output.c

IP Output netinet/ip output.c
Dummynet netinet/ip dummynet.c

IP Output netinet/ip output.c
Device Hand-off net/if ether.c
Device Driver dev/em/if em.c

Physical Media
Figure 1: FreeBSD’s network stack

This rest of this report is organized as follows. Section 2 talks about the
FreeBSD network stack, giving pointers to code and documentation where
appropriate. Section 3 talks about kernel hacking with the examples coming
from the work done is Section 4 “What’s wrong with Dummynet?”. Section
5 gives a validation of the work done. The appendices have information that
may be of interest to various readers.

2 Network Stack

Figure 1 illustrates the path a packet takes from the application’s socket to
the physical media in the FreeBSD kernel. The output path is shown, the
input path is similiar, replace output with input where appropriate.

One thing to note is that IP Output is listed twice. This is intentional.
The FreeBSD firewall is implemented as a series of hooks. A hook is simply
a piece of code that is interested in receiving packets and possible processing
them. Anyone can write a hook (called a pfil hook : see net/pfil.c), the
prototype looks like:

int packet_hook(void *arg, struct mbuf **m, struct ifnet *interface,

int direction, struct inpcb *inp_control_block);

Figure 2: A Pfil Hook

A hook may eat a packet (processing stops) by returning 0, or let pro-
cessing continue (return non-zero). The ipfw (IP Firewall) is one such hook
that forwards packets to dummynet depending on the rules in ipfw. It is
in dummynet where we can delay a packet, enforce bandwidth limitation,
set loss probabilities, and more. In Figure 1, ip output calls pfil run hooks,
where dummynet will consume the packet, then dummynet will pass the
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packet back to ip output when it is done delaying it, losing it, or bandwidth
limiting it.

It is also in dummynet where we have the most problems trying to main-
tain a high throughput in a large bandwidth-delay product network. Before
we get into dummynet though, let’s discuss writing and debugging kernel
code.

3 Kernel Hacking

This section exist purely to help any would be future kernel hacker get a jump
start on kernel hacking. Many tools exist to debug programs we write in C,
Java, or other languages. gdb for C allows us to step through programs,
set break points, examine the stack, memory values and more. When an
uncaught exception brings down the JVM, java is nice enough to print a
stack trace. Many goto using code-slinging programmers like to use print
statements to debug code. These are the two popular methods for debugging,
however in the kernel, neither work.

Before we get ahead of ourselves, we should note that when a kernel
crashes, it does dump memory and what it was most recently working on,
and you may use print statements in your kernel. However, the utility of any
information that either method gives is rather dubious at best. When one
is trying to debug networking code, one might want to test a race condition
that only occurs after ten-thousand packets fly by. Ten-thousand prints or
ten-thousand steps is sub-optimal at best. Worse yet is when the condition
occurs rarely, but often enough to muck up experimental data. The bug is
hard to replicate, and test, compile, debug cycles are long.

To get in the right mind-set for kernel hacking:

• Forget all about floating point numbers

• Forget about using a debugger

• Forget about using print statements

That being said, get the fastest machine possible to reduce compile time,
consider writing some scripts to help automate deploying new kernels and
backing up old ones. Now, let’s figure out how to get data in and out of
the kernel from user-land. Sysctl variables are the key here. For the crash
course, see Figure 3.

For more information on sysctl variables and their use and syntax, see
the “How do I read/mess with sysctl variables” available on the DiRT FAQ.
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// adding a variable in the kernel code

u_int tcp_cwnd = 0;

SYSCTL_UINT(_net_inet_tcp_congestion, OID_AUTO, cwnd, CTLFLAG_RW,

&tcp_cwnd, 0, ‘‘Size of congestion window (in packets)

for flow of last received packet’’);

// getting at it from userland

// Read

% sysctl net.inet.tcp.congestion.tcp_cwnd

// Write

% sysctl net.inet.tcp.congestion.tcp_cwnd=52

// Search

% sysctl -a | grep net.inet.tcp | less

Figure 3: The crash course into sysctl variables

Given a sysctl variable, we can get data out of the kernel. That still begs
the question, what are we measuring?

3.1 Spot Values

Even if the variable measured changes much faster than it can be measured,
don’t dismiss spot values. Spot values can be quite useful for monotonically
increases sequences, or variables with small variance. One can measure the
current congestion window this way. It is a monotonically increasing sequence
(until a congestion event occurs) that may change 20,000 times per second,
however we can be fairly confident about interpolated values knowing how
TCP works. We could also use a spot value to measure the current queue
size in dummynet. The queue size will vary very rapily as packets are queued
and dequeued every scheduling tick, but its overall value will vary little from
its true average. In this case, the spot value is probably close to the average.

3.2 Exponential Weighted Moving Average (EWMA)

Using a EWMA is appropriate when one wishes to measure a variable whose
variance is high, outliers persist, or the nothing is known about trends in the
data. EWMA is appropriate as it is essentially a low-pass filter that allows
us to look at trends in time while disregarding outliers. The general formula
for an EWMA is
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xn+1 = αxn + x′(1− α)

where α depends on how fast the variable x changes. Typically a value
of 0.99 1 will be used. EWMA can come in handy, for instance, when trying
to measure how much time a piece of kernel code takes (see appendix A for
fine-granularity timing). A start and end time is marked, and their difference
is used as x′ in the equation to update x. This comes in handy when trying
to time a piece of code who’s running time may change wildly depending on
the number of packets being processed, locking issues, or otherwise.

4 What’s Wrong with Dummynet?

One subtle bug exists in the stock Dummynet implementation that should
be corrected for experiments. When a packet arrives in dummynet it is
shoved into a queue which limits the bandwidth a TCP flow may use. Upon
exit from the queue, the pipe is transferred to a pipe where it sits for any
configured amount of delay time and might possibly be dropped depending
on the loss probability. Once the delay time has passed, the packet is released
to ip output. 2

Dummynet time is in scheduling ticks. Dummynet, ideally, is called once
per scheduling tick. Instead of keeping time in milli or micro-seconds, dum-
mynet keeps time in ticks, or how many times it was called by the sched-
uler. All time (delay in milli-seconds or otherwise) is converted to ticks by
dummynet. How many ticks? Depends on the frequency (HZ) set while
compling the kernel. Should the dummynet output routine take longer than
one scheduling tick (which is 1/Hz or 1ms for a 1000Hz clock), it will have
missed a scheduling tick(s) and reschedule itself for the next scheduling tick,
which may be long after the time it started depending on how many packets
dummynet tried to flush. When this happens, the machine starts thrashing.
All incoming ACKs that generate new packets for dummynet to process all
have the same output time. This will cause dummynet to miss more and
more ticks as the congestion window grows.

The solution is to have dummynet keep an absolute time instead of the
relative time it uses. Figure 4 illustrates how to fix this problem.

1Since floating point number and floating point math cannot be used, α must be shifted
to an integer and the result shifted back

2the idea of pipes and queues in the dummynet kernel code is slightly different from
the pipes and queues as explained in the ipfw man page for dummynet
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microuptime(&current_output);

// return time elapsed in micro-seconds

time_diff = TIME_DIFF(&start_time, &current_output);

// convert time to hz ticks

curr_time = time_diff / (1000000 / hz);

Figure 4: Modified dummynet code from the void dummynet(void *)
routine

It is also easy to forget that dummynet is also queueing packets in the
network. This can create increased delay and eventually a course-grained
timeouts in the TCP code, especially when dealing with high bandwidth-
delay product networks. This behavior is easy to see on a 1Gb network with
a delay of 50ms and 12MB in send/receive space.

5 Getting that high throughput

The following steps can be taken to squeeze the highest throughput possible
out of FreeBSD in high bandwidth-delay product networks.

5.1 Setting up the Network

First, we have to know how much buffer space we’ll need. One way to think
about the amount of buffer space TCP needs is to think about how much
data needs to be transferred per round trip. If the RTT is 100ms, that leaves
us 10 round trips per second. If we want to transfer 1Gb per second, we
must transfer 100Mb per round trip or 100 / 8 = 12.5MB of data per round
trip. More formally B = S/RTT/8 where B is the buffer space needed and
S is the speed to acheive.

To allocate this much memory, the following commands can be used:

sysctl kern.ipc.maxsockbuf=‘echo ‘‘1048576 16 *p’’ | dc‘

sysctl net.inet.tcp.sendspace=‘echo ‘‘1048576 12 *p’’ | dc‘

sysctl net.inet.tcp.recvspace=‘echo ‘‘1048576 12 *p’’ | dc‘

This gives us a maximum socket buffer of 16MB, and a TCP send and
receive buffer of 12MB, respectively. If you find yourself running out of
memory, you may want to set the sysctl variable kern.ipc.nmbclusters higher.
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Unfortunately, this variable must be set at boot time by placing the line
“kern.ipc.nmbclusters=65536” in the file /boot/loader.conf 3

Next we tune other sysctl variables:

// turn off inflight extension,

// it KILLS throughput with low variance flows

sysctl net.inet.tcp.inflight.enable=0

// TCP’s large window extension

sysctl net.inet.tcp.rfc1323=1

// Use delayed acknowledgements

sysctl net.inet.tcp.delayed_ack=1

5.2 Setup Dummynet

Last, we setup the dummynet pipe:

ipfw pipe 1 config delay 50ms bw 1000Mbit/s

ipfw add 10 pipe 1 ip from any to any out

You’ll next want to test ping any machine to determine if the setup is
correct. After that, feel free to run a full blown iperf test.

// on the receiver side

[root@chile139]$ iperf -s

// on the sender side

[root@peru138]$ iperf -c chile139 -t 60 -i 1

5.3 Experiments

We now come to the last section which give a brief validation of the values and
work above. Figures 5 shows how the throughput has dramatically improved
for different values of delay. The throughput is not exactly where we’d like it,
especially for higher delays (50ms and beyond), but it is significantly better
than where we started.

Figures 6 through 8 show how the growth of the congestion window differs
from stock TCP. We notice the more aggresive growth of each algorithm
compared to stock TCP. Each test was conducted using a delay of 50ms, a
12MB send/receive buffer, and a packet loss rate of .0001. These experiments
are short (only 2 minutes each), but they are a simple visual validation that
the congestion window is growing correctly for each algorithm.

3You must be root to make all the changes listed here
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Figure 5: Standard TCP

Future work invovles running more thorough experiments in a wide range
of parameters including varying delay, network load, network loss, and see-
ing how these protocols compete against each other and stock TCP. Dina
Katabi’s XCP is also available to us (see DiRT FAQ). A thorough testing
of the parameter space for these 4 algorithms should provide us with clues
about what works and what does not. Much of this work forms part of Jay
Aikat’s disseration.

Appendix A: Fine-granularity timing

The code in Figure A will grab the instruction counter (from an x86 archi-
tecture) and throw it into variable x. The instruction counter (as the name
implies) increments once per instruction and is the finest granularity timer on
the chip. The number of instructions per second obviously varies depending
on the processor installed. Consequently we have to work backwards to find
the number of instructions per second to relate I/S back to time and have
data with time units (much preferred).

Here’s how to figure out how many ticks per second there are:

• Grab the start time

• Grab the starting instruction counter
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Figure 6: Stock TCP versus HSTCP

Figure 7: Stock TCP versus CUBIC
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Figure 8: Stock TCP versus STCP

__inline__ u_int64_t rdtsc(void * notused) {

u_int64_t x;

__asm__ volatile (‘‘.byte 0x0f, 0x31’’ : ‘‘=A’’ (x));

return x;

}

Figure A
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• Do something time intensive

• Grab the end time

• Grab the ending instruction counter

• Subtract, Divide

Appendix B: Implementing Congestion Algo-

rithms

The more relevant places where TCP congestion control takes place, all in
netinet/

tcp timer.c Course-grained timeouts happen here (near bottom of file)
tcp input.c ACKs are received here. You’ll want to look for the triple duplicate

ACK code and where they linearly open the congestion window
tcp var.h TCP control block is here. If you want to add per-flow state

information, this is the place to do it
tcp subr.c TCP init happens here. If you want to initialize per-flow

state, do it here

Appendix C: Sysctl Variables for HSTCP

• net.inet.tcp.congestion.impl - current congestion algorithm uses values
0-5 (see table below)

• net.inet.tcp.congestion.cwnd - current size of congestion window (pack-
ets)

• ipfw pipe 1 config delay -1 src port

• ipfw pipe 1 config delay -2 dst port

• ipfw pipe 1 config delay -10 delay from distribution (see netinet/dummynet table.h)

Fast TCP and HTCP are not implemented as of the time of this writing
(December 6th, 2006). Values of net.inet.tcp.congestion.impl:
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Value Algorithm
0 Normal TCP
1 HSTCP
2 CUBIC
3 STCP
4 Fast TCP
5 HTCP

12


