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Abstract

Steve Goddard: On the Management of Latency in the Synthesis of Real-Time
Signal Processing Systems from Processing Graphs.

(Under the direction of Kevin Je�ay.)

Complex digital signal processing systems are commonly developed using directed

graphs called processing graphs. Processing graphs are large grain dataow graphs in

which nodes represent processing functions and graph edges depict the ow of data from

one node to the next. When su�cient data arrives, a node executes its function from

start to �nish without synchronization with other nodes, and appends data to the edge

connecting it to a consumer node.

We combine software engineering techniques with real-time scheduling theory to solve

the problem of transforming a processing graph into a predictable real-time system in

which latency can be managed. For signal processing graphs, real-time execution means

processing signal samples as they arrive without losing data. Latency is de�ned as the

time between when a sample of sensor data is produced and when the graph outputs the

processed signal.

We study a processing graph method, called PGM, developed by the U.S. Navy

for embedded signal processing applications. We present formulae for computing node

execution rates, techniques for mapping nodes to tasks in the rate-based-execution (RBE)

task model, and conditions to verify the schedulability of the resulting task set under

a rate-based, earliest-deadline-�rst scheduling algorithm. Furthermore, we prove upper

and lower bounds for the total latency any sample will encounter in the system. We show

that there are two sources of latency in real-time systems created from processing graphs:

inherent and imposed latency. Inherent latency is the latency de�ned by the dataow

attributes and topology of the processing graph. Imposed latency is the latency imposed

by the scheduling and execution of nodes in the graph.

We demonstrate our synthesis method and the management of latency using three

applications from the literature and industry: a synthetic aperture radar application,

an INMARSAT mobile satellite receiver application, and an acoustic signal processing

application from the ALFS anti-submarine warfare system.

This research is the �rst to model the execution of processing graphs with the real-

time RBE model, and appears to be the �rst to identify and quantify inherent latency

in processing graphs.
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Chapter 1

Introduction

Radar applications use a transmitter to direct radio (electro-magnetic) waves toward an

object and a receiver to record the echo | the radio waves reected o� of the object.

The same process occurs in sonar applications, except acoustic (sound) waves are used

rather than radio waves. The distance to an object can be derived from the time it takes

the echo to reach the receiver. Today this process is performed by a signal processing

computer system in which an electro-magnetic or sound wave is represented as a sequence

of numbers called a digital signal. The (digital) signal can represent information in either

a time or frequency domain. In the time domain, each number represents the amplitude

of the signal at a speci�c point in time. A time domain signal can be transformed

to a frequency domain signal by applying a transform function such as a fast Fourier

transformation (FFT). By measuring the shift in the frequency (the Doppler shift) of the

signal, the speed of the targeted object can be identi�ed. By using multiple receivers, the

direction, distance, and speed of an object can be identi�ed by correlating the received

signals. The signal transformations and other operations performed on the data sequence

are known collectively as signal processing.

A radar or sonar application is a signal processing application that is often executed

on a dedicated computer system, called a signal processing system, which is speci�cally

designed to meet rigid timing requirements. Embedded signal processing systems receive

a continuous signal from external sensors and are required to process the signal in real

time | as the signal arrives and without losing data | and present the signal processing

results to an output device (often another computer or a display) within a speci�ed

time interval. For example, an embedded signal processing system may be used to track

submarines by calculating the distance, speed, and direction of a submarine. External

sensors, called sonobuoys, convert the sound wave created by a submarine to a digital

signal that is sent to the embedded signal processing system. The application must
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process the signal and send the results, such as updated distance, speed and direction,

to a display before the next portion of the signal is sent by the sonobuoys to the signal

processing system.

Directed graphs, called processing graphs, are a standard design aid in the develop-

ment of complex digital signal processing systems. Processing graphs are large grain

dataow graphs in which nodes represent processing functions and graph edges depict

the ow of data from one node to the next. Each data element, often referred to as a

token, that is processed by a node is a sample of the signal | one number from the

discrete sequence of numbers representing the signal. Processing graphs have become a

standard design aid because they provide a natural means of describing signal process-

ing applications. Each node represents a mathematical function, such as an FFT, to be

performed on streams of data that ow on the edges of the graph from source nodes (sen-

sors) to sink nodes (output devices). The streams of input data are typically generated

by sensors, which sample the environment at periodic rates and send the samples to the

signal processing application via an external channel. The processing graph methodology

allows one to easily understand the signal processing performed by graphically depicting

the structure of the algorithm. An important advantage of the graphical representation

is that portions of the signal processing application (i.e., subgraphs) can be understood

in the absence of the rest of the algorithm. Moreover, the algorithm can be represented

and analyzed independent of the hardware architecture hosting the application.

This dissertation addresses the primary problem in developing embedded signal pro-

cessing systems with a processing graph methodology: transforming a processing graph

into a predictable real-time system in which latency and memory usage can be managed

| all the while ensuring no data is lost. For signal processing graphs, latency is the

time between when a sensor produces a data token and when the graph outputs the

processed signal. Signal processing functions, such as FFTs, often operate on multiple

tokens simultaneously, and the amount of data that accumulates on a graph edge before

the node executes can be quite substantial. Thus, the memory usage of a graph is pri-

marily dependent on the amount of bu�ering required by the graph edges during graph

execution.

Our work is based on the U.S. Navy's Processing Graph Method (PGM) [50] | a

processing graph model commonly used in the development of signal processing applica-

tions. We combine software engineering techniques with real-time scheduling theory to

develop a method for building deterministic uniprocessor signal processing systems from

existing real-time systems technology and PGM graphs. We do not, however, generate
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code for the system. In the parlance of software engineering methodologies, we develop

a synthesis method, and show how to manage latency in the synthesis of real-time signal

processing systems from PGM graphs. To better understand the problem and the issues

addressed by this dissertation, Sections 1.1, 1.2, and 1.3 provide necessary background

information on processing graph models (including PGM), real-time systems, and real-

time scheduling theory. Our research approach and contributions are then presented

in Section 1.4 and compared with related research performed by others in Section 1.5.

Section 1.6 provides an overview of this dissertation.

1.1 Processing Graph Models

Processing graphs are usually represented as directed acyclic dataow graphs in which

nodes represent processing functions and graph edges depict the ow of data from one

node to the next. An edge represents a producer/consumer relationship between two

nodes. When su�cient data arrives, the function associated with a node executes from

start to �nish in isolation (i.e., without synchronization with other nodes). Processing

graph paradigms di�er in features, such as the number of input edges allowed per node

and the rules for consumption and production of data. However, in all cases, the ow of

data through the graph determines when nodes are eligible for execution.

In this section, we present two common paradigms used in processing graph models |

task graphs and task chains | followed by four processing graph models in the order of

their creation. The �rst model presented is Karp and Miller's computation graph model

[39]. Next, we present the U.S. Navy's PGM [50]. PGM is used to create embedded sig-

nal processing applications and is the model assumed in this dissertation. Although our

results are based on PGM graphs, they are also applicable to Lee and Messerschmitt's

Synchronous Dataow (SDF) graphs [41] and Chatterjee and Strosnider's Logical Appli-

cation Stream Model (LASM) [15, 16] | the third and fourth models described in this

section.

1.1.1 Task Chains and Task Graphs

The two most common paradigms used in processing graph models are task chains and

task graphs. A task chain is a directed, acyclic, connected graph in which all nodes,

except the source and sink nodes, have exactly one input edge and one output edge.

The source node has one output edge and no input edges. The sink node has one input
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Figure 1.1: A synthetic aperture radar (SAR) task chain. Each node is represented as a
circle and labeled with the type of processing performed by the node. The input device
is represented as source node YRange and the output device is represented by the sink
node Output.

edge and no output edges. Figure 1.1 is an example of a task chain where the nodes are

represented with circles and labeled with the type of processing performed, the graph

edges represent precedence constraints. This graph represents the processing performed

by a synthetic aperture radar (SAR) application, which is described in Section 5.2. In

most models, the source node is assumed to execute exactly once or once every p time

units, and the other nodes in the graph execute after their predecessor executes. For

example, in the graph of Figure 1.1, the node Zero Fill is eligible for execution only

after the source node YRange executes. A task graph is a directed, acyclic, connected

graph that can have multiple source and sink nodes. Unlike task chains, nodes in a task

graph can have multiple input and output edges. For example, consider the task graph

in in Figure 1.2 (adapted from [64]). This graph represents the processing performed by

an International Maritime Satellite (INMARSAT) mobile satellite receiver application,

which is described in Section 5.3. The graph in Figure 1.2 is a task graph rather than

a task chain because several of the nodes have multiple input edges or multiple output

edges. For example, the nodes labeled Decimator have two output edges, and the node

labeled Complex Division has four input input and two output queues.

The e�ect of multiple multiple input edges on the execution of nodes depends on the

execution semantics of the task graph model. In AND models, all predecessor nodes to

a node u are required to execute before node u is eligible for execution. For example,

in an AND model, the two Demux nodes and both Decimator nodes in Figure 1.2 must

execute before the Complex Division node is able to execute. In OR models, a node can

execute after any of its predecessor nodes execute. Thus, if the task graph of Figure 1.2
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Figure 1.2: An International Maritime Satellite (INMARSAT) mobile satellite receiver
task graph.

were executed according to an OR model, the Complex Division node could execute after

either of the two Demux nodes or the two Decimator nodes execute.

1.1.2 Computation Graphs

In 1966, Karp and Miller [39] introduced an AND processing graph model called compu-

tation graphs that allows the speci�cation of both precedence constraints and the amount

of data required to be present on each input edge before a node is eligible for execution.

The computation graph model was created to describe the parallel execution of opera-

tions in a numerical calculation. A computation graph is a directed, cyclic, connected

graph that represents a sequence of parallel numerical computations. Each node in the

graph corresponds to an operation in the computation, such as addition or multiplication,

and each edge represents a �rst-in-�rst-out (FIFO) queue of data directed from one node

to another.

It is easiest to understand the execution semantics of nodes if we assume each node

in the graph executes on its own processor. Each queue has a producer and a consumer

of data. The queue is an output queue for the results of the producer's computations

and an input queue of data for the consumer. For example, let queue qi be a directed
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edge from node ni to node nj. Queue qi is an output queue to node ni and one of

possibly many input queues to node nj. Results from the computations performed by

node ni are transported to node nj in a FIFO order. The length of an input queue

qi (i.e., the amount of data on the queue) determines the eligibility of consumer node

nj for execution. When su�cient data has accumulated on all of the input queues to

node nj, node nj commences execution by reading data from its input queue(s) and then

deleting from the input queue(s) some, but not necessarily all, of the data read. When

the computation completes, node nj writes the results of its computation on its output

queues. Since each node executes on its own processor, multiple nodes may be executing

at the same time. However, no two executions of the same node are allowed to overlap.

More formally, the execution of nodes is controlled by a set of parameters that is

associated with each queue. Let queue qi be directed from node ni to node nj, as in

Figure 1.3. The amount of data in queue qi is quantitized into discrete units called

tokens, and queues can be initialized with a number of tokens denoted by the attribute

init(qi). When node ni �nishes its computation, it produces prd(qi) tokens and appends

them to the tail of queue qi. The number of tokens read by node nj is not speci�ed, but

the number of tokens consumed (deleted) from queue qi by node nj is denoted cns(qi).

The amount consumed may be less than the amount read. Queue qi has a threshold

denoted thr(qi). The threshold represents the minimum number of tokens that must be

on queue qi before node nj executes. A queue is over threshold if the number of enqueued

tokens meets or exceeds the threshold amount thr(qi). Since the computation graph

model is an AND model, all of the input queues to a node must be over threshold before

the node may execute. Thus, the four-tuple

(init(q); prd(q); cns(q); thr(q))

associated with each edge uniquely speci�es the condition under which each node will

execute.

To see how the the four-tuple a�ects node execution, consider the two nodes shown

in Figure 1.3. Queue qi (connecting nodes ni and nj) is associated with the four-tuple

(0; 4; 1; 2). This tuple speci�es that queue qi is not initialized with data, node ni will

produce 4 tokens every time it executes, node nj will consume 1 token from queue qi

every time node nj executes, and node nj will not execute until queue qi contains at least

2 tokens. Table 1.1 shows how the queue length changes as node ni produces tokens and

node nj consumes tokens. Let length(qi) denote the number of tokens in queue qi at a
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Figure 1.3: Two nodes in a computation graph. The edge connecting nodes ni and nj is
labeled with the four-tuple (0,4,1,2), which represents the dataow attributes init(q) = 0,
prd(q) = 4, cns(q) = 1, and thr(q) = 2.

number of tokens number of tokens
Time produced by node ni consumed by node nj length(qi)
0 { { 0
1 4 { 4
2 { 1 3
3 { 1 2
4 { 1 1

Table 1.1: A sequence of snapshots showing the length of queue qi in Figure 1.3 at time
t after node ni produces or node nj consumes data.

particular time. At time 0, the queue is empty since it was not initialized with data and

length(qi) = 0. Ignoring how node ni becomes eligible for execution, assume it executes

at time 1 and appends 4 tokens to queue qi. Thus, length(qi) = 4 at time 1. Since the

threshold of queue qi is 2 but node nj only consumes 1 data word each time it executes,

node nj is able to execute 3 times without any more executions of node ni. At time 2,

node nj executes and consumes 1 data word from queue qi. It removes another data word

at times 3 and 4. Thus, after the execution of node nj at time 4, length(qi) = 1 and node

nj is unable to execute again until node ni produces more data.

A more complicated computation graph is shown in Figure 1.4. The computation

represented in this graph is an abstraction of an approximation formula for an elliptic

partial di�erential equation for the numerical solution to the Dirichlet problem [39]. For

our purposes, the actual processing performed does not matter. There are, however, a

few interesting features of the dataow model used by this graph. Most of the queues are

initially empty. The exception to this are the queues that form cycles in the graph. For

example, the queue that creates a self-loop (a loop containing a single node) with node

n1 has the attributes (n; 0; 1; 1) (i.e., init(q) = n, prd(q) = 0, cns(q) = 1, and thr(q) = 1).

Each time node n1 executes, it consumes one token from the queue that creates a self
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loop and produces one token on each of its output edges except the self loop queue.

Thus, node n1 executes exactly n times before all of the initial tokens are consumed from

the input queue, and then it stops executing. Since the other nodes in the graph can

only execute when node n1 produces tokens on its output queues, node n1 controls the

number of times the rest of the nodes in the graph execute. Node n1 is equivalent to a

source node in a task graph, and an initialized self-loop is the only way to control the

number of times the source node executes. Self-loops can also be used to store constants

that are used in an operation, such as the self-loop at node n4. The queue that creates a

self-loop with node n4 has the dataow attributes (1; 0; 0; 1) (i.e., init(q) = 1, prd(q) = 0,

cns(q) = 0, and thr(q) = 1). Thus, n4 never consumes the initial data word and never

produces new data words on this queue; it uses the same value from this queue every

time it executes.

The features of the computation graph model highlighted in this section are used

extensively in signal processing graph models, including the processing graph model used

in this dissertation.

1.1.3 Processing Graph Method

The processing graph model used in this dissertation is the U.S. Navy's PGM [50, ].

PGM is an extension of the computation graph model and is used to develop real-time,

embedded, anti-submarine warfare (ASW) signal processing applications. The primary

di�erences between PGM graphs and computation graphs are that (i) PGM source nodes

do not need self-loops to control the number of times they execute, and (ii) the produce

and consume dataow attributes can be variable. Since PGM is used to create embedded

signal processing applications, the source node usually represents an external device that

executes periodically | once every p time units | and the other nodes represent signal

processing functions such as an FFT. Changes in the produce and consume values of a

queue are usually associated with mode changes in the application. A mode describes

the type of processing an application performs such as full-band or half-band frequency

analysis. Full-band frequency analysis is much more computationally intensive than

half-band. The operator may select a half-band processing mode of operation until a

possible submarine is located, and then change to full-band processing for veri�cation

and identi�cation of the submarine. The change from half-band to full-band requires

changes in produce and consume amounts while the graph topology stays the same.

The execution semantics of a node in PGM are slightly di�erent than the execution

semantics of a node in the computation graph model: the consumer node deletes data
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from its input queues after it completes execution, but before it produces data on its

output queues. As with computation graphs, it is easiest to understand the execution

semantics of nodes if we assume each node in the graph executes on its own processor.

When su�cient data has accumulated on all of the input queues to a node, it commences

execution by reading data from its input queues. The read is non-destructive in the sense

that the data is not deleted. When the signal processing function completes, the node

deletes some, but necessarily all, of the data read. The node then writes its results on

its output queues. Since we assume each node executes on its own processor, multiple

nodes may be executing at the same time, however, as before, no two executions of the

same node are allowed to overlap. Thus, the execution of a node is valid if and only if

(i) the node executes only when it is eligible for execution, (ii) no two executions of the

same node overlap, and (iii) each input queue has its data atomically consumed after

each output queue has its data atomically produced. A graph execution consists of a

(possibly in�nite) sequence of node executions. A graph execution is valid if and only if

all of the node executions in the sequence are valid and no data loss occurs.

There are four attributes associated with each queue in a PGM graph: a produce

amount prd(q), a threshold amount thr(q), a consume amount cns(q), and an initial-

ization amount init(q). Let queue q be directed from node u to node v. The produce

amount prd(q) speci�es the number of tokens appended to queue q when producing node

u completes execution. A token represents an instance of a data structure, which may

contain multiple data words. There must be at least thr(q) tokens on queue q before node

v is eligible for execution. A queue is over threshold if the number of enqueued tokens

meets or exceeds the threshold amount thr(q). Since PGM is an AND dataow model, all

of the input queues to a node must be over threshold before the node may execute. The

number of tokens read by node v is not speci�ed, but the number of tokens consumed

(deleted) from queue q by node v is denoted cns(q). The number of tokens consumed

may be less than the number of tokens read. The number of initial data tokens on the

queue is denoted init(q).

Like the computation graph model, PGM allows non-unity produce, threshold, and

consume amounts. However, PGM also allows variable produce and consume amounts

as long as the dataow attributes remain non-negative, and the consume amount is less

than or equal to the threshold. This last requirement is important so that the node

does not try to read more tokens than there are on the input queue. Because changes in

produce and consume values are usually associated with application mode changes, we

consider the variable dataow attributes to be �xed values that only change when the
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Figure 1.5: A two-node PGM chain and a snapshot sequence. The snapshot sequence
shows the length of queue q during the �rst 5 execution events of nodes u and v where
prd(q) = 4, thr(q) = 7, and cns(q) = 3. For simplicity, nodes are assumed to execute in
unit time.

application changes modes.

In signal processing applications, the concept of a \sliding window" is implemented

by setting a queue's threshold to be larger than its consume amount. The last portion of

data used in one execution of the consumer node is used as the �rst portion in the next

execution. Imagine laying a window over an array of data so that only 1024 data points

are visible, performing a calculation with these 1024 points, and then moving the window

768 positions to the right so that 256 old values and 768 new values are visible for the

next calculation. This e�ect is achieved in PGM graphs by setting the threshold on a

queue to 1024 and the consume amount to 768. When the consumer node executes, it

reads all 1024 tokens (data points), but it only consumes 768 of the 1024 tokens, leaving

256 already read tokens on the queue. It practice, is common to initialize such queues

with (thr(q)�cns(q)) tokens so that the amount of initialized data is equal to the amount

of data read but not consumed by the node.

The impact of non-unity dataow attributes on latency and memory usage can be

demonstrated with snapshots of the execution of the two PGM nodes shown in Figure 1.5.

The snapshot sequence summarizes the �rst 5 executions of nodes u and v (each on their
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own processor) and shows the length of queue q, denoted length(q), after node u produces

tokens and node v consumes tokens at each time step. In this example, we ignore how

node u becomes eligible for execution and, instead, focus on the impact of the non-unity

dataow attributes of queue q on the execution of node v. We also ignore the time

required to execute a node, and assume that nodes execute in unit time. The dataow

attributes of queue q are prd(q) = 4, thr(q) = 7, and cns(q) = 3. Initially, the queue has

no tokens (init(q) = 0). Node u executes once every 2 time units, starting at time 1. It

executes twice, at times 1 and 3, before node v is �rst eligible for execution. After time 2,

there are 8 tokens on queue q (length(q) = 8). At time 3, node v reads 7 of the 8 tokens

and executes, but it only consumes 3 of the 8 tokens. Thus the signal encounters a delay

of at least 4 � 1 = 3 time units before node v �rst produces data. This delay is due to

the non-unity dataow attributes and is called the inherent latency of a signal. Node u

produces 4 tokens each time it executes at times 5, 7, and 9, as shown in Figure 1.5,

and node v consumes 3 tokens when it executes at times 6, 8, 9, and 10. Thus queue q

contains at most 10 tokens and at least 4 tokens during the interval [1; 10].

In synthesizing an embedded real-time signal processing system from a PGM graph,

we need to make sure the resulting system has enough memory to support the bu�ering of

tokens in the graph queues. If it does not, data will be lost, and incorrect results will be

produced by the application. We also need to be sure that the implementation meets the

applications latency requirement. If it does not, the results produced will have little or

no value and (depending on the application) may compromise the mission. Consider the

execution trace recorded in Figure 1.5. Is 10 the upper bound on the number of tokens

that will be bu�ered on queue q? Is 3 time units the maximum latency encountered

by a signal? The answers to these questions depend on when nodes u and v execute.

Since prd(q) > cns(q), node v needs to execute more often than node u or data will

accumulate inde�nitely on queue q. For the two nodes in Figure 1.5, node v needs to

execute prd(q)
cns(q)

= 4
3
times as often as node u to prevent data from accumulating on queue

q. For example, if node u executes once every y time units and produces 4 tokens each

time it executes, node v must execute 4 times every 3y time units and consume 3 tokens

each time it executes. Node v needs to execute, on average, once every 3
4
y time units.

However, if we force node v to execute exactly once every 3
4
y time units, then we create

more delay than would naturally occur. In the execution trace of Figure 1.5, we have

y = 2 and, hence, node u executes once every 2 time units. The 4 tokens produced by

node u at time 7 enables two executions of node v. Forcing executions of node v to be

periodic with period 3
4
�2 would create a delay of 6

4
time units between the two executions
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that occurred at times 8 and 9. This is problematic as the extra delay is not needed for

a valid graph execution. Since latency is a major concern in embedded signal processing

applications, it is better to allow node v to execute whenever it is eligible.

When the system is implemented on a single processor, the signal may encounter

more latency than it would if every node executed on its own processor. For example, in

the execution trace in Figure 1.5, nodes u and v executed simultaneously. On a single

processor, only one node can execute at a time. If node u is executed before node v,

the samples already on queue q encounter a longer delay than if node v were executed

before node u. The additional delay encountered when node u is executed before node

v is called imposed latency. To control and manage imposed latency when the graph is

implemented on a single processor, we execute the nodes according to a model of real-

time execution. Imposed latency also a�ects the amount of bu�ering required on graph

edges. For example, consider once again the simultaneous execution of nodes u and v at

time 9 in Figure 1.5. If they are executed on a single processor, one of the nodes must

execute before the other. If node v executes before node u, the length of queue q drops

from 7 to 4 tokens before node u produces 4 tokens (after which length(q) = 8). If node

u executes before node v the length of queue q grows from 7 to 11 tokens before node v

consumes 3 tokens (after which length(q) = 8). We can manage the amount of bu�ering

required on queue q by controlling when nodes u and v execute.

Thus, our goal in synthesizing a signal processing system for a single processor is to

execute nodes such that we can manage both imposed latency and memory requirements.

To achieve this goal, our synthesis method derives the precise execution rate of nodes.

It will turn out that these rates are of the form of x executions in y time units. Given

these rates, we map the nodes to real-time tasks. The tasks are executed according to

the real-time rate-based execution (RBE) model [35], which is described in Section 3.3.1.

Real-time task models provide determinism in the execution order of tasks, and the

deterministic execution of nodes is required to manage latency and memory usage in the

synthesis of signal processing systems from processing graphs.

A �nal note on notation. The dataow attributes of queue q in Figure 1.5 were written

out in full since the graph was simple enough that space on the page was not a problem.

The parameter init(q) was not shown since its value was 0. In general, the parameter

init(q) is assumed to be 0 unless otherwise speci�ed. When the graph is more complex,

the dataow attributes are abbreviated as needed. For example, consider the PGM graph

in Figure 1.6. This graph is essentially the same task chain in Figure 1.1 on page 4 but

with annotations indicating the produce, threshold, and consume values for each queue.
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Only the actual values of each dataow attribute are shown. The source node for the SAR

graph in Figure 1.6 is labeled YRange and represents an external device that periodically

produces data for the graph. Unlike, computation graphs, self-loops are not needed for

source nodes to execute. The sink node, labeled Output represents an external device

that executes whenever Image queue is over threshold. The SAR application is discussed

in greater detail in Section 5.2.

A slightly more complicated PGM graph is shown in Figure 1.7 (adapted from [55]).

This graph is the PGM graph corresponding to the INMARSAT mobile satellite receiver

task graph shown in Figure 1.2 on page 5. (The processing nodes have been relabeled

with letters.) The nodes labeled I1, I2, and O1 represent external devices. Nodes I1

and I2 represent the input devices receiving the satellite signal. Node O1 represents

the output terminal accepting the processed signal. For this application, each queue's

threshold is equal to its consume value. To reduce clutter in the �gure, we have only

labeled the non-unity dataow attributes: produce values are located at the tail of the

queue and consume values are at the head of the queue. The INMARSAT application is

discussed in greater detail in Section 5.3.

1.1.4 Graph Models Similar to PGM

There are two AND processing graph models that are very similar to PGM: the SDF

graph model [41] and the LASM [15, 16]. We work with PGM graphs, but our results
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16

can also be applied to these graph models.

The SDF graph model was created by Lee and Messerschmitt to develop signal pro-

cessing applications and, like PGM, is an extension of Karp and Miller's computation

graph model. The main di�erence between PGM graphs and SDF graphs is that a queue's

threshold value must equal its consume value in an SDF graph. This means any SDF

graph can also be represented as a PGM graph where thr(q) = cns(q) for every queue in

the graph. For example, the INMARSAT application graph in Figure 1.7 was originally

presented by Ritz et al. as an SDF graph [55]. The execution semantics is the same for

the two models.

The LASM was created by Chatterjee and Strosnider to represent a multimedia appli-

cation's timing and logical processing requirements. It is remarkably similar to PGM, but

was developed independently (and ten years later). The SAR graph in Figure 1.6 could

represent either an LASM graph or a PGM graph. The main di�erence in the execution

of nodes in the SAR graph under the two models is that the LASM adds latency to the

signal by requiring a node u to execute exactly once every yu time units (i.e., periodi-

cally). This is a reasonable requirement for multimedia applications, but it adds latency

to a signal in a signal processing application. Another (minor) di�erence between the

LASM and PGM models is that special synchronization nodes are used to synchronize

chains of nodes in LASM graphs. Synchronization nodes take no time to execute, and

simply represent points in the graph where multiple chains join or split. For example,

Figure 1.8 is an LASM representation of the INMARSAT PGM graph of Figure 1.7. The

rectangles represent synchronization nodes. Every node u in Figure 1.7 with multiple

input queues has been mapped to a synchronization node followed by node u, and every

node v in Figure 1.7 with multiple output queues has been mapped to node v followed

by a synchronization node. For example, node C in Figure 1.7 has been mapped to node

C followed by a synchronization node in Figure 1.8. This is a minor di�erence in the two

models since synchronization nodes take no time to execute and simply represent points

in the graph where multiple chains join or split. If LASM nodes were allowed to execute

with deterministic rates of the form x executions in y time units, the analysis techniques

presented in this dissertation for PGM graphs could be applied to LASM graphs.

1.2 Real-Time Systems

Our goal is to synthesize real-time signal processing systems from processing graphs.

A real-time system is one that responds to external events within a probably bounded
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Figure 1.8: An LASM graph for the INMARSAT mobile satellite receiver application.
This graph is logically equivalent to the PGM graph of Figure 1.7. The rectangles rep-
resent synchronization nodes. Every node u in Figure 1.7 with multiple input queues
has been mapped to a synchronization node followed by node u, and every node v in
Figure 1.7 with multiple output queues has been mapped to node v followed by a syn-
chronization node. Each queue's threshold is equal to its consume value. The non-unity
dataow attributes have been identi�ed using PGM notation. Non-unity produce values,
prd(q), are located at the tail of the queue and non-unity consume values, cns(q), are at
the head of the queue.
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interval of time. Real-time systems are often classi�ed as hard-real-time or soft-real-time.

Hard-real-time systems usually require a guarantee that all processing completes within

its time constraint every time. The temporal correctness of soft real-time systems is less

stringent in that a stochastic measure of temporal correctness is su�cient (e.g., 90% of

deadlines are met or the probability of meeting a task's deadline is 90%).

Real-time systems are frequently implemented as a collection of tasks in which each

task is a sequential program that is invoked repeatedly. A single task invocation is called

a job. Each invocation of a task creates a new job, and the time of the invocation is

the job's release time. A job's response time is the time interval between when a job is

released and when it completes execution. The maximum allowable response time for

a job to be temporally correct is the task's relative deadline. The (absolute) deadline

for a job is calculated by adding the task's relative deadline to the job's release time.

If a job completes after its deadline, it is late. In hard real-time systems late jobs are

not allowed. The task set is independent if the tasks do not share objects (such as

variables), and no precedence constraints between the execution of jobs of di�erent tasks

are speci�ed. When the �rst job of every task is released at the same time, the task

set is synchronous. Since all task graphs de�ne precedence constraints, any task set

implementing the graph will be neither independent nor synchronous. Hence, real-time

systems built from processing graphs have dependent and asynchronous tasks.

Hard real-time systems can be further classi�ed by their models of task execution.

Most real-time execution models de�ne task execution to be periodic, sporadic, aperiodic,

or a combination of these. A task whose jobs are released exactly once every p time units

is periodic with period p. A sporadic task is a task where at at least p time units separate

every job release. Hence, p is only a lower bound between job releases for sporadic tasks.

The job release times of an aperiodic task are unspeci�ed. The RBE model [35] uses

an expected execution rate of the form x executions every y time units to describe the

expected job release times of tasks. Thus, rate-based execution of a task is somewhere

between sporadic and aperiodic: no more than x releases are expected in y time units,

but job release times within the interval of y time units are not speci�ed. The synthesis

method developed in this dissertation uses the RBE task model to analyze latency in

signal processing systems built from PGM graphs. Section 3.3.1 describes the RBE task

model in greater detail.

When multiple job's are eligible for execution at the same time, a scheduler (or schedul-

ing algorithm) decides the order in which the released jobs execute. How the jobs are

selected and executed is the domain of real-time scheduling theory and the subject of the



19

next section.

1.3 Real-Time Scheduling Theory

A scheduler decides when released jobs execute. Since hard-real-time systems require

deterministic performance, it is important to determine if a task set can be scheduled

such that all jobs meet their deadlines. A task set is feasible if and only if there exists

a schedule in which there are no late jobs. A schedule is a sequence of jobs executed by

the processor. For a given scheduling algorithm, a task set is schedulable if and only if

the algorithm produces a schedule in which no jobs miss their deadlines. A task set may

be schedulable under one scheduling algorithm and not under another. If a task set is

schedulable, it is feasible. A feasible task set, however, may not be schedulable under all

scheduling algorithms. An optimal scheduling algorithm can schedule any feasible task

set.

There are many ways to classify scheduling algorithms. O�-line schedulers create

a static schedule of jobs to be executed. The schedule is constructed \o�-line" | i.e.,

before the task set commences execution. To reduce the storage space required for a static

schedule, the schedule is usually implemented as a partial schedule that is executed in

a loop. For example, consider the two-node PGM graph of Figure 1.9. Assume queue

q is initialized with (thr(q)� cns(q)) = 4 tokens. One possible partial static schedule is

uvuvuvv. That is, an execution of node u followed by and execution of node v repeated

3 times and then an extra execution of node v. This schedule could be executed in a loop

such that the schedule observed at run time would be

uvuvuvv uvuvuvv uvuvuvv uvuvuvv uvuvuvv uvuvuvv : : :

Execution Schedule A in Table 1.2 shows the length of queue q after each node in the

partial schedule is executed. Another partial schedule is uuuvvvv, which can be repre-

sented in a more compact notation as 3u4v. The e�ect of this schedule on the length of

queue q of Figure 1.9 is shown in Execution Schedule B of Table 1.2.

On-line schedulers make scheduling decisions by running an algorithm to select the

next job to execute when a scheduling decision is needed. Priority schedulers select the

next job to execute based on a priority associated with each job. A �xed-priority scheduler

is a priority scheduler in which all jobs of a task have the same priority. A dynamic-

priority scheduler assigns a (possibly unique) priority to each job as it is released. A
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Figure 1.9: A two-node PGM chain in which queue q is initialized with 4 data tokens.

Execution Schedule A

Entry Node length(q)
� � 4
1 u 8
2 v 5
3 u 9
4 v 6
5 u 10
6 v 7
7 v 4

Execution Schedule B

Entry Node length(q)
� � 4
1 u 8
2 u 12
3 u 16
4 v 13
5 v 10
6 v 7
7 v 4

Table 1.2: A sequence of snapshots showing the length of queue q in Figure 1.9 after
node u produces or node v consumes tokens.
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Figure 1.10: A two-node PGM chain in which queue q has no initial data.

scheduler that interrupts the execution of one job to execute another job is said to be

preemptive. A non-preemptive scheduler executes each job to completion before another

job begins execution on the same processor.

To understand the di�erence between non-preemptive and preemptive scheduling,

consider the two-node graph in Figure 1.10. Assume nodes u and v are implemented

as periodic tasks and executed according to a periodic execution model. Let the period

of node u be 3 with its �rst release occurring at time 0, and the period of node v be

6 with its �rst release occurring at time 6. Assume both nodes require 2 time units

to execute. If node u is given priority over node v with non-preemptive static-priority

scheduling, Figure 1.11 shows the resulting execution and its e�ect on queue length.

Even though node u is given priority over node v, node u is unable to execute when it

is �rst released at time 9 because node v cannot be preempted from its execution. A

preemptive execution of the graph under the same assumptions is shown in Figure 1.12.

In the preemptive execution, node v is preempted at time 9 to let the higher priority

node u execute. In this case, the non-preemptive scheduler requires less memory for

bu�ering tokens than the preemptive scheduler: the maximum length of queue q is 3 for

the non-preemptive execution, and it is 4 for the preemptive execution. Latency is also

a�ected by the scheduling algorithm. In these examples, the non-preemptive scheduler

creates a latency of 10� 2 = 8 time units for the �rst token produced by node u at time

2, and the preemptive scheduler creates a latency of 12� 2 = 10 time units. Part of the

latency is due to the periodic execution model, which prevents node v from executing

until time 6, and the rest of the imposed latency is due to the scheduling algorithm.

A common dynamic-priority scheduler is the earliest-deadline-�rst (EDF) scheduler

[45]. Under EDF scheduling, the priority of a job is its absolute deadline, which is

calculated by adding the task's relative deadline to the job's release time. At any instant

in time, the preemptive EDF scheduling algorithm executes the job with the nearest (the

earliest) deadline. When the relative deadline is equal to the task's period (in a periodic

task model), the execution schedule created by EDF scheduling may be the same as

the schedule created by static-priority scheduling. For example, consider the graph of
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Time Node length(q)
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Figure 1.11: A two-node PGM graph in which nodes u and v are implemented as non-
preemptive periodic tasks on a uniprocessor. The �rst release of node u is at time 0 and
its period is 3. The �rst release of node v is at time 6 and its period is 6. This execution
pattern and resulting lengths of queue q can be derived with either non-preemptive
static-priority or dynamic-priority EDF scheduling. For non-preemptive static-priority
scheduling, node u is given priority over node v. For dynamic-priority EDF scheduling,
the relative deadline of each node is equal to its period.
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Figure 1.12: A two-node PGM graph in which nodes u and v are implemented as pre-
emptive periodic tasks on a uniprocessor. The �rst release of node u is at time 0 and its
period is 3. The �rst release of node v is at time 6 and its period is 6. This execution
pattern and resulting lengths of queue q can be derived with either preemptive static-
priority or dynamic-priority EDF scheduling. For preemptive static-priority scheduling,
node u is given priority over node v. For dynamic-priority EDF scheduling, the relative
deadline of each node is equal to its period and deadline ties are broken in favor of node
u. Thus, node u preempts node v at time 9. Node v resumes its execution at time 11.
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Figure 1.13: A two-node PGM graph in which nodes u and v are implemented as periodic
tasks on a uniprocessor and executed with EDF scheduling. The relative deadline for
node v has been reduced from 6 to 4, and the EDF scheduler gives node u priority over
node v when deadline ties occur. Thus, node v misses its deadline at time 9.

Figure 1.10 once again. As before, assume node u and v are executed according to a

periodic execution model. Let the period of node u be 3 with its �rst release at time

0, and the period of node v be 6 with its �rst release at time 6. Assume both nodes

require 2 time units to execute. Under these assumptions, the non-preemptive execution

schedule of Figure 1.11 occurs under either EDF or static-priority scheduling, as does the

preemptive execution schedule of Figure 1.12.

When EDF scheduling is used in an implementation of a graph, the relative deadline

parameter of a node can be used to control latency and the bu�ering requirements for

a queue. For example, if the relative-deadline parameter of node v in Figure 1.11 is

changed from 6 to 4, the resulting execution schedule for preemptive EDF scheduling

is the same as the schedule created by non-preemptive EDF and non-preemptive static-

priority scheduling (shown in Figure 1.11). However, the relative-deadline parameter

cannot be set arbitrarily small. If the relative deadline of node v is reduced to 3, the

release of node v at time 6 will miss its deadline, as shown in Figure 1.13. In this case, the

graph is not schedulable with EDF scheduling and the assumed scheduling parameters.

Either a faster processor is required, which reduces the execution times of nodes u and v,

or the deadline of node v must be increased before the graph is schedulable once again.

The results in this dissertation are based on the use of preemptive EDF scheduling
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Figure 1.14: A two-node PGM graph in which nodes u and v are implemented as RBE
tasks on a uniprocessor and executed with preemptive EDF scheduling. The nodes are
released as soon as they are eligible for execution.

and the RBE task model. The RBE task model is used because it provides more exibility

in scheduling the nodes and introduces less imposed latency than the periodic execution

model. We can say that node u executes once every 3 time units and node v executes

once every six time units without requiring periodic execution of the two nodes. For

example, consider the preemptive-EDF-rate-based execution of nodes u and v shown in

Figure 1.14. Node u completes its second execution at time 5, at which time node v is

released and executed immediately. Thus, the latency for the �rst token produced by

node u is now 9� 2 = 7 time units | 1 time unit less than the minimum latency created

under the periodic execution model. This illustrates the impact of scheduling on latency.

Chapters 3 and 4 discuss in detail the e�ect of relative-deadline parameters on the

schedulability of the task set and latency when the RBE task model is combined with

EDF scheduling.

1.4 Research Approach and Contributions

The goal of this research is to develop a method for building predictable real-time systems

from PGM graphs. The central thesis of this project is that

Real-time systems can be synthesized from PGM processing graphs by applying
existing real-time scheduling theory. Moreover, properties of PGM graphs and
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scheduling algorithms can be exploited to quantify and manage latency and
memory usage requirements in signal processing applications.

Our research approach is to �rst identify and quantify inherent properties in PGM

processing graphs such as node execution rates and latency. Second, the latency imposed

by an implementation of the graph is identi�ed and quanti�ed. Third, the management

of latency is demonstrated using existing processing graphs from the literature and ac-

tual applications. We leave open the problem of managing memory requirements in the

synthesis of real-time systems from processing graphs, though, recently, we have made

signi�cant progress toward solving this problem as well [28, 27, 29]. The advantage of

our approach is that we can identify the properties of the graph that a�ect latency and

memory requirements independent of the implementation. We can then evaluate an im-

plementation by the amount of additional latency or memory usage it imposes on top of

the latency and memory usage inherent in a graph.

As with any real-time application, a signal processing graph must continuously process

data at the rates of a set of input devices, such as sonobuoys, dipping sonars, or radars,

and send the results to a set of external devices, such as displays or other computers,

without the loss of data. In this dissertation, we identify the rates at which nodes need to

execute to keep up with the graph input data rates and then map the nodes to real-time

tasks that are executed according to the RBE model to ensure that no data is lost during

graph execution.

Once the processing graph has been mapped to a set of real-time tasks and a schedul-

ing algorithm selected that executes the tasks according to the RBE model of execution,

issues such as latency and memory usage can be addressed. We identify and bound two

sources of latency in real-time systems created from processing graphs. The �rst, inher-

ent latency, is latency de�ned by the dataow attributes and topology of the processing

graph. The second source of latency, imposed latency, comes from the scheduling and

execution of nodes in the graph. We develop a framework for evaluating and manag-

ing latency by deriving upper and lower bounds for both types of latency as functions

of the data ow attributes and graph topology. The bounds on inherent latency assist

signal processing engineers in selecting dataow attributes for queues. No matter how

the graph is implemented, the latency a sample encounters will never be less than the

inherent latency. If the inherent latency is too large, the signal processing engineer must

choose new dataow attributes for the graph edges or redesign the graph. The bounds

for imposed latency are used in the selection of relative deadline parameters that are as-

sociated with each node for EDF scheduling, and real-time scheduling theory is used to
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prove that the implementation meets the application's latency requirements by showing

that the resulting task set is schedulable.

Although the results of this dissertation are based on PGM graphs, they are funda-

mental to AND processing graph models. Thus, our results are applicable to systems

developed with other processing graph notations such as Lee and Messerschmitt's Syn-

chronous Dataow (SDF) graphs [41] or Chatterjee and Strosnider's Logical Application

Stream Model (LASM) [15, 16].

1.5 Related Work

The U.S. Navy's PGM [50] is based on the computation graph model introduced by Karp

and Miller in 1966 [39]. As described in Section 1.1.2, the computation graph model is

very similar to PGM. A primary di�erence between computation graphs and PGM graphs

is that computation graphs represent the parallel execution of �nite computations, and

PGM graphs represent the continuous execution of signal processing applications. Thus,

Karp and Miller were primarily concerned with the termination of computation graphs,

and their techniques for deriving node execution schedules and bounding the length of

queues do not apply to the execution sequence of nodes in a PGM graph representing a

signal processing application.

In 1996, Bhattacharyya, Murthy, and Lee published a method for software synthesis

from dataow graphs [9]. Their software synthesis method is based on the static schedul-

ing of Lee and Messerschmitt's SDF graphs [41]. As described in Section 1.1.4, any SDF

graph can be represented as a PGM graph where each queue's threshold is equal to its

consume value. The main goal of Bhattacharyya et al.'s software synthesis method and

the related scheduling research based on SDF graphs has been to minimize memory usage

by creating o�-line scheduling algorithms [41, 54, 64, 55, 9]. O�-line schedulers create a

static node execution schedule that is executed periodically by the processor. In contrast,

the primary goal of our research has been to manage the latency and memory usage of

processing graphs by executing them with an on-line scheduler. Recently we have shown

that for a large class of signal processing applications, dynamic on-line scheduling creates

less imposed latency than static scheduling [28, 27, 29]. An even more surprising result

is that, in many cases, dynamic on-line scheduling uses less memory for bu�ering data

on graph edges than static scheduling.

From the real-time literature, PGM is most closely related to LASM, which was

created by Chatterjee and Strosnider to represent a multimedia application's timing and
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logical processing requirements [15, 16]. It is very similar to PGM, but assumes a di�erent

real-time execution model than we use. Our work improves on the analysis of LASM

graphs by not requiring periodic execution of the nodes in the graph. Instead, graph

execution is modeled with the RBE process model to more accurately predict processor

demand without imposing the additional latency created by periodic node execution.

Mok's Software Automation for Real-Time Operations (SARTOR) project also uses

processing graphs to develop real-time systems. The node execution semantics of the

SARTOR graph model, however, require a node to execute when data exists on any of

its input queues [47, 48]. When the node executes, it consumes all of the data on all

of its input queue. This execution semantics would result in erroneous signal processing

results if it were applied to PGM graphs. The SARTOR project achieves deterministic

execution of a graph by mapping nodes to periodic tasks | rather than RBE tasks,

as is done here. As shown in Section 1.3, forcing periodic execution of PGM nodes

creates unwanted latency. Thus, the synthesis techniques of the SARTOR project are

very di�erent than the techniques presented here. Moreover, the synthesis techniques

of the SARTOR project are not well suited to synthesizing embedded signal processing

systems from processing graphs.

Je�ay's Real-Time Producer/Consumer (RTP/C) paradigm is another synthesis method

that uses the structure of the graph to help derive the execution rates of tasks that im-

plement nodes in the graph [33]. Queues in an RTP/C graph have unity produce values,

but are allowed to have non-unity threshold values. The consume amount is equal to

the threshold of the queue. The biggest di�erence between RTP/C graphs and PGM

graphs, however, is that RTP/C graphs are OR graphs rather than AND graphs. Since

our results are based on the execution of nodes when all of their input queues are over

threshold, only our results for PGM chains are applicable to RTP/C graphs.

Our latency analysis is related to the work of Gerber et al. in guaranteeing end-to-end

latency requirements on a single processor [22, 23]. However, Gerber et al. map a task

graph to a periodic task model in the synthesis of real-time message-based systems rather

than the RBE model. Our analysis and management of latency di�ers from Gerber et

al.'s in that PGM graphs allow non-unity dataow attributes. Finally, Gerber et al.

introduce new (additional) tasks to the task set in their synthesis method to synchronize

processing paths. Since our analysis techniques are rate-based rather than periodic, our

synthesis method does not need extra synchronization tasks.
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1.6 Dissertation Overview

Chapter 2 explores the real-time properties of PGM graphs by deriving when nodes in

a PGM graph must execute if they are to process a continuous input signal without

losing data. First, the notation and terminology used throughout this dissertation are

presented. We then begin the exploration of the real-time properties of PGM graphs

by trying to understand the impact of non-unity dataow attributes on node execution

patterns and the minimal bu�ering required for each queue. We informally describe

the execution patterns as execution rates, and then formalize the de�nition of a node

execution rate and derive equations that compute the execution rate of any node in a

PGM graph from its immediate predecessors and the dataow attributes of its input

queues.

The software synthesis method presented in Chapter 3 is used to build predictable

real-time system from processing graphs. Algorithms are presented that compute the

execution rate of every node in a PGM graph using the equations derived in Chapter 2.

Once node execution rates have been computed, the graph can be mapped to real-time

tasks according to a task model. The RBE task model has been selected for this step since

it provides the most natural mapping and does not introduce any undue latency. For

completeness, we describe the RBE task model and then present a su�cient condition for

determining the schedulability of the resulting real-time system under EDF scheduling.

Chapter 4 addresses the issue of managing latency in an implementation of a PGM

graph. There are two types of latency: inherent and imposed. Inherent latency in a

graph is created by non-unity dataow attributes and graph topology. Although inherent

latency cannot be managed during the synthesis step, we quantify the inherent latency

in a graph and use it as a lower bound for the latency achievable in an implementation

of the graph. Imposed latency comes from the scheduling and execution of nodes in the

graph, and it must be managed. Thus, we quantify imposed latency and discusses its

management in the synthesis of real-time systems from processing graphs. The analysis

of both types of latency begins with chains and is then extended to general graphs to

simplify the presentation. The analysis techniques, theorems, and equations presented in

Chapter 4 are used by system engineers to evaluate the feasibility of latency requirements.

The results also provide a framework for tools to assist signal processing engineers in the

creation of the signal processing graph by quantifying the impact of processing graph

parameters on latency early in the design process when it is most cost e�ective to make

changes.
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To illustrate our techniques for managing latency in the synthesis of real-time systems

from processing graphs, three PGM graphs from the literature and actual implementa-

tions are analyzed in Chapter 5. The �rst is a SAR application [65]. The SAR system

can be used to identify man-made objects on the ground or in the air by producing

high-resolution, all-weather images in real-time [49]. The second application evaluated

is an International Maritime Satellite (INMARSAT) mobile satellite receiver application

[64, 55]. INMARSAT is a global maritime communication and navigational system used

in the commercial shipping industry. We conclude our case studies by evaluating latency

in an anti-submarine warfare (ASW) system | the Directed Low Frequency Analysis

and Recording (DIFAR) acoustic signal processing program from the Airborne Low Fre-

quency Sonar (ALFS) subsystem of the LAMPS MK III anti-submarine helicopters. The

topologies of the processing graphs for these three applications ranges from a simple chain

for the SAR application to a cyclic graph containing over 80 nodes and 400 queues for

the DIFAR application.

Our conclusions and open problems are summarized in Chapter 6.



Chapter 2

Real-Time Properties of PGM

Graphs

2.1 Introduction

This chapter explores the real-time properties of PGM graphs by deriving when nodes

in a PGM graph must execute if they are to process a continuous input signal without

losing data. First, the notation and terminology used throughout this dissertation are

presented in Section 2.2. We then begin the exploration of the real-time properties of

PGM graphs in Section 2.3 by trying to understand the impact of non-unity dataow

attributes on node execution patterns and the minimal bu�ering required for each queue.

We informally describe the execution patterns as execution rates, and then formalize the

de�nition of a node execution rate in Section 2.4 and use the results of Section 2.3 to

derive equations that compute the execution rate of any node in a PGM graph from its

immediate predecessors and the dataow attributes of its input queues.

2.2 Notation and Terminology

The notation and terminology used throughout this dissertation is an amalgamation of

the notation and terminology used in Graph Theory with Applications by Bondy and

Murty [12]; Introduction to Algorithms by Cormen, Leiserson, and Rivest [14]; and Soft-

ware Synthesis from Dataow Graphs by Bhattacharyya, Murthy, and Lee [9].

Let Z be the set of integers, P be a �nite set of positive integers, and let R be a �nite

set of real numbers. For a; b; c 2 Z and b 6= 0, if a=b = c we say b divides a and represent

it as bja. We note that bja implies a mod b = 0. The greatest common divisor of the
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elements in P is denoted by gcd(P), and lcm(P) denotes the least common multiple of

the elements in P. The elements of P are relatively prime if gcd(P) = 1.

A processing graph is formally described as a directed graph (or digraph)G = (V;E;  ).

The ordered triple (V, E,  ) consists of a nonempty �nite set V of vertices, a �nite set

of edges E, and an incidence function  : E ! V � V that associates with each edge of

E an ordered pair of (not necessarily distinct) vertices of V.  (e) = (u; v) represents a

directed edge from u to v. In this dissertation, vertices are often called nodes, and edges

of E are often called queues.

Consider an edge e 2 E and vertices u; v 2 V such that  (e) = (u; v) is an edge from

u to v. We say e joins u to v, or u and v are adjacent. If u and v are distinct, then fu; vg

is an adjacent pair. Whether or not u and v are distinct, u is a predecessor of v, and v is

a successor of u. The vertex u is the tail or source vertex of e and v is the head or sink

vertex of edge e. The edge e represents a bu�ered communication channel transporting

data from node u to node v, and the vertex u is a producer of data for the consumer node

v. For the producer/consumer relationship of u and v, the edge e is an output edge of u

and an input edge of v.

The number of input edges to a vertex v is the indegree ��(v) of v, and the number of

output edges for a vertex v is the outdegree �+(v) of v. A vertex v with ��(v) = 0 is an

input node. The set of all input nodes is denoted by I (i.e., I = fv j v 2 V ^ ��(v) = 0g).

A vertex v with �+(v) = 0 is an output node. The set of all output nodes is denoted by

O (i.e., O = fv j v 2 V ^ �+(v) = 0g).

For u; v 2 V, there is path between u and v, written as u;v, if and only if there exists

a sequence of vertices (w1; w2; : : : ; wk) such that w1 = u, wk = v, and wi is adjacent to

wi+1 for 1 � i < k.

A directed path (w0; w1; w2; : : : ; wk) forms a cycle if w0 = wk. The cycle is simple if

the vertices w1; w2; : : : ; wk are distinct. (For every cycle, there must exist a simple cycle.)

Two paths (w0; w1; w2; : : : ; wk�1; w0) and (w
0
0; w

0
1; w

0
2; : : : ; w

0
k�1; w

0
0) are the same if there

exists an integer j such that w0i = w(i+j) mod k for 0 � i < k. For example, in Figure 2.1a,

the paths (u; v; w; u) and (v; w; u; v) are the same cycle. Two cycles are disjoint if they

are not the same and there does not exist a vertex u that is in both cycles. If two cycles

are not the same but they share a common vertex u, the cycles are non-disjoint | or

complex. For example, the cycles (s; t; s) and (u; v; w; u) in Figure 2.1a are disjoint, but

the cycles (u; v; w; u) and (s; t; u; s) in Figure 2.1b are non-disjoint. A path u; v is

a chain if u 6= v, ��(u) � 1, �+(u) = 1, ��(v) = 1, and �+(w) = ��(w) = 1 for all

w 2 ffu;vg � fu; vgg. If there exists a path from u 2 V to v 2 V, then u is an ancestor
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t

s u v

w

vu

t w

(a)

(b)

Figure 2.1: An example of disjoint and non-disjoint cycles. (a) The cycles (s; t; s) and
(u; v; w; u) are disjoint. (b) The cycles (t; u; t) and (u; v; w; u) are non-disjoint.
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of v and v is a descendant of u.

A graph source node for a PGM graph represents an external sensor device, and a

graph sink node represents and external output device such as a display. A graph source

node is also called an input node, and a graph sink node is also called an output node.

Let I denote the set of input nodes for a PGM graph G, and let O denote the set of

output nodes for a PGM graph G. The set Iv is the subset of input nodes I from which

there exists a path from u 2 I to the node v. Likewise, the set Ou is the subset of output

nodes O from which there exists a path from node u to w 2 O.

When discussing PGM directed graphs, we use the term graph rather than digraph

or directed graph since all PGM graphs are digraphs. We also use the terms nodes and

queues to refer to elements of V and E respectively. The value of dataow attributes

produce, threshold, and consume for queue q are denoted prd(q), thr(q), and cns(q)

respectively. The number of initial tokens on queue q is denoted init(q), and the length

of queue q is denoted length(q). Before any nodes execute, init(q) = length(q).

2.3 Node Executions andMinimal Bu�ering Require-

ments

In task graph systems that require unity dataow attributes (i.e., produce, threshold, and

consume values all one), deriving the execution rates of nodes is relatively straightforward.

Deriving the execution rates of nodes in PGM graphs is not. In this section, we present

a series of examples that illustrate the impact of non-unity dataow attributes on node

execution and quantify the number of times a producer node must execute before its

consumer node is eligible for execution. We also derive several bounds related to minimal

bu�ering requirements that will be used throughout this dissertation.

To eliminate the inuence of scheduling on node executions, assume each node exe-

cutes on its own processor as soon as all of its input queues are over threshold. For our

�rst example, consider the two node chain and the snapshots of queue q in Figure 2.2

where length(q) is the number of tokens on queue at time ti. Queue q is annotated with its

produce, threshold, and consume values below the queue; it has no initial data. Node u

produces 2 tokens every time it executes. The input queue to node v has a threshold of 7

and node v consumes 7 tokens after it executes. Since each execution of node u produces

2 tokens, 4 executions of node u are required before the �rst execution of node v occurs

at time t5. When node v executes (at time t5 in the snapshot table), it consumes 7 of the

8 tokens on queue q. Hence, only 3 additional executions of node u (producing 6 more
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cns(q) = 7
prd(q) = 2 thr(q) = 7,

data produced data consumed
Time by node u by node v length(q)
0 0
t1 2 2
t2 2 4
t3 2 6
t4 2 8
t5 7 1
t6 2 3
t7 2 5
t8 2 7
t9 7 0

Figure 2.2: A two-node PGM graph and snapshot sequence. The produce amount is 2,
and the threshold and consume values are both 7. The queue has no initialized data.
The table shows snapshots of the length of queue q at time t after node u produces or
node v consumes tokens.

tokens for a total of 7 tokens on queue q) are needed for node v to execute a second time.

After node v executes the second time (at time t9), it consumes all 7 tokens on queue q

leaving it in the same state as it began, with 0 tokens. Simulating subsequent executions

would show that the number of executions required of node u to produce enough data for

node v to execute continues to alternate between 4 and 3 executions. Every 7 executions

of node u will produce 14 tokens and result in node v executing twice. If node u executes

once every yu time units, it will execute 7 times in 7yu time units and node v will execute

at a rate of only 2 times every 7yu time units. Thus, node v executes at a slower rate

than node u. In general, whenever prd(q) < cns(q), the consumer node will execute at a

slower rate than its producer.

What happens when the produce amount is greater than the threshold? Consider

the two node chain of Figure 2.3 where prd(q) = 7, cns(q) = 2, and thr(q) = 2. These

dataow attributes result in the �rst execution of node u enabling 3 executions of node v

and the second execution of node u enabling 4 executions of node v. This is because the

�rst 3 executions of node v left 1 token on queue q. After 2 executions of node u and the

resulting 7 executions of node v, queue q is left in its original state: containing 0 tokens.

Thus, every 2 executions of node u will produce 14 tokens and result in 7 executions
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cns(q) = 2
prd(q) = 7 thr(q) = 2,

data produced data consumed
Time by node u by node v length(q)
0 0
t1 7 7
t2 2 5
t3 2 3
t4 2 1
t5 7 8
t6 2 6
t7 2 4
t8 2 2
t9 2 0

Figure 2.3: A second two-node PGM graph and snapshot sequence. Although the thresh-
old and consume values are still equal, this time they are set to 2, and the produce amount
is 7.

of node v | node v now executes at a faster rate than node u. In general, whenever

prd(q) > cns(q), the consumer node will execute at a faster rate than its producer.

Finally, consider the two node chain of Figure 2.4. Node u produces 4 tokens every

time it executes. Node v has a threshold of 7 tokens and consumes 3 tokens after it

executes. Since queue q is not initialized, node u must �re twice before queue q is over

threshold and node v executes for the �rst time. After node v executes, it consumes only

3 tokens | leaving 5 tokens on queue q. The third execution of node u produces 4 more

tokens (for a total of 9 tokens on queue q) and node v executes again, consuming 3 more

tokens. The next execution of node u results in 10 tokens on queue q, and node v is able

to execute twice | leaving 4 tokens on queue q, which is the same number of tokens

that were on queue q after the �rst execution of node u. Thus, subsequent executions

of node u and node v follow this same pattern: uvuvuvv. Therefore, if node u executes

once every yu time units, node v will execute with a rate of 4 times every 3yu time units.

These examples demonstrate that the number of tokens on queue q at time t is a

function of the the queue's dataow attributes and the number of executions of nodes

u and v prior to time t. Since node v executes whenever queue q contains at least
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cns(q) = 3
prd(q) = 4 thr(q) = 7,

data produced data consumed
Time by node u by node v length(q)
0 0
t1 4 4
t2 4 8
t3 3 5
t4 4 9
t5 3 6
t6 4 10
t7 3 7
t8 3 4

Figure 2.4: A third two-node PGM graph and snapshot sequence. In this chain, the
dataow attributes prd(q), thr(q), and cns(q) all have di�erent values. The produce
amount is 4, the threshold value is 7, and the consume amount is 3.

thr(q) tokens and it consumes cns(q) tokens each time it executes, queue q will always

contain at least (thr(q) � cns(q)) tokens after node v executes for the �rst time. Note,

however, that this lower bound on the minimum number of tokens on q is not tight.

Consider, for example, the chain shown in Figure 2.5 where the dataow attributes

are prd(q) = 8; thr(q) = 7; cns(q) = 6. In this case, thr(q) � cns(q) = 1, but there

will always be at least two tokens in the queue. We now present two theorems that

bound the minimum number of tokens on queue q after the �rst execution of node v and

the maximum number of tokens that can be on queue q without the queue being over

threshold. The �rst, Theorem 2.3.1, requires init(q) = 0. We then relax this restriction

to allow initialized data on queue q. These bu�ering bounds will be used extensively

throughout this dissertation.

Theorem 2.3.1. Let  (q) = (u; v) with init(q) = 0. The number of tokens on queue q

after node v has executed once is at least MinTokens(q) where

MinTokens(q) =

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q) (2.1)

and the maximum number of tokens queue q can hold without being over threshold is



38

&%
'$

-v&%
'$

- -u
q

cns(q) = 6
prd(q) = 8 thr(q) = 7,

data produced data consumed
Time by node u by node v length(q)
0 0
t1 8 8
t2 6 2
t3 8 10
t4 6 4
t5 8 12
t6 6 6
t7 8 14
t8 6 8
t9 6 2

Figure 2.5: A fourth two-node PGM graph and snapshot sequence. The dataow at-
tributes prd(q), thr(q), and cns(q) are 8, 7, and 6 respectively.

MaxUnderThr(q) where

MaxUnderThr(q) =

8<
:thr(q)� gcd(prd(q); cns(q)) if gcd(prd(q); cns(q)) j thr(q)j

thr(q)
gcd(prd(q);cns(q))

k
� gcd(prd(q); cns(q)) otherwise

(2.2)

Before proving Theorem 2.3.1, we demonstrate its application using the chains of

Figures 2.4 and 2.5. The dataow attributes for queue q in Figure 2.4 are prd(q) = 4,

thr(q) = 7, and cns(q) = 3. Using Equation (2.1), the number of tokens queue q contains

after the �rst execution of node v is at least

MinTokens(q) =

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

=

�
7

gcd(4; 3)

�
� gcd(4; 3)� 3

=

��
7

1

�
� 1

�
� 3 = 4:

Since gcd(prd(q); cns(q)) = gcd(4; 3) = 1, the gcd of the produce and consume values

divides the threshold amount (i.e., gcd(prd(q); cns(q)) j thr(q)). Therefore, by Theo-
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rem 2.3.1, the maximum number of tokens queue q can hold without being over threshold

is

MaxUnderThr(q) = thr(q)� gcd(prd(q); cns(q)) = 7� 1 = 6:

If node v is always able to execute as soon as queue q is over threshold and it completes

its execution before node u produces any more tokens, queue will never contain more

than

MaxUnderThr(q) + prd(q) = 6 + 4 = 10

tokens. Thus, any implementation of the graph will require bu�er space for at least 10

tokens. The actual upper bound for the length of queue q, however, is determined by the

scheduling algorithm and the topology of the graph.

Now consider the chain of Figure 2.5 where prd(q) = 8, thr(q) = 7, and cns(q) = 6.

In this case, gcd(prd(q); cns(q)) = gcd(8; 6) = 2 and

MinTokens(q) =

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

=

�
7

gcd(8; 6)

�
� gcd(8; 6)� 6

=

��
7

2

�
� 2

�
� 6 = (4 � 2)� 6 = 2:

Since gcd(prd(q); cns(q)) = 2, which does not divide thr(q) = 7, the maximum number

of tokens the queue can hold without being over threshold is

MaxUnderThr(q) =

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

=

�
7

gcd(8; 6)

�
� gcd(8; 6)

=

��
7

2

�
� 2

�
= 3 � 2 = 6:

Thus, as shown in the snapshots recording the execution of nodes u and v in Figure 2.5,

queue q will contain between 2 and

MaxUnderThr(q) + prd(q) = 6 + 8 = 14



40

tokens if node v executes as described above.

Proof of Theorem 2.3.1: Let length(q) be the number of token on queue q. Since

init(q) = 0, length(q) = 0 initially. Let ku denote a number of executions of node u, and

kv denote a number of executions of node v. Observe that length(q) is always of the form

length(q) = ku � prd(q)� kv � cns(q) when init(q) = 0, and that after node v �rst executes,

queue q will always contain at least thr(q)�cns(q) tokens. Thus, to prove Equation (2.1),

we must �nd the smallest value the expression ku � prd(q) � kv � cns(q) can be without

being less than thr(q)� cns(q).

Observe that for all integer values of ku and kv that satisfy the expression

ku � prd(q)� kv � cns(q) � thr(q)� cns(q);

there exists integers a, b, and k such that

ku � prd(q)� kv � cns(q) = ku � (a � gcd(prd(q); cns(q)))� kv � (b � gcd(prd(q); cns(q)))

= (ku � a� kv � b) � gcd(prd(q); cns(q))

= k � gcd(prd(q); cns(q)):

Thus, the lower bound on the length of queue q, is the smallest integer k that satis�es

the expression

k � gcd(prd(q); cns(q)) � thr(q)� cns(q): (2.3)

The smallest integer k that satis�es Equation (2.3) is

k =

�
thr(q)� cns(q)

gcd(prd(q); cns(q))

�

Therefore, the minimum number of tokens that will ever be on queue q after node v has

executed at least once is:

MinTokens(q) =

�
thr(q)� cns(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

=

��
thr(q)

gcd(prd(q); cns(q))

�
�

cns(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

=

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)
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which proves that Equation (2.1) is the lower bound on the length of queue q after node

v has executed at least once.

We now prove Equation (2.2) derives the largest number of tokens queue q can hold

without being over threshold. Since length(q) is always of the form

ku � prd(q)� kv � cns(q);

we must �nd the largest value this expression can have while still being less than thr(q).

For all integer values of ku and kv that satisfy the expression

ku � prd(q)� kv � cns(q) < thr(q);

there exists integers a, b, and k such that

ku � prd(q)� kv � cns(q) = ku � (a � gcd(prd(q); cns(q)))� kv � (b � gcd(prd(q); cns(q)))

= (ku � a� kv � b) � gcd(prd(q); cns(q))

= k � gcd(prd(q); cns(q)):

Thus, the largest number of tokens queue q can hold without being over threshold, is the

largest integer k that satis�es the expression

k � gcd(prd(q); cns(q)) < thr(q):

Observe that k =
j

thr(q)
gcd(prd(q);cns(q))

k
is the largest integer such that

k � gcd(prd(q); cns(q)) � thr(q):

If k =
j

thr(q)
gcd(prd(q);cns(q))

k
and gcd(prd(q); cns(q)) does not divide thr(q), then

k � gcd(prd(q); cns(q)) =

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q)) < thr(q):

Hence, Equation (2.2) holds.

If gcd(prd(q); cns(q)) j thr(q), then k = thr(q)
gcd(prd(q);cns(q))

and

k � gcd(prd(q); cns(q)) =
thr(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q))

= thr(q):
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prd(�) = 4

thr(�) = 7; cns(�) = 3

prd(�) = 3

thr(�) = cns(�) = 2

Figure 2.6: A PGM node with two input queues.

In this case, the maximum number of tokens queue q can hold without being over thresh-

old is

(k � 1)� gcd(prd(q); cns(q)) = (
thr(q)

gcd(prd(q); cns(q))
� 1) � gcd(prd(q); cns(q))

= (
thr(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q)))� gcd(prd(q); cns(q))

= thr(q)� gcd(prd(q); cns(q)):

Hence, Equation (2.2) also holds when gcd(prd(q); cns(q)) j thr(q).

Theorem 2.3.1 is independent of the number of input queues to a node and holds for

each input queue individually. Consider the graph of Figure 2.6 in which node w has

two input queues.  (�) = (u; w) and  (�) = (v; w) de�ne two producer/consumer pairs.

Queue � in Figure 2.6 has the same dataow attributes as queue q connecting nodes u and

v in Figure 2.4. Hence, as shown previously, MinTokens(�) = 4 and MaxUnderThr(�) =

6. Applying Theorem 2.3.1 to queue � yieldsMinTokens(�) = 0 andMaxUnderThr(�) =

1.

We now relax the restriction requiring init(q) = 0, and extend the analysis to include

queues with initialized data.

Theorem 2.3.2. Let  (q) = (u; v) and queue q be initialized with init(q) � 0 tokens.

After nodes v and u have executed at least once, the minimum number of tokens on queue

q is at least MinTokens(q) and the maximum number of tokens queue q can hold without

being over threshold is MaxUnderThr(q) where

MinTokens(q) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q) (2.4)
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MaxUnderThr(q) =8<
:
thr(q)� gcd(prd(q); cns(q)) if gcd(prd(q); cns(q)) j (thr(q)� f(q))

f(q) +
j

thr(q)�f(q)
gcd(prd(q);cns(q))

k
� gcd(prd(q); cns(q)) otherwise

(2.5)

and

f(q) =

8<
:init(q)�

�j
init(q)�thr(q)

cns(q)

k
+ 1
�
� cns(q) if init(q) � thr(q)

init(q) otherwise

Proof: The proof proceeds with three steps. In step one, we prove that f(q) < thr(q).

Step two proves Equation (2.4) is a valid lower bound on the number of tokens queue q will

contain after nodes u and v have executed at least once. Step three shows Equation (2.5)

is an upper bound on the number of tokens queue q can contain without being over

threshold.

Step 1: Prove f(q) < thr(q). If init(q) < thr(q), then f(q) = init(q) and f(q) <

thr(q). If init(q) � thr(q), then node v (which consumes cns(q) tokens each time it

executes) can execute at most k times before the number of tokens on queue q is less

than thr(q) where k is the least natural number such that init(q)� (k � cns(q)) < thr(q).

This implies k > init(q)�thr(q)
cns(q)

. The smallest natural number satisfying this inequality isj
init(q)�thr(q)

cns(q)

k
+ 1. Since each execution of node v consumes cns(q) tokens from queue q,

it immediately follows that the number of tokens consumed after k executions of node v

is
�j

init(q)�thr(q)
cns(q)

k
+ 1
�
�cns(q). Thus, assuming node u does not produce any tokens (i.e.,

it does not execute), the number of tokens on queue q after node v executes k times is

init(q)� k � cns(q) = init(q)�

��
init(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q) < thr(q):

Hence f(q) < thr(q).

Step 2: Prove Equation (2.4) is a valid lower bound on the number of tokens queue q

will contain after nodes u and v have executed at least once. Let length(q) be the number

of tokens on queue q after node v has consumed

��
init(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q)

tokens from queue q.

Let ku denote a number of executions of node u, and kv denote a number of executions
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of node v. Observe that length(q) is always of the form

length(q) = f(q) + ku � prd(q)� kv � cns(q);

and that after node v �rst executes, queue q will always contain at least thr(q)� cns(q)

tokens. Thus, to prove Equation (2.4), we must �nd the smallest value the expression

f(q) + ku � prd(q)� kv � cns(q) can be without being less than thr(q)� cns(q).

Observe that for all integer values of ku and kv that satisfy the expression

f(q) + ku � prd(q)� kv � cns(q) � thr(q)� cns(q);

there exists integers a, b, and k such that

f(q) + ku � prd(q)� kv � cns(q)

= f(q) + ku � (a � gcd(prd(q); cns(q)))� kv � (b � gcd(prd(q); cns(q)))

= f(q) + (ku � a� kv � b) � gcd(prd(q); cns(q))

= f(q) + k � gcd(prd(q); cns(q)):

Thus, the lower bound on the length of queue q, is the smallest integer k that satis�es

the expression

f(q) + k � gcd(prd(q); cns(q)) � thr(q)� cns(q): (2.6)

The smallest integer k that satis�es Equation (2.6) is

k =

�
thr(q)� cns(q)

gcd(prd(q); cns(q))

�

Therefore, the minimum number of tokens that will ever be on queue q after node v has

executed at least once is:

MinTokens(q) = f(q) +

�
thr(q)� cns(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

= f(q) +

��
thr(q)

gcd(prd(q); cns(q))

�
�

cns(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

= f(q) +

�
thr(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)
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which proves that Equation (2.4) is the lower bound on the length of queue q after nodes

u and v have executed at least once.

Step 3: Prove Equation (2.5) is a valid upper bound on the number of tokens queue

q can contain without being over threshold after nodes u and v have executed at least

once. The maximum number of tokens queue q can hold without being over threshold is

f(q) + k � gcd(prd(q); cns(q))

where k is the largest integer such that f(q) + k � gcd(prd(q); cns(q)) < thr(q). As before,

k =
j

thr(q)�f(q)
gcd(prd(q);cns(q))

k
is the largest integer such that

f(q) + k � gcd(prd(q); cns(q)) � thr(q):

If gcd(prd(q); cns(q)) does not divide (thr(q)� f(q)), then

f(q) + k0 � gcd(prd(q); cns(q)) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

< thr(q)

and Equation (2.5) holds. If gcd(prd(q); cns(q)) j (thr(q)� f(q)), then

f(q) + k0 � gcd(prd(q); cns(q)) = f(q) +
thr(q)� f(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q))

= f(q) + thr(q)� f(q) = thr(q):

In this case, the maximum number of tokens queue q can hold without being over thresh-

old is

f(q) + (k0 � 1) � gcd(prd(q); cns(q))

= f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))
� 1

�
� gcd(prd(q); cns(q))

= f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))

= f(q) + thr(q)� f(q)� gcd(prd(q); cns(q))

= thr(q)� gcd(prd(q); cns(q));

which proves Equation (2.5) also holds when gcd(prd(q); cns(q)) j (thr(q)� f(q)).

Note that, when init(q) = 0, Equation (2.4) reduces to Equation (2.1) and Equa-
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tion (2.5) reduces to Equation (2.2). Unlike Theorem 2.3.1, however, Theorem 2.3.2 can

be applied to any queue in a processing graph without restriction on the number of tokens

with which the queue was initialized.

Consider the two node chain of Figure 2.4 once again (where prd(q) = 4, thr(q) = 7,

and cns(q) = 3). This time, assume queue q is initialized with 7 tokens (thus init(q) = 7,

and thr(q) = 7). Using Equation (2.4), the minimum number of tokens queue q contains

after nodes u and v both execute at least once is

MinTokens(q) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= init(q)�

��
init(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q)

+

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= 7�

��
7� 7

3

�
+ 1

�
� 3 +

�
7� f(q)

gcd(4; 3)

�
� gcd(4; 3)� 3

= 4 +

��
7� 4

1

�
� 1

�
� 3 = 4:

Since gcd(prd(q); cns(q)) = gcd(4; 3) = 1, the gcd of the produce and consume values

divides (thr(q) � f(q)). Therefore, by Equation (2.5), the maximum number of tokens

queue q can hold without being over threshold is

MaxUnderThr(q) = thr(q)� gcd(prd(q); cns(q)) = 7� 1 = 6:

Thus, when queue q is initialized with init(q) = 7 tokens, the functions MinTokens(q)

and MaxUnderThr(q) evaluate to the same values as when the queue was not initialized

with data. When gcd(prd(q); cns(q) = 1, the amount of initialized data does not a�ect

these functions:

MinTokens(q) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= f(q) +
thr(q)� f(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q))� cns(q)

= f(q) + thr(q)� f(q)� cns(q)

= thr(q)� cns(q)

and MinTokens(q) = thr(q)� 1 since 1 always divides thr(q)� f(q).
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Now consider the chain of Figure 2.5 where prd(q) = 8, thr(q) = 7, and cns(q) = 6, and

assume queue q is initialized with one token (init(q) = 1). In this case, gcd(prd(q); cns(q)) =

gcd(8; 6) = 2 and init(q) < thr(q). Thus

MinTokens(q) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= init(q) +

�
thr(q)� init(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= 1 +

�
7� 1

gcd(8; 6)

�
� gcd(8; 6)� 6

= 1 +

��
7� 1

2

�
� 2

�
� 6 = 1 + (3 � 2)� 6 = 1:

Since gcd(prd(q); cns(q)) = 2 divides (thr(q)� f(q)) = 6, the maximum number of tokens

the queue can hold without being over threshold is

MaxUnderThr(q) = thr(q)� gcd(prd(q); cns(q)) = 7� 1 = 6:

Although gcd(prd(q); cns(q)) 6= 1, it is still the case that the functions MinTokens(q)

and MaxUnderThr(q) evaluate to the same values as when the queue was not initialized

with data. This is because the queue was initialized with thr(q)� cns(q) tokens. When

the queue is initialized in this manner, the initialized data does not a�ect the functions

MinTokens(q) and MaxUnderThr(q):

MinTokens(q) = f(q) +

�
thr(q)� f(q)

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= thr(q)� cns(q) +

�
thr(q)� (thr(q)� cns(q))

gcd(prd(q); cns(q))

�
� gcd(prd(q); cns(q))� cns(q)

= thr(q)� cns(q) +
cns(q)

gcd(prd(q); cns(q))
� gcd(prd(q); cns(q))� cns(q)

= thr(q)� cns(q) + cns(q)� cns(q)

= thr(q)� cns(q)

and MaxUnderThr(q) = thr(q)� gcd(prd(q); cns(q)) since

thr(q)� f(q) = thr(q)� (thr(q)� cns(q)) = cns(q)

and gcd(prd(q); cns(q)) always divides cns(q).
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Whenever gcd(prd(q); cns(q)) j thr(q)� f(q), Equation (2.4) reduces to

MinTokens(q) = thr(q)� cns(q)

and Equation (2.5) reduces to

MaxUnderThr(q) = thr(q)� gcd(prd(q); cns(q)):

Theorem 2.3.2 provides upper and lower bounds for the number of tokens a queue

joining two nodes can contain without being over threshold (after both nodes have exe-

cuted at least once). The following theorem, computes the number of executions of node

v as a function of the number of tokens produced by node u when queue q is the only

queue joining the pair.

Theorem 2.3.3. Let length(q) � thr(q),  (q) = (u; v), and ��(v) = 1. At the current

time, assuming node u does not execute, node v will execute
j
length(q)�thr(q)

cns(q)

k
+ 1 times,

consume ��
length(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q)

tokens, and leave l tokens on queue q where MinTokens(q) � l � MaxUnderThr(q).

Before proving the theorem, we demonstrate its application using the chains of Figures

2.4 and 2.5. First, consider queue q in Figure 2.4 on page 37 where prd(q) = 4, thr(q) = 7,

and cns(q) = 3. Recall from the previous discussion that after 4 executions of node u,

node v executed a total of 4 times. Therefore, assuming 4 executions of node u (with

no intervening executions of node v), queue q would contain 16 tokens. Applying the

equations of Theorem 2.3.3 with length(q) = 16 shows that node v would be able to

execute four times (just as the example demonstrated):

�
length(q)� thr(q)

cns(q)

�
+ 1 =

�
16� 7

3

�
+ 1 = 4:

Following 4 executions of node u and the resulting 4 executions of node v, there would

be

length(q)�

��
length(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q) = 16�

��
16� 7

3

�
+ 1

�
� 3

= 16� (4 � 3) = 4
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tokens on queue q. (Recall from the application of Equation (2.1) to this graph that 4 is

the minimum number of tokens queue q will contain after the �rst execution of node v.)

Assuming 24 tokens on queue q of Figure 2.5 where prd(q) = 8, thr(q) = 7, and

cns(q) = 6, node v will execute

�
length(q)� thr(q)

cns(q)

�
+ 1 =

�
24� 7

6

�
+ 1 = 3

times and consume��
length(q)� thr(q)

cns(q)

�
+ 1

�
� cns(q) =

��
24� 7

6

�
+ 1

�
� 6 = 3 � 6 = 18

of the 24 tokens, leaving 6 tokens on the queue.

Proof of Theorem 2.3.3: 1 If there are length(q) � thr(q) tokens on queue q where

 (q) = (u; v) and ��(v) = 1 and node u does not execute, then the number of times node

v will execute is the least natural number k such that

length(q)� (k � cns(q)) < thr(q);

which implies k > (length(q) � thr(q))=cns(q). The smallest natural number satisfying

this inequality is k =
j
length(q)�thr(q)

cns(q)

k
+ 1.

Since each execution of node v consumes cns(q) tokens from queue q, it immediately

follows that the number of tokens consumed is
�j

length(q)�thr(q)
cns(q)

k
+ 1
�
� cns(q). Finally,

from Theorem 2.3.2, the minimum number of tokens on queue q after node v executes

is MinTokens(q), and the maximum number of tokens that can be on the queue without

the queue being over threshold is MaxUnderThr(q). Therefore, it follows that

MinTokens(q) � l � MaxUnderThr(q)

and the theorem holds.

Given length(q) tokens on queue q, it is also useful to know how many more executions

of node u are required before queue q is over threshold. In this case, the consume amount

does not matter; we only care about thr(q), prd(q), and the existing number of tokens on

queue q, length(q).

1We thank the anonymous reviewer of a previous paper [28] who suggested this proof.



50

&%
'$

&%
'$&%

'$
-

-

-

HHHHHj

��
��

��1

u

v

w
�

�

prd(�) = 2

cns(�) = thr(�) = 3

prd(�) = 3

cns(�) = thr(�) = 4

Figure 2.7: Another PGM node with two input queues.

Theorem 2.3.4. Let there be length(q) tokens on queue q and  (q) = (u; v). Node u

must execute

max

�
0;

�
thr(q)� length(q)

prd(q)

��
(2.7)

times before queue q is over threshold.

Proof: If there are length(q) tokens on queue q and length(q) � thr(q), then queue q is al-

ready over threshold and no more executions of node u are required. If length(q) < thr(q),

then thr(q) � length(q) more tokens are required before q is over threshold. Since

node u produces prd(q) tokens every time it executes, it follows that u must executel
thr(q)�length(q)

prd(q)

m
times before q is over threshold. In either case, the number of execu-

tions required of node u before queue q is over threshold is max
�
0;
l
thr(q)�length(q)

prd(q)

m�
and

Equation (2.7) holds.

To illustrate Theorem 2.3.4 consider the chain of Figure 2.4 on page 37 where prd(q) =

4, thr(q) = 7, and cns(q) = 3. Assuming 4 tokens on queue q in the chain of Figure 2.4,

node u must execute

max

�
0;

�
thr(q)� length(q)

prd(q)

��
= max

�
0;

�
7� 4

4

��
= max

�
0;

�
3

4

��
= 1

time before queue q is over threshold and node v is eligible for execution.

Next consider the graph of Figure 2.7 in which node w has two input queues.  (�) =

(u; w) and  (�) = (v; w) de�ne two producer/consumer pairs. Theorem 2.3.4 can be
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applied to both input queues. Assuming no data on queue �, node u must execute

max

�
0;

�
thr(�)� length(�)

prd(�)

��
= max

�
0;

�
3� 0

2

��
= max

�
0;

�
3

2

��
= 2

times before queue � is over threshold. Since there are two input queues to node w,

node w is not eligible for execution until both input queues are over threshold. Assuming

length(�) = 1, node v must execute

max

�
0;

�
thr(�)� length(�)

prd(�)

��
= max

�
0;

�
4� 1

3

��
= max

�
0;

�
3

3

��
= 1

time before queue � is over threshold. Thus, starting with length(�) = 0 and length(�) =

1, node u must execute twice and node v must execute once before node w is eligible for

execution.

Throughout this section we have informally derived node execution rates by simu-

lating executions. Section 2.4 formally de�nes an execution rate and uses the theorems

presented in this section to analytically compute node execution rates.

2.4 Node Execution Rates

Our goal in synthesizing a signal processing system from a processing graph is to execute

nodes such that we can manage both imposed latency and memory usage. Consider the

two-node chain of Figure 2.8. For the producer/consumer pair of nodes u and v, the

number of tokens present on queue q at time t is a function of the queue's dataow

attributes and the number of executions of nodes u and v prior to time t. Node v can

only execute when its input queue is over threshold, so the number of times it is able

to execute in any interval of time is dependent on the number of times node u executes

(and the dataow attributes on queue q). In an implementation of the graph, the actual

number of times that node v executes in any interval of time is dependent on the number

of times node u executes and on the scheduling algorithm employed. If the scheduling

algorithm delays executions of node v but continues to let node u execute, data will

accumulate on queue q. To bound latency and memory usage in an implementation of

the graph, we need to schedule the execution of nodes in a deterministic manner. For this,

we appeal to real-time scheduling theory and execute the nodes according to a model of

real-time execution. Finally, to select the proper model of real-time execution, we need

to determine the natural execution pattern of nodes. We informally called the execution
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Figure 2.8: A two-node chain. The queue connecting nodes u and v has the dataow
attributes prd(q) = 4, thr(q) = 7, and cns(q) = 3.
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prd(q) = 4 thr(q) = 7,

Time Execution of length(q)
0 u 4
y u; v 5
2y u; v 6
3y u; v; v 4

Figure 2.9: A two-node chain and a snapshot sequence that shows the execution of the
nodes under the strong synchrony hypothesis.

pattern a rate in Section 2.3. Here, we formally de�ne an execution rate and show how

to analytically derive the execution rates of nodes in a PGM graph. In Chapter 3, we

map nodes to tasks in the RBE model and show how to schedule node executions so that

we can manage latency and memory usage in an implementation of the graph.

To simplify the presentation of execution rates and to eliminate the role scheduling

and node execution times play in the derivation of node execution rates, we extend our

assumption that each node executes on its own processor and assume that the processors

are each in�nitely fast so that node execution takes no time. More precisely, we assume

nodes execute in accordance with the strong synchrony hypothesis from the synchronous

programming literature [21]. The strong synchrony hypothesis states that the system

instantly reacts to external stimuli. For example, the snapshot sequence in Figure 2.9

shows both nodes u and v executing at time y. The system reacts instantaneously to the

arrival of data on the input queue to node u and both nodes u and v execute at the same

instant. At time 3y, one execution of node u and two executions of node v occur at the

same instant. Node execution rates are de�ned as follows.

De�nition 2.4.1. An execution rate is a pair of non-negative integers (x; y).
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De�nition 2.4.2. Execution rates (x1; y1) and (x2; y2) are equal if and only if x1 = x2

and y1 = y2.

De�nition 2.4.3. An execution rate speci�cation for node v, Rv = (x; y), is valid if

there exists a time t such that node v executes exactly x times in time intervals [t+(k�

1)y; t+ ky) for all k > 0.

Notice that the interval is closed at the beginning and open at the end. Thus, if node

u in Figure 2.9 continues to execute once every y time units, it has a valid execution rate

of Ru = (1; y) (starting at time 0). It executes exactly once in the interval [0; y) since

the execution at time y is counted in the interval [y; 2y). While the periodic execution

of node u satis�es the de�nition of a valid execution rate, the execution of node u does

not need to be strictly periodic for it to have a valid execution rate of Ru = (1; y). For

example, if node u executed at times

0; 1:5y; 2y; 3:9y; 4y; 5y; 6y; : : : ; ky; : : :

it still has a valid execution rate of Ru = (1; y) starting at time 0 since it executes exactly

once in each time interval [0 + (k � 1)y; 0 + ky) for all k > 0.

If the execution of node u is periodic, however, the execution of node u is \well-

de�ned" in that it executes at time ky for all k � 0. While the rate speci�cation

Ru = (1; y) is a valid execution rate for node u, it does not describe the restricted

execution pattern exhibited by node u.

De�nition 2.4.4. An execution rate speci�cation for node v, Rv = (x; y), is well-de�ned

if there exists a time tv such that node v executes exactly x times in time intervals [t; t+y)

for all t � tv.

Corollary 2.4.1. A well-de�ned rate speci�cation Rv = (x; y) for node v is also a valid

rate speci�cation for node v.

Proof: If Rv = (x; y) is a well-de�ned rate speci�cation for node v, then by De�ni-

tion 2.4.4, there exists a time tv such that node v executes exactly x times in time

intervals [t; t + y) for all t � tv. Thus, for any t � tv node v executes exactly x times

in time intervals [t + (k � 1)y; t + ky) for all k > 0, and Rv = (x; y) is a valid rate

speci�cation for node v.

If Ru = (1; y) is a valid execution rate for node u in Figure 2.9, then Ru = (2; 2y) is

also a valid execution rate since node u will execute twice in each time interval [0 + (k�
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1)2y; 0 + k2y) for all k > 0. In fact, as shown by Corollary 2.4.2, there are an in�nite

number of valid execution rates for node u.

Corollary 2.4.2. If Rv = (x; y) is a valid rate speci�cation for node v, then for all

positive integers m, m �Rv = (m � x;m � y) is also a valid rate speci�cation for node v.

Proof: If Rv = (x; y) is a valid rate speci�cation for node v, then by De�nition 2.4.3,

there exists a time t such that node v executes exactly x times in time intervals [t+(k�

1)y; t + ky) for all k > 0. Thus in each time interval [t +m(k � 1)y; t +mky) for all

k > 0, node v will execute exactly mx times, and m � Rv = (m � x;m � y) is also a valid

rate speci�cation for node v.

Although there exists an in�nite number of valid execution rates for a node, not

every execution rate is valid. For example, let the execution rate Ru = (1; y) of node u

in Figure 2.9 be valid. By looking at the executions of node v in the snapshot sequence,

it would appear that node v executes with a rate of Rv = (4; 4y). Even though node

v does execute 4 times in the interval [0; 4y), the rate speci�cation Rv = (4; 4y) is not

valid because this is the only interval of length 4y in which node v executes exactly 4

times. Node v actually executes at a rate of Rv = (4; 3y) starting at time y. To see this,

we need to simulate more executions of nodes u and v. Consider the extended snapshot

sequence in Figure 2.10. This snapshot sequence shows that node v executes 4 times in

the interval [y; 4y), 4 times in the interval [4y; 7y), and 4 times in the interval [7y; 10y).

Sections 2.4.1 and 2.4.2 present the analytical derivation of valid execution rates for

nodes in acyclic and cyclic graphs executed under the strong synchrony hypothesis. Under

the strong synchrony hypothesis, we assume nodes execute on an in�nitely fast machine,

but we do not assume an in�nite amount of memory. Thus, for a producer/consumer

pair of nodes u and v with valid rate speci�cations Ru = (xu; yu) and Rv = (xv; yv),

node v must consume the same number of tokens produced by u during the interval yv.

Otherwise, data will continue to accumulate on their joining queue until no more memory

is available for bu�ering. At that point, either data will be lost or one of the nodes will

violate their rate speci�cation. In Chapter 3, we show how to implement a PGM graph

so that nodes execute with these rates.

2.4.1 Rates in Acyclic Graphs

The derivation of node execution rates is done �rst for nodes with single input queues

(Section 2.4.1.1) and then for nodes with multiple input queues (Section 2.4.1.2).
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Time Execution of length(q)
0 u 4
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Figure 2.10: An extended snapshot sequence showing the execution of nodes u and v
under the strong synchrony hypothesis. The execution rate of node u is Ru = (1; y), and
the execution rate of node v is Rv = (4; 3y).

2.4.1.1 Deriving Rates for Nodes with Single Input Queues

We derived the execution rate of node v in Figure 2.10 by simulating executions of nodes

u and v and \guessing" a valid execution rate. Alternatively, Theorem 2.4.3 can be used

to analytically compute the execution rate of node v using the execution rate of node u

and the dataow attributes of queue q.

Theorem 2.4.3. Let u;v be a PGM chain with  (q) = (u; v), and let Ru = (xu; yu) be

a valid execution rate for node u. Under the strong synchrony hypothesis, the execution

rate Rv = (xv; yv), where

xv =
prd(q)

gcd(prd(q) � xu; cns(q))
� xu (2.8)

and yv =
cns(q)

gcd(prd(q) � xu; cns(q))
� yu, (2.9)

is a valid execution rate for node v.

Proof: By De�nition 2.4.3, because Ru is valid, there exists a time tu such that node

u executes exactly xu times in each interval [tu + (k � 1)yu; tu + kyu) where k > 0. Let
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interval j be the �rst interval [tu + (j � 1)yu; tu + jyu) in which node v executes, and let

tv = tu + jyu.

In the remainder of the proof, we show that Rv = (xv; yv) is a valid rate speci�cation

by showing that node v executes exactly xv times in time intervals

[tv + (k � 1)yv; tv + kyv)

for all k > 0 where xv and yv are as de�ned by Equations (2.8) and (2.9). Under the

strong synchrony hypothesis, node v executes instantaneously whenever its input queue

is over threshold. Let length(q) = n at time tv. Thus, by Theorem 2.3.2, n is bounded

such that

thr(q)� cns(q) � MinTokens(q) � n � MaxUnderThr(q) < thr(q):

By De�nition 2.4.3, node u executes exactly xu times in intervals

[tu + (k � 1)yu; tu + kyu)

for all k > 0. Thus, by Corollary 2.4.2 and because tv = tu + jyu and yv is a multiple of

yu, node u executes yv
yu
� xu times in every time interval [tv + (k � 1)yv; tv + kyv) for all

k > 0. Since node u produces prd(q) tokens each time it executes, it enqueues a total of

prd(q) �
yv
yu
� xu = prd(q) �

cns(q)�yu
gcd(prd(q)�xu;cns(q))

yu
� xu

= prd(q) �
cns(q)

gcd(prd(q) � xu; cns(q))
� xu

tokens on queue q in an interval of length yv. Since each execution of node v consumes

cns(q) tokens, xv executions of node v in an interval of length yv will consume (xv �cns(q))

tokens. Thus, if queue q contains n tokens at the beginning of the interval, it will contain

n+

�
prd(q) �

cns(q)

gcd(prd(q) � xu; cns(q))
� xu

�
� (xv � cns(q))

= n +

�
prd(q) �

xu � cns(q)

gcd(prd(q) � xu; cns(q))

�
�

�
xu � prd(q)

gcd(prd(q) � xu; cns(q))
� cns(q)

�

= n +

�
xu � cns(q) � prd(q)

gcd(prd(q) � xu; cns(q))

�
�

�
xu � cns(q) � prd(q)

gcd(prd(q) � xu; cns(q))

�

= n
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tokens at the end of the interval. Furthermore, no more than xv executions could have

occurred since the xthv execution leaves exactly n < thr(q) tokens on q. Any fewer

executions would have left n � thr(q) tokens on q, and another execution of node v

would have occurred. Therefore, node v executes exactly xv times in time intervals

[tv + (k � 1)yv; tv + kyv) for all k > 0 where xv and yv are as de�ned by Equations (2.8)

and (2.9).

As required, the proof of Theorem 2.4.3 only proves that Equations (2.8) and (2.9)

can by used to compute a valid rate speci�cation for the consumer node v, and there

are in�nitely many other valid execution rate speci�cations for node v, as shown by

Corollary 2.4.2.

We now illustrate the derivation of rates using Theorem 2.4.3 by considering the

graph of Figure 2.8 where prd(q) = 4, thr(q) = 7, and cns(q) = 3. It was assumed

node u had a periodic execution rate of Ru = (1; y). We \guessed" an execution rate of

Rv = (4; 3y) for node v using the extended snapshot sequence presented in Figure 2.10.

Using Theorem 2.4.3, the execution rate of node v is computed analytically as follows:

Rv = (xv; yv) =

�
prd(q) � xu

gcd(prd(q) � xu; cns(q))
;

cns(q) � yu
gcd(prd(q) � xu; cns(q))

�

=

�
4 � 1

gcd(4 � 1; 3)
;

3 � y

gcd(4 � 1; 3)

�

=

�
4

gcd(4; 3)
;

3 � y

gcd(4; 3)

�
=

�
4

1
;
3y

1

�
= (4; 3y)

Now assume an execution rate of Ru = (3; 16) for node u. The corresponding snapshot

sequence (and a reproduction of the graph) is shown in Figure 2.11. The execution rate

of node v is derived using Theorem 2.4.3 as follows:

Rv = (xv; yv) =

�
prd(q) � xu

gcd(prd(q) � xu; cns(q))
;

cns(q) � yu
gcd(prd(q) � xu; cns(q))

�

=

�
4 � 3

gcd(4 � 3; 3)
;

3 � 16

gcd(4 � 3; 3)

�

=

�
12

gcd(12; 3)
;

48

gcd(12; 3)

�

=

�
12

3
;
48

3

�
= (4; 16)

Finally, consider an example in which the greatest common divisor of the produce

and consume values is not one, such as in the chain in Figure 2.12. Let the execution
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-v&%
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- -u
q

cns(q) = 3
prd(q) = 4 thr(q) = 7,

Time Execution of length(q)
0 u 4
1 u; v 5
15 u; v 6
16 u; v; v 4
17 u; v 5
20 u; v 6
28 u; v; v 4
33 u; v 5
40 u; v 6
48 u; v; v 4
55 u; v 5

Figure 2.11: Another extended snapshot sequence showing the execution of nodes u and
v under the strong synchrony hypothesis. This time the execution rate of node u is
Ru = (3; 16), and the execution rate of node v is Rv = (4; 16).

&%
'$

-v&%
'$

- -u
q

cns(q) = 6
prd(q) = 8 thr(q) = 7,

Time Execution of length(q)
0 u; v 2
4 u; v 4
15 u; v 6
20 u; v; v 2
30 u; v 4
34 u; v 6
42 u; v; v 2

Figure 2.12: A snapshot sequence showing the execution of nodes u and v under the
strong synchrony hypothesis where gcd(prd(q); cns(q)) > 1. The dataow attributes
prd(q), thr(q), and cns(q) are 8, 7, and 6 respectively. If Ru = (2; 15), then Rv = (8; 45).
The execution rates for nodes u and v are valid after time 0.
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rate of node u in Figure 2.12 be Ru = (2; 15). By Theorem 2.4.3, the execution rate of

node v is

Rv = (xv; yv) =

�
prd(q) � xu

gcd(prd(q) � xu; cns(q))
;

cns(q) � yu
gcd(prd(q) � xu; cns(q))

�

=

�
8 � 2

gcd(8 � 2; 6)
;

6 � 15

gcd(8 � 2; 6)

�

=

�
16

gcd(16; 6)
;

90

gcd(16; 6)

�
=

�
16

2
;
90

2

�
= (8; 45)

We now consider the case where the speci�cation of node u is well-de�ned. In this

case, the execution rate of node v is also well-de�ned when it is computed using Equations

(2.8) and (2.9).

Theorem 2.4.4. Let u;v be a PGM chain with  (q) = (u; v), and let Ru = (xu; yu) be

a well-de�ned execution rate for node u. Let Rv = (xv; yv) be computed using Equations

(2.8) and (2.9). Under the strong synchrony hypothesis, the execution rate Rv = (xv; yv)

is a well-de�ned execution rate for node v.

Proof: By De�nition 2.4.4, because Ru is well-de�ned, there exists a time tu such

that node u executes exactly xu times in each interval [t; t + yu) where t � tu. If

MinTokens(q) � init(q) � MaxUnderThr(q) then let tv = tu. If init(q) < MinTokens(q)

or init(q) > MaxUnderThr(q), then let time tv
0 be the �rst time node v executes after

time tu, and let tv = tv
0 + 1.

In the remainder of the proof, we show that Rv = (xv; yv) is a well-de�ned rate

speci�cation by showing that node v executes exactly xv times in time intervals

[t; t + yv)

for all t � tv where xv and yv are as de�ned by Equations (2.8) and (2.9). Let length(q) =

n at time tv. Observe that n is bounded such that

thr(q)� cns(q) � MinTokens(q) � n � MaxUnderThr(q) < thr(q)

either by Theorem 2.3.2, which bounds the size of n after nodes u and v have each

executed at least once, or because n = init(q), which was so bounded.

By Corollary 2.4.2 and the de�nition of a well-de�ned rate, node u executes yv
yu
� xu

times in every interval [t; t+ yv) ; 8t � tv. Since node u produces prd(q) tokens each
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time it executes, it enqueues a total of

prd(q) �
yv
yu
� xu = prd(q) �

cns(q)�yu
gcd(prd(q)�xu;cns(q))

yu
� xu

= prd(q) �
cns(q)

gcd(prd(q) � xu; cns(q))
� xu

tokens on queue q in an interval of length yv. Moreover, since each execution of node v

consumes cns(q) tokens, xv executions of node v in an interval of length yv will consume

xv � cns(q) tokens. Thus, if queue q contains n tokens at the beginning of the interval, it

will contain

n+

�
prd(q) �

cns(q)

gcd(prd(q) � xu; cns(q))
� xu

�
� (xv � cns(q))

= n +

�
prd(q) �

xu � cns(q)

gcd(prd(q) � xu; cns(q))

�
�

�
xu � prd(q)

gcd(prd(q) � xu; cns(q))
� cns(q)

�

= n +

�
xu � cns(q) � prd(q)

gcd(prd(q) � xu; cns(q))

�
�

�
xu � cns(q) � prd(q)

gcd(prd(q) � xu; cns(q))

�

= n

tokens at the end of the interval. Furthermore, no more than xv executions could have

occurred since the xthv execution of node v leaves n < thr(q) tokens on q. Any fewer

executions would have left n � thr(q) tokens on q, and another execution of node v

would have occurred. Therefore, exactly xv executions take place in an interval of length

yv, and Rv = (xv; yv) is a well-de�ned speci�cation for v.

Theorem 2.4.3 can be used to compute the execution rate of every node in a PGM

chain, and many non-trivial signal processing applications (such as the processing graph

for the SAR application studied in Section 5.2) are described using a chain. When

the node has multiple input queues, however, a valid execution rate cannot always be

computed using Equations (2.8) and (2.9). The next section illustrates this point and

then extends our results to compute the execution rate of any node in an acyclic PGM

graph.

2.4.1.2 Deriving Rates for Nodes with Multiple Input Queues

While Equations (2.8) and (2.9) do not directly compute the execution rate of a node

with multiple input queues, it is instructive to apply these equations to each input queue

as though they did. Consider the graph in Figure 2.13. Node w is a consumer of
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data produced by both nodes u and v;  (�) = (u; w) and  (�) = (v; w) de�ne two

producer/consumer pairs. The notation Rw u = (xw u; yw u) denotes the rate at which

node w executes if nodes u and w were a producer/consumer pair in a chain. Thus with

Ru = (3; 16), Rw u is computed using Equations (2.8) and (2.9) as follows:

Rw u = (xw u; yw u) =

�
prd(�) � xu

gcd(prd(�) � xu; cns(�))
;

cns(�) � yu
gcd(prd(�) � xu; cns(�))

�

=

�
4 � 3

gcd(4 � 3; 3)
;

3 � 16

gcd(4 � 3; 3)

�
= (4; 16)

With Rv = (2; 12), Rw v is computed using Equations (2.8) and (2.9) as follows:

Rw v = (xw v; yw v) =

�
prd(�) � xv

gcd(prd(�) � xv; cns(�))
;

cns(�) � yv
gcd(prd(�) � xv; cns(�))

�

=

�
3 � 2

gcd(3 � 2; 2)
;

2 � 12

gcd(3 � 2; 2)

�
=

�
6

gcd(6; 2)
;

24

gcd(6; 2)

�

=

�
6

2
;
24

2

�
= (3; 12)

Since node w can only execute when both queues � and � are over threshold, neither

Rw u nor Rw v satis�es the de�nition of a valid execution rate for node w because node

w will not execute exactly 4 times in any interval of length 16 or exactly 3 times in any

interval of length 12 | see the snapshot sequence in Figure 2.13. Although in general

Rw u 6= Rw v, it must be the case that the equality
xw u

yw u
= xw v

yw v
holds if a valid rate

speci�cation for node w exists. Otherwise, either node u or node v will produce tokens

faster than node w can consume them and data will be lost.

Lemma 2.4.5. Let G = (V;E;  ) be a PGM graph and let w be a node in V that has

at least two input queues. Let V denote the set of nodes for which there exists a queue q

in E and a node u in V such that  (q) = (u; w). Let Ru = (xu; yu) be a valid execution

rate speci�cation for each node u in V. If a valid execution rate speci�cation for node w

exists, then xw u

yw u
= xw v

yw v
for all nodes u and v in V.

Proof: (By contradiction.) For nodes u and v in V, let qu connect node u to node w

( (qu) = (u; w)), and qv connect node v to node w ( (qv) = (v; w)). Suppose there exists

a valid rate speci�cation Rw = (xw; yw) for node w, but
xw u

yw u
6= xw v

yw v
. If Rw = (xw; yw)

is a valid rate speci�cation, then, by Corollary 2.4.2, yw u � yw v �Rw is also a valid rate

speci�cation for node w. If yw u � yw v �Rw is a valid rate speci�cation, then there exists
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u

v

w
�

�

prd(�) = 4

thr(�) = 7; cns(�) = 3

prd(�) = 3

thr(�) = cns(�) = 2

Time Execution of length(�) length(�)

0 u 4 0

1 u 8 0

2 v; w 5 1

10 v 5 4

14 v 5 7

15 u;w 6 5

16 u;w;w 4 1

17 u 8 1

20 u 12 1

22 v; w;w 6 0

26 v 6 3
28 u;w 7 1

33 u 11 1

34 v; w;w 5 0

38 v 5 3

40 u;w 6 1

46 v 6 4

48 u;w;w 4 0

u

v

w

Time

0    2     4    6     8   10   12   14  16   18   20   22  24   26   28  30   32   34  36   38  40   42   44   46   48  

2 2 22

Figure 2.13: A three-node graph, snapshot sequence, and time-line execution showing
the execution of nodes under the strong synchrony hypothesis. If Ru = (3; 16) and
Rv = (2; 12) are valid after time 0, then Rw = (12; 48). Each down arrow represents an
execution of the node. Multiple executions of a node at the same instant are represented
by a number above the down arrow.
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a time tw such that node w executes yw u � yw v � xw times in intervals

[tw + (k � 1) � yw u � yw v � yw; tw + k � yw u � yw v � yw); 8k > 0:

In each of these intervals, however, node u will only produce enough tokens for node w

to execute

yw u � yw v � yw
yw u

� xw u = xw u � yw v � xw

times since, by Theorem 2.4.4, node u produces enough tokens for node w to execute

xw u times in an interval of length yw u. Node v will only produce enough tokens for

node w to execute

yw u � yw v � yw
yw v

� xw v = xw v � yw u � xw

times since, by Theorem 2.4.4, node v produces enough tokens for node w to execute

xw v times in an interval of length yw v. Since

xw u

yw u

6=
xw v

yw v

=) xw u � yw v 6= xw v � yw u

=) xw u � yw v � xw 6= xw v � yw u � xw

and since node w can only execute when all of its input queues are over threshold, node

w can execute at most

min(xw u � yw v � xw; xw v � xw u � xw)

times. Thus, if rate Rw = (xw; yw) is valid, it must be the case that

yw u � yw v = min(xw u � yw v; xw v � xw u):

Without loss of generality, assume

xw u � yw v � xw < xw v � yw u � xw:

In an interval of length yw u � yw v � yw,

(xw v � yw u � xw � xw u � yw v � xw) � cns(qv)
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more tokens will be produced on queue qv (the queue connecting node v to node w) than

node w consumes in the same interval. If node w continues to execute with a rate of

yw u � yw v �Rw, data will eventually be lost since we assume a �nite amount of memory

exists. To prevent the loss of data, a requirement for valid graph execution, either node

v must execute less often in an interval of length yw u �yw v �yw, or node w must execute

more often. Both cases violate a rate speci�cation, a contradiction. Thus, if a valid rate

speci�cation exists for node w, given valid rate speci�cations for nodes u and v, it must

be the case that xw u

yw u
= xw v

yw v
.

Even if xw u

yw u
= xw v

yw v
for producer nodes u, and v and consumer node w, it may

not be possible to de�ne a valid rate speci�cation for node w. For example, consider

the simple three-node graph in Figure 2.14. Node u executes exactly once in intervals

[0 + (k � 1)yu; 0 + kyu) for all k > 0, and node v executes exactly once in intervals

[1 + (k� 1)yu; 1+ kyu) for all k > 0. It would seem that there exists a time tw such that

node w will execute exactly once in intervals [tw + (k� 1)yu; tw + kyu) for all k > 0. The

execution time line in Figure 2.14, shows an execution using this rate speci�cation with

tw = 1. Notice that in the interval [5; 8) node w executes twice, and in the interval [8; 11)

it does not execute at all. No matter how long we make the interval nor what value we

choose for tw, there can always be an execution pattern for node w that will violate its

rate speci�cation if it executes as soon as both of its input queues are over threshold.

The intuitive reason for this is that nodes u and v are executing \out of phase." Their

execution intervals will never begin at the same time.

If nodes u and v have valid execution rates beginning at times tu and tv respectively,

then each execution interval of node u starts at time

tu + kuyu

for all ku � 0, and each execution interval of node v starts at time

tv + kvyv

for all kv � 0. Thus, a valid execution rate for node w exists if and only if there exists

non-negative integers ku and kv such that

tu + kuyu = tv + kvyv;

which represents a time in which execution intervals of nodes u and v begin at the same



65

instant. The following theorem provides a necessary and su�cient condition for detecting

whether there exists a time in which the two intervals will begin at the same time.

Lemma 2.4.6. Let G = (V;E;  ) be a PGM graph. Let u and v in V have valid rate

speci�cations Ru = (xu; yu) and Rv = (xv; yv) beginning at times tu and tv respectively.

There exists non-negative integers ku and kv such that

tu + kuyu = tv + kvyv: (2.10)

if and only if gcd(yu; yv) j (tu � tv).

Proof: Observe that

tu + kuyu = tv + kvyv =) kvyv � kuyu = (tu � tv): (2.11)

The latter form of the equation is called a linear diophantine equation in two variables

where ku and kv are the two integer variables [56].

()) We prove that if gcd(yu; yv) j (tu� tv), then there exists non-negative integers ku

and kv such that tu+kuyu = tv+kvyv. From Theorem 2.14 of Rosen's Elementary Number

Theory and its Applications [56], if gcd(yu; yv) divides (tu � tv), then there are in�nitely

many integral solutions to Equation (2.11) and if integers ku
0, kv

0 are one particular

solution to Equation (2.11), then all solutions are given by

ku = ku
0 �

yu
gcd(yu; yv)

� n; kv = kv
0 �

yv
gcd(yu; yv)

� n;

where n is an integer. Let integers ku
0, kv

0 be one particular solution to Equation (2.11)

derived using the Euclidean algorithm [56]. If either ku
0 or kv

0 is less than zero, a non-

negative integral solution is obtained with

ku = ku
0 � yu �min

��
ku
0

yu

�
;

�
kv
0

yv

��

and

kv = kv
0 � yv �min

��
ku
0

yu

�
;

�
kv
0

yv

��
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prd(�) = 1

thr(�) = 1; cns(�) = 1

prd(�) = 1

thr(�) = 1; cns(�) = 1

Time Execution of length(�) length(�)
1 v 0 1
2 u; w 0 0
3 u 1 0
6 u; v; w 1 0
7 v; w 0 0
10 u 1 0
12 v; w 0 0

u

v

w

Time

0    1     2    3     4    5     6     7    8     9    10   11  12   13   14 

Figure 2.14: A three-node graph, snapshot sequence, and time-line execution showing
that no valid rate speci�cation exists for consumer node w under the strong synchrony
hypothesis. No valid rate speci�cation exists for node w even though the dataow at-
tributes on both input queues are identical and Ru = Rv = (1; 3) are valid rate speci�-
cations. This is because the rate for node u is valid starting at time 0 and the rate for
node v is valid starting at time 1.
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since

ku = ku
0 � yu �min

��
ku
0

yu

�
;

�
kv
0

yv

��

= ku
0 � yu �min

��
ku
0

yu

�
;

�
kv
0

yv

��
�
gcd(yu; yv)

gcd(yu; yv)

= ku
0 �

yu
gcd(yu; yv)

� n

and

kv = kv
0 � yv �min

��
ku
0

yu

�
;

�
kv
0

yv

��

= kv
0 � yv �min

��
ku
0

yu

�
;

�
kv
0

yv

��
�
gcd(yu; yv)

gcd(yu; yv)

= kv
0 �

yv
gcd(yu; yv)

� n

where n = min
�j

ku
0

yu

k
;
j
kv
0

yv

k�
� gcd(yu; yv). Thus, if gcd(yu; yv) j (tu � tv), then there

exists non-negative integers ku and kv such that tu + kuyu = tv + kvyv.

(() We now prove that if there exists non-negative integers ku and kv such that

tu + kuyu = tv + kvyv

then gcd(yu; yv) j (tu� tv). Let ku and kv be non-negative integers such that tu+ kuyu =

tv + kvyv. Then

tu + kuyu = tv + kvyv =) kvyv � kuyu = (tu � tv)

and there exists integers a and b such that

gcd(yu; yv) � (kva� kub) = (tu � tv)

Thus gcd(yu; yv) j (tu � tv) if there exists non-negative integers ku and kv such that

tu + kuyu = tv + kvyv:

The following theorem provides a necessary and su�cient condition for detecting
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whether a valid execution rate speci�cation exists for a node w with multiple input

queues.

Theorem 2.4.7. Let G = (V;E;  ) be an acyclic PGM graph and let w be a node in

V that has at least two input queues. Let V denote the set of nodes for which there

exists a queue q in E and a node v in V such that  (q) = (v; w). A valid execution rate

speci�cation for node w exists if and only if, for all nodes u and v in V, Ru = (xu; yu)

and Rv = (xv; yv) are valid execution rates beginning at times tu and tv respectively,
xw u

yw u
= xw v

yw v
, and gcd(yu; yv) j (tu � tv).

Proof: ()) We prove that if, for all nodes u and v in V, Ru = (xu; yu) and Rv = (xv; yv)

are valid execution rates beginning at times tu and tv respectively, xw u

yw u
= xw v

yw v
, and

gcd(yu; yv) j (tu�tv), then there exists a valid execution rate speci�cation for node w. The

existence of a valid rate execution speci�cation is proven by deriving a rate speci�cation

for node w and proving it to be valid.

Let integers ku, kv be one particular solution to

kvyv � kuyu = tu � tv

derived using the Euclidean algorithm [56]. If either ku or kv is less than zero, let

ku = ku � yu �min

��
ku
0

yu

�
;

�
kv
0

yv

��

and

kv = kv � yv �min

��
ku
0

yu

�
;

�
kv
0

yv

��
:

Let tw = tu + kuyu. Since nodes u and v have valid rate speci�cations, both nodes begin

an execution interval at time tw. Let the rate speci�cation of node w be Rw = (xw; yw)

where

yw = lcm

�
cns(q) � yv

gcd(prd(q) � xv; cns(q))
j q 2 E ^ v 2 V :  (q) = (v; w)

�
; (2.12)

and

xw = yw �
prd(q) � xu
cns(q) � yu

: (2.13)
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We now prove that Rw = (xw; yw) is a valid execution rate starting at time tw. The

proof is constructed in two steps. In step one we prove that, for nodes u and w such that

there exists queue � 2 E with  (�) = (u; w), Rw = (xw; yw) computed using Equations

(2.12) and (2.13) is a valid execution rate speci�cation for node w with respect to node

u. In step two we show that the rate derived using node u and queue � is the same rate

that would be derived for any v 2 V.

Step 1: Prove that, for nodes u and w such that there exists queue � 2 E with

 (�) = (u; w), Rw = (xw; yw) computed using Equations (2.12) and (2.13) is a valid

execution rate speci�cation for node w with respect to node u. If node w was in a chain

such that nodes u and w were a producer/consumer pair, then, using Theorem 2.4.3, the

execution rate of node w with respect to node u starting at tw is Rw u = (xw u; yw u)

where

xw u =
prd(�)

gcd(prd(�) � xu; cns(�))
� xu and

yw u =
cns(�)

gcd(prd(�) � xu; cns(�))
� yu:

Let Rw = (xw; yw) = (mu � xw u; mu � yw u) where

mu =
lcmf cns(q)

gcd(prd(q)�xv ;cns(q))
� yv j q 2 E ^ v 2 V :  (q) = (v; w)g

yw u

:

Note that mu is an integer since yw u =
cns(q)

gcd(prd(q)�xu;cns(q))
� yu is a factor in the expression

lcm

�
cns(q)

gcd(prd(q) � xv; cns(q))
� yv j q 2 E ^ v 2 V :  (q) = (v; w)

�
:

By Theorem 2.4.3 and Corollary 2.4.2 if Rw u is a valid rate speci�cation for node w

with respect to node u, then Rw is as well. We now reduce yw = mu � yw u to the form

of Equation (2.12):

yw = mu � yw u =
lcmf cns(q)

gcd(prd(q)�xv;cns(q))
� yv j  (q) = (v; w)g

yw u

� yw u

= lcm

�
cns(q)

gcd(prd(q) � xv; cns(q))
� yv j  (q) = (v; w)

�
:
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Expression xw = mu � xw u is reduced to the form of Equation (2.13) as follows:

xw = mu � xw u

=
lcmf cns(q)

gcd(prd(q)�xv;cns(q))
� yv j  (q) = (v; w)g

yw u

� xw u

=
yw
yw u

� xw u

=

 
yw

cns(�)
gcd(prd(�)�xu;cns(�))

� yu

!
�

�
prd(�)

gcd(prd(�) � xu; cns(�))
� xu

�

=
yw

cns(�) � yu
� prd(�) � xu

= yw �

�
prd(�) � xu
cns(�) � yu

�

Thus, if node u was the only producer for node w, node w would execute exactly xw

times in time intervals [tw + (k � 1)yw; tw + kyw) for all k > 0.

Step 2: Show that the rate derived using node u and queue � is the same rate that

would be derived for any u 2 V. Let nodes u and v be in V such that  (�) = (u; w)

and  (�) = (v; w). The execution rate of node w with respect to node u, Rw u =

(xw u; yw u) is derived using Theorem 2.4.3 as

xw u =
prd(�)

gcd(prd(�) � xu; cns(�))
� xu

yw u =
cns(�)

gcd(prd(�) � xu; cns(�))
� yu

and the execution rate of node w with respect to node v, Rw v = (xw v; yw v) is derived

using Theorem 2.4.3 as

xw v =
prd(�)

gcd(prd(�) � xv; cns(�))
� xv

yw v =
cns(�)

gcd(prd(�) � xv; cns(�))
� yv:
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Therefore,

xw u

yw u

=

prd(�)
gcd(prd(�)�xu;cns(�))

� xu
cns(�)

gcd(prd(�)�xu;cns(�))
� yu

=
prd(�) � xu
cns(�) � yu

and

xw v

yw v

=

prd(�)
gcd(prd(�)�xv ;cns(�))

� xv
cns(�)

gcd(prd(�)�xv;cns(�))
� yv

=
prd(�) � xv
cns(�) � yv

:

Since xw u

yw u
= xw v

yw v
for all u and v in V,

xw =
prd(�) � xu
cns(�) � yu

=
prd(�) � xv
cns(�) � yv

for all u and v in V.

Thus, since node w executes exactly xw times in intervals [tw + (k � 1)yw; tw + kyw)

for all k > 0 where xw and yw are computed using Equations (2.12) and (2.13), a valid

execution rate speci�cation exists if, for all nodes u and v in V, Ru = (xu; yu) and Rv =

(xv; yv) are valid execution rates beginning at times tu and tv respectively,
xw u

yw u
= xw v

yw v
,

and gcd(yu; yv) j (tu � tv).

(() We now prove that if, there exists a valid rate speci�cation for node w, then,

for all nodes u and v in V, (i) Ru = (xu; yu) and Rv = (xv; yv) are valid execution rates

beginning at times tu and tv respectively, (ii)
xw u

yw u
= xw v

yw v
, and (iii) gcd(yu; yv) j (tu�tv).

(i) Assume there exists a valid rate speci�cation for node w. Since node w can only

execute when all of its input queues are over threshold and there exists a valid execution

rate speci�cation Rw = (xw; yw) for node w, there must exist a positive integer xv, for all

nodes v in V, such that node v executes exactly xv times in intervals [tw+(k� 1)yv; tw+

kyv) for all k > 0. Thus there exists a valid rate speci�cation for all nodes v in V where

tv � tw.

(ii) By Lemma 2.4.5, if a valid execution rate speci�cation for node w exists, then
xw u

yw u
= xw v

yw v
for all nodes u and v in V.

(iii) If there exists a valid execution rate speci�cation for node w with producers u
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and v in V, then there exists a non-negative tw such that node w executes exactly xw

times in intervals [tw + (k � 1)yw; tw + kyw) for all k > 0. Therefore, there must exist

non-negative integers ku and kv such that

tw = tu + kuyu = tv + kvyv

since execution intervals for node u begin at time tu+ kuyu, for all ku � 0, and execution

intervals for node v begin at time tv + kvyv, for all kv � 0. Thus, by Lemma 2.4.6, if

there exists non-negative integers ku and kv such that

tu + kuyu = tv + kvyv;

then gcd(yu; yv) j (tu � tv).

Thus, a valid execution rate speci�cation for node w exists if and only if, for all nodes

u and v in V, Ru = (xu; yu) and Rv = (xv; yv) are valid execution rates beginning at

times tu and tv respectively,
xw u

yw u
= xw v

yw v
, and gcd(yu; yv) j (tu � tv).

Theorem 2.4.8. Let G = (V;E;  ) be an acyclic PGM graph with node w in V that

has at least one input queue. Under the strong synchrony hypothesis, if there exists a

valid rate speci�cation for node w, then the execution rate speci�cation Rw = (xw; yw),

where where xw and yw are computed using Equations (2.12) and (2.13), is a valid rate

speci�cation for node w.

Proof: Let V denote the set of nodes for which there exists a queue q in E and a node

v in V such that  (q) = (v; w). By Theorem 2.4.7, if a valid execution rate speci�cation

for node w exists, then, for all nodes u and v in V, Ru = (xu; yu) and Rv = (xv; yv)

are valid execution rates beginning at times tu and tv respectively, xw u

yw u
= xw v

yw v
, and

gcd(yu; yv) j (tu � tv). The proof of Theorem 2.4.7 proved the existence of a valid rate

speci�cation, given these preconditions, by showing there exists a time tw such that node

w will execute exactly xw times in intervals

[tw + (k � 1)yu; tw + kyu)

for all k > 0 where xw and yw are computed using Equations (2.12) and (2.13).

Therefore, if a valid execution rate speci�cation exists for node w, the rate speci�ca-

tion Rw = (xw; yw) computed using Equations (2.12) and (2.13) is a valid execution rate

speci�cation.
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If a node has only one input queue, either Theorem 2.4.8 or Theorem 2.4.3 can be

used to derive its execution rate since Equation (2.12) reduces to Equation (2.9):

yv = lcm

�
cns(q)

gcd(prd(q) � xu; cns(q))
� yu

�

=
cns(q)

gcd(prd(q) � xu; cns(q))
� yu

and Equation (2.13) reduces to Equation (2.8):

xv = yv �

�
prd(q) � xu
cns(q) � yu

�

=
cns(q)

gcd(prd(q) � xu; cns(q))
� yu �

�
prd(q) � xu
cns(q) � yu

�

=
prd(q) � xu

gcd(prd(q) � xu; cns(q))

=
prd(q)

gcd(prd(q) � xu; cns(q))
� xu:

We now return to the problem of �nding the execution rate of node w in Figure 2.13

on page 62. Let the execution rates of nodes u and v in Figure 2.13 be Ru = (3; 16) and

Rv = (2; 12), and let tu = tv = 1. By Theorem 2.4.8,

yw = lcm

�
cns(�)yu

gcd(prd(�)xu; cns(�))
;

cns(�)yv
gcd(prd(�)xv; cns(�))

�

= lcm

�
3 � 16

gcd(4 � 3; 3)
;

2 � 12

gcd(3 � 2; 2)

�

= lcm

�
3 � 16

3
;
2 � 12

2

�
= lcmf16; 12g = 48;

and

xw = yw �

�
prd(�) � xu
cns(�) � yu

�
= 48 �

�
4 � 3

3 � 16

�
= 12

since xw u

yw u
= xw v

yw v
and gcd(16; 12) j 0. Thus Rw = (xw; yw) = (12; 48) and node w in

Figure 2.13 will execute 12 times in each interval [1 + (k � 1)48; 1 + 48k) for all k > 0.

As was the case with single input queues, if all of the immediate predecessors to node

w have well-de�ned execution rate speci�cations, then there exists a well-de�ned rate

speci�cation for node w.
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Theorem 2.4.9. Let G = (V;E;  ) be an acyclic PGM graph and let w be a node in V

that has at least one input queue. Let V denote the set of nodes for which there exists a

queue q in E and a node v in V such that  (q) = (v; w). For all nodes u and v in V, let

Ru = (xu; yu) and Rv = (xv; yv) be well-de�ned execution rates beginning at times tu and

tv respectively and xw u

yw u
= xw v

yw v
. Under the strong synchrony hypothesis, the execution

rate Rw = (xw; yw) for node w is well-de�ned if

yw = lcm

�
cns(q) � yv

gcd(prd(q) � xv; cns(q))
j q 2 E ^ v 2 V :  (q) = (v; w)

�
; (2.14)

xw = yw �
prd(q) � xu
cns(q) � yu

: (2.15)

Proof: The proof is constructed in three steps. First we select a time tw that denotes

the beginning of a time interval for which the execution rate of node w, Rw = (xw; yw),

will be well-de�ned. In step two we prove that, for nodes u and w such that there exists

a queue � 2 E with  (�) = (u; w), Rw = (xw; yw), computed using Equations (2.15) and

(2.14), is a well-de�ned execution rate speci�cation for node w with respect to node u.

In step three we show that the rate derived using node u and queue � is the same rate

that would be derived for any v 2 V.

Step 1: Select a time tw that denotes the beginning of a time interval for which the

execution rate of node w, Rw = (xw; yw), will be well-de�ned. By De�nition 2.4.3, node

u 2 V executes exactly xu times in intervals [t; t + yu) for all t � tu. If, for all q 2 E

such that  (q) = (u; w) and u 2 V, MinTokens(q) � init(q) � MaxUnderThr(q) then

let tw = maxu2V(tu). If there exists a q 2 E such that  (q) = (u; w) and u 2 V with

init(q) < MinTokens(q) or init(q) > MaxUnderThr(q), then let time sw denote the time

when node w �rst executes after maxu2V(tu), and let tw = sw + 1. (Note that in either

case sw +1 � tw. This fact will be used in the proof of Theorem 2.4.11 in Section 2.4.2.)

Step 2: Prove Rw = (xw; yw) is a well-de�ned rate speci�cation by showing that

node w executes exactly xw times in time intervals [t; t+yw) for all t � tw where xw and

yw are computed using Equations (2.15) and (2.14). Let length(q) = n at time tw, for all

q 2 E such that  (q) = (u; w) and u 2 V, and observe that n is bounded such that

thr(q)� cns(q) � MinTokens(q) � n � MaxUnderThr(q) < thr(q)

either by Theorem 2.3.2, which bounds the size of n after nodes u and v have each

executed at least once, or because n = init(q), which was so bounded. Thus, if node w

was in a chain such that nodes u and w were a producer/consumer pair joined by queue
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�, then, using Theorem 2.4.3, the execution rate of node w with respect to node u is

Rw u = (xw u; yw u) where

xw u =
prd(�)

gcd(prd(�) � xu; cns(�))
� xu and

yw u =
cns(�)

gcd(prd(�) � xu; cns(�))
� yu:

(2.16)

Moreover, if queue � was the only input queue to node w, the rate speci�cation is well-

de�ned for all t � tw by Theorem 2.4.4. Let Rw = (xw; yw) = (mu � xw u; mu � yw u)

where

mu =
lcmf cns(q)

gcd(prd(q)�xv ;cns(q))
� yv j q 2 E ^ v 2 V :  (q) = (v; w)g

yw u

:

Note that mu is an integer since yw u =
cns(q)

gcd(prd(q)�xu;cns(q))
� yu is a factor in the expression

lcm

�
cns(q)

gcd(prd(q) � xv; cns(q))
� yv j q 2 E ^ v 2 V :  (q) = (v; w)

�
:

By Theorem 2.4.4 and Corollary 2.4.2 if Rw u is a well-de�ned rate speci�cation for node

w with respect to node u, then Rw is as well. We now reduce yw = mu � yw u to the form

of Equation (2.14):

yw = mu � yw u =
lcmf cns(q)

gcd(prd(q)�xv;cns(q))
� yv j  (q) = (v; w)g

yw u

� yw u

= lcm

�
cns(q)

gcd(prd(q) � xv; cns(q))
� yv j  (q) = (v; w)

�
;
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and xw = mu � xw u to the form of Equation (2.15):

xw = mu � xw u

=
lcmf cns(q)

gcd(prd(q)�xv;cns(q))
� yv j  (q) = (v; w)g

yw u

� xw u

=
yw
yw u

� xw u

=

 
yw

cns(�)
gcd(prd(�)�xu;cns(�))

� yu

!
�

�
prd(�)

gcd(prd(�) � xu; cns(�))
� xu

�

=
yw

cns(�) � yu
� prd(�) � xu

= yw �

�
prd(�) � xu
cns(�) � yu

�
:

Step 3: Show that the rate derived using node u and queue � is the same rate that

would be derived for any u 2 V. Let nodes u and v be in V such that  (�) = (u; w)

and  (�) = (v; w). The execution rate of node w with respect to node u, Rw u =

(xw u; yw u) is derived using Theorem 2.4.3 as

xw u =
prd(�)

gcd(prd(�) � xu; cns(�))
� xu

yw u =
cns(�)

gcd(prd(�) � xu; cns(�))
� yu

and the execution rate of node w with respect to node v, Rw v = (xw v; yw v) is derived

using Theorem 2.4.3 as

xw v =
prd(�)

gcd(prd(�) � xv; cns(�))
� xv

yw v =
cns(�)

gcd(prd(�) � xv; cns(�))
� yv:

Therefore,

xw u

yw u

=

prd(�)
gcd(prd(�)�xu;cns(�))

� xu
cns(�)

gcd(prd(�)�xu;cns(�))
� yu

=
prd(�) � xu
cns(�) � yu
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and

xw v

yw v

=

prd(�)
gcd(prd(�)�xv ;cns(�))

� xv
cns(�)

gcd(prd(�)�xv;cns(�))
� yv

=
prd(�) � xv
cns(�) � yv

:

Since xw u

yw u
= xw v

yw v
for all u and v in V,

xw =
prd(�) � xu
cns(�) � yu

=
prd(�) � xv
cns(�) � yv

for all u and v in V.

Therefore the rate speci�cation Rw = (xw; yw) derived with Equations (2.14) and

(2.15) using node u and queue � is the same for all nodes v 2 V and queues q 2 E such

that  (q) = (v; w).

Thus, node w will execute exactly xw times in intervals [t; t + yw) for all t � tw

where xw and yw are computed using Equations (2.15) and (2.14), and the execution rate

speci�cation Rw = (xw; yw) is well-de�ned.

When graph source nodes have well-de�ned rates, the derivation of rates for the other

nodes in the graph proceeds as one would expect. We simply compute the execution

rate of a consumer node using the input queues and producer nodes. Moreover, the

computed execution rate will be well-de�ned. For example, consider a case where the

rate speci�cations for nodes u and v are well-de�ned, as in Figure 2.15. Node u executes

exactly once in intervals [tu; tu + yu) for all tu � 0, and node v executes exactly once in

intervals [tv; tv+yv) for all tv � 1. Thus, by Theorem 2.4.9, the execution rate of node w,

Rw = (xw; yw), is well-de�ned and can be computed using Equations (2.14) and (2.15).

Doing so yields a well-de�ned rate speci�cation for node w of Rw = (1; 3), just as we

would expect in this case. Node w executes exactly once every 3 time units after time 0.

Thus, when graph source nodes have well-de�ned execution rates, every node in an

acyclic graph will also have well-de�ned execution rates, and Equations (2.14) and (2.15)

can be used to compute the well-de�ned execution rates. If the graph source nodes have

valid rate speci�cations, but not well-de�ned rate speci�cations, we may not be able to

compute a valid rate speci�cation for nodes in an acyclic graph. We can, however, detect

when a valid rate speci�cation cannot exist.

Most signal processing system synthesized from PGM graphs have periodic source
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Time Execution of length(�) length(�)
1 v 0 1
2 u; w 0 0
4 v 0 1
5 u; w 0 0
7 v 0 1
8 u; w 0 0
10 v 0 1
11 u; w 0 0
13 v 0 1
14 u; w 0 0
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Time
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Figure 2.15: A three-node graph, snapshot sequence, and time-line execution showing
well-de�ned execution rates under the strong synchrony hypothesis. A well-de�ned rate
speci�cation exists for node w when the rate speci�cations Ru = Rv = (1; 3) are well-
de�ned, even when the rate for node u is valid starting at time 0 and the rate for node
v is valid starting at time 1.
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devices. In the few cases that we have encountered where the source was not periodic, its

execution rate was well-de�ned. Thus, for the rest of this dissertation, we only consider

PGM graphs in which the source nodes have well-de�ned execution rates.

2.4.2 Rates in Cyclic Graphs

We now address the issue of deriving execution rate speci�cations in cyclic graphs. If a

node is not in a cycle, its rate speci�cation is computed using the same equations that

were used when the graph was acyclic. When the node is in a cycle, its rate speci�cation

is computed using a slight variation of Equations (2.14) and (2.15).

Consider the simple cycle of nodes in Figure 2.16 | the queues in the cycle are labeled

�, �, and �. Let the well-de�ned execution rate of graph source node u by Ru = (xu; yu).

If the graph was acyclic, the execution rate of node w would be computed using the

execution rates of nodes u and v. The execution rate of node v, however, is dependent on

the execution rate of node r, which is dependent on the execution rate of node w. The

only way we can compute a well-de�ned rate speci�cation for node w (or any of the other

nodes in the cycle) is to break the circular dependencies. We do this by requiring each

back edge to be initialized with enough data to ensure that it is always over threshold. A

back edge is an edge e that joins node v to an ancestor u when the graph is topologically

sorted. Thus, for the graph in Figure 2.16, queue � is a back edge. If queue � is always

over threshold, the execution rate of node v cannot a�ect the execution rate of node w.

Lemma 2.4.10. Let G = (V;E;  ) be a PGM graph and let w be a node in V that has

two input queues. Let queues qu and qv be queues in E and nodes u and v be nodes

in V such that  (qu) = (u; w) and  (qv) = (v; w). If the execution rate speci�cation

Ru = (xu; yu) be well-de�ned and queue qv is always be over threshold, then the execution

rate Rw = (xw; yw) is well-de�ned where xw and yw are computed using Equations (2.8)

and (2.9).

Proof: If MinTokens(q) � init(q) � MaxUnderThr(q) then let tw = tu. If init(q) <

MinTokens(q) or init(q) > MaxUnderThr(q), then let time tw
0 be the �rst time node v

executes after time tu, and let tw = tw
0 + 1. If queue qu were the only input queue to

node w, then, by Theorem 2.4.4, Equations (2.8) and (2.8) can be used to compute a

well-de�ned execution rate speci�cation for node w. Thus, if queue qv is always over

threshold, node w will execute exactly xw times in intervals [t; t+ yw) for all t � tw, and

Rw = (xw; yw) is a well-de�ned execution rate speci�cation.
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Figure 2.16: A graph with a simple three-node cycle and its topological sort. The queues
in the cycle are labeled �, �, and �.

Thus, if queue � is always over threshold, the execution rate of node v cannot a�ect

the execution rate of node w. However, the execution rate of node v does determine how

much initial data is needed for queue � to ensure that it is always over threshold.

Theorem 2.4.11. Let G = (V;E;  ) be a PGM graph. Let queue q be a queue in E and

node v and w be nodes in V such that  (q) = (v; w) and queue q is a back edge in a cycle.

Let the execution rate speci�cations Rv = (xv; yv) and Rw = (xw; yw) be well-de�ned

beginning at times tv and tw respectively where tv and tw are derived using the technique

outlined in the proof of Theorem 2.4.9. If nodes v and w �rst execute at times sv and sw

respectively and

init(q) =

�
sv � sw + yv

yw

�
� xw � cns(q) + thr(q) (2.17)

then queue q will always be over threshold.

Proof: When tv and tw are derived using the technique outlined in the proof of Theo-

rem 2.4.9, sv+1 � tv and sw+1 � tw. Since the execution rate of node v is derived using

the execution rate of node w, there exists a positive integer k such that yv = k � yw and
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after time sw node w will execute xw times in every interval of length yw. In an interval

of length yv, node w will execute k � xw times. If the number of initialized tokens on

queue q is computed using Equation (4.14), queue q will remain over threshold until time

(sv + yv) even if node v produces no tokens. However, after time sv, node v will always

produce enough data for node w to execute k �xv times in any interval of length yv. Thus,

if the number of initialized tokens on queue q is computed using Equation (4.14), queue

q will always remain over threshold.

Thus, we can compute a rate speci�cation for a node w using Equations (2.14) and

(2.15) if the computation is performed without including back edges. Moreover, the

rate speci�cation computed using Equations (2.14) and (2.15) will be well-de�ned if the

number of initial tokens on each back edge is greater than or equal to the number of

tokens computed using Equation (2.17) and the other preconditions of Theorem 2.4.9 are

met.

2.5 Summary

In this chapter we derived the point in time when nodes in a PGM graph must execute

if they are to process a continuous input signal without losing data. In Section 2.3, we

derived bounds related to minimal bu�ering requirements that will be used throughout

this dissertation. We informally called a node's execution pattern a rate in Section 2.3,

and then formally de�ned an execution rate in Section 2.4. We also de�ned two types

of node execution rate speci�cations: valid and well-de�ned. A well-de�ned rate spec-

i�cation is more restrictive than a valid rate speci�cation, but unless the graph source

nodes have well-de�ned rate speci�cations, it may not be possible to derive valid rate

speci�cations for the other nodes in an otherwise valid PGM graph. A necessary and

su�cient condition was presented for detecting this situation.

Given a rate speci�cation Ru = (xu; yu) for node u and a queue q such that  (q) =

(u; v), a rate speci�cation for node v is Rv = (xv; yv) where

xv =
prd(q)

gcd(prd(q) � xu; cns(q))
� xu

and yv =
cns(q)

gcd(prd(q) � xu; cns(q))
� yu

if queue q is the only input queue to node v. Moreover, it was shown that if Ru = (xu; yu)

is valid, then Rv = (xv; yv) is valid, and if Ru = (xu; yu) is well-de�ned, then Rv = (xv; yv)
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is well-de�ned.

When a consumer node has more than one input queue, a slightly more complicated

formula is needed to compute its rate speci�cation. If node v has more than one input

queue, and node v is not in a cycle, the execution rate Rv = (xv; yv) for node v is

well-de�ned if

yv = lcm

�
cns(q) � yu

gcd(prd(q) � xu; cns(q))
j 8q 2 E ^ 8u 2 V :  (q) = (u; v)

�
;

xv = yv �
prd(q) � xu
cns(q) � yu

;

and the execution rate speci�cations of its producers are all well-de�ned. If one of the

input queues to node v is a back edge in a cycle, then a well-de�ned execution rate

for node v can be computed using the same formula if the back edge is initialized with

enough tokens to ensure that it is always over threshold.



Chapter 3

Software Synthesis

3.1 Introduction

Embedded signal processing systems receive a continuous signal from external sensors.

They are required to process the signal in real time and present the signal processing

results to an output device within a speci�ed time interval. Processing the signal in

real time requires executing the PGM graph nodes so that they execute their processing

functions as the signal arrives and without losing data. For example, an embedded signal

processing system developed with a PGM graph may be used to track submarines by

calculating the distance, speed, and direction of a submarine. External sensors, called

sonobuoys, convert the sound wave created by a submarine to a digital signal that is

sent to the PGM graph. The graph must process the signal and send the results, such as

updated distance, speed, and direction, to a display before the next portion of the signal

is sent by the sonobuoys.

The primary problem in developing embedded signal processing systems with PGM

is transforming the processing graph into a predictable real-time system in which latency

and memory usage can be managed | all the while ensuring no data is lost. In this chap-

ter, we show how to combine software engineering techniques with real-time scheduling

theory to solve this problem. In the parlance of software engineering methodologies,

we develop a synthesis method. We show how to manage latency using this method in

Chapter 4. The synthesis of real-time systems from PGM graphs involves 3 steps:

1. Identi�cation of the rates at which nodes in a PGM graph must execute if they are

to process the signal in real time.

2. Construction of a mapping of each node to a task in the RBE task model so that

real-time processing can be achieved in the embedded system.
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3. Veri�cation that the resulting task set is schedulable so that we can guarantee

real-time execution.

Step 1 is described in Section 3.2. Steps 2 and 3 are described in Section 3.3. Step

2 provides a model of execution that we can use to analyze the latency a signal will

encounter and the amount of memory required to bu�er tokens in an implementation.

However, the analysis of latency and memory requirements only holds if the task set is

schedulable. Thus, the schedulability of the task set is tested in Step 3. If the task set is

not schedulable, Steps 2 and 3 must be repeated with a modi�ed set of parameters used

in the mapping of PGM nodes to RBE tasks.

We continue to assume the strong synchrony hypothesis when we compute well- de-

�ned execution rate speci�cations in Section 3.2 and then relax this assumption in Sec-

tion 3.3 where it is shown how to schedule nodes on a uniprocessor so that each node

executes according to its rate speci�cation.

3.2 Computing Node Execution Rates

In Chapter 2, we presented formulas for computing valid and well-de�ned execution rate

speci�cations for a consumer node using the rate speci�cations of its producer nodes and

the dataow attributes on its input queues. Here we present algorithms for computing

execution rate speci�cations for every node in a PGM graph using the equations of

Chapter 2 and the execution rate speci�cations of the graph source nodes. We begin

with acyclic graphs and then extend the algorithms to support cyclic graphs.

3.2.1 Computing Node Execution Rates in Acyclic Graphs

The execution rate of every node in an acyclic PGM graph can be computed in a straight-

forward manner: simply perform a topological sort of the graph and walk through the

sorted list of nodes computing each node's execution rate using the theorems of Chap-

ter 2. A topological sort of an acyclic graph G = (V;E;  ) is a linear ordering of all

nodes in V such that, if queue q is in E and  (q) = (u; v), then node u appears before

node v in the ordering. For example, consider the graph of Figure 3.1(a). The topologi-

cally sorted list of nodes is rpstuvwz and is shown in Figure 3.1(b). Given well de�ned

execution rates for source nodes p, r, and t, the execution rate of every other node in

Figure 3.1(a) can be derived by applying Theorem 2.4.9 to each node as it is encountered

in the topologically sorted list.
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Figure 3.1: A simple acyclic graph and its topological sort.
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Algorithm 1. Topological-Sort for graph G [14].
Input: A directed acyclic Graph G.
Output: A linked list of sorted nodes.
Topological-Sort(G)

1 call DFS(G) to compute �nishing times f [v] for each node v
2 as each vertex is �nished, insert it onto the front of a linked list
3 return the linked list of nodes

DFS(G)

1 for each vertex u 2 V do

2 color[u] := WHITE
3 endfor

4 time := 0
5 for each vertex u 2 V do

6 if color[u] = WHITE then

7 DFS-Visit(u) /* Visit the previously undiscovered vertex */
8 endif

9 endfor

DFS-Visit(u)

1 color[u] := GRAY /* White vertex u has just been discovered */
2 time := time + 1 /* Update time */
3 d[u] := time /* Store the discovery time */
4 for each v 2 Adj[u] do /* Explore edge (u,v) */
5 if color[u] = WHITE then

6 DFS-Visit(v) /* Visit the previously undiscovered vertex */
7 endif

8 color[u] := BLACK /* Blacken u; it is �nished */
9 time := time + 1 /* Update time */
10 f [u] := time /* Store the �nish time */
11 endfor



87

Algorithm 2. Derive Node Execution Rates for each node in acyclic G.
Input: A directed acyclic Graph G with execution rates de�ned for all source nodes.
Output: A linked list of sorted nodes with execution rates computed.
Derive-Acyclic-Rates(G)

1 SortedList := Topological-Sort(G)
2 for each node u 2 SortedList do
3 if node u is not a source node then
4 Use Theorem 2.4.9 to derive Ru

5 endif

6 endfor

7 return the linked list of nodes with execution rates computed

The pseudo code for computing node execution rates in acyclic PGM graphs is pre-

sented in Algorithms 1 and 2. Algorithm 1 uses a depth-�rst search (DFS) to create a

topological sort of the graph, and is the pseudo code from Introduction to Algorithms by

Cormen et al. [14]. (The algorithm has been reproduced here for completeness since it is

used by several algorithms presented here and in the next section.) Algorithm 2 uses the

Topological-Sort(G) function of Algorithm 1 to derive the execution rate of each node in

an acyclic graph. Once an acyclic graph is topologically sorted, all of the producers to

node v will be placed in front of node v in the sorted list. Thus by the time the execution

rate of node v is derived at line 4 of Algorithm 2, the execution rates for all of node v's

producers will have been computed. For example, consider the graph and its topological

sort in Figure 3.1 once again. By the time the execution rate of node t is derived, the

execution rates of nodes r, p, and s will be known.

A slightly more complicated acyclic graph is shown in Figure 3.2. The topologically

sorted list of nodes for this graph is

I2DEFKLMNSI1ABCGHIJTUV PRQWO1:

Notice that all of the predecessors to node P come before node P in the sorted list of

nodes. It is this property of a topologically sort list of nodes that Algorithm 2 exploits

to derive the execution rate of nodes in an acyclic graph. Applying Algorithm 2 to the

graph of Figure 3.2, with the execution rate of the two source nodes de�ned to be (1; y),

yields the node execution rates shown in Table 3.1.
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Figure 3.2: An acyclic PGM graph. All queues have produce amounts equal to 1 unless
otherwise noted. Each queue's threshold value is equal to its consume value, and all
consume (threshold) values are equal to 1 unless otherwise speci�ed. Produce amounts
greater than 1 are displayed near the tail of the queue and consume (threshold) amounts
greater than one are displayed near the head of the queue. For example, the queue joining
nodes A and B has a produce amount of 1, a threshold of 4, and a consume amount of 4.
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Node ( xu,yu)
I2 (1; y)
D (1; y)
E (1; 4y)
F (1; 44y)
K (1; 44y)
L (1; 44y)
M (1; 44y)
N (10; 44y)
S (10; 44y)
I1 (1; y)
A (1; y)
B (1; 4y)
C (1; 44y)
G (1; 44y)
H (1; 44y)
I (1; 44y)
J (10; 44y)
T (10; 44y)
U (10; 44y)
V (1; 24 � 44y)
P (10; 44y)
R (1; 24 � 44y)
Q (1; 24 � 44y)
W (240; 24 � 44y)
O1 (240; 24 � 44y)

Table 3.1: Execution rate speci�cations for nodes in the graph of Figure 3.2. The graph
nodes are listed in the order returned from the topological sort of the graph of Figure 3.2
that was performed by Derive-Acyclic-Rates(G) of Algorithm 2 | that is, the nodes are
sorted topologically. The second column shows the execution rate of each node in the
graph derived by Derive-Acyclic-Rates(G) of Algorithm 2.
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3.2.2 Computing Node Execution Rates in Cyclic Graphs

We now extend Algorithm 2 to derive valid execution rate speci�cations for nodes in

cyclic graphs. Let nodes v and w be nodes in a cycle and let queue q be a back edge in

the cycle such that  (q) = (v; w). Recall from Section 2.4.2 that if queue q is always over

threshold, then the execution rate of node w can be derived without using the execution

rate of node v. Moreover, by Theorem 2.4.11, if the number of initial tokens on a back

edge q is computed using Equation (2.17), then queue q will always be over threshold. If

each back edge in a PGM graph G is initialized so that it is always over threshold and G

contains only simple cycles, then Algorithm 3 can be used to derive the execution rate

of every node in the cyclic graph, even though a strict topological sort of a cyclic graph

is not possible. When the graph contains a cycle, Topological-Sort(G) of Algorithm 1

produces a partial ordering of the graph. The resulting list of sorted nodes is a topological

sort of an equivalent graph without back edges. Consider the cyclic graph in Figure 3.3.

Other than the back edge labeled q, the graphs of Figure 3.2 and Figure 3.3 are identical.

Applying Algorithm 1 to the graph in Figure 3.3 yields the same sorted list of nodes we

obtained with the acyclic version of the graph. Moreover, the execution rates computed

for each node in Figure 3.3 with Algorithm 3 are the same as the rates computed with

Algorithm 2 and the graph in Figure 3.1.

Algorithm 3 cannot be applied to graphs containing non-disjoint cycles. In this case,

the sorted list of nodes must be processed multiple times. Consider the graph of Fig-

ure 3.4. Using Algorithm 3 to derive the execution rates of the nodes in Figure 3.4,

would yield invalid execution rates for nodes u, v, w, and z because their computed rates

would not reect the inuence of source node r. Processing the list a second time would

correct this de�ciency because the second time through the list the execution rate for

node t is de�ned. This results in the execution rate of source node r being reected in

the new execution rates computed for nodes u, v, w, and z. Even if there are more than

two source nodes producing data for the two non-disjoint cycles, the sorted list of nodes

only needs to be processed twice because the other source nodes will be placed in the

list in front of their descendents. That is, the non-disjoint cycles are discovered in the

DFS beginning with the �rst source node producing data for either of the cycles, and any

other source nodes producing data for the cycle will be placed in the sorted list in front

of the nodes contained within the cycle. Thus, the total number of times the list must

be processed is max(1; n) where n is the maximum number of di�erent cycles in which

the same node appears.

The routine Derive-Rates(G) of Algorithm 4 uses Derive-Simple-Cycle-Rates(G) of
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Figure 3.3: A cyclic graph and its topological sort. This is the same graph as Figure 3.1a
with back edge q added to create a simple cycle. Note that the order of the nodes in the
sorted graph is identical to Figure 3.1b.
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Algorithm 3. Derive Node Execution Rates for each node in G.
Input: A directed Graph G (which may contains simple cycles) with execution rates

de�ned for all source nodes.
Output: A linked list of sorted nodes with execution rates de�ned.
Derive-Simple-Cycle-Rates(G)

1 SortedList := Topological-Sort(G)
2 for each node u 2 SortedList do
3 if node u is not a source node then
4 Use Theorem 2.4.9 to derive Ru using the execution rate of
5 only those producers for which an execution rate has been
6 de�ned and exclude back edges in the computation
7 endif

8 endfor

9 return the linked list of nodes with execution rates de�ned

(a)

(b)

s

u

p r

t

w z

v

r p s zv twu

Figure 3.4: (a) A cyclic graph containing two non-disjoint cycles. Node u appears in
cycles sus and uvtu. (b) The same cyclic graph topologically sorted. The back edges
detected with a depth-�rst search are drawn below the sorted graph.
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Algorithm 4. Derive Node Execution Rates for each node in G.
Input: A directed Graph G (which may contain non-disjoint cycles) with execution

rates de�ned for all source nodes.
Output: A linked list of sorted nodes with execution rates de�ned.
Derive-Rates(G)

1 SortedList := Derive-Simple-Cycle-Rates(G)
2 n := maximum number of cycles in which the same node appears
3 for i = 1 to n� 1 do

4 for each node u 2 SortedList do
5 if node u is not a source node then
6 Use Theorem 2.4.9 to derive Ru using the execution rate of
7 only those producers for which an execution rate has been
8 de�ned and exclude back edges in the computation
9 endif

10 endfor

11 endfor

12 return the linked list of nodes with execution rates de�ned

Algorithm 3 to sort the nodes of G and to derive the node execution rates as though

the graph contained only simple cycles or was acyclic. If the graph contains non-disjoint

cycles, the sorted list of nodes is processed another n� 1 times where n is the maximum

number of cycles in which the same node appears. If the graph is acyclic, or only contains

simple cycles, the list is only processed once (by Derive-Simple-Cycle-Rates(G)). Thus,

Algorithm 4 can be used to derive the execution rate of every node in a PGM graph.

If the rate speci�cations for the graph source nodes are well de�ned and the number

of initial tokens on each identi�ed back edge is equal to or greater than the number of

tokens computed using Equation (2.17), then the rate speci�cations computing using

Algorithm 4 will also be well de�ned.

From the preceding discussion, Lemma 2.4.5, and Theorem 2.4.9, we obtain:

Theorem 3.2.1. Let G = (V;E;  ) be a PGM graph for which a well de�ned execution

rate speci�cations exist for every node v in V and let Ri = (xi; yi) be a well de�ned rate

speci�cation for source node i 2 I (the set of source nodes to graph G). Algorithm 4

returns well de�ned execution rates for every node in V if each identi�ed back edge q with
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 (q) = (v; w) is initialized with

init(q) =

�
sv � sw + yv

yw

�
� xw � cns(q) + thr(q)

tokens where sv and sw represent the �rst execution time of nodes v and w respectively.

Equations to derive the time of the �rst execution of a nodes v and w (sv and sw) are

presented in Chapter 4 as part of the analysis and management of latency.

We now have the techniques necessary to derive the execution rate of every node in

a processing graph. Once the execution rates have been derived, the next step in the

synthesis method is to map each node to a task in the RBE task model so that real-time

processing can be achieved in the embedded system. The third step in the synthesis

method is to verify the schedulability of the resulting RBE task set. The next section

presents these two steps.

3.3 Scheduling Node Executions

The execution rate speci�cations computed using the algorithms in Section 3.2 represent

the rate at which nodes need to execute if they are to process a signal in real time. We now

address issues related to scheduling nodes in accordance with their rate speci�cations.

To make sure nodes execute according to their rate speci�cations we execute the nodes

according to the RBE model. As stated previously, the advantage of executing nodes

according to the RBE model is that nodes are eligible for execution as soon as they

are released, even if multiple release of a node occur at the same time. In comparison,

the periodic model of execution requires that each release of a node be separated by a

constant amount of time, which, as shown in Section 1.3, imposes additional latency on

the signal. We manage the amount of imposed latency and memory required for bu�ering

tokens on input queues when the nodes are executed according to the RBE model by

scheduling nodes with a simple EDF scheduling algorithm. A relative-deadline parameter

is associated with each node and released nodes are scheduled for execution according

to deadlines derived using the relative-deadline parameter. As we saw in Section 1.3,

the deadlines cannot be made arbitrarily small if we wish to maintain a schedulable task

set. A task set is schedulable with the EDF algorithm if and only if the EDF algorithm

produces a schedule in which no task instances miss their deadlines.

This section is organized as follows. First, we present the RBE model for complete-

ness. We then show how to map each node in a PGM graph to a RBE task so that nodes
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execute in accordance with their rate speci�cations. Finally, we show how to determine

if the resulting task set is schedulable.

3.3.1 RBE Task Model

RBE is a general task model consisting of a collection of independent processes speci�ed

by four parameters: (x; y; d; e). The pair (x; y) represents the execution rate of an RBE

task where x is the number of executions expected to be requested in an interval of length

y. Parameter d is a response time parameter that speci�es the maximum desired time

between the release of a task instance and the completion of its execution (i.e., d is the

relative deadline). Parameter e is the maximum amount of processor time required for

one execution of the task.

An RBE task set is feasible if there exists a schedule such that the jth release of task

Ti at time ti;j is guaranteed to complete execution by time Di(j), where

Di(j) =

8<
:ti;j + di if 1 � j � xi

max(ti;j + di; Di(j � xi) + yi) if j > xi
(3.1)

The RBE task model makes no assumptions regarding when a task will be released. To

understand how deadlines are assigned in an RBE task set using Equation (3.1), consider

an RBE task set with x = 1 for all tasks. If tasks are released periodically, then deadlines

are assigned as though each task were a periodic task with parameters (y; d; e) in a (p; d; c)

periodic model. In a (p; d; c) periodic model, task Ti is released every pi time units, must

complete its execution within di time units of its release, and has a worst-case execution

time of ci time units. If x = 1 but the release times of tasks in an RBE task set are not

periodic, then the second line of Equation (3.1) ensures that the jth release of an RBE

task will be assigned the same deadline as the jth release of a periodic task with period

y. Now consider an RBE task set in which x is greater than 1 for some of the tasks.

If the tasks are periodic such that all xi instances of task Ti are released at the same

time (with period yi), then deadlines are assigned as though each of the xi releases was

a periodic task with parameters (yi; di; ei). Thus, all xi task releases would be assigned

the same deadline: di time units from its release. If the xi releases are periodic but not

simultaneous, then each of the xi releases in an interval of yi time units is modeled as a

separate periodic task with parameters (yi; di; ei) and assigned a deadline di time units

from its (periodic) release. When the xi releases of RBE task Ti are not periodic or when

more than xi releases of the task occur in an interval of length yi, the second line of
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deadline-assignment Function (3.1) ensures that no more than xi deadlines come due in

an interval of length yi.

Deadline-assignment Function (3.1) prevents release jitter from creating more proces-

sor demand in an interval by a task than that which is speci�ed by the rate parameters.

Release jitter is the phenomenon that occurs when release times vary such that in one

interval fewer releases occur than expected and in another interval more releases occur

than expected. The processor demand in an interval [a; b] is the amount of processor

time required to be available in [a; b] to ensure that all tasks released prior to time b with

deadlines in [a; b] complete in [a; b]. The maximum processor demand in an interval [a; b]

occurs when

1. a marks the end of an interval in which the processor was idle (or 0 if the processor

is never idle),

2. the processor is never idle in the interval [a; b], and

3. as many deadlines as possible occur in the interval [a; b].

If deadlines for instances of RBE task Ti were assigned by simply adding di to the task's

release time, then more than xi releases in an interval of length yi may create more

processor demand than the processor can support and deadlines may be missed. To

ensure that no task instance misses a deadline, we must bound the maximum processor

demand for all tasks in all intervals and verify that the processor has enough capacity to

support the processor demand created by the RBE task set. We begin by bounding the

maximum processor demand for a task in the interval [0; L].

Lemma 3.3.1. For preemptive scheduling of the execution of an RBE task T with pa-

rameters (x; y; d; e),

8L > 0; f

�
L� d+ y

y

�
� x � e (3.2)

is a least upper bound on the number of units of processor time required to be available in

the interval [0; L] to ensure that no task instance of T misses a deadline in [0; L], where

f(a) =

8<
:bac if a � 0

0 if a < 0
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Proof: To derive a least upper bound on the amount of processor time required to be

available in the interval [0; L], it su�ces to consider a set of release times of T that results

in the maximum processor demand in [0; L]. If tj is the time of the jth release of task

T , then clearly the set of release times tj = 0, 8j > 0, is one such set. Under these

release times, x instances of T have deadlines in [0; d]. After d time units have elapsed,

x instances of T have deadlines every y time units. Thus the number of instances with

deadlines in the interval [d; L] is
j
L�d
y

k
� x. Therefore, 8L � d, the number of instances

of T with deadlines in the interval [0; L] is

x +

�
L� d

y

�
� x =

�
1 +

�
L� d

y

��
� x

=

�
L� d

y
+ 1

�
� x

=

�
L� d+ y

y

�
� x: (3.3)

For all L < d, no instances of T have deadlines in [0; L], hence the right-hand side of

Equation (3.3) gives the maximum number of instances of T with deadlines in the interval

[0; L], for all L > 0.

Finally, as each instance of T requires e units of processor time to execute to comple-

tion, Expression (3.2) is a least upper bound on the number of units of processor time

required to be available in the interval [0; L] to ensure that no instance of T misses a

deadline in [0; L].

Note that there are many sets of task release times that maximize the processor

demand of a task in the interval [0; L]. For example, given the recurrence relation for

deadlines de�ned by Equation (3.1), it is straightforward to show that the less patholog-

ical set of task release times tj =
�
j�1
x

�
� y, 8j > 0, also maximizes the processor demand

of task T in the interval [0; L].

A task set is feasible if and only if there exists a schedule such that no task instance

misses its deadline. Thus, if Demand(L) represents the total processor demand in an

interval of length L, a task set is feasible if and only if L � Demand(L) for all L > 0.

Theorem 3.3.2. Let T = f(x1; y1; d1; e1); : : : (xn; yn; dn; en)g be a set of RBE tasks.

T will be feasible if and only if

8L > 0; L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei (3.4)
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where f(a) is as de�ned in Lemma 3.3.1.

Proof: ()) The necessity of Equation (3.4) is shown by establishing the contrapositive,

i.e., a negative result from Equation (3.4) implies that T is not feasible. To show that

T is not feasible it su�ces to demonstrate the existence of a set of task release times for

which at least one release of a task in T misses a deadline.

Assume a negative result from Equation (3.4), that is,

9l > 0 : l <
nX
i=1

f

�
l � di + yi

yi

�
� xi � ei:

Let tij be the release time of the jth instance of task i in T . Consider the set of release

times tij = 0, where 1 � i � n and j > 0. By Lemma 3.3.1, the least upper bound for

the processor demand created by task Ti is f
�
L�di+yi

yi

�
� xi � ei units of processor time in

the interval of [0; l]. Moreover, from the proof of Lemma 3.3.1, the set of release times

tij = 0, 1 � i � n and j > 0, creates the maximum processor demand possible in the

interval [0; l]. Therefore, for T to be feasible, it is required that
Pn

i=1 f
�
l�di+yi

yi

�
� xi � ei

units of work be available in [0; l]. However, since

l <
nX
i=1

f

�
l � di + yi

yi

�
� xi � ei;

an instance of a task in T must miss a deadline in [0; l]. Thus there exists a set of release

times such that a deadline is missed when Equation (3.4) does not hold. This proves the

contrapositive.

(() To show the su�ciency of Equation (3.4) it is shown that the preemptive EDF

scheduling algorithm can schedule all releases of tasks in T without any job missing a

deadline if the tasks satisfy Equation (3.4) (see Section 1.3 for a de�nition of the EDF

algorithm). This is shown by contradiction.

Assume that T satis�es Equation (3.4) and yet there exists a release of a task in T

that misses a deadline at some point in time when T is scheduled by the EDF algorithm.

Let td be the earliest point in time at which a deadline is missed and let t0 be the later

of:

� the end of the last interval prior to td in which the processor has been idle (or 0 if

the processor has never been idle), or

� the latest time prior to td at which a task instance with deadline after td stops

executing prior to td (or time 0 if such an instance does not execute prior to td).
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By the choice of t0, (i) only releases with deadlines less than time td execute in the

interval [t0; td], and (ii) the processor is fully used in [t0; td]. Only releases with deadlines

less than time td execute in the interval [t0; td] and, by the choice of t0, any task instances

released before t0 will have completed executing by t0. Thus, by a result due to Baruah

et al. (Lemma 3.5 in reference [6]), at most

nX
i=1

�
td � t0 � di + yi

yi

�
� xi

instances of tasks in T can have deadlines in the interval [t0; td], and

nX
i=1

�
td � t0 � di + yi

yi

�
� xi � ei

is the least upper bound on the units of processor time required to be available in the

interval [t0; td] to ensure that no task release misses a deadline in [t0; td]. The problem of

scheduling the RBE task set in the interval [to; td] is equivalent to scheduling a periodic

task set where each of the xi instances of task Ti are represented by a separate periodic

task since we have assumed worst-case task releases in which all xi instances of task Ti

are released at the same time. It is a well known fact that EDF is an optimal scheduling

algorithm for independent periodic task sets [45]. By optimal, we mean that if a valid

schedule exists, the EDF scheduling algorithm will create one. Let E be the amount of

processor time consumed by tasks in T in the interval [t0; td] when scheduled by the EDF

algorithm. Since
Pn

i=1 f
�
td�t0�di+yi

yi

�
� xi � ei is a least upper bound on the processor

time required in the interval [t0; td] and E is processor time consumed using the EDF

algorithm, it must be the case that

nX
i=1

f

�
td � t0 � di + yi

yi

�
� xi � ei � E :

Thus, since the processor is fully used in the interval [t0; td] and since a deadline is missed

at time td, it follows that E is greater than the processor time available in the interval

[t0; td], namely td � t0. Hence,

nX
i=1

f

�
td � t0 � di + yi

yi

�
� xi � ei � E > td � t0:

However this contradicts our assumption that T satis�es Equation (3.4). Hence if T
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satis�es Equation (3.4), then no release of a task in T misses a deadline when T is

scheduled by the EDF algorithm. It follows that satisfying Equation (3.4) is a su�cient

condition for feasibility. Thus Equation (3.4) is a necessary and su�cient condition for

determining if a task set T is feasible.

If the cumulative processor utilization for an RBE task set is strictly less than one (i.e.,Pn

i=1
xi�ei
yi

< 1) then Condition (3.4) can be evaluated e�ciently (in pseudo-polynomial

time) using techniques developed by Baruah et al. [6]. Moreover, when di = yi for all Ti in

T , the evaluation of Condition (3.4) reduces to the polynomial-time feasibility condition

nX
i=1

xi � ei
yi

� 1 (3.5)

since

nX
i=1

xi � ei
yi

� 1 =) 8L > 0; L �
nX
i=1

L �
xi � ei
yi

=
nX
i=1

L

yi
� xi � ei

=
nX
i=1

L� yi + yi
yi

� xi � ei

=
nX
i=1

L� di + yi
yi

� xi � ei since di = yi

�
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei :

(3.6)

Equation (3.5) computes processor utilization for the task set T and is a generalization

of the EDF feasibility condition
Pn

i=1
ei
yi
� 1 for independent tasks with deadlines equal

to their period given by Liu & Layland [45].

3.3.2 Mapping Nodes to Real-Time Tasks

Step 2 of the synthesis method associates each PGM node with an RBE task by as-

sociating each node u with a four tuple (xu; yu; du; eu) that characterizes an RBE task.

Parameters xu and yu are derived using Algorithm 4 of Section 2.4.2. Parameter eu is

the worst-case execution time for node u, which we assume is supplied.

The only free parameter is the relative-deadline parameter du. The choice for the value
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of du inuences processor capacity requirements, latency, and bu�er requirements. In

general, a smaller value chosen for du will result in less latency and memory requirements

than a larger du value, but at a cost of increased processor capacity requirements. The

increased processor capacity is due to the increased processor demand for node u that

is created in an interval of length L as du is reduced. For example, if du = yu, then the

processor demand in the interval [0; L] must be less than or equal to

�
L� du + yu

yu

�
� xu � eu =

�
L� yu + yu

yu

�
� xu � eu =

�
L

yu

�
� xu � eu

by Lemma 3.3.1. If du < yu, then the processor demand in the interval can increase since

�
L� du + yu

yu

�
� xu � eu �

�
L

yu

�
� xu � eu:

Execution time, produce, threshold, consume, and deadline values all a�ect schedula-

bility, latency, and bu�er requirements, and one can trade-o� one metric for any other.

In mapping the graph to a set of RBE tasks, relative-deadline parameters need to be

selected that result in modest bu�ering on the graph edges without overloading the pro-

cessor with too much processing demand. Selecting deadline values for nodes is usually

an iterative process. We begin the process by setting du = yu for each node u in the

graph. We then evaluate the schedulability of the resulting task set in Step 3. If the task

set is schedulable, then latency and memory requirements are computed using techniques

outlined in the next two chapters. If the computed latency or memory requirements ex-

ceed tolerances speci�ed for the application, then the process starts over at Step 2 with

smaller deadline values.

In addition to requiring deadline parameters that result in a schedulable task set, we

require dv � du when there exists a queue joining node u to node v (i.e. 9q :  (q) =

(u; v)). Thus, for a path from a graph source node to a graph output node w, the deadline

parameter of node w will be greater than or equal to the deadline parameter of any other

node in the path. Observe that, since yv � yu for a producer/consumer pair, setting

du = yu for every node in the graph satis�es the requirement dv � du. We show in the

next chapter that setting deadlines in this manner greatly simpli�es the management of

latency. Moreover, it allows us to achieve near minimal latency in an implementation.

Given an RBE task system derived from a PGM graph, we must ensure valid execu-

tion. Thus a FIFO data queue is created for each PGM queue and a task is released when

all of its input queues are over threshold. Released tasks are scheduled with a preemptive
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EDF scheduling algorithm and deadlines are assigned using Equation (3.1).

3.3.3 Scheduling Theory Results

Step 3 of the synthesis method is to verify that the resulting task set is schedulable so

that we can guarantee real-time execution. For a given scheduling algorithm, a task

set is schedulable if and only if the algorithm produces a schedule in which no task

misses its deadline. A scheduling algorithm is optimal if it can produce a valid schedule

for any task set that is feasible. The su�ciency of Condition (3.4) for determining the

feasibility of an RBE task set was established by showing that, if the task set was feasible,

the EDF scheduling algorithm produces a valid schedule. Thus, for an RBE task set,

EDF is an optimal scheduling algorithm. In this section, we show that the feasibility

problem for PGM graphs is co-NP-hard in the strong sense, and EDF is not an optimal

scheduling algorithm for PGM graphs. Although in general the feasibility problem is

co-NP-hard in the strong sense and EDF is not optimal, we show that Condition (3.4)

is a su�cient condition for determining the schedulability of PGM graphs with the EDF

algorithm. It is shown that Condition (3.4) is not a necessary condition because it

over states the maximum processor demand for some graphs. However, in practice, the

su�ciency of Condition (3.4) is adequate for approximating processor demand since most

system engineers prefer to over estimate the processor demand and almost never allow

the processor to be fully utilized. We leave open the problem of �nding an optimal

scheduling algorithm for PGM graphs, and focus instead on scheduling PGM graphs

with a variation of the EDF scheduling algorithm called rate-based-execution earliest-

deadline-�rst (RBE-EDF).

We have previously shown that the feasibility problem for PGM graphs is co-NP-hard

when a maximum bu�er capacity is associated with each queue [5]. The same argument

(�rst made by Sanjoy Baruah [4]) is used here to show that the feasibility problem for

PGM graphs implemented as an RBE task set is also co-NP-hard in the strong sense.

Theorem 3.3.3. The problem of determining if a PGM graph implemented as an RBE

task set is feasible is co-NP-hard in the strong sense.

Proof: The proof is by reduction from the Simultaneous Congruences Problem (SCP).

This problem was introduced by Leung and Merrill and shown to be NP-hard [43]. Sub-

sequently, it was proven by Baruah et al. that the problem is NP-hard in the strong sense

[7].

The Simultaneous Congruences Problem is de�ned as follows:
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Figure 3.5: A PGM dataow graph constructed during the proof of Theorem 3.3.3. The
RBE parameters for source node n0 are (x0 = 1; y0 = 1; d0 = 1; e0 = 0). The RBE
parameters for nodes ni, for 1 � i � n, are (xi; yi; di = 1; ei =

1
r�1

) where xi and yi are
derived using equation Theorem 2.4.9 and r is the integer given in the SCP problem.

Given n ordered pairs of positive integers (a1; b1), (a2; b2), : : : , (an; bn), and a positive

integer r, 2 � r � n.

Determine whether there exists a positive integer x, and r ordered pairs (ai1; bi1),

(ai2; bi2), : : : , (air; bir) from among the given ordered pairs, such that x � aij mod

bij for each j, 1 � j � r.

Given an instance of the SCP with integer r, we construct an instance of the PGM graph

feasibility problem as shown in Figure 3.5. Consider a graph with n+1 nodes, labeled n0

through nn. Let the RBE parameters for source node n0 be (x0 = 1; y0 = 1; d0 = 1; e0 =

0). Let the RBE parameters for sink node ni, 1 � i � n, be (xi; yi; di = 1; ei =
1

r�1
) where

xi and yi are derived using Theorem 2.4.9 and r is the integer given in the SCP problem.

For each queue from node n0 to node ni, 1 � i � n, let prd(qi) = 1, thr(qi) = ai+ bi, and

cns(ni) = bi. Observe that the i'th node is enabled for the �rst time at time ai+ bi, and,

if no deadlines are missed, completes execution within one time unit later. Since each
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sink node has an execution requirement of 1
r�1

, at most r� 1 of them can execute during

any time unit. Hence, a deadline is missed if and only if at least r nodes are enabled

simultaneously at some time t; i.e., if and only if r ordered pairs (ai1; bi1), (ai2; bi2), : : : ,

(air; bir) from among the ordered pairs (a1; b1), (a2; b2), : : : , (an; bn) satisfy t � aij mod bij

for each j, 1 � j � r. Thus, it is co-NP-hard in the strong sense to determine whether a

PGM graph implemented as an RBE task set is feasible.

As a consequence of Theorem 3.3.3, we are unable to determine in pseudo-polynomial

time whether a given PGM dataow graph is feasible or not (unless P = NP). Moreover

EDF is not even an optimal scheduling algorithm for scheduling a PGM graph [4].

Theorem 3.3.4. The EDF scheduling algorithm is not optimal for scheduling a PGM

graph implemented as an RBE task set.

Proof: We prove the non-optimality of EDF scheduling for PGM graphs implemented

as an RBE task set by constructing a graph that is feasible but not schedulable with

EDF scheduling. Consider the graph of Figure 3.6. The RBE parameters associated

with a node are displayed above the node. For example, the RBE parameters for node

v are (xv = 1; yv = 7; dv = 5; ev = 5). Source nodes i1 and i2 are periodic with period 7

starting at time 0. The time-line execution shown in Figure 3.6 shows the execution of

the graph under EDF scheduling for the �rst 14 time units. Node v misses its deadline at

times 6 and 13 because node u executes before node w under EDF scheduling. If node w

is given priority over node u, as in a static priority scheduler, then the graph is schedula-

ble. The second time-line execution shows no deadlines are missed under static priority

scheduling. The graph is feasible, but not schedulable under EDF scheduling. Thus, the

EDF scheduling algorithm is not optimal for scheduling a PGM graph implemented as

an RBE task set.

It can also be shown that rate-monotonic scheduling, which is optimal for static-

priority periodic task systems, is not optimal for scheduling PGM graphs. We leave open

the problem of �nding an optimal scheduling algorithm, and focus instead on scheduling

PGM graphs with a variation of the EDF scheduling algorithm called RBE-EDF. Before

describing the RBE-EDF scheduling algorithm, however, we �rst motivate its creation

by showing why Condition (3.4) is a su�cient but not necessary condition for scheduling

PGM graphs with an EDF algorithm.

For scheduling RBE tasks derived from a PGM graph, Condition (3.4) is not, in

general, a necessary condition. In order for Condition (3.4) to be necessary, it is required,
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Figure 3.7: A two-node PGM graph. If Ru = (1; y), scheduling condition (3.4) is a
su�cient but not necessary condition for evaluating the schedulability of this graph under
preemptive EDF scheduling.

in essence, that all xu releases of node u occur immediately at the beginning of an interval

of length yu. For some nodes, such as node v in Figure 3.7, this is not possible. If the

execution rate of node u is Ru = (1; y), then Rv = (4; 3y) but any execution of node u

releases at most 2 executions of node v. Thus if dv = y, there cannot be 4 simultaneous un-

expired jobs for the task associated with node v, as assumed by schedulability condition

(3.4).

While Condition (3.4) over states the processor demand that can exist for some

graphs, it is a su�cient condition for evaluating the schedulability of a PGM graph

implemented as an RBE task set. An a�rmative result from condition (3.4) means that

if all xi instances of each task Ti in the RBE task set are released at the same time,

there exists enough processor capacity that no task will miss its deadline. Thus, the

su�ciency proof of Theorem 3.3.2 can also be used prove the su�ciency of Condition

(3.4) for scheduling PGM graphs with the EDF algorithm according to the RBE model of

execution. Moreover, we can take advantage of the release times allowed when Condition

(3.4) evaluates in the a�rmative to simplify the management of latency in the system.

Our RBE-EDF scheduling algorithm is the simple EDF scheduling algorithm in which

deadlines are assigned using Equation (3.1) and a technique called release-time inheri-

tance. Release-time inheritance creates a logical release time for a node that is equal to

the release time that the node would have under the strong synchrony hypothesis. This

is accomplished by setting the logical release time of node w to the logical release time of

the node v that released node w. For example, consider the graph of Figure 3.8. Node u

represents an external device that produces data once every three time units. Thus, the

execution rates of nodes v and w are Rv = (1; 3) and Rw = (1; 6). Each node requires

two time units of processor time to execute. Setting the relative deadline parameter for

each node equal to its y parameter in its rate speci�cation results in RBE parameters

(1; 3; 3; 2) and (1; 6; 6; 2) for nodes v and w respectively. Three di�erent executions of the

graph are shown in Figure 3.9. In the �rst execution, under EDF scheduling, node w is
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released at time 5 and its absolute deadline is

actual release time+ dw = 5 + 6

= 11:

Under RBE-EDF scheduling, node w is still released at time 5, but its logical release

time is 3 since this is the logical release time of node v. Thus, the absolute deadline for

node w under RBE-EDF scheduling is

logical release time+ dw = 3 + 6

= 9:

There are three things to note here. First, the actual execution pattern under EDF and

RBE-EDF scheduling is the same, as shown in the time-line of executions in Figure 3.9.

Second, the logical release times for nodes v and w are the same as their execution times

under the strong synchrony hypothesis. Third, node w �nishes before its deadline under

either EDF or RBE-EDF scheduling.

As long as the relative deadline parameter for node w is greater than the relative

deadline parameter for any of its producers, release-time inheritance can be used to assign

deadlines if Condition (3.4) results in the a�rmative. This is because Equation (3.4)

evaluates the processor demand over an interval of time as though all nodes were released

at the same time. The greatest processor demand is created when every node w in the

graph executes xw times each time the source node executes. Under this condition, RBE-

EDF scheduling is equivalent to releasing all nodes at the same time and then scheduling

their execution with an EDF scheduler that breaks deadline ties according to topological

order. Thus, if the task set created using our synthesis method is schedulable according to

Condition (3.4), RBE-EDF will create an execution in which no task misses its deadline.

Thus, from Theorem 3.3.2 and the preceding discussion, we obtain Theorem 3.3.5.

Theorem 3.3.5. Let T = f(x1; y1; d1; e1); : : : (xn; yn; dn; en)g be a set of tasks con-

structed from a PGM graph using our synthesis method. The processing graph G =

(V;E;  ) is schedulable with the RBE-EDF scheduling algorithm if Equation (3.4) holds

for T .

Proof: Under RBE-EDF scheduling, the maximum processor demand for a task set T

synthesized from a PGM graph occurs when each production of a graph source node

releases all xi instances of task Ti, for 1 � i � n, at the same time. Under the strong

synchrony hypothesis, this is equivalent to having every node u in the graph execute xu
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times at the instant a source node executes. Since RBE-EDF scheduling uses release-time

inheritance, every task released when the graph source node produces data will have the

same logical release time. Thus, by Lemma 3.3.1, the maximum processor demand over

an interval L, is

nX
i=1

f

�
L� di + yi

yi

�
� xi � ei:

By, Theorem 3.3.2, when deadlines are assigned using Equation (3.1), the EDF scheduling

algorithm will schedule an RBE task set such that no deadlines are missed if

8L > 0; L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei:

Since RBE-EDF scheduling is equivalent to releasing all task instances at the same time

and then scheduling their execution with an EDF scheduler that breaks deadline ties

according to a topological sort of the graph, the RBE-EDF scheduling algorithm will

create a schedule in which no task misses its deadline if Equation (3.4) results in the

a�rmative. Thus, the processing graph G = (V;E;  ) is schedulable with the RBE-EDF

scheduling algorithm if Equation (3.4) holds for T .

3.4 Summary

The synthesis of real-time systems from PGM graphs presented in this chapter involves

3 steps:

1. Identi�cation of the rates at which nodes in a PGM graph must execute if they are

to process the signal in real time.

2. Construction of a mapping of each node to a task in the RBE task model so that

real-time processing can be achieved in the embedded system.

3. Veri�cation that the resulting task set is schedulable so that we can guarantee

real-time execution.

We presented techniques for deriving the execution rate of every node in an acyclic

or cyclic processing graph and demonstrated the mapping of nodes to RBE real-time

tasks. We also presented the RBE-EDF scheduling algorithm and a su�cient, but not
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necessary, condition for the schedulability of PGM graphs mapped to tasks and executed

according the RBE task model. The RBE-EDF assigns deadlines using Equation (3.1)

and a technique called release-time inheritance. Release-time inheritance creates a logical

release time for a node that is equal to the release time that the node would have under

the strong synchrony hypothesis.

In the next chapter, we show that managing latency is a straightforward process when

graphs are scheduled with the RBE-EDF scheduling algorithm. However, the manage-

ment of latency often requires an iteration of Steps 2 and 3 of the synthesis method as

new deadline parameter values are selected to make trade-o�s between processor demand

and latency.



Chapter 4

Managing Latency

4.1 Introduction

We now address the issue of managing latency in signal processing systems. We begin

with a de�nition of latency in the context of signal processing applications, and demon-

strate that multiple latency values exist for a PGM graph executed with the strong

synchrony hypothesis. We then relate these latency values to latency created by schedul-

ing node executions with an RBE-EDF scheduler in an implementation, and show how

to use the deadline response parameters associated with each task (node) to control and

manage latency.

A signal processing engineer describes latency as the time delay between the sampling

of a signal and the presentation of the processed signal to the output device (which may

be a screen, speaker, or another computer). While intuitive, this de�nition is not precise

enough for our purposes since individual samples cannot be identi�ed in the prd(q) tokens

produced at one time by an external source. We de�ne a sample to be the set of tokens

delivered by a source node at one time. Thus, latency is the delay between when a source

node produces a sample (prd(q) tokens) and when the graph outputs the processed signal.

Moreover, the total latency encountered by a sample is an integral unit of time created by

the sum of the latency inherent in the signal processing graph and the additional latency

imposed by the implementation. Inherent latency in a graph is created by non-unity

dataow attributes and the graph topology. Imposed latency comes from the scheduling

and execution of nodes in the graph since we do not have an in�nitely fast machine.

Thus latency has two components, and the total latency any sample encounters can be

expressed with the simple equation

Total Latency = Inherent Latency+ Imposed Latency:
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The �rst step in managing latency in an implementation is to quantify both inher-

ent and imposed latency. This is a di�cult task for two reasons. First, PGM graphs

frequently change the number of tokens in the data stream. For example, a �lter may

zero-pad data or interpolate data to smooth out the signal, which adds tokens to the

data stream. A �lter may also remove tokens from the data stream when a signal is

down sampled. Second, the scheduling and execution of nodes in a PGM graph make

it hard to correlate the execution of a source node with the corresponding execution of

the sink node. For example, consider the SAR graph shown in Figure 4.1. We do not

need to understand the processing performed to recognize that the node labeled Zero

Fill produces 138 more tokens that it consumes each time it executes. In this case the

node is adding zeros to the data stream. Nodes may also reduce the number of tokens

in the data stream by down sampling the data | using every kth data element. Or an

input queue's threshold may be set greater than its consume value, which causes some

number of tokens to be used in multiple executions of the node such as the input queue,

labeled RCS, to the Corner Turn node in the SAR graph of Figure 4.1. Many execu-

tions of source node YRange occur before the �rst execution of sink node Output. If

the scheduling algorithm creates additional delays in the execution of nodes, how do we

identify which execution of the source node enabled an execution of the sink node when

there are multiple executions of the source node before the sink node �nally executes?

The strong synchrony hypothesis simpli�es the problem of correlating an execution

of the source node and the subsequent execution of the sink node. Under the strong

synchrony hypothesis, we can simply measure the time (if any) that elapses between the

execution of the source and sink nodes. Scheduling does not a�ect latency under the

strong synchrony hypothesis because nodes execute instantaneously. Thus, any latency

that occurs is due to the dataow attributes of the queues or the graph topology. This

type of latency is inherent in the graph and provides a lower bound on latency in an imple-

mentation. If an application's latency requirement exceeds the graph's inherent latency,

no implementation of the graph will meet the latency requirement. Either the dataow

attributes of the queues must be changed, or the graph topology must be changed (or

both). Section 4.2 shows how to compute the inherent latency in a PGM graph.

Any additional latency created by scheduling and node execution is imposed upon

the graph by the implementation and can be managed using techniques from real-time

scheduling theory. Our goal in building real-time systems from processing graphs is to

analytically bound and then manage imposed latency. Section 4.3 presents techniques to

achieve this goal for acyclic and cyclic graphs executed with our RBE-EDF scheduler.
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Figure 4.1: The SAR PGM graph. The tail of each queue is annotated with the queue's
produce value, and the head of each queue is annotated with the threshold and consume
values. For example, the queue labeled RCS has prd(RCS) = 256, thr(RCS) = 256 � 128,
and cns(RCS) = 256 � 64.

Finally, in Section 4.4, we combine the bounds on inherent latency with the bounds

for imposed latency to bound the total latency any sample will encounter in an imple-

mentation of a PGM built with our synthesis method.

4.2 Inherent Latency

Inherent latency is the latency created by the topology of the graph and the dataow

attributes for each queue q: prd(q), cns(q), and thr(q). Inherent latency is most recog-

nizable under the strong synchrony hypothesis where processor speed and scheduling do

not a�ect latency since nodes execute instantaneously. Let node u be a source node in

the set of graph source nodes I, and let queue q be an output queue to source node u.

When the strong synchrony hypothesis is assumed, inherent latency is the delay between

the enqueuing of prd(q) tokens onto queue q by source node u and the next execution of

the sink node. In simple dataow models that require unity dataow attributes and only

allow one source node, the inherent latency of the graph is 0. However, as the follow-

ing sections demonstrate, non-unity dataow values or multiple source nodes can create

signi�cant latency in processing the signal, even under the strong synchrony hypothesis.

Our analysis of inherent latency begins with chains in Section 4.2.1. Inherent latency in

acyclic processing graphs is analyzed in Section 4.2.2, and the e�ect of cycles on inherent

latency is described in Section 4.2.3.



114

k+1 Pulse k+1+64

Azimuth
FFT

256 256 256

...

k y k( +64) y

Time ...... ...

0 126y 127y 128y 190y 191y 192y 255y 256y

... ...

256 256 256

Output

...

YRange

Zero Fill

Node Pulse 1

...

...

...

...

Pulse 128 Pulse 129

...

...

Pulse 256Pulse 127 Pulse Pulse 192 Pulse 193Pulse 191 Pulse 255

...

...

...

...

Corner
Turn

... ...... ......RCS
Mult

Figure 4.2: A simulation showing latency for the SAR graph under the strong synchrony
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4.2.1 Inherent Latency in Chains of Nodes

The analysis of inherent latency in chains reveals the impact dataow attributes have on

inherent latency. An input signal encounters di�erent amounts of latency depending on

the state of the graph (i.e., the number of tokens on each queue of the graph) when a

sample arrives. In general, there is no single latency value that all samples encounter.

There is, however, a pattern of executions that result in a set of latency values for the

input signal.

Consider the SAR graph shown in Figure 4.1. There are 128 unique latency values

for this simple graph. A representation of its execution under the strong synchrony

hypothesis is shown in Figure 4.2 where it is assumed that the external source, labeled

YRange, produces one radar pulse of data (or sample) every y time units. Each down

arrow in Figure 4.2 represents the release and instantaneous execution of a node, and

the number 256 above a down arrow means 256 instantaneous executions of a node.

Notice that one pulse from the YRange node enables one execution of each of the next

four nodes in Figure 4.1 since each queue's threshold, produce, and consume values are

equal. However, the processing stops at node RCS Mult until node YRange produces

128 pulses of data because the input queue to the Corner Turn node, queue RCS, has

a threshold of 256 � 128 tokens. Thus, since a pulse is delivered every y time units and
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the last four nodes in the graph only execute after the Corner Turn node, the graph

has an inherent maximum latency of 127y. The maximum latency is 127y and not 128y

because the latency a sample encounters begins after the sample's arrival. The inherent

maximum latency of 127y is reected in Figure 4.2 by the �rst execution of the Corner

Turn node and the 256 simultaneous executions of the rest of the nodes in the graph

at time 127y. The �rst sample received by the graph always encounters the maximum

latency (assuming the queues have no initial data). The next sample produced by the

source node, at time y, encounters a latency of 126y, and the third sample produced

encounters a latency of 125y. The latency each subsequent sample encounters decreases

until node Corner Turn �rst executes at time 127y. Thus, the inherent latency for pulse

j, 1 � j � 128, is (128� j)y, and the maximum inherent latency any sample encounters

is 127y.

There is, however, another \maximum" latency that is of more interest, and that is

the maximum latency that occurs after the �rst execution of every node in the graph.

Since queue RCS has a threshold of 256 � 128 tokens and a consume of 256 � 64 tokens,

whenever the Corner Turn node executes, it consumes half of the tokens on queue RCS

and leaves 256 � 64 tokens on queue RCS. Therefore, source node YRange only needs to

execute another 64 times before the Corner Turn node (and the rest of the nodes in the

chain) are eligible for execution again. The 64 executions of the source node before the

node Corner Turnexecutes again creates the other (and more interesting) \maximum"

inherent latency value of 63y (since latency begins after the source node produces). This

latency value of 63y is more interesting than the latency encountered by samples produced

before the �rst execution of node Corner Turn since it is the maximum recurring latency

value. In the execution example shown in Figure 4.2 for the SAR graph, a latency of

63y is encountered by pulses 128 + 1 + 64k, 8k � 0 (i.e., pulses 129, 193, 257, 321, : : :

). From the execution pattern shown in Figure 4.2 for the SAR graph, we see that the

latency for pulse j > 128 is

(63� ((j � 1) mod 64))y:

Moreover, when each queue q is initialized with thr(q) � cns(q) tokens, the recurring

maximum latency value begins with the �rst sample since, by Theorem 2.3.2, thr(q) �

cns(q) tokens is the minimum number of tokens that will ever be on queue q.

The latency a sample encounters under the strong synchrony hypothesis is dependent

on the data ow attributes of the graph, the state of the queues (i.e., the number of
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tokens on each queue of the graph) when the sample arrives, and the execution rate of

the graph source node. Lemma 4.2.1 states analytically what these relationships are,

and, at any point in time, it also tells us the number of samples that must be produced

by node u before node w is eligible for execution. This number is used by Lemma 4.2.2

to compute the inherent latency a sample will encounter when the source is periodic.

Lemma 4.2.1. Let path u;w be a PGM chain, and let

Fu;w =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

max
�
0;
l
thr(q)�length(q)

prd(q)

m�
if 9q :  (q) = (u;w)

max
�
0;
l
(Fv;w�1)�cns(q)+thr(q)�length(q)

prd(q)

m�
if 9q :  (q) = (u; v) ^ v 6= w

^ Fv;w > 0

0 if 9q :  (q) = (u; v) ^ v 6= w

^ Fv;w = 0

(4.1)

Node u must execute Fu;w times to produce enough tokens in order to put the input queue

to node w over threshold.

Equation (4.1) de�nes a recursive function that determines the number of times node

u must execute before the input queue to node w is over threshold. The �rst branch

of the function handles a path of length one where node u is attached to node w. For

example, consider the chain Azimuth IFFT; Output in the SAR graph of Figure 4.1

whose length is one. Assuming length(Image) = 0, node Azimuth IFFT must execute

FAzimuthIFFT;Output = max

�
0;

�
thr(Image)� length(Image)

prd(Image)

��

=

�
128� 0

128

�
= 1

time before sink node Output executes.

The second branch of the function Fu;w recursively references itself when applied

to a path whose length is reduced by one (until the path is of length one). Thus, by

recursively invoking Fu;w, the second branch returns the number of times the current

source node u must execute in order for the node attached to it, node v, to execute Fv;w

times (which is the number of times node v must execute in order to put the input queue

to node w over threshold). For example, let length(RCS) = 256 � 100 and length(q) = 0
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for the rest of the queues in the graph. Node RCS Mult must execute

FRCSMult;Output

= max

�
0;

�
(FCornerTurn;Output � 1) � cns(RCS) + thr(RCS)� length(RCS)

prd(RCS)

��

times before sink node Output executes. Since FCornerTurn;Output = 1, the total number

of times node RCS Mult must execute is

�
(1� 1) � cns(RCS) + thr(RCS)� length(RCS)

prd(RCS)

�

=

�
(1� 1) � (256 � 64) + (256 � 128)� (256 � 100)

256

�

=

�
(256 � 28)

256

�

= 28:

The third branch of the function Fu;w returns zero when the input queue to node w

is already over threshold, or when other queues in the chain have enough data that the

input queue to node w will go over threshold without node u executing again.

Proof of Lemma 4.2.1: We prove, by induction on the length of the path from node

u to node w, that Fu;w, de�ned in Equation (4.1), yields the number of times node u

must execute in order to put the input queue to node w over threshold. Consider the

chain in Figure 4.3 where the nodes and queues in path u;w have been relabeled with

sequential indices starting at 0 and ending at j so that node u is labeled n0 and node w

is labeled nj. Hence, the nodes in path u;w (of length j) are labeled (n0; n1; n2; : : : ; nj)

and the output queue for node ni labeled qi.

For the base case of the induction, consider the path from node nj�1 to node nj whose

length is one since j � (j � 1) = 1. By Theorem 2.3.4, node nj�1 must execute

max

�
0;

�
thr(qj�1)� length(qj�1)

prd(qj�1)

��

times before the input queue to node nj is over threshold. This is the same value returned

by the �rst branch of Fu;w in Equation (4.1). Thus, Fu;w returns the correct number

of executions required of node u before for the input queue to node w is over threshold

when the length of the path is one.

By the induction hypothesis, assume Lemma 4.2.1 holds for all paths of length i :
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1 � i � k, where k < j. Thus, for a path of length i, Fnj�i;nj yields the number of

times node nj�i must execute before the input queue to node nj is over threshold. Let

i = k + 1. By the induction hypothesis, node nj�k must execute Fnj�k;nj times before

the input queue to node nj is over threshold. Therefore, to prove Lemma 4.2.1, we need

only determine how many times node nj�i must execute in order for node nj�k to execute

Fnj�k;nj times.

If Fnj�k;nj = 0, then no executions of node nj�i are required. Lemma 4.2.1 holds in

this case because the third branch of Equation (4.1) will return 0 when Fnj�k;nj = 0.

If Fnj�k;nj > 0 and

length(qj�i) � ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i);

then, by Theorem 2.3.3, node nj�k will execute at least

�
length(qj�i)� thr(qj�i)

cns(qj�i)

�
+ 1

=

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� thr(qj�i)

cns(qj�i)

�
+ 1

=

�
((Fnj�k;nj � 1) � cns(qj�i))

cns(qj�i)

�
+ 1

= (Fnj�k;nj � 1) + 1

= Fnj�k;nj

times, and no more executions of node nj�i are required. In this case, the second branch

of Equation (4.1) evaluates to

max

�
0;

�
(Fnj�k;nj � 1) � cns(qj�i) + thr(qj�i)� length(qj�i)

prd(qj�i)

��
= 0
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since �
(Fnj�k;nj � 1) � cns(qj�i) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� 0

when

length(qj�i) � ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i);

and Lemma 4.2.1 holds.

If Fnj�k;nj > 0 and

length(qj�i) < ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i);

then

Fnj�i;nj =

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�

executions of node nj�i will produce

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� prd(qj�i)

tokens on queue qj�i, and (before any executions of node nj�k occur) the length of queue

qj�i will be

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� prd(qj�i) + length(qj�i):

By Theorem 2.3.3, given

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� prd(qj�i) + length(qj�i)

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)
� prd(qj�i) + length(qj�i)

= ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i) + length(qj�i)

= ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)



120

tokens on queue qj�i, node nj�k will execute

�
length(qj�i)� thr(qj�i)

cns(qj�i)

�
+ 1

�

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� thr(qj�i)

cns(qj�i)

�
+ 1

=

�
((Fnj�k;nj � 1) � cns(qj�i))

cns(qj�i)

�
+ 1

= (Fnj�k;nj � 1) + 1

= Fnj�k;nj

times. Moreover, if node nj�i executes any fewer times, say

Fnj�i;nj � 1 =

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� 1

times, it will produce

��
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� 1

�
� prd(qj�i)

tokens on queue qj�i, and (before any executions of node nj�k occur) the length of queue

qj�i will be

��
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� 1

�
� prd(qj�i) + length(qj�i):

Since, for positive integers a and b,

�la
b

m
� 1
�
� b =

la
b

m
� b� b

� a+ (b� 1)� b

= a� 1;
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the number of tokens on queue qj�i is

��
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)

prd(qj�i)

�
� 1

�
� prd(qj�i) + length(qj�i)

� ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� length(qj�i)� 1 + length(qj�i)

= ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� 1

By Theorem 2.3.3, given ((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� 1 tokens on qj�i, node

nj�k will execute

�
length(qj�i)� thr(qj�i)

cns(qj�i)

�
+ 1

=

�
((Fnj�k;nj � 1) � cns(qj�i)) + thr(qj�i)� 1� thr(qj�i)

cns(qj�i)

�
+ 1

=

�
((Fnj�k;nj � 1) � cns(qj�i))� 1

cns(qj�i)

�
+ 1

=

�
�1

cns(qj�i)

�
+ (Fnj�k;nj � 1) + 1

= �1 + (Fnj�k;nj � 1) + 1

= Fnj�k;nj � 1

times (which is one less than the number of executions required). Thus, node nj�i must

execute Fnj�i;nj times to produce enough tokens to put the input queue to node w over

threshold, and Lemma 4.2.1 holds for all paths of length i, 1 � i � j.

We now know the number of executions of source node u that are required before

node w in the path u; w can execute. To get inherent latency bounds we need to

consider how long it takes before these executions occur. This will depend on the rate at

which source node u executes. Most external sensors produce data on a periodic basis,

but some execute with a rate of x executions in any interval of y time units. If the chain

executes on a single processor and the external source is periodic, we can derive precise

latency values for each sample. If the source node is rate-based (i.e., it executes with

a rate of x executions in any interval of y time units), exact latency values cannot be

derived unless it is known exactly when each of the x executions occur in each interval of

length y. Without this information, however, upper and lower bounds for the inherent

latency a sample encounters can still be derived. We �rst derive inherent latency values

for chains with periodic source nodes (i.e., nodes with execution rates where it is known
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exactly when each execution occurs). We then relax this restriction to include general

rate-based sources.

4.2.1.1 A Periodic Source Node

Let u;w be a PGM chain such that u 2 I is a periodic source node with period yu and

w 2 O is a sink node. Evaluating Fu;w just before a sample arrives will tell us how many

more samples are required before the input queue to node w is over threshold. Thus, the

inherent latency a sample encounters is given by

max (0; (Fu;w � 1) � yu) :

We again subtract one from Fu;w before converting it to time units since the latency

interval begins after the sample arrives. For example, consider again the SAR graph

of Figure 4.1 on Page 113. Let source node YRange execute with period y. As before,

let length(RCS) = 256 � 100, and let length(q) = 0 for the rest of the queues in the

graph just before the 101st sample is produced. Source node YRange must execute

FYRange;Output = 28 times before queue Image is over threshold. Thus, the 101st sample

will encounter an inherent latency of

(FYRange;Output � 1) � y = (28� 1) � y = 27y

time units. This inherent latency value is also reected in Figure 4.2 on page 114, where

the 101st sample arrives at time 100y and node Output �rst executes at time 127y. Thus,

as computed here, the sample has an inherent latency of 27y = 127y � 100y time units.

Inherent latency analysis for a PGM chain with a periodic source is formalized as

follows.

Lemma 4.2.2. Let u; w be a PGM chain such that u 2 I is a periodic source node

with period yu and w 2 O is a sink node. Under the strong synchrony hypothesis, the

latency a sample encounters is

max (0; (Fu;w � 1) � yu) (4.2)

Proof: By Lemma 4.2.1, Fu;w executions of source node u are required before sink node

w is eligible for execution. If Fu;w = 0, the sample's inherent latency is 0, and Equation

(4.2) returns 0 as desired. If Fu;w = 1, the next sample will encounter an inherent

latency of 0 since sink node w will execute as soon as the sample arrives. In this case
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(Fu;w � 1) � yu = 0 as desired. If Fu;w > 1, the next sample will encounter an inherent

latency of (Fu;w�1) �yu time units since (Fu;w�1) additional executions of source node

u are required after the sample arrives before sink node w executes. Therefore, under

the strong synchrony hypothesis, if source node u has a period of yu, a sample's latency

will be (Fu;w � 1) � yu time units.

Using Lemma 4.2.2, we compute the inherent latency of the �rst pulse received by

the SAR graph to be 127y. This matches the simulation in Figure 4.2. Recall from

Lemma 2.3.2 that the most tokens queue q can hold without being over threshold is

MaxUnderThr(q) and the minimum possible number of tokens on queue q after both

producer and consumer nodes have �red at least once is MinTokens(q). When all of the

queues in the graph containMaxUnderThr(q) tokens, as is the case after pulses 127+64k,

8k � 0, in Figure 4.2, the next sample's inherent latency will be 0 as shown in Figure 4.2

for pulses 128 + 64k, 8k � 0. Evaluating Equation (4.2) when each queue in the SAR

graph contains MinTokens(q) tokens, we get an inherent latency of 63y as shown in

Figure 4.2 for pulses 129 and 193.

4.2.1.2 A Rate-Based Source Node

If a source node is rate-based rather than periodic, evaluating Fu;w just before a sample

arrives will still tell us how many more samples are required before the input queue to

node w is over threshold. However, if xu > 1 and Fu;w > 1, we can no longer convert

this number directly to an inherent latency value. We can compute the interval in which

the Fu;w
th execution of source node u occurs, but the exact time of the Fu;w

th execution

of node u cannot be computed. This is because we do not know when, in an interval

of length yu, the xu executions of node u occur. Thus, for rate-based source nodes, the

inherent latency a sample encounters is bounded by an interval.

Consider the SAR graph of Figure 4.1 on page 113 once again. Let source node

YRange execute with a well-de�ned execution rate of RYRange = (3; y) starting at time

0 (i.e., YRange executes three times every y time units). As before, let length(RCS) =

256 � 100, and let length(q) = 0 for the rest of the queues in the graph at a time t

just before the 101st sample is produced. Source node YRange must execute another

FYRange;Output = 28 times before queue Image is over threshold. Since exactly three

executions of source node YRange occur in any interval of length y, there will be exactly

three executions of source node YRange in each interval [0 + (k � 1)y; 0 + ky); 8k > 0.
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Thus, the next 28 executions of node YRange will occur before time

t+

�
FYRange;Output

xYRange

�
� yYRange = t+

�
28

3

�
� y

= t+ 10y:

The next 28 executions occur before time t+10y because time t+10y is the beginning of

the next rate interval. Therefore, the inherent latency encountered by the 101st sample

is less than �
FYRange;Output

xYRange

�
� yYRange =

�
28

3

�
� y

= 10y:

The last of the next 28 executions of node YRange will occur no earlier than time

t+

�
FYRange;Output � 1

xYRange

�
� yYRange = t+

�
28� 1

3

�
� y = 9 � y

= t+ 9y:

Therefore, the inherent latency of the next sample will be greater than or equal to

�
FYRange;Output � 1

xYRange

�
� yYRange =

�
27

3

�
� y

= 9y:

Thus, the inherent latency the 101st sample encounters is bounded such that

9y � Sample Latency < 10y:

We have informally argued that the inherent latency a sample encounters is bounded

by an interval when the source node in a chain executes with a rate. We now formalize

the computation of inherent latency for samples produced by rate-based source nodes.

Lemma 4.2.3. Let u; w be a PGM chain such that u 2 I is a source node with a

well-de�ned execution rate Ru = (xu; yu) and w 2 O is a sink node. Under the strong

synchrony hypothesis, the latency a sample will encounter is bounded such that

max

�
0;

�
Fu;w � 1

xu

�
� yu

�
� Sample Latency < max

�
1;

�
Fu;w

xu

�
� yu

�
(4.3)
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Proof: By Lemma 4.2.1, Fu;w executions are required of source node u before sink

node w is eligible for execution. If Fu;w = 0, the sample's inherent latency is 0, and the

lower bound of Expression (4.3) returns 0 as desired. In this case, the upper bound of

Expression (4.3) returns one, and the inherent latency is bounded such that

0 � Sample Latency < 1

as desired. If Fu;w = 1, the next sample will encounter a latency of 0 since sink node w

will execute as soon as the sample arrives. In this case, Expression (4.3) evaluates to

max

�
0;

�
Fu;w � 1

xu

�
� yu

�
� Sample Latency < max

�
1;

�
Fu;w

xu

�
� yu

�

max

�
0;

�
1� 1

xu

�
� yu

�
� Sample Latency < max

�
1;

�
1

xu

�
� yu

�

0 � Sample Latency < yu;

which is the tightest bound possible without knowing when in the interval the sample

will be produced.

Let Fu;w > 1. By Theorem 2.4.8, since node u executes xu times in intervals [t; t+yu),

8t � 0, node u will execute
l
Fu;w

xu

m
� xu times in intervals [t; t +

l
Fu;w

xu

m
� yu), 8t � 0.

Thus, since

Fu;w �

�
Fu;w

xu

�
� xu;

the inherent latency the next sample will encounter is less than
l
Fu;w

xu

m
� yu, and the

upper bound of Expression (4.3) holds when Fu;w > 1.

Since

Fu;w � 1 �

�
Fu;w � 1

xu

�
� xu

and the measurement of latency begins after a sample arrives, a sample's inherent latency

will be greater than or equal to
j
Fu;w�1

xu

k
� yu. Moreover, these bounds are tight since, if

xu does not divide Fu;w, �
Fu;w � 1

xu

�
=

�
Fu;w

xu

�
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and, when xujFu;w, �
Fu;w � 1

xu

�
=

�
Fu;w

xu

�
� 1 =

�
Fu;w

xu

�
� 1:

Thus, under the strong synchrony hypothesis, the latency a sample will encounter is

bounded such that

max

�
0;

�
Fu;w � 1

xu

�
� yu

�
� Sample Latency < max

�
1;

�
Fu;w

xu

�
� yu

�

Note that when source node u is periodic with period yu, it executes with rate Ru =

(1; yu), and either Equation (4.2) or Equation (4.3) can be used to derive the inherent

latency a sample will encounter since

max

�
0;

�
Fu;w � 1

xu

�
� yu

�
� Sample Latency < max

�
1;

�
Fu;w

xu

�
� yu

�

max

�
0;

�
Fu;w � 1

1

�
� yu

�
� Sample Latency < max

�
1;

�
Fu;w

1

�
� yu

�
for xu = 1

max (0; (Fu;w � 1) � yu) � Sample Latency < max (1; (Fu;w) � yu) :

Thus, Sample Latency = max (0; (Fu;w � 1) � yu) when samples are produced once each

period of length yu.

4.2.2 Inherent Latency in Acyclic Graphs

Equation (4.3) quanti�es the impact dataow attributes have on inherent latency for a

path in the graph from a source node to a sink node. We now extend the latency analysis

to include acyclic graphs, and study the e�ects graph topology has on inherent latency.

We begin the analysis by considering an acyclic graph with a single periodic source. We

then gradually relax this restriction until the analysis supports multiple rate-based source

nodes in an acyclic graph.

4.2.2.1 One Periodic Source With Multiple Paths

For a PGM chain u;w, where u 2 I is a periodic source node producing data for node

w, a sample's inherent latency is (Fu;w � 1) � yu (as shown in Section 4.2.1). When the

graph is not a chain, determining inherent latency is more di�cult. Consider a graph
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5; 5

1; 1

1

1
1; 1

1; 1
5

Figure 4.4: A graph with two paths from source node j to node w.

that contains two paths from a source node to node w, such as the graph in Figure 4.4.

We now make a change in notation and identify source nodes by the letters i and j rather

than the letter u since we will soon be dealing with multiple source nodes. For each path

from a source to node w, we can use Lemma 4.2.1 to determine the number of times the

source node needs to execute before the input queue to node w along the path under

consideration is over threshold. For example, let Rj = (1; y). Evaluating (Fj;w � 1) � y

over the path (j; u; w) yields zero inherent latency since Fj;w = 1, but for path (j; v; w),

when length() = 0 and length(�) = 0 at the time of evaluation, we get a latency of 4y

since Fj;w = 5.

Let Fj;w = max(fFp j p 2 j;wg) denote the maximum number of times source node

j must execute before all of the input queues to node w in the set of paths fj;wg are

over threshold. The function Fp represents a change in notation from Fj;w to distinguish

between multiple paths from a source to node w. Fp is the same function as Fi;w when

p = i;w is a chain. Hence, as before, Fp is the number of executions required of the

source node in path p before the sink node in path p is eligible for execution when p is

a chain. Since Fp = 0 for the path p = (j; u; w), and Fp = 5 for the path p = (j; v; w),

Fj;w = 5 for the graph in Figure 4.4. Since node w can only execute when both input

queues are over threshold, Fj;w gives the number of times source node j must execute

before all of the input queues to node w are over threshold. Thus, the latency of a

sample is determined by Fj;w and the execution rate of source node j. Therefore if Rj

= (1,y), the �rst sample produced by source node j will encounter a inherent latency of

(Fj;w � 1) � y = 4y time units.

Now consider the graph of Figure 4.5. This graph has the same topology of the

graph in Figure 4.4, but the dataow attributes are di�erent. In particular, notice that

thr(�) > cns(�). Let node j be periodic with rate Rj = (1; 2). At time 0, F(j;v;w) = 3,
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1

4; 4

4

4

4
4; 4

12; 12

4; 3

Time Execution of length(�) length() length(�) length(�)
0 j; u 1 4 1 0
1 | 1 4 1 0
2 j; u 2 8 2 0
3 | 2 8 2 0
4 j; u; v 3 0 3 4
5 | 3 0 3 4
6 j; u; u; w 1 4 1 0

j

v

Time

u

0    1     2    3     4    5     6   

2

w

Figure 4.5: A graph with two paths from source node j to node w, a snapshot sequence,
and a time-line execution. This graph has the same topology as the graph of Figure 4.4,
but the dataow attributes are di�erent. The most distinguishing features of this graph
are the attributes of queue �: prd(�) = 4, thr(�) = 4, and cns(�) = 3. The number two
above the down arrow at time six for node u represents two executions of node u at that
time.
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but F(j;u;w) = 4. Hence at time 0, Fj;w = 4, and the latency of the �rst sample is

(Fj;w � 1) � yj = (Fj;w � 1) � 2

= (4� 1) � 2

= 6

time units. It is instructive to step through the �rst 6 time units of graph execution

under the strong synchrony hypothesis. As shown in the snapshot sequence and time-

line execution in Figure 4.5, node j appends 4 tokens to queues � and  at time 0.

This enables one execution of node u, which consumes 3 of the 4 tokens on queue � and

produces one token on queue �. At time 2, 4 more tokens are appended to queues �

and  and node u executes once again. We now have length(�) = 2, length(�) = 2, and

length() = 8. The next production of data by node j, at time 4, enables both u and v.

Even though the execution of node v puts queue � over threshold, node w is not able to

execute since length(�) = 3 < thr(�). At time 6 (with length(�) = 3), node j appends 4

tokens to queues � and . This enables 2 executions of node u and (�nally) an execution

of node w. The latency of the sample produced at time 0 was indeed 6, as we computed

above.

Inherent latency analysis for an acyclic graph with one periodic source is formalized

as follows.

Lemma 4.2.4. Let fj;wg be the set of acyclic paths from node j to node w. Node j

must execute

Fj;w = max(fFp j p 2 j;wg) (4.4)

times to produce enough tokens to put each of the input queues to node w in the set of

paths fj;wg over threshold.

Proof: By Lemma 4.2.1, evaluating Fp for a path p in the set fj;wg gives the number

of executions of node j required to produce enough tokens to put the input queue to

node w over threshold if the path p were a chain. Thus, after

Fj;w = max(fFp j p 2 j;wg)

executions of node j, all paths from node j to node w will have produced enough tokens

to put each of the input queues to node w in the set of paths fj;wg over threshold.
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Lemma 4.2.5. Let G = (V;E;  ) be an acyclic PGM graph with one periodic source

node j 2 I with period yj. Let fj;wg be the set of acyclic paths from periodic source

node j to sink node w 2 O. Under the strong synchrony hypothesis, the latency a sample

will encounter from source node j to sink node w is

max (0; (Fj;w � 1) � yj) (4.5)

Proof: By Lemma 4.2.4, evaluating Fj;w just before a sample arrives will tell us how

many additional samples are required before each of the input queues to node w in the

set of paths fj;wg over threshold. Since node j is the only source node, all of the input

queues to node w will be over threshold after Fj;w executions of node j, and node w

will execute. Thus, since source node j is periodic, a sample will encounter a latency of

max(0; (Fj;w � 1) � yj)

time units. We subtract one from Fj;w before converting it to time units since the

latency interval begins after the sample arrives.

Lemma 4.2.5 can be used to determine the latency a sample will encounter from source

node j to sink node w if the graph has only one periodic source node. We now relax the

restriction of a single periodic source node and consider multiple periodic source nodes.

4.2.2.2 Multiple Periodic Sources Nodes

Let Iw be the set of source nodes for which there exists a path from j 2 Iw to node w.

When more than one source node produces data for a node w, such as in the graph of

Figure 4.6, we need to evaluate (Fj;w�1) �yj for each node j 2 Iw and use the maximum

of these values to compute inherent latency. For example, let Ri = (1; 3) and Rj = (1; 2)

for the source nodes in Figure 4.6. From the time-line execution, we see that the �rst

sample has a latency of six time units. Evaluating (4.4) at time 0 (with length(q) = 0

for all q), we have (Fi;w � 1) � yi = 6 and (Fj;w � 1) � yj = 6. Therefore, assuming

nodes i and j both produce data at time 0, the �rst sample produced by node i (which

consists of two tokens) and the �rst sample produced by node j (which consists of four

tokens) will each have an inherent latency of six time units, which is the same latency

we observed in the time-line execution.

What will the latency be for the second sample produced by node j at time 2?

From the time-line execution, we see that the second sample has an inherent latency of
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�

4
4

4

�

12; 12

4; 4

2; 1

4; 3
4; 4

2

Time Execution of length(�) length(�) length() length(�) length(�)

0 i; j; u 1 1 4 1 0
1 | 1 1 4 1 0
2 j 1 5 8 1 0
3 i; u 2 2 8 2 0
4 j; u; v 1 3 0 3 4
5 | 1 3 0 3 4
6 i; j; u; u; w 1 1 4 1 0

j

v

Time

u

0    1     2    3     4    5     6   

2

i

w

Figure 4.6: A graph with two source nodes, a snapshot sequence, and a time-line execu-
tion. Source nodes i and j have well-de�ned execution rates of Ri = (1; 3) and Rj = (1; 2)
with si = 0 and sj = 0 (i.e., both nodes �rst execute at time 0).
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4 = 6 � 2 time units (since node w �rst executes at time six and the second sample

is produced at time two). From the snapshot sequence, the state of the queues just

before the second sample is produced at time 2 will be length(�) = 1, length(�) = 1,

length() = 4, length(�) = 1, and length(�) = 0. Using these values with Equation (4.5)

we get (Fi;w� 1) � yi = (2� 1) � 3 = 3 and (Fj;w� 1) � yj = (2� 1) � 2 = 2, which would

imply an inherent latency of 3 time units for this sample. This means, however, that

node w has to �re at time 2 + 3 = 5, which contradicts the time-line execution shown in

Figure 4.6. The problem is that the expression (Fi;w�1)�yi assumes source i is producing

the sample for which we are deriving the latency value. In this case, node i does not

produce until time 3, and the sample was produced by node j at time 2. Certainly we

can show that the actual latency will lie in the interval [(Fi;w � 1) � yi;Fi;w � yi), which

evaluates to a lower bound of �ve and an upper bound of eight.

We can, however, collapse this interval to a single point if we know when each source

node �rst executes. Let each source node begin their periodic execution at time 0.

Observe that for any point in time t, source j will next produce at time

t+ yj � (t mod yj): (4.6)

For example, let t = 5, and consider, once again, the graph and time-line execution in

Figure 4.6. Using Equation (4.6), node j will next execute at time

t + yj � (t mod yj) = 1 + 2� (1 mod 2)

= 2;

and node i will next execute at time

t+ yi � (t mod yi) = 1 + 3� (1 mod 3)

= 3:

Similarly, the kth execution of node j from time t will occur at time

t+ k � yj � (t mod yj): (4.7)

For example, let k = 3 and t = 1. Starting at time 1, the third execution of node j will
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occur at time

t+ k � yj � (t mod yj) = 1 + 3 � 2� (1 mod 2)

= 1 + 6� 1

= 6;

as shown in the time-line execution of Figure 4.6.

We can combine Equation (4.7) with Lemma 4.2.5 to compute the inherent latency a

sample produced at time t will encounter. For example, let t = 2. The inherent latency

the second sample produced by node j at time 2 encounters is computed as follows. First,

calculate the number of executions required of each source node u 2 Iw before node w

next executes using Function Fu;w. Recall from above that Fj;w = 2, and Fi;w = 2.

Second, compute the maximum time, starting at time t, before each source node u 2 Iw

executes Fu;w times. This determines the latency of the sample produced at time 2,

and can be done using Equation (4.7). Since node j executes at time 2 and Fj;w = 2

includes this execution, the Fj;w
th execution of source node j from time 2 will occur at

time

t+ (Fj;w � 1) � yj � (t mod yj) = 2 + (2� 1) � 2� (2 mod 2)

= 2 + 2� 0

= 4:

Source node i will next execute at time

t+ Fi;w � yi � (t mod yi) = 2 + 2 � 3� (2 mod 3)

= 2 + 6� 2

= 6:

Here, we do not subtract one from Fi;w since node i does not execute at time t = 2.

Since node w cannot execute until both of its input queues are over threshold, it does

not execute until time 6 when the second execution of node i from time 2 occurs. Hence,
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the inherent latency of the second sample produced by node j at time 2, is

t�max(t + Fj;w � yj � (t mod yj); t+ Fi;w � yi � (t mod yi))

= max(Fi;w � yi � (t mod yi);Fi;w � yi � (t mod yi))

= max((2� 1) � 2� (2 mod 2); 2 � 3� (2 mod 3))

= max(2; 4)

= 4;

(4.8)

as shown in the time-line execution of Figure 4.6.

To generalize the process of computing inherent latency in an acyclic graph with

multiple periodic source nodes, let

Lj;w(t) =

8<
:max(0; (Fj;w � 1) � yj) if ((t� sj) mod yj) = 0

max(0;Fj;w � yj � ((t� sj) mod yj)) if ((t� sj) mod yj) > 0
(4.9)

denote the number of time units from time t before node j produces enough samples to

put the input queues to node w along the paths j; w over threshold. Recall that sj

denotes the time of the �rst execution of node j. The term ((t� sj) mod yj) is used to

determine if node j will execute at time t given that it �rst executed at time sj and has

a period of yj time units. The �rst branch of Equation (4.9) handles the case where node

j executes at time t, and the second branch handles the case when it does not. Using

Equation (4.9), computing the inherent latency encountered by a sample produced at

time t is reduced to �nding the maximum value of Lu;w(t) computed for each node u in

the set of graph source nodes that have paths leading to node w.

From Lemma 4.2.4, Lemma 4.2.5, and the preceding discussion, we obtain:

Lemma 4.2.6. Let G = (V;E;  ) be an acyclic PGM graph. Let Iw be the set of periodic

source nodes producing data for sink node w 2 O. Let sj denote the time of the �rst

execution of source node j, and let yj denote the period of source node j. Under the

strong synchrony hypothesis, the latency for a sample produced at time t is

Lw(t) = max
j2Iw

(Lj;w(t)) (4.10)

where Lj;w(t) is de�ned by Equation (4.9).

We now apply Lemma 4.2.6 to the �rst and second samples produced by node j in

the graph of Figure 4.6 to compute their latency values. As before, let Ri = (1; 3),
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Rj = (1; 2), si = 0, and sj = 0. By Lemma 4.2.6, the �rst sample is produced at time 0

and has a latency of 6 time units since

Lw(0) = max
j2Iw

(Lj;w(0))

= max(Lj;w(0); Li;w(0))

= max((Fj;w � 1) � yj; (Fi;w � 1) � yi)

since ((t� sj) mod yj) = 0 and ((t� si) mod yi) = 0

= max((Fj;w � 1) � 2; (Fi;w � 1) � 3)

= max((4� 1) � 2; (3� 1) � 3)

= max(6; 6)

= 6:

This is the same inherent latency value we computed before, and it is the same inherent

latency represented by the time-line execution in Figure 4.6.

We now compute the the inherent latency of the second sample produced by node j at

time 2. From the snapshot sequence in Figure 4.6 we see that the state of the queues at

time 2 are length(�) = 1, length(�) = 1, length() = 4, length(�) = 1, and length(�) = 0.

By Lemma 4.2.6, the inherent latency for this sample is

Lw(2) = max
j2Iw

(Lj;w(2))

= max(Lj;w(2); Li;w(2))

= max((Fj;w � 1) � yj;Fi;w � yi � ((2� si) mod yi))

since ((t� sj) mod yj) = 0 and ((t� si) mod yi) > 0

= max((Fj;w � 1) � 2;Fi;w � 2� ((2� 0) mod 3))

= max((2� 1) � 2; 2 � 3� 2)

= max(2; 4)

= 4;

which is the same latency value computed by Equation (4.8) and shown in the time-line

execution in Figure 4.6.
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4.2.2.3 Rate-based Source Nodes

Under the strong synchrony hypothesis, Lemma 4.2.6 provides a means for deriving

the latency of any sample when the source nodes are periodic. We now remove our

assumption of periodic input source nodes and derive lower and upper bounds for the

latency produced by rate-based source nodes under the strong synchrony hypothesis.

Computing the inherent latency for acyclic graphs with rate-based source nodes is a

straightforward extension of Lemma 4.2.3. Function Fj;w is evaluated for all j 2 Iw and

the maximum of these values is used in Equation (4.3) (as opposed to Fj;w). Substituting

Fj;w for Fu;w in Equation (4.3) on page 124, a sample's inherent latency is bounded

such that

max

�
0;

��
Fj;w � 1

xj

�
� yj j 8j 2 Iw

��
� Sample Latency

< max

�
1;

��
Fj;w

xj

�
� yj j 8j 2 Iw

��
(4.11)

Recall that Fj;w is de�ned as Fj;w = max(fFp j p 2 j;wg). Thus, since

max

�
0;

��
Fj;w � 1

xj

�
� yj j 8j 2 Iw

��

= max

�
0;

��
max(fFp j p 2 j;wg)� 1

xj

�
� yj j 8j 2 Iw

��

= max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�

and

max

�
1;

��
Fj;w

xj

�
� yj j 8j 2 Iw

��

= max

�
1;

��
max(fFp j p 2 j;wg)

xj

�
� yj j 8j 2 Iw

��

= max
p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�
;

we can rewrite Equation (4.11) as

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency < max

p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�
(4.12)
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4

�

1

2

2

4; 4

12; 12

4; 3

4; 4

2; 1

Time Execution of length(�) length(�) length() length(�) length(�)

0 i; j; j 1 4 4 0 0
1 i; u 1 1 4 1 0
2 j; j 1 5 8 1 0
3 i; u 1 2 8 2 0
4 i; j; j; u; v 1 3 0 3 4
5 | 1 3 0 3 4
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Figure 4.7: A graph with two rate-based source nodes, a snapshot sequence, and a time-
line execution. Source nodes i and j have well-de�ned execution rates of Ri = (2; 3) and
Rj = (2; 2) with si = 0 and sj = 0.
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so that only one maximum function is used.

Consider the graph and its time-line execution in Figure 4.7. This graph is the same

as the graph of Figure 4.6 but with source nodes i and j producing half as many tokens

during each execution. That is, prd(�) = 1, prd(�) = 2, and prd() = 2. Let the rates of

the source nodes i and j be Ri = (2; 3) and Rj = (2; 2) so that they execute twice as often

in the same interval of time as they did before. The lower bound for the inherent latency

encountered by the �rst sample produced by node j is bounded using Equation (4.12) as

follows:

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�

= max(0;

�
F(i;u;w) � 1

xi

�
� yi;

�
F(j;u;w) � 1

xj

�
� yj;

�
F(j;v;w) � 1

xj

�
� yj)

= max(0;

�
5� 1

2

�
� 3;

�
7� 1

2

�
� 2;

�
6� 1

2

�
� 2)

= max(0; 2 � 3; 3 � 2; 2 � 2)

= max(0; 6; 6; 4)

= 6

time units. The upper bound for the inherent latency encountered by the �rst sample

produced by node j is bounded using Equation (4.12) as follows:

max
p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�
= max(0;

�
F(i;u;w)

xi

�
� yi;

�
F(j;u;w)

xj

�
� yj;

�
F(j;v;w)

xj

�
� yj)

= max(0;

�
5

2

�
� 3;

�
7

2

�
� 2;

�
6

2

�
� 2)

= max(0; 3 � 3; 4 � 2; 3 � 2)

= max(0; 9; 8; 6)

= 9

time units.

Inherent latency analysis for acyclic graphs with rate-based sources is formalized as

follows.

Lemma 4.2.7. Let G = (V;E;  ) be an acyclic PGM graph. Let Iw be the set of nodes

producing data for sink node w 2 O. Let Rj = (xj; yj) be a well-de�ned execution rate

for node j 2 Iw starting at time 0. Under the strong synchrony hypothesis, the latency a
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sample will encounter is bounded such that

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency < max

p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�
(4.13)

Proof: By Lemma 4.2.1, for a source node j 2 Iw and a path p 2 fj;wg, Fp computes

the number of times node j must execute before the input queue to node w along the

path p is over threshold. By Lemma 4.2.3, it takes at least

max

�
0;

�
Fp � 1

xj

�
� yj

�

time units before source node j in path p 2 fj;wg produces enough tokens to put the

input queue to node w along path p over threshold. Thus, at least

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�

time units are required before all of the input queues to node w are over threshold (which

is the lower bound for the inherent latency a sample encounters).

By Lemma 4.2.3, it takes less than

max

�
1;

�
Fp
xj

�
� yj

�

time units for source node j in path p 2 fj;wg to produce enough tokens to put the

input queue to node w along path p over threshold. Thus, less than

max
p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�

time units are required before all of the input queues to node w are over threshold (which

is the upper bound for the inherent latency a sample encounters).

Thus, under the strong synchrony hypothesis, the latency a sample will encounter is

bounded such that

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency < max

p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�
;
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Figure 4.8: A simple three-node cycle. The queue labeled q is a back edge.

and Lemma 4.2.7 holds.

4.2.3 Inherent Latency in Cyclic Graphs

Cycles do not change the way one computes inherent latency if each cycle's back edge

is always over threshold. Recall from Section 2.4.2 that a back edge is an edge e that

joins node v in a cycle to an ancestor u when the graph is topologically sorted. For the

graph in Figure 4.8, the queue labeled q is a back edge. Not only is inherent latency

calculated for cyclic graphs in the same way as it is for acyclic graphs, if each back edge is

always over threshold, the latency computed for a cyclic graph is identical to the latency

computed for an equivalent (acyclic) graph that does not contain the back edge. To see

this, consider the cyclic graph in Figure 4.8. Assume all queues have unity dataow

attributes. Thus, one execution of node j puts the queue from node j to node u over

threshold, and F(j;u) = 1. If queue q is always over threshold, then it will always be the

case that F(j;u;w;v;u) = 0 since F(v;u) = 0 when queue q is over threshold. Thus, since

latency is determined by the expression

max(fFp j p 2 j;ug);

the path (j; u; w; v; u) will never a�ect the inherent latency computation for the graph

if queue q is always over threshold, and the inherent latency computed for the graph

in Figure 4.8 will always be the same as the inherent latency computed for the graph

without back edge q.

Here, as in Section 2.4.2, we negate the e�ect of cycles by making sure the back edge

in the cycle is always over threshold. E�ectively the cycle is broken by requiring back
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edges, such as queue q in Figure 4.8 to be initialized with

�
sv � su + yv

yu

�
� xu � cns(q) + thr(q) (4.14)

tokens, where su and sv represent the �rst execution time of nodes u and v respectively

and  (q) = (v; u). When cycles are initialized with data in this manner, the back edge

cannot inuence latency since it is always over threshold. Recall that in Section 2.4.2

we did not show how to determine the �rst execution time of node u (i.e., the value of

variable su). We now have the necessary equations to present the derivation of the �rst

execution of nodes u and v, su and sv used in Equation (4.14), but �rst we show formally

that if the back edge is always over threshold it cannot a�ect latency. We then show how

to compute su and sv so that, when the back edge is initialized with a number of tokens

given by Equation (4.14), the back edge is always over threshold, and that the latency

computed for a cyclic graph is the same as the latency that would be computed if the

back edges were removed.

Lemma 4.2.8. Let G = (V;E;  ) be an cyclic PGM graph. Let Iu be the set of nodes

producing data for node u. Let P = fj;ug, for j 2 Iu, denote the set of paths from

source node j to node u, and let P̂ = fP � f(j; : : : ; u; : : : ; v; u)gg denote the set of acyclic

paths from source node j to node u, where edge  (q) = (v; u) denotes a back edge q that

connects node v to node u. Under the strong synchrony hypothesis, if each back edge q is

always over threshold, then

max(
n
Fp j p 2 P̂

o
) = max(fFp j p 2 Pg);

and the latency computed for a cyclic graph is the same as the latency that would be

computed if the back edges were removed (making the graph acyclic).

Proof: By Lemma 4.2.4, if back edge q did not exist, node j would need to execute

max(
n
Fp j p 2 P̂

o
) times before enough tokens were produced to put every input queue

to node w in the set P̂ over threshold. If back edge q is always over threshold, then it

can never prevent node u from being eligible for execution and F(v;u) will always be zero.

Therefore, if queue q is always over threshold, it will be the case that

max(
n
Fp j p 2 P̂

o
) = max(fFp j p 2 Pg);

and the latency computed for a cyclic graph is the same as the latency that would be
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computed if the back edges were removed (making the graph acyclic).

We now show how to compute su and sv, so that, when the back edge is initialized with

a number of tokens given by Equation (4.14), the back edge is always over threshold. We

begin by restricting the set of source nodes to be periodic and then relax this restriction

to include rate-based sources.

4.2.3.1 Periodic Sources Nodes

Let G = (V;E;  ) be a PGM graph with periodic source nodes. Let Iw be the set of

nodes producing data for node w 2 V. Let P = fj;wg, for all j 2 Iw, denote the set of

paths from source node j to node w. Let P̂ = fP � f(j; : : : ; u; : : : ; v; u; : : : ; w)gg denote

the set of acyclic paths from source node j to node w 2 O, where edge  (q) = (v; u)

denotes a back edge q that connects node v to node u. Note that if G is acyclic, then

P = P̂.

By Lemmas 4.2.6 and 4.2.8, if a graph is acyclic, the �rst sample produced at time

t = 0 will encounter a latency of Lw(0) (de�ned by Equation (4.10) on page 134). For a

cyclic graph in which every back edge is always over threshold, let

L̂w(t) = max
p2P̂

8<
:max(0; (Fp � 1) � yj) if ((t� sj) mod yj) = 0

max(0; Fp � yj � ((t� sj) mod yj)) if ((t� sj) mod yj) > 0

denote the number of time units that elapse after time t before node u produces enough

samples to put the input queues to node w in the set of paths fj;wg over threshold.

If every back edge is always over threshold, the �rst sample produced at time t = 0 will

encounter a latency of L̂w(0). If all of the source nodes begin executing at time t = 0,

then

L̂w(t) = max
p2P̂

8<
:max(0; (Fp � 1) � yj) if ((t� sj) mod yj) = 0

max(0; Fp � yj � ((t� sj) mod yj)) if ((t� sj) mod yj) > 0

= max
p2P̂

(0; (Fp � 1) � yj)

since t = 0, sj = 0, and (t mod yj) = 0, 8j 2 Iw. Thus, the time of the �rst execution of

node v 2 V is computed as

sv = L̂v(0): (4.15)
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When all of the source nodes begin execution at time 0, Equation (4.15) reduces to

sv = L̂v(0)

= max
p2P̂

(0; (Fp � 1) � yj):

Inherent latency analysis for cyclic graphs with periodic sources is formalized as fol-

lows.

Lemma 4.2.9. Let G = (V;E;  ) be a cyclic PGM graph with periodic source nodes. Let

queue q be a back edge in a cycle with  (q) = (v; u), and let execution rates Ru and Rv

be well-de�ned. Let P̂u denote the set of acyclic paths from source node j to node u, and

P̂v denote the set of acyclic paths from source node j to node v. If queue q is initialized

with a number of tokens given by Equation (4.14), where su and sv in Equation (4.14)

are computed using Equation (4.15), queue q will always be over threshold.

Proof: Without loss of generality, assume all source nodes begin executing at time 0.

From the preceding discussion, the �rst execution of node u occurs at time

su = max
p2P̂u

(0; (Fp � 1) � yj)

and the �rst execution of node v occurs at time

sv = max
p2P̂v

(0; (Fp � 1) � yj):

Since queue q is a back edge, there exists an acyclic path from source node j to node v

that includes node u. Thus, sv � su. Since the execution rate of node v is not derived

using the execution rate of node u, there exists a positive integer k such that yv = k � yu,

and after time su node u will execute xu times in every interval of length yu. In an interval

of length yv, node u will execute k � xu times. If queue q is initialized with a number of

tokens given by Equation (4.14), it will remain over threshold until time (sv + yv) even

if node v produces no data. However, after time sv, node v will always produce enough

data for node u to execute k �xv times in any interval of length yv. Thus, since execution

rates Ru and Rv are well-de�ned, if queue q is initialized with a number of tokens given

by Equation (4.14), queue q will always remain over threshold.

From Lemma 4.2.6, Lemma 4.2.8, and Lemma 4.2.9, we obtain:
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Lemma 4.2.10. Let G = (V;E;  ) be a cyclic PGM graph with periodic source nodes.

Let queue q be a back edge in a cycle with  (q) = (v; u). Let P̂ denote the set of acyclic

paths from source node j to node w 2 O. Let every back edge q be initialized with

a number of tokens given by Equation (4.14), where su and sv in Equation (4.14) are

computed using Equation (4.15). Under the strong synchrony hypothesis, the latency for

a sample produced at time t is

L̂w(t) = max
p2P̂

8<
:max(0; (Fp � 1) � yj) if ((t� sj) mod yj) = 0

max(0; Fp � yj � ((t� sj) mod yj)) if ((t� sj) mod yj) > 0
(4.16)

4.2.3.2 Rate-based Source Nodes

Let G = (V;E;  ) be a PGM graph with rate-based source nodes. Let Iw be the set of

nodes producing data for node w 2 V. Let P = fj;wg, for all j 2 Iw, denote the set of

paths from source node j to node w. Let P̂ = fP � f(j; : : : ; u; : : : ; v; u; : : : ; w)gg denote

the set of acyclic paths from source node j to node w 2 O, where edge  (q) = (v; u)

denotes a back edge q that connects node v to node u. Note that if G is acyclic, then

P = P̂.

Under the strong synchrony hypothesis, Lemma 4.2.10 provides a means for com-

puting the latency of any sample when the source nodes in the set I are periodic. We

now remove our assumption of periodic input source nodes and derive lower and upper

bounds for the latency produced by rate-based source nodes in a cyclic graph under the

strong synchrony hypothesis.

If back edge q is always over threshold, it cannot a�ect latency (by Lemma 4.2.8).

When the source nodes are rate-based, we need new equations for the start times of nodes

u and v to ensure that back edge q is always over threshold (where  (q) = (v; u)). By

Lemmas 4.2.8 and 4.2.7, the latency the �rst sample encounters in an acyclic graph is

bounded such that

max
p2fj;wjj2Iwg

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency < max

p2fj;wjj2Iwg

�
1;

�
Fp
xj

�
� yj

�

where the execution rate of source node j is Rj = (xj; yj). Thus, if all of the back edges

in the graph are always over threshold, the earliest node u can execute is

su = max
p2P̂

�
0;

�
Fp � 1

xj

�
� yj

�
(4.17)
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and node v must execute before

sv = max
p2P̂

�
1;

�
Fp
xj

�
� yj

�
: (4.18)

From the proof of Lemma 4.2.9 and the preceding discussion, it follows that back

edge q will always be over threshold if it is initialized with a number of tokens given

by Equation (4.14), where su and sv in Equation (4.14) are computed using Equations

(4.17) and (4.18) respectively.

Lemma 4.2.11. Let G = (V;E;  ) be a cyclic PGM graph with rate-based source nodes.

Let queue q be a back edge in a cycle with  (q) = (v; u), and let execution rates Ru and Rv

be well-de�ned. Let P̂u denote the set of acyclic paths from source node j to node u, and

P̂v denote the set of acyclic paths from source node j to node v. If queue q is initialized

with a number of tokens given by Equation (4.14), where su in Equation (4.14) is com-

puted using Equation (4.17) and sv in Equation (4.14) is computed using Equation (4.18),

queue q will always be over threshold.

From Lemma 4.2.7, Lemma 4.2.8, and Lemma 4.2.11, we obtain:

Lemma 4.2.12. Let G = (V;E;  ) be a cyclic PGM graph with rate-based source nodes.

Let w 2 O, and let the execution rate of source node j 2 Iw be Rj = (xj; yj). Let queue

q be a back edge in a cycle with  (q) = (v; u). Let P̂ denote the set of acyclic paths from

source node j to node w. Let every back edge q be initialized with a number of tokens given

by Equation (4.14), where su in Equation (4.14) is computed using Equation (4.17) and

sv in Equation (4.14) is computed using Equation (4.18). Under the strong synchrony

hypothesis, the latency a sample will encounter is bounded such that

max
p2P̂

�
0;

�
Fp � 1

xj

�
� yj

�
� Sample Latency < max

p2P̂

�
1;

�
Fp
xj

�
� yj

�
: (4.19)

Lemma 4.2.12 can be used to compute the latency any sample will encounter in cyclic

or acyclic graphs under the strong synchrony hypothesis. In the next section, we show

how to manage imposed latency using our synthesis method and scheduling algorithms.

We then combine the latency bounds derived under the strong synchrony hypothesis with

the latency bounds derived for imposed latency to show how to bound and manage the

total latency a sample encounters in an implementation of the graph.
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4.3 Imposed Latency

Let G = (V;E;  ) be a PGM graph mapped to the RBE task set T according to the

synthesis method presented in Chapter 3. Thus, for each node v in the graph, node

v is associated with the four tuple (xv; yv; dv; ev) that characterizes an RBE task. The

parameters xv and yv are derived using dataow attributes of the input queues to node u

and Algorithm 4 of Section 2.4.2. Parameter ev is the worst case execution time for node

v, which we assume is supplied. For ease of modeling, we will also assume ev is constant.

In an implementation of the graph, the source and sink nodes represent external devices.

These are represented as RBE tasks with parameters x and y given by the external

environment, and e = 0. (The sink and source nodes are not implemented as tasks, but

are represented as tasks for ease of modeling.) The only free parameter is the relative

deadline parameter dv, the choice of which inuences processor capacity requirements,

latency, and bu�er requirements. In general, a smaller value chosen for dv will result in

less latency and memory requirements than a larger dv value, but at a cost of increased

processor capacity requirements. We use the relative deadline parameter dw of graph

output node w to manage imposed latency. Recall that our synthesis method requires

the deadline parameter associated with output node w to be greater than or equal to the

deadline parameter of every node in the path from graph source node j to node w. Thus,

under RBE-EDF scheduling, the maximum imposed latency a sample incurs along the

path from node j to node w is bounded by dw.

Using our synthesis method to transform a processing graph into a real-time system,

managing imposed latency is a straightforward process. Moreover, unlike the computa-

tion of inherent latency, computing imposed latency is easy. Inherent latency is the delay

between when a sample is produced by graph source node j and when graph sink node

w executes under the strong synchrony hypothesis. Thus, imposed latency is the delay

between when node w executes under the strong synchrony hypothesis and when it actu-

ally �nishes executing in an actual implementation. Under RBE-EDF scheduling, which

uses release time inheritance, a node's logical release time is equal to the time it would

be released (and execute) under the strong synchrony hypothesis. By Theorem 3.3.5, if

the graph is schedulable with the RBE-EDF scheduling algorithm (i.e., Equation (3.4)

results in the a�rmative), every released node v �nishes its execution within dv time

units of its logical release. Thus, the upper bound on imposed latency incurred by a

sample produced by source node j and consumed by sink node w is equal to dw.

Theorem 4.3.1. Let G = (V;E;  ) be a PGM graph. Let T be an RBE task set synthe-
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sized from graph G. Let j be a graph source node for which there exists a path to graph

output node w. If T is schedulable by Equation (3.4), then the maximum imposed latency

a sample incurs along the path j;w is less than or equal to dw.

Proof: Since RBE-EDF uses release-time inheritance, each task's logical release time is

equal to its release time (and execution) under the strong synchrony hypothesis. Thus,

the maximum imposed latency a sample incurs along the path j;w is determined by

when node w �nishes executing. An a�rmative result from Equation (3.4) means that

every released task v will �nish executing within dv time units of its logical release time.

Thus, sink node w will �nish executing within dw time units of its logical release time,

and the maximum imposed latency a sample incurs along the path j;w is less than or

equal to dw.

A lower bound on imposed latency is the sum of the execution times of each node in

the path from source node j to sink node w. Thus, the lower bound on imposed latency

is proportional to the speed of the processor. A processor twice as fast as another will

have an imposed latency lower bound that is half the bound computed for the slower

processor. An in�nitely fast processor has an imposed latency lower bound of zero since

the nodes take no time to execute.

Theorem 4.3.2. Let G = (V;E;  ) be a PGM graph. Let T be an RBE task set synthe-

sized from graph G. Let j be a graph source node for which there exists a path to graph

output node w. The minimum imposed latency a sample incurs along the path j;w is

greater than or equal to
P

v2j;w ev:

Proof: The minimum imposed latency possible occurs when source node j produces a

sample and each node in the path j;w executes once. Since the execution time for each

node v in the path is ev, it immediately follows that

Imposed Latency �
X
v2j;w

ev:

4.4 Total Latency

The total latency a sample incurs can be expressed with the equation

Total Latency = Inherent Latency+ Imposed Latency:
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Thus, no matter how a graph is implemented, a sample will never incur a latency lower

than the inherent latency we derived under the strong synchrony hypothesis. The upper

bound on the total latency a sample incurs is determined by the upper bound on the

sample's inherent latency plus the latency imposed by the synthesis method.

In the next section we combine the bounds on inherent and imposed latency devel-

oped in Sections 4.2 and 4.3 to develop bounds on the total latency a sample incurs.

The latency bounds presented in Section 4.4.1 assume that back edge, if any exist, are

initialized with enough data that their queue is always over threshold. We then show, in

Section 4.4.2, how to initialize back edges using the information known about the source

nodes.

4.4.1 Latency Bounds

Before presenting the collection of latency bounds we have developed for various graph

topologies and types of source nodes, we present a general latency theorem.

Theorem 4.4.1. Let G = (V;E;  ) be a PGM graph. Let T be an RBE task set synthe-

sized from graph G. Let j be a graph source node for which there exists a path to graph

output node w. If T is schedulable by Equation (3.4), then the latency a sample incurs

along the path j;w under RBE-EDF scheduling is bounded such that

Inherent Latency Lower Bound +
X
v2j;w

ev � SampleLatency

and

SampleLatency < Inherent Latency Upper Bound+ dw:

Proof: The minimum latency a sample incurs is bounded from below by a lower bound

on inherent latency plus the lower bound on imposed latency. Thus, by Theorem 4.3.2,

Inherent Latency Lower Bound +
X
v2j;w

ev � Sample Latency

The maximum latency a sample incurs is bounded from above by the upper bound on

inherent latency plus the upper bound on imposed latency. Thus, by Theorem 4.3.1 and

the fact that inherent latency is always less than the Inherent Latency Upper Bound,

Sample Latency < Inherent Latency Upper Bound+ dw:
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Therefore, the total latency a sample incurs is bounded using a combination of in-

herent latency bounds and imposed latency bounds. Table 4.1 summarizes these bounds

based on graph topology and the type of graph source node (periodic or rate-based).

They are also formally presented below with a theorem for each bound. Each theorem

follows immediately from Theorem 4.4.1 and the corresponding inherent latency lemma

from Section 4.3.

Theorem 4.4.2. Let j;w be a PGM chain G = (V;E;  ). Let T be an RBE task set

synthesized from graph G. Let j be a periodic graph source node with period yj. If T

is schedulable by Equation (3.4), then the latency a sample incurs along the path j;w

under RBE-EDF scheduling is bounded such that

max (0; (Fj;w � 1) � yu) +
X

v2fj;wg

ev � Sample Latency

< max (0; (Fj;w � 1) � yu) + dw:

Theorem 4.4.3. Let j;w be a PGM chain G = (V;E;  ). Let T be an RBE task set

synthesized from graph G. Let j be a source node with Rj = (xj; yj). If T is schedulable by

Equation (3.4), then the latency any sample incurs along the path j;w under RBE-EDF

scheduling is bounded such that

max

�
0;

�
Fj;w � 1

xi

�
� yj

�
+

X
v2fj;wg

ev � Sample Latency

< max

�
1;

�
Fj;w

xj

�
� yj

�
+ dw:

Theorem 4.4.4. Let G = (V;E;  ) be an acyclic PGM graph. Let T be an RBE task

set synthesized from graph G. Let Iw be the set of periodic source nodes producing data

for sink node w 2 O. Let sj denote the time of the �rst execution of source node j, and

let yj denote the period of source node j. Let Pw denote the path from source node j to

node w that creates the maximum inherent latency for the sample. If T is schedulable by

Equation (3.4), then the latency a sample produced at time t incurs along the path j;w

under RBE-EDF scheduling is bounded such that

Lw(t) +
X
v2Pw

ev � Sample Latency < Lw(t) + dw:
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Latency in a Chain

Source Lower Bounds Upper Bounds

Periodic max (0; (Fj;w � 1) � yu) +
P

v2fj;wg ev max (0; (Fj;w � 1) � yu) + dw

RBE max
�
0;
j
Fj;w�1

xi

k
� yj
�
+
P

v2fj;wg ev max
�
1;
l
Fj;w

xj

m
� yj
�
+ dw

Latency in Acyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2Pw

ev Lw(t) + dw

RBE max
p2P

�
0;
j
Fp�1

xj

k
� yj
�
+
P
v2Pw

ev max
p2P

�
1;
l
Fp
xj

m
� yj
�
+ dw

Latency in Cyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2P̂w

ev Lw(t) + dw

RBE max
p2P̂

�
0;
j
Fp�1
xj

k
� yj

�
+
P
v2P̂w

ev max
p2P̂

�
1;
l
Fp
xj

m
� yj

�
+ dw

Table 4.1: A summary of latency bounds. Function Fp returns the number of executions
required of the source node in the path p before node w is eligible for execution. Function
Lw(t) returns the latency a sample produced at time t incurs before node w is eligible
for execution when multiple periodic source nodes have paths that lead to node w. P
denotes the set of all paths from source nodes j 2 Iw to node w. Pw denotes the path
from source node j to node w that creates the maximum inherent latency for the sample.
Function L̂w(t) returns the latency a sample produced at time t incurs before node w
is eligible for execution when the graph is cyclic. P̂ denotes the set of all acyclic paths
from source nodes j 2 Iw to node w. P̂w denotes the acyclic path from source node j to
node w that creates the maximum inherent latency for the sample.
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Theorem 4.4.5. Let G = (V;E;  ) be an acyclic PGM graph. Let T be an RBE task

set synthesized from graph G. Let Iw be the set of nodes producing data for sink node

w 2 O. Let Rj = (xj; yj) be a well-de�ned execution rate for node j 2 Iw starting at

time 0. Let P denote the set of paths from source node j to node w for all j 2 Iw. Let

Pw denote the path from source node j to node w that creates the maximum inherent

latency for the sample. If T is schedulable by Equation (3.4), then the latency a sample

will incur is bounded such that

max
p2P

�
0;

�
Fp � 1

xj

�
� yj

�
+
X
v2Pw

ev � Sample Latency < max
p2P

�
1;

�
Fp
xj

�
� yj

�
+ dw:

Theorem 4.4.6. Let G = (V;E;  ) be a cyclic PGM graph. Let T be an RBE task set

synthesized from graph G. Let Iw be the set of periodic source nodes producing data for

sink node w 2 O. Let sj denote the time of the �rst execution of source node j, and let

yj denote the period of source node j. Let P̂w denote the acyclic path from source node j

to node w that creates the maximum inherent latency for the sample. If T is schedulable

by Equation (3.4), then the latency a sample produced at time t incurs along the path

j;w under RBE-EDF scheduling is bounded such that

L̂w(t) +
X
v2P̂w

ev � Sample Latency < L̂w(t) + dw:

Theorem 4.4.7. Let G = (V;E;  ) be a cyclic PGM graph. Let T be an RBE task set

synthesized from graph G. Let Iw be the set of nodes producing data for sink node w 2 O.

Let Rj = (xj; yj) be a well-de�ned execution rate for node j 2 Iw starting at time 0. Let

P̂ denote the set of acyclic paths from source node j to node w for all j 2 Iw. Let P̂w

denote the acyclic path from source node j to node w that creates the maximum inherent

latency for the sample. If T is schedulable by Equation (3.4), then the latency a sample

will incur is bounded such that

max
p2P̂

�
0;

�
Fp � 1

xj

�
� yj

�
+
X
v2P̂w

ev � Sample Latency < max
p2P̂

�
1;

�
Fp
xj

�
� yj

�
+ dw:
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Figure 4.9: A three-node simple cycle. The queue labeled q is a back edge.

4.4.2 Initializing Back Edges

The impact of cycles on latency is negated by initializing a back edge q with enough

tokens to ensure that it is always over threshold. Figure 4.9 shows a cycle with the back

edge detected by a depth-�rst-search labeled q. The only changes we need to make to

the results of Section 4.2.3, which derives the number of initial tokens required on back

edge q, is to add the deadline parameter for node v to Equation (4.14). Thus, the cycle

is e�ectively broken (as in Section 4.2.3) by requiring back edge q to be initialized with

�
sv + dv � su + yv

yu

�
� xu � cns(q) + thr(q) (4.20)

tokens, where  (q) = (v; u).

4.4.2.1 Periodic sources

Consider the graph of Figure 4.9. Using release-time inheritance, the release times for

the �rst execution of nodes u and v, denoted su and sv respectively, are derived using

Equation (4.15) presented in Section 4.2.3. That is, if the source nodes are periodic, then

su = L̂u(0) and sv = L̂v(0):

Theorem 4.4.8. Let queue q be a back edge in a cycle with  (q) = (v; u), and let the

set of source nodes I be periodic. If queue q is initialized with a number of tokens given

by Equation (4.20), where su and sv in Equation (4.20) are derived using (4.15), then

queue q will always be over threshold.

Proof: From Lemma 4.2.6, the logical release time of the �rst execution of node u is

su = L̂u(0) and the logical release time of �rst execution of node v is sv = L̂v(0): Since
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queue q is a back edge, there exists an acyclic path from source node i to node v that

includes node u. Thus, sv � su. Since the execution rate of node u is not derived using

the execution rate of node v, there exists a non-negative integer k such that yv = k � yu.

Moreover, after time su at most xu releases of node u will occur in every interval of

length yu. In an interval of length yv, at most k � xu releases of node u will occur. If

queue q is initialized with a number of tokens given by Equation (4.20), it will remain

over threshold until time (sv + dv + yv) even if node v produces no data. However, after

time sv + dv, node v will always have produced enough data for node u to execute k � xv

times in any interval of length yv since nodes u and v have well-de�ned rate speci�cations.

Thus, if queue q is initialized with a number of tokens given by Equation (4.20), queue

q will always remain over threshold.

4.4.2.2 Rate-based sources

If the source nodes producing data for the cycle shown in Figure 4.9 are rate-based, and

the graph is scheduled using release-time inheritance, then su and sv are computed using

Equations (4.17) and (4.18) presented in Section 4.2.3. That is,

su = max
p2P̂

�
0;

�
Fp � 1

xj

�
� yj

�

and

sv = max
p2P̂

�
1;

�
Fp
xj

�
� yj

�
:

Theorem 4.4.9. Let queue q be a back edge in a cycle with  (q) = (v; u). If queue

q is initialized with a number of tokens given by Equation (4.20), where su in Equa-

tion (4.20) is derived using Equation (4.17) and sv in Equation (4.20) is derived using

Equation (4.18), then queue q will always be over threshold.

Proof: From Lemma 4.2.7 and the proof of Theorem 4.4.8, it follows that back edge

q will always be over threshold if it is initialized with a number of tokens given by

Equation (4.20), where su and sv are derived using Equations (4.17) and (4.18) respec-

tively.



154

4.5 Summary

In this chapter we discussed the management of latency in a real-time system synthesized

from PGM graphs. We demonstrated that latency has two components, and the total

latency any sample encounters can be expressed with the simple equation

Total Latency = Inherent Latency+ Imposed Latency:

Inherent latency is the delay between the enqueuing of prd(q) tokens onto queue q by

source node u 2 I and the next execution of the sink node when the strong synchrony

hypothesis is assumed. Inherent latency is a function of the topology of the graph and

the dataow attributes for each queue q. If the graph's inherent latency exceeds the

application's latency requirement, no implementation of the graph will meet the latency

requirement and the graph must be changed. Techniques for measuring inherent latency

in both acyclic and cyclic graphs were presented in Section 4.3.

Any additional latency created by scheduling and node execution is imposed upon

the graph by the implementation and can be managed using the techniques from real-

time scheduling theory that were outlined in this chapter. Our goal in building real-

time systems from processing graphs is to analytically bound and then manage imposed

latency. Section 4.3 presented techniques to achieve this goal for acyclic and cyclic graphs

executed with our RBE-EDF scheduler.

In Section 4.4, we combined the bounds on inherent latency with the bounds for

imposed latency to bound the total latency any sample will encounter in an implementa-

tion of a PGM system built with our synthesis method. These bounds are summarized

in Table 4.2.

The deadline parameter associated with each node in the synthesis method of Chap-

ter 3 was used extensively in the management of imposed latency. In general, reducing

latency requires decreasing deadline parameters, which increases the processor capacity

requirement or decreases the sustainable processor utilization. When the deadline pa-

rameter for every node u is set to the y parameter of its execution rate (i.e., du = yu),

a sustainable processor utilization of 100% can be achieved. As deadline parameters are

reduced for low latency paths in the graph, the processor demand is increased during

the intervals in which the low latency paths execute. Thus the sustainable processor

utilization must decrease proportionally for the task set to remain schedulable. Using

the techniques presented in this chapter, one can quantify the tradeo� between latency

and sustainable processor utilization in embedded signal processing systems built from
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Latency in a Chain

Source Lower Bounds Upper Bounds

Periodic max (0; (Fj;w � 1) � yu) +
P

v2fj;wg ev max (0; (Fj;w � 1) � yu) + dw

RBE max
�
0;
j
Fj;w�1

xi

k
� yj
�
+
P

v2fj;wg ev max
�
1;
l
Fj;w

xj

m
� yj
�
+ dw

Latency in Acyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2Pw

ev Lw(t) + dw

RBE max
p2P

�
0;
j
Fp�1

xj

k
� yj
�
+
P
v2Pw

ev max
p2P

�
1;
l
Fp
xj

m
� yj
�
+ dw

Latency in Cyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2P̂w

ev Lw(t) + dw

RBE max
p2P̂

�
0;
j
Fp�1
xj

k
� yj

�
+
P
v2P̂w

ev max
p2P̂

�
1;
l
Fp
xj

m
� yj

�
+ dw

Table 4.2: A summary of latency bounds. Function Fp returns the number of executions
required of the source node in the path p before node w is eligible for execution. Function
Lw(t) returns the latency a sample produced at time t encounters before node w is eligible
for execution when multiple periodic source nodes have paths that lead to node w. P
denotes the set of all paths from source nodes j 2 Iw to node w. Pw denotes the path
from source node j to node w that creates the maximum inherent latency for the sample.
Function L̂w(t) returns the latency a sample produced at time t encounters before node
w is eligible for execution when the graph is cyclic. P̂ denotes the set of all acyclic paths
from source nodes j 2 Iw to node w. P̂w denotes the acyclic path from source node j to
node w that creates the maximum inherent latency for the sample.
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PGM graphs.



Chapter 5

Case Studies

5.1 Introduction

We illustrate our synthesis method and techniques for managing latency by analyzing

three processing graphs from the literature and industry. Each corresponds to a non-

trivial embedded real-time signal processing system. The �rst case study is an airborne

synthetic aperture radar (SAR) application [65]. The SAR system can be used to identify

man-made objects on the ground or in the air by producing high-resolution, all-weather

images in real-time [49]. The second application is an International Maritime Satellite

(INMARSAT) mobile receiver application [64, 55]. INMARSAT is a global maritime

communication and navigational system used in the commercial shipping industry. The

SAR and INMARSAT graphs have been used as examples throughout this dissertation,

but a more complete analysis of these applications is performed here. We conclude our

case studies by evaluating the latency of an anti-submarine warfare (ASW) system |

the Directed Low Frequency Analysis and Recording (DIFAR) acoustic signal processing

program from the Airborne Low Frequency Sonar (ALFS) subsystem of the LAMPS MK

III anti-submarine helicopter [18]. The ALFS system processes low frequency signals

received by sonobuoys in the water. Its primary function is to detect submarines and to

calculate range and bearing estimates to each target.

The topologies of the processing graphs for these three applications ranges from a

simple ten-node chain for the SAR application to a cyclic graph containing over 80 nodes

and 400 queues for the DIFAR application. Each application is representative of a class of

processing graphs for its respective topology. We demonstrate and evaluate our synthesis

method with a chain, an acyclic graph with multiple periodic source nodes, and a cyclic

graph with a rate-based source.
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5.2 Synthetic Aperture Radar Application

We begin the cases studies by applying our synthesis method to a real-time Ka-band

SAR application. This application is the benchmark application for the ARPA Rapid

Prototyping of Application Speci�c Signal Processors (RASSP) project [65]. The SAR

system can be used to identify man-made objects on the ground or in the air by produc-

ing high-resolution, all-weather images in real time [49]. The full SAR benchmark cannot

execute in real-time on a single processor. Therefore, the RASSP project allocates por-

tions of the full SAR graph to individual processors. The graph in Figure 5.1 is one such

allocation. This graph, called the mini-SAR, was originally created to test tools devel-

oped by the RASSP project. It performs the range and azimuth compression processing

in the formation of an image that has resolution one eighth of that formed by the full

SAR benchmark. We refer to the mini-SAR graph as the SAR graph since an analysis

similar to that we develop shortly could be performed on each processor individually to

analyze the full application. The SAR application is interesting because it is a simple

chain with a periodic source and multiple rate changes in the path from the source to

the sink node.

In what follows, we provide a brief description of the processing performed by each

node in the graph. This information is provided for concreteness for the reader with a

signal processing background. The actual logical operation of the SAR graph is immate-

rial to the results we derive and the analyses we perform. The only essential properties

of the SAR graph are those that inuence node execution: the produce, consume, and

threshold values for each queue, and the execution rate of the source node.

The node labeled YRange represents an external computer that sends one pulse of

radar data every 3.6 milliseconds (ms). (In this processing description, we deviate from

our use of the terms sample and token and use terms commonly used by SAR application

developers. Here a sample represents a digital value of the signal at a point in time and

a pulse consists of multiple samples.) Source node YRange delivers 118 complex-valued

range-gate samples every 3:6ms. Together, these samples constitute one pulse of radar

data. The Zero Fill node pads the pulse with zeroes to create a pulse length of 256 samples

in preparation for the FFT node. Before performing the FFT, the data is passed through

a Kaiser window function, represented by the node Window Data, to reduce side-lobe

levels and perform bandpass �ltering. After being compressed in the range dimension

by the Range FFT node, the pulse is passed through the radar cross section calibration

�lter performed by the RCS Mult node. Next is the Corner Turn processing, which is
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Figure 5.1: A PGM graph for the SAR application. The tail of each queue is annotated
with its produce value. The head of each queue is annotated with its threshold and
consume values. For example, the queue labeled RCS has prd(q) = 256, thr(q) = 256�128,
and cns(q) = 256 � 64. Queue RCS is the only queue that initially contains data. It is
initialized with 256 � 64 zero-samples (i.e., init(RCS) = 256 � 64).

performed after 128 pulses have accumulated in its input queue. A 2-D processing array

is formed where each row of the array contains one sample from the 128 di�erent pulses

and each column contains the 256 range gates that form a pulse. The processing array

consists of two 64 � 256 frames (or sequences of pulses). As a new frame is loaded in,

the previous two frames are \released" with the oldest frame being shifted out. This

processing is achieved with a threshold of 256 � 128 samples, a consume value of 256 � 64

samples on queue RCS, and a produce value of 256 � 128 samples on queue Azimuth.

Queue RCS is initialized with 256 � 64 zero-samples, which reduces the initial latency

of the system. Convolution processing is performed on each row of the 2-D matrix by

the Azimuth FFT, Kernel Mult, and Azimuth IFFT nodes. The Azimuth FFT node

performs a FFT on the signal, which has been aligned in the azimuth dimension. Next

the Kernel Mult node multiplies each row of the matrix by a convolution kernel. Before

the SAR image is output to the Sink node, an inverse FFT is performed by the Azimuth

IFFT node. For a more detailed description of the processing performed by the SAR

benchmark, see \SAR Processing for RASSP Application" by Zuerndorfer et al. [65].

The SAR benchmark has a maximum latency requirement of three seconds, where

latency refers to the elapsed time between the time a pulse is received and the time a

corresponding image is output [65]. The portion of the SAR application being synthesized

here has been allocated one third of the full latency requirement. Thus, the total latency
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inherent in the graph and imposed by the implementation must be less than one second

[25].

Our synthesis method is applied to the SAR graph in the next three sections. We

then compute latency bounds for the synthesized system and conclude with a discussion

of latency management in the SAR application.

5.2.1 Step 1: Computation of Node Execution Rates

The �rst step of the synthesis method is to use Algorithm 4 from Section 3.2.2 to compute

the execution rate of each node in the graph. Let RYRange = (1; 3:6ms) be a well-de�ned

rate speci�cation for source node YRange beginning at time 0 with the �rst execution

of source node YRange occurring at time 0. That is, source node YRange executes at

times k � 3:6ms for all k � 0. Algorithm 4 computes well-de�ned rate speci�cations for

the other nodes in the graph as follows.

RZeroF ill = (xZeroF ill; yZeroF ill)

where

xZeroF ill =
prd(Range) � xYRange

gcd(prd(Range) � xYRange; cns(Range))
;

yZeroF ill =
cns(Range) � yYRange

gcd(prd(Range) � xYRange; cns(Range))
:

Thus,

RZeroF ill =

�
118 � 1

gcd(118 � 1; 118)
;

118 � 3:6ms

gcd(118 � 1; 118)

�

=

�
118

118
;
118 � 3:6ms

118

�

= (1; 3:6ms);
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RWindowData =

�
256 � 1

gcd(256 � 1; 256)
;

256 � 3:6ms

gcd(256 � 1; 256)

�

=

�
256

256
;
256 � 3:6ms

256

�

= (1; 3:6ms);

RRangeFFT =

�
256 � 1

gcd(256 � 1; 256)
;

256 � 3:6ms

gcd(256 � 1; 256)

�

=

�
256

256
;
256 � 3:6ms

256

�

= (1; 3:6ms);

RRCSMult =

�
256 � 1

gcd(256 � 1; 256)
;

256 � 3:6ms

gcd(256 � 1; 256)

�

=

�
256

256
;
256 � 3:6ms

256

�

= (1; 3:6ms);

RCornerTurn =

�
256 � 1

gcd(256 � 1; 256 � 64)
;

(256 � 64) � 3:6ms

gcd(256 � 1; 256 � 64)

�

=

�
256

256
;
(256 � 64) � 3:6ms

256

�

= (1; 64 � 3:6ms)

= (1; 230:4ms);

RAzimuthFFT =

�
(256 � 128) � 1

gcd((256 � 128) � 1; 128)
;

128 � 64 � 3:6ms

gcd((256 � 128) � 1; 128)

�

=

�
256 � 128

128
;
128 � 64 � 3:6ms

128

�

= (256; 64 � 3:6ms)

= (256; 230:4ms);
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Figure 5.2: The SAR graph annotated with execution rates.

RKernelMult =

�
128 � 256

gcd(128 � 256; 128)
;

128 � 64 � 3:6ms

gcd(128 � 256; 128)

�

= (256; 230:4ms);

RAzimuthIFFT =

�
128 � 256

gcd(128 � 256; 128)
;

128 � 64 � 3:6ms

gcd(128 � 256; 128)

�

= (256; 230:4ms); and

ROutput =

�
128 � 256

gcd(128 � 256; 128)
;

128 � 64 � 3:6ms

gcd(128 � 256; 128)

�

= (256; 230:4ms):

By Theorem 2.4.4, the execution rate speci�cations are all well-de�ned beginning at

time 0 (i.e., tu = 0 for each node u). This is because the source node has a well-de�ned

execution rate beginning at time 0 and because

MinTokens(q) � init(q) = thr(q)� cns(q) � MaxUnderThr(q)

for each queue q in the graph. Figure 5.2 shows the SAR graph annotated with execution

rates.
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Node eu
YRange |
Zero Fill 0:012ms

Window Data 0:25ms
Range FFT 0:25ms
RCS Mult 0:25ms
Corner Turn 32:0ms
Azimuth FFT 0:13ms
Kernel Mult 0:13ms

Azimuth IFFT 0:13ms
Output |

Table 5.1: Estimated worst-case execution times for nodes in the SAR graph. Nodes
YRange and Output represent external devices.

5.2.2 Step 2: Map Nodes to Tasks in the RBE Model

The second step of the synthesis method associates each PGM node of the SAR graph

with an RBE task by associating each node u with a four tuple (xu; yu; du; eu) that char-

acterizes an RBE task. The parameters xu and yu were derived in the rate computation

step as the rate speci�cation for node u. Table 5.1 lists the estimated worst-case execu-

tion time eu for each node u executing on a 100MHz PowerPC processor with all cache

misses. The actual worst-case execution times were not available for this application.

These numbers are approximations based on cycle counts of similar processing functions.

The only free parameter is the relative deadline parameter du. The choice for the value

of du inuences latency and processor demand. We begin by setting du = yu for each

node u in the SAR graph. It will turn out that this mapping is su�cient to guarantee

that the application will meet its latency requirement. Table 5.2 shows the resulting

RBE parameters associated with each node.

5.2.3 Step 3: Verify Schedulability

The third step of the synthesis method is to verify that the resulting task set is schedu-

lable. This ensures that a real-time execution can be guaranteed. By Theorem 3.3.5, the

RBE task set constructed from the SAR graph is schedulable using RBE-EDF scheduling
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Node tu su ( xu, yu, du, eu )
YRange 0 0 (1; 3:6ms) | |
Zero Fill 0 0 (1; 3:6ms; 3:6ms; 0:012ms)

Window Data 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
Range FFT 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
RCS Mult 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
Corner Turn 0 226.8ms (1; 230:4ms; 230:4ms; 32:0ms)
Azimuth FFT 0 226.8ms (256; 230:4ms; 230:4ms; 0:13ms)
Kernel Mult 0 226.8ms (256; 230:4ms; 230:4ms; 0:13ms)

Azimuth IFFT 0 226.8ms (256; 230:4ms; 230:4ms; 0:13ms)
Output 0 226.8ms (256; 230:4ms) | |

Table 5.2: RBE parameters associated with each node in the SAR graph. For each node
u in the graph, du = yu. The variable tu represents the beginning of an interval in which
the rate speci�cation for node u is well-de�ned. Nodes YRange and Output represent
external devices and are not implemented as a task.

if

8L > 0; L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei (5.1)

where

f(a) =

8<
:bac if a � 0

0 if a < 0

Since du = yu for every node u in the graph, we can use a simpler test, namely Equa-

tion (5.2), to evaluate the schedulability of the graph under RBE-EDF scheduling.

nX
i=1

xi � ei
yi

� 1 (5.2)

The left-hand side of Equation (5.2) measures processor utilization. By Equation (3.6),

when du = yu for every node u, if a task set satis�es Equation (5.2) then the task set will

also satisfy Equation (5.1). Using the RBE parameters from Table 5.2, we see that the
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graph is schedulable since

nX
i=1

xi � ei
yi

= 0:003 + 0:07 + 0:07 + 0:07 + 0:144 + 0:144 + 0:144 + 0:144 = 0:79

is less than one. Thus, the graph is schedulable with du = yu for each node u in the graph.

We must now verify that the latency requirement is met with these RBE parameters.

5.2.4 Computing Latency

The latency a sample encounters is dependent on the number of samples in each queue

when the sample arrives. By Theorem 4.4.2 this latency is bounded such that

max (0; (Fj;w � 1) � yu) +
X

v2fj;wg

ev � sample latency

< max (0; (Fj;w � 1) � yu) + dw

max (0; (FYRange;Output � 1) � 3:6ms) +
X

u2fYRange;Outputg

eu � sample latency

< max (0; (FYRange;Output � 1) � 3:6ms) + 230:4ms (5.3)

where Fj;w, de�ned by Equation (4.1), gives the number of executions required of node

j before node w is eligible for execution.

Thus, since only queue RCS is initialized with data, the latency the �rst sample

encounters is bounded such that

max (0; (64� 1) � 3:6ms) + 33:152ms � sample latency

< max (0; (64� 1) � 3:6ms) + 230:4ms

259:952ms � sample latency < 457:2ms:

For the second sample, we again evaluate Equation (5.3) at time 3.6ms (just before the

source node produces). The latency the second sample encounters is bounded such that

max (0; (63� 1) � 3:6ms) + 33:152ms � sample latency

< max (0; (63� 1) � 3:6ms) + 230:4ms

256:352ms � sample latency < 453:6ms:
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The latency bounds continue to decrease by 3:6ms for each sample so that the latency

incurred by the 64th sample is bounded such that

max (0; (1� 1) � 3:6ms) + 33:152ms � sample latency

< max (0; (1� 1) � 3:6ms) + 230:4ms

33:152ms � sample latency < 230:4ms:

The latency bounds computed for the 65th sample are the same as the latency bounds for

the �rst sample. This is because yOutput = 64 � ySource and the execution rate speci�cation

for node Output is well-de�ned beginning at time 0. Thus, there are 64 unique latency

bounds, and after the 64th sample, latency patterns repeat. The latency for sample j,

1 � j � 64, is

(63� ((j � 1) mod 64)) � 3:6ms+ 33:152ms � sample latency

< (63� ((j � 1) mod 64)) � 3:6ms+ 230:4ms:

From this expression we see that any sample will encounter a latency of at least 33:152ms

and at most 457:2ms. Thus, the application is guaranteed to meet its latency requirement

since the upper bound latency requirement for the graph is one second.

5.2.5 Discussion

The synthesis of a real-time system from the SAR PGM graph that meets the applica-

tion's latency requirements can be accomplished with only one iteration of the synthesis

method. However, if, for example, the latency requirement was 400ms, we would need

to repeat the second and third steps of the synthesis method with new deadline param-

eter values. Alternatively, we could have selected deadline parameter values that met

this latency requirement during the �rst iteration. For example, assume the latency

requirement was 400ms. By Lemma 4.2.2, the inherent latency of the �rst sample is

max (0; (FYRange;Output � 1) � yYRange) = max (0; 64� 1) � 3:6ms)

= 63 � 3:6ms

= 226:8ms;

which is also the maximum latency any sample will encounter. Thus, to meet a latency

requirement of 400ms, we simply need to make sure that every deadline parameter in the
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Node tu su ( xu, yu, du, eu )
YRange 0 0 (1; 3:6ms) | |
Zero Fill 0 0 (1; 3:6ms; 3:6ms; 0:012ms)

Window Data 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
Range FFT 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
RCS Mult 0 0 (1; 3:6ms; 3:6ms; 0:25ms)
Corner Turn 0 226.8ms (1; 230:4ms; 173:2ms; 32:0ms)
Azimuth FFT 0 226.8ms (256; 230:4ms; 173:2ms; 0:13ms)
Kernel Mult 0 226.8ms (256; 230:4ms; 173:2ms; 0:13ms)

Azimuth IFFT 0 226.8ms (256; 230:4ms; 173:2ms; 0:13ms)
Output 0 226.8ms (256; 230:4ms) | |

Table 5.3: RBE parameters associated with each node in the SAR graph that result in a
maximum latency that is less than 400ms.

RBE task set is less than or equal to

latency requirement�maximum inherent latency = 400ms� 226:8ms

= 173:2ms:

Table 5.3 lists the new RBE parameters associated with each node using this approach.

Note that the last �ve nodes have deadline parameters that are less than their y

parameters. This means we cannot use Equation (5.2) to evaluate the schedulability of

the task set. Thus, by Theorem 3.3.5 we have to evaluate Equation (5.1) for all L > 0.

This is clearly not a tractable option. However, by combining Theorem 3.3.5 with the

scheduling theory results of Baruah et al. [6], we can evaluate the schedulability of the

new RBE task set using the expression

0 < L � (sOutput + 2 � yOutput); L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei (5.4)

where sOutput = LOutput(0) is the �rst logical release time of sink node Output and f(a)

is the oor function used in Equation (5.4). In this case, the upper bound on L is equal

to 687:6ms, and Equation (5.4) is a theorem for the RBE parameters in Table 5.3.

Not all PGM applications have as clearly stated latency requirements as the SAR. In

many cases, the graph must simply execute in real time. That is, the nodes must process

the signal as it arrives and without losing data. Thus, the �rst iteration of second step

in the synthesis method (where nodes are mapped to RBE tasks) assumes a deadline
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parameter equal to the y parameter. This mapping guarantees real-time execution since

each node will execute according to its rate speci�cation when the processor is not over-

loaded. Moreover, this mapping guarantees real-time execution without creating more

processor demand in any interval of time than that which is required to process the signal

in real time.

Many signal processing applications have a latency requirement that is less than or

equal to twice the maximum y parameter of the graph output nodes. In this case,

deadline parameters that ensure the requirement is met can be selected during the �rst

iteration of synthesis method when nodes are mapped to tasks. This is accomplished

using the technique demonstrated in the previous example where we assumed a 400ms

latency requirement of the SAR. That is, if the latency requirement were l, then for each

node u in the SAR graph, we would set

du = min(yu; latency requirement�maximum inherent latency)

= min(yu; l � 226:8)

since 226:8ms is an upper bound on inherent latency for the graph.

5.3 Mobile Satellite Receiver Application

We now apply our synthesis method to an INMARSAT mobile receiver application from

the literature [54, 64, 55, 9]. This example illustrates our synthesis method and latency

analysis techniques with an acyclic graph that has two periodic source nodes. Since

no execution times are available for the processing nodes, we will assume the graph is

schedulable and only consider the �rst two steps of the synthesis method. That is, we

compute node execution rates and then map the nodes to RBE tasks, but we do not

perform a schedulability analysis. We will assume the resulting task set is schedulable.

We begin with a brief introduction to INMARSAT and the mobile satellite receiver

application.

The INMARSAT system has been o�ering mobile satellite communications service

since 1982 to the commercial shipping industry. It is a global satellite constellation of

seven geostationary satellites providing communications in the L-band frequencies. The

INMARSAT-B mobile terminal provides digital telecommunications supporting facsimile

and data transmissions at the standard rate of 9.6 kbps and an optional high-speed data

rate of 64 kbps. The 64 kbps channel can be multiplexed to o�er several simultaneous

voice and data lines. The high-speed data option of the INMARSAT-B mobile terminal is
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Figure 5.3: A block diagram of the INMARSAT mobile satellite receiver.

also used to provide video teleconferencing and compressed or delayed video transmission

services to remote locations on land or at sea.

Figure 5.3 is a block diagram of the digital signal processing performed by the satellite

receiver portion of an INMARSAT mobile terminal [64]. An abstract representation of

the PGM graph for this application is shown in Figure 5.4 [55]. Source nodes I1 and I2

represent the input devices receiving the satellite signal. Sink node O1 represents the

terminal accepting the processed signal. For this application, each queue's threshold is

equal to its consume value. To reduce clutter in the �gure, we have only labeled the

non-unity dataow attributes. Produce values are located at the tail of the queue and

consume values are at the head of the queue.

5.3.1 Software Synthesis

Let RI1 = (1; y) and RI2 = (1; y) be well-de�ned execution rates starting at time 0.

Algorithm 4 from from Section 3.2.2 performs a topological sort of the graph and then

steps through the sorted list once to compute well-de�ned rate speci�cations for each

node in the graph. The topologically sorted list of nodes is

I2DEFKLMNSI1ABCGHIJTUV PRQWO1
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Figure 5.4: A PGM graph for the INMARSAT mobile satellite receiver. All queues have
produce amounts equal to one unless otherwise noted. Each queue's threshold value is
equal to its consume value, and all consume (threshold) values are equal to one unless
otherwise speci�ed. Produce amounts greater than one are displayed near the tail of a
queue and consume (threshold) amounts greater than one are displayed near the head of
a queue. For example, the queue joining nodes A and B has a produce amount of one, a
threshold of four, and a consume amount of four.
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when the depth-�rst search of the sort starts with node I1. The computation of well-

de�ned rate speci�cations for nodes D, E, F, and P are shown below using Theorem 2.4.9.

RD = (xD; yD) where

yD = lcmf
cns(q) � yv

gcd(prd(q) � xv; cns(q))
j 8q 2 E ^ 8v 2 V :  (q) = (v;D)g

= lcm(
1

gcd(1 � 1; 1)
� y)

= y;

and thus, xD = yD �
prd(q) � xv
cns(q) � yv

;

= y �

�
1 � 1

1 � y

�

= 1:

Therefore RD = (1; y).

RE = (xE; yE) where

yE = lcm(
4

gcd(1 � 1; 4)
� y)

= 4y;

xE = 4y �

�
1 � 1

4 � y

�
= 1:

Therefore RE = (1; 4y).

RF = (xF ; yF ) where

yF = lcm(
11

gcd(1 � 1; 11)
� 4y)

= 44y;

xF = 44y �

�
1 � 1

11 � 4y

�

= 1:

Therefore RF = (1; 44y).
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RP = (xP ; yP ) where

yP = lcmf
1

gcd(10 � 1; 1)
� 44y;

1

gcd(10 � 1; 1)
� 44y;

1

gcd(1 � 10; 1)
� 44y;

1

gcd(1 � 10; 1)
� 44yg

= 44y;

xP = 44y �

�
10 � 1

1 � 44y

�

= 10:

Therefore RP = (10; 44y).

Figure 5.5 shows each node of the INMARSAT graph annotated with its execution

rate, and Table 5.4 shows the rate speci�cation and tu values for each node u in the graph.

The variable tu represents the beginning of the �rst interval in which well-de�ned rate

speci�cation for node u exists. By Theorem 2.4.4, the execution rate speci�cations are all

well-de�ned beginning at time 0 (i.e., tu = 0 for each node u). This is because the source

node has a well-de�ned execution rate beginning at time 0 and, since thr(q)�cns(q) = 0,

MinTokens(q) � init(q) = thr(q)� cns(q) � MaxUnderThr(q)

for each queue q in the graph.

For this case study, we assume the application is schedulable with our selected pa-

rameters. Thus, we skip the third step of our synthesis method where the schedulability

of the graph is veri�ed, and analyze the latency of the application.

5.3.2 Managing Latency

We consider two cases in the analyses performed here so that we can illustrate the dif-

ference between latency analysis for graphs with rate-based source nodes and latency

analysis for graphs with periodic source nodes. In the �rst example we consider the case

where the source nodes are rate-based.

Assume RI1 = (1; y) and RI2 = (1; y) are well-de�ned execution rates starting at time

0, but suppose the time of their �rst execution has not been speci�ed. In this case we

must use Theorem 4.4.5 for rate based sources to derive an upper bound on the latency

any sample will encounter. The �rst sample produced encounters the maximum latency

possible since none of the queues are initialized with data. Thus, by Theorem 4.4.5, when
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Figure 5.5: The INMARSAT graph with node execution rates. This is the same appli-
cation graph shown in Figure 5.4, but now the nodes are annotated with their execution
rates.



174

Node tu ( xu, yu)
I2 0 (1; y)
D 0 (1; y)
E 0 (1; 4y)
F 0 (1; 44y)
K 0 (1; 44y)
L 0 (1; 44y)
M 0 (1; 44y)
N 0 (10; 44y)
S 0 (10; 44y)
I1 0 (1; y)
A 0 (1; y)
B 0 (1; 4y)
C 0 (1; 44y)
G 0 (1; 44y)
H 0 (1; 44y)
I 0 (1; 44y)
J 0 (10; 44y)
T 0 (10; 44y)
U 0 (10; 44y)
V 0 (1; 24 � 44y)
P 0 (10; 44y)
R 0 (1; 24 � 44y)
Q 0 (1; 24 � 44y)
W 0 (240; 24 � 44y)
O1 0 (240; 24 � 44y)

Table 5.4: Execution rate speci�cations for nodes in the INMARSAT PGM graph. The
variable tu represents the beginning of the �rst interval for which there exists a well-
de�ned rate speci�cation for node u. The graph nodes are listed topological order.
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all of the deadline parameters are less than or equal to dO1
, the latency must be less than

max(1; (FI1;O1
� y); (FI1;O1

� y)) + dO1
= max(1; (24 � 44)y; (24 � 44)y) + dO1

= max(1; 1056y; 1056y) + dO1

= 1056y + dO1
;

Hence, we can manage the amount of latency any sample encounters by choosing appro-

priate values for dO1
. For example, if

dO1
= yO1

= 1; 056y;

the maximum latency is less than 2; 112y. If

dO1
= yP

= 44y;

the maximum latency is less than 1; 100y. The lower bound on the choice for dO1
is, of

course, limited since can only choose values that result in a schedulable task set.

Now consider the case when the time of the �rst execution for each source node

is speci�ed. Assume source node I1 �rst executes at time 0, and source node I2 �rst

executes at time 2. Since the rate speci�cations are well-de�ned, source node I1 executes

with period y starting at time 0, and source node I2 executes with period y starting at

time 2. Thus, we can apply Theorem 4.4.4 to derive a tighter upper bound on latency.

Let y > 2. By, Theorem 4.4.4, the �rst sample produced at time 0 by source node I1

encounters a latency of LO1
(0) + dO1

, where LO1
(t) is the inherent latency of a sample

at time t, and dO1
is the maximum imposed latency. The inherent latency encountered

by the sample produced at time t = 0, is

LO1
(0) = max(0; (FI1;O1

� 1)y; (FI2;O1
� y)� (2 mod y))

= max(0; 1055y; 1056y� 2)

= 1056y � 2:

Thus the �rst sample produced by source node I1 encounters a latency of (1056y�2)+dO1
.
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The �rst sample produced by source node I2 encounters a latency of LO1
(2) + dO1

where

LO1
(2) = max(0; (FI1;O1

� y)� (2 mod y); (FI2;O1
� 1)y)

= max(0; 1055y � 2; 1055y) = 1055y:

Thus, an upper bound on the latency any sample will encounter is 1; 056y � 2 + dO1
.

5.4 DIFAR Application

We conclude our case studies by applying our synthesis method to a graph in an anti-

submarine warfare (ASW) system | the Directed Low Frequency Analysis and Record-

ing (DIFAR) acoustic signal processing graph from the Airborne Low Frequency Sonar

(ALFS) subsystem of the LAMPS MK III anti-submarine helicopter. The ALFS system

processes low frequency signals received by sonobuoys in the water. Its primary function

is to detect submarines and to calculate range and bearing estimates to each target. The

actual processing performed by the graph is classi�ed by the U.S. Government, so the

following is an unclassi�ed and abbreviated description of the DIFAR graph [26]. An

understanding of the actual processing is not necessary to perform the software synthesis

or to analyze latency in the graph.

The DIFAR graph receives directed low frequency acoustic data from a sonobuoy and

analyzes the data for possible targets, such as enemy submarines or surface ships. The

DIFAR graph has over 80 nodes and 400 queues and operates in three di�erent modes:

constant percent resolution (CPR), constant resolution (CR), and vernier. The ALFS

subsystem can execute many di�erent graphs simultaneously on a distributed system of

processors. One worst-case concurrency mode that it supports is the execution of 16

instances of the DIFAR graph, each processing data from one sonobuoy. The frequency

spectrum of data received by the DIFAR graph is usually partitioned into bands, and

the graph can be con�gured to process from one to eight bands. Thus, while the full

DIFAR graph has over 85 nodes and 400 queues, there are many duplicate paths in

the graph with each path operating on a di�erent portion of the signal. The graph of

Figure 5.6 is an abstract representation of a one-band DIFAR graph. It is a cyclic graph

with 31 nodes and 59 queues. All queues have unity produce, consume, and threshold

attributes unless otherwise labeled. Non-unity produce values are labeled near the tail

of the queue, and non-unity threshold and consume values are labeled near the head of

the queue. The dataow attributes used here are not the actual values from the graph
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Figure 5.6: The PGM DIFAR Graph. All back edges, including self-loop edges, are
initialized so that they are always over threshold.
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(the actual values are classi�ed). However, the ratio between the attributes of a queue

is the same. For example, if queue q had a produce of 1024 tokens; a threshold of 2048

tokens; and a consume of 1024 tokens, these values would be represented as: prd(q) = 1,

thr(q) = 2, and cns(q) = 1. All back edges, including self-loop edges, are initialized so

that they are over threshold. The number of initial tokens is shown on all queues that are

initialized except self-loop edges. Self-loop edges are initialized so that they are always

over threshold, but the number of initial tokens is not shown to reduce clutter in the

�gure.

The processing speci�c to the modes CPR, CR, and vernier are located in the upper

left portion of the graph in Figure 5.6. The CPR processing is performed by the node

DDAD (DIFAR direction and detection �lter). The CR processing is performed by the

nodes DDAD, CR�lter (CR �lter), CRspec (CR spectral analysis), and CRdetect (CR

detection �lter). The vernier processing is performed by the nodes DDAD, VernFilter

(vernier �lter), VernSpec (vernier spectral analysis), and VernDet (vernier detection �l-

ter). The node BndMrg (band merge) merges data from all of the active bands into one

data stream. The DIFAR graph in Figure 5.6 only shows one processing band for each of

the three modes. In the full DIFAR graph, there would be 8 sets of CPR, CR, and vernier

nodes, each ready to process a separate band of data partitioned from the input signal

by the node BDF (band de�nition �lter). The heaviest processing load is created when

the graph operates in CR mode. In this mode, no data is sent to the Vern�lter node.

Thus, vernier processing is inactive in the CR mode, and nodes Vern�lter, VernSpec, and

VernDet do not execute.

The software synthesis and analysis performed in this section is done using the portion

of the DIFAR graph shown in Figure 5.6. The results presented here are from a study

conducted under contract to General Dynamics to determine the number of 200 MHz

PowerPC processors that are needed to meet seven di�erent ALFS worst-case concurrent

processing requirements [26]. One of the concurrency modes supports processing data

from 16 di�erent sonobuoys simultaneously. The actual input data rates and the speci�c

latency requirements are classi�ed. However, it turns out that the graph is able to meet

its latency requirement when nodes are executed according to their rate speci�cations

with a deadline parameter equal to the y parameter of their rate speci�cation. Here, we

will assume the source delivers 16 samples every 625ms.
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5.4.1 Step 1: Computation of Node Execution Rates

Let RSource = (16; 625ms) be a well-de�ned rate speci�cation for source node Source

beginning at time 0. Table 5.5 lists, in topological order, the rate speci�cations for the

other nodes in the graph as computed by Algorithm 4. Excluding self-loops, two back

edges were detected: the queue connecting node MstrMCS to node BDF, which is initial-

ized with one token, and the queue connecting node GramData to node SlvMCS, which

is initialized with two tokens. However, according to Theorem 4.4.9 and Theorem 3.2.1,

before we can be guaranteed that the rate speci�cations derived using Algorithm 4 are

well-de�ned, the number of initial tokens on both back edges must be increased so that

they are guaranteed to always be over threshold. Let P̂u denote the set of acyclic paths

from a node Source to node u, and let P̂v denote the set of acyclic paths from source

node Source to node v in the DIFAR graph. By Theorem 4.4.9, back edge q, connecting

node v to node u, will always be over threshold if it is initialized with at least

�
sv + dv � su + yv

yu

�
� xu � cns(q) + thr(q)

tokens where

sv = max
p2P̂v

�
1;

�
Fp

xSource

�
� ySource

�
;

and

su = max
p2P̂u

�
0;

�
Fp � 1

xSource

�
� ySource

�
:

Using these expressions and the RBE parameters listed in Table 5.6 to compute the

number of initial tokens on the queue connecting nodes v =MstrMCS and u =BDF, the

queue must be initialized with at least

�
1250ms+ 1250ms� 625ms+ 1250ms

1250ms

�
� 1 � 1 + 2 = 3 + 2 = 5
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tokens since

sMstrMCS = max
p2P̂MstrMCS

�
1;

�
Fp

xSource

�
� ySource

�

=

�
32

16

�
� 625ms

= 1250ms;

and

sBDF = max
p2P̂BDF

�
0;

�
Fp � 1

xSource

�
� ySource

�

=

�
32� 1

16

�
� 625ms

= 625ms:

Similarly, the number of initial tokens on the queue connecting node v =GramData to

node u =SlvMCS must be at least�
2500ms+ 2500ms� 625ms+ 2500ms

1250ms

�
� 1 � 1 + 1 = 6 + 1 = 7

tokens since

sGramData = max
p2P̂GramData

�
1;

�
Fp

xSource

�
� ySource

�

=

�
64

16

�
� 625ms

= 2500ms;

and

sSlvMCS = max
p2P̂SlvMCS

�
0;

�
Fp � 1

xSource

�
� ySource

�

=

�
32� 1

16

�
� 625ms

= 625ms:

The original implementation of the DIFAR graph (on custom militarized hardware)

was scheduled with a non-preemptive �rst-come-�rst-served (FCFS) scheduler. The ap-

plication had trouble meeting its latency requirement when multiple DIFAR graphs were
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Node tu ( xu, yu )
Source 0 (16; 625ms)

FlowCntl 0 (1; 1250ms)
BDF 0 (1; 1250ms)

MstrMCS 0 (1; 1250ms)
MnsMrg 0 (0; 1250ms)
MnsOut 0 (0; 1250ms)
SlvMCS 0 (1; 1250ms)
DDAD 0 (1; 1250ms)
CR�lter 0 (1; 1250ms)
CRspec 0 (1; 1250ms)
CRdetect 0 (1; 2500ms)
BndMrg 0 (2; 2500ms)
SAD 0 (2; 2500ms)

GramData 0 (2; 2500ms)
GramMrg 0 (2; 2500ms)
GramOut 0 (2; 2500ms)
AliScale 0 (1; 10000ms)
AliMrg 0 (1; 10000ms)
AliOut 0 (1; 10000ms)
BBC 0 (2; 2500ms)

BrgAngle 0 (1; 10000ms)
BrgMrg 0 (1; 10000ms)
BrgOut 0 (1; 10000ms)
AutDet 0 (1; 30000ms)

AutDetMrg 0 (1; 30000ms)
AutDetOut 0 (1; 30000ms)
BinMrg 0 (1; 30000ms)
BinOut 0 (1; 30000ms)

VernFilter 0 (0; 1250ms)
VernSpec 0 (0; 1250ms)
VernDet 0 (0; 1250ms)

Table 5.5: Well-de�ned execution rates for each node in the DIFAR graph for the CR
mode of operation.
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executing at the same time. It turns out that part of the problem was the initialization

of the two back edges found during the topological sort of the graph. When the amount

of initialized data was increased as described above, the application was determined by

simulation to meet its latency requirement with a non-preemptive FCFS scheduler. How-

ever, this is not the same as a guarantee that it will always meet its latency requirement

under non-preemptive FCFS scheduling. In contrast, after successfully completing our

synthesis method, the DIFAR application can be guaranteed to always meet is latency

requirement.

5.4.2 Step 2: Map Nodes to Tasks in the RBE Model

Table 5.6 lists the RBE parameters associated with each node when it is mapped to an

RBE task. Parameters xu and yu are as derived in the rate computation step. Parameter

du is set to yu for each node u in the graph. Parameter eu is the worst-case execution time

for node u on a 200MHz PowerPC processor based on cycle counts for each processing

function, assuming all memory references result in cache misses and worst-case processing

paths within each processing function. As shown in the next section, this mapping will

be su�cient to guarantee that the application will meet its latency requirement.

5.4.3 Step 3: Verify Schedulability

The third step of the synthesis method is to verify that the resulting task set is schedu-

lable so that we can guarantee real-time execution. By Theorem 3.3.5, the RBE task

set constructed from the DIFAR graph is schedulable using RBE-EDF scheduling if an

a�rmative result is obtained when the following scheduling condition is evaluated:

8L > 0; L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei

where f(a) is the oor function de�ned in Lemma 3.3.1. Since du = yu for every node u

in the graph, we again use the simpler utilization expression

nX
i=1

xi � ei
yi

� 1 (5.5)
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Node tu ( xu, yu, du, eu )
Source 0 (16; 625ms) | |

FlowCntl 0 (1; 1250ms; 1250ms; 6:46ms)
BDF 0 (1; 1250ms; 1250ms; 30:13ms)

MstrMCS 0 (1; 1250ms; 1250ms; 0:34ms)
MnsMrg 0 (0; 1250ms; 1250ms; 0:75ms)
MnsOut 0 (0; 1250ms) | |
SlvMCS 0 (1; 1250ms; 1250ms; 0:1ms)
DDAD 0 (1; 1250ms; 1250ms; 6:05ms)
CR�lter 0 (1; 1250ms; 1250ms; 8:7ms)
CRspec 0 (1; 1250ms; 1250ms; 9:2ms)
CRdetect 0 (1; 2500ms; 2500ms; 3:37ms)
BndMrg 0 (2; 2500ms; 2500ms; 3:22ms)
SAD 0 (2; 2500ms; 2500ms; 3:52ms)

GramData 0 (2; 2500ms; 2500ms; 3:64ms)
GramMrg 0 (2; 2500ms; 2500ms; 0:15ms)
GramOut 0 (2; 2500ms) | |
AliScale 0 (1; 10000ms; 10000ms; 3:19ms)
AliMrg 0 (1; 10000ms; 10000ms; 0:51ms)
AliOut 0 (1; 10000ms) | |
BBC 0 (2; 2500ms; 2500ms; 5:19ms)

BrgAngle 0 (1; 10000ms; 10000ms; 5:11ms)
BrgMrg 0 (1; 10000ms; 10000ms; 0:59ms)
BrgOut 0 (1; 10000ms) | |
AutDet 0 (1; 30000ms; 30000ms; 2:5ms)

AutDetMrg 0 (1; 30000ms; 30000ms; 0:69ms)
AutDetOut 0 (1; 30000ms) | |
BinMrg 0 (1; 30000ms; 30000ms; 0:2ms)
BinOut 0 (1; 30000ms) | |

VernFilter 0 (0; 1250ms; 1250ms; 2:92ms)
VernSpec 0 (0; 1250ms; 1250ms; 3:08ms)
VernDet 0 (0; 1250ms; 1250ms; 1:18ms)

Table 5.6: RBE parameters associated with each node in the DIFAR graph for the CR
mode of operation. For each node u in the graph, du = yu.
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to evaluate the schedulability of the graph under RBE-EDF scheduling. Using the RBE

parameters from Table 5.6, we see that the graph is schedulable since

nX
i=1

xi � ei
yi

= :0639

is less than one. Thus, since the processor utilization is less than one, the graph is

schedulable with du = yu for each node u in the graph. Note, however, that this graph

only processes one band of one sonobuoy. If data from all 16 sonobuoys is processed

simultaneously, then 16 instances of the graph are required, which results in a cumulative

processor utilization of 1:0224. Thus, not all 16 instances of the graph can be executed

simultaneously on the same processor. Moreover, while theoretically we can execute

with the processor 100% loaded, the U.S. Navy has a requirement that limits resource

utilization to 80% in new applications. The processor utilization limit of 80% provides

room for application enhancements as well as a margin of error for safety. Thus, at most

twelve instances of the graph may be executed on a single processor given the deadline

parameters we have selected.

If du = yu for each node u and the graph is not schedulable, then relaxing any of

the deadline parameters will not change the schedulability of the graph since increasing

deadline parameters in this case does not reduce utilization. A negative result from

Equation (5.5) when du � yu means that the processor is over loaded (i.e., the processor

utilization is greater than 100%).

5.4.4 Computing Latency

As with all graphs in which each queue q is initialized with at least thr(q)�cns(q) tokens,

the �rst sample produced encounters the maximum latency. Thus, to verify the latency

requirement, only the latency for the �rst sample needs to be checked. However, as there

are six graph sink nodes, the latency of the �rst sample reaching each sink node must be

checked.

By Theorem 4.4.5, the latency between the time the �rst sample arrives and when
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sink node AliOut executes is less than

max

�
1;

�
FSource;AliOut

xSource

�
� ySource

�
+ dAliOut = max

�
1;

�
256

16

�
� 625ms

�
+ 10000ms

= 16 � 625ms+ 10000ms

= 20000ms

= 20 seconds

when all of the deadline parameters in the path from node Source to node AliOut are

less than or equal to dAliOut. Thus, we can manage the amount of latency any sample

encounters by choosing appropriate deadline values for node AliOut and its predecessors.

For example, if dAliScale, dAliMrg, and dAliOut were reduced to 2; 500ms, the maximum

latency a sample encounters from node Source to node AliOut is less than 12:5 seconds.

The maximum latency the �rst sample encounters in the path from node Source

to each of the other output nodes is computed in the same manner. Using the RBE

parameters in Table 5.6, the maximum latency from node Source to node:

� GramOut is �ve seconds,

� BrgOut is 20 seconds,

� AutDetOut is 60 seconds, and

� BinOut is 60 seconds.

At �rst it is rather surprising that latency as high as 60 seconds is tolerable in an

embedded application. However, it is the case that acoustic signal processing applications

can tolerate much higher latency bounds than radar applications. The main reason for

this is that sound waves travel much slower than radar waves, and, thus, it takes longer

to accumulate acoustic samples than radar samples | at least 30 seconds must elapse

before enough data is available to execute some of the DIFAR signal processing functions.

5.5 Discussion and Summary

We have demonstrated the successful synthesis of three signal processing systems from

PGM graphs with topologies ranging from a simple chain to a cyclic graph. While

the theory supporting our synthesis method and latency analyses is general enough to

handle any PGM graph, in our experience most PGM graphs created for signal processing
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applications have dataow attributes and topologies similar to one of the three analyzed

here. Moreover, in most signal processing graphs, the produce or consume value of a

queue are typically multiples of each other. When this is not the case, it is usually

because a mistake was made by the signal processing engineer that created the graph.

Thus, our synthesis method can also be used identify inadvertent coding errors.

Prior to this work, the two most common ways to schedule PGM graphs was with

a dynamic non-preemptive FCFS scheduler or with a static non-preemptive schedule

created o�-line. In the case of FCFS scheduling, the execution order of nodes is indeter-

minate and latency requirements can not be guaranteed. Instead, long simulations are

executed to estimate worst case latency values. In the case of static scheduling, latency

requirements can be guaranteed, but latency requirements must be evaluated with every

schedule created. In complicated systems, such as the ALFS subsystem, many di�erent

graphs are executed simultaneously and the the type of processing performed changes

dynamically. This can result in the need for hundreds of di�erent static schedules to

be created and stored. For example, one of the worst case concurrency modes for the

ALFS subsystem requires the simultaneous execution of 24 di�erent graphs, and each

graph can execute in several di�erent modes of operation. In these types of systems, our

dynamic scheduling technique has a clear advantage over static scheduling since only the

schedulability analysis needs to be performed o�-line. For any schedulable combination

of graphs, the RBE-EDF scheduler will dynamically create a valid schedule in which no

deadline is missed. The maximum latency any signal encounters only needs to be eval-

uated once for each path from a source node to a sink node and not for every possible

schedule.

Finally, if every node has its deadline parameter equal to the y parameter of its rate

speci�cation, the utilization expression

nX
i=1

xi � ei
yi

� 1

can even be used as an e�cient on-line admission control test for RBE-EDF scheduling.

When a new graph is added, processor utilization can be calculated in time polynomial

in the number of nodes in the new graph to see if the system is still schedulable with the

additional graph.



Chapter 6

Contributions and Conclusions

6.1 Summary

The primary problem in developing embedded signal processing systems with a processing

graph methodology is transforming a processing graph into a predictable real-time system

in which latency and memory usage can be managed. In this dissertation, we combined

software engineering techniques with real-time scheduling theory to create a synthesis

method that solves this problem. We also demonstrated how the processing latency of

signals can be managed using our synthesis method.

Our synthesis method for building deterministic signal processing systems from PGM

graphs involves three steps:

1. Identi�cation of the rate Rv = (xv; yv) at which each node v in a PGM graph

G = (V;E;  ) must execute if it is to process the signal in real-time. A rate

speci�cation ofRv = (xv; yv) means that node v must execute xv times every yv time

units. Our algorithms for computing node execution rates perform a topological

sort of the graph and set the rates in topological order such that

yv = lcmf
cns(q) � yu

gcd(prd(q) � xu; cns(q))
j 8q 2 E ^ 8u 2 V :  (q) = (u; v)g;

xv = yv �
prd(q) � xu
cns(q) � yu

:

For cycles, the topological sort creates a partial ordering of the graph, and the

partial order must be processed max(1; n) times where n is the maximum number

of di�erent cycles in which a given node appears.
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2. Construction of a mapping of each node v to a task in the RBE task model. Each

node is associated with a four-tuple (xv; yv; dv; ev), where the parameters xv and

yv are the execution rates computed in the �rst step, and the parameter ev is the

execution time of node v. The only free parameter in the mapping is the relative

deadline parameter dv. This parameter is used to guarantee real-time execution

and to manage latency in the implementation.

If the resulting RBE task set is schedulable, then our RBE-EDF scheduling algo-

rithm will schedule an execution such that the jth release of task Ti at time ti;j is

guaranteed to complete execution by time Di(j), where

Di(j) =

8<
:ti;j + di if 1 � j � xi

max(ti;j + di; Di(j � xi) + yi) if j > xi

The RBE task model makes no assumptions regarding when a task will be released.

For an RBE task set synthesized from a PGM graph, a task is released when all of

its input queues are over threshold, and there will be exactly xi releases of task Ti

in any interval of yi time units. However, we do not know, when in an interval of

yi time units, any of the xi releases will occur.

3. Veri�cation that the resulting task set is schedulable by evaluating the expression

8L > 0; L �
nX
i=1

f

�
L� di + yi

yi

�
� xi � ei

where f(a) =

8<
:bac if a � 0

0 if a < 0

so that real-time execution can be guaranteed.

If the task set is not schedulable, the mapping of nodes to RBE tasks and the veri�cation

of schedulability must be repeated with a new set of deadline parameters. However, as

long as the processor utilization is less than or equal to one, there exists a set of deadline

parameters that are guaranteed to be schedulable. One such set of deadline parameters

is the set created by setting di = yi for each task Ti in the task set.

We identi�ed and bounded two sources of latency in real-time systems created from

processing graphs. The �rst, inherent latency, is latency de�ned by the dataow at-

tributes and topology of the processing graph. The second source of latency, imposed
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latency, comes from the scheduling and execution of nodes in the graph. Thus, the total

latency any sample encounters can be expressed with the equation

Total Latency = Inherent Latency+ Imposed Latency:

We developed a framework for evaluating and managing latency by deriving upper and

lower bounds for both types of latency as functions of the data ow attributes and graph

topology. These bounds are summarized in Table 6.1. The inherent latency portion

of each latency bound can be used by signal processing engineers in selecting dataow

attributes for queues. No matter how the graph is implemented, the latency a sample

encounters will never be less than its inherent latency. For example, consider a PGM

chain u;w where node u is a periodic source with Ru = (1; yu). No matter how the

chain is implemented, the latency a sample encounters will never be less than

max (0; (Fu;w � 1) � yu) :

If the inherent latency is too large, the signal processing engineer must choose new

dataow attributes for the graph edges.

To illustrate our techniques for managing latency, three PGM graphs from the liter-

ature and industry were analyzed. Each graph corresponds to a non-trivial embedded

real-time signal processing system. The �rst was a SAR radar application, which has the

topology of chain. The second application evaluated was an INMARSAT mobile satellite

receiver application. The acyclic PGM graph for this application has a more complicated

topology than the simple chain of the SAR graph, as well as multiple source nodes. We

concluded our case studies with an evaluation of latency in the cyclic DIFAR graph from

the ALFS subsystem of the LAMPS MK III anti-submarine helicopters. Most signal

processing graphs have topologies that closely resemble one of the three applications

evaluated in this dissertation.

Although the results of this dissertation are based on PGM graphs, they are funda-

mental to AND processing graph models. Thus, our results are applicable to systems

developed with other processing graph notations such as Lee and Messerschmitt's Syn-

chronous Dataow (SDF) graphs [41] or Chatterjee and Strosnider's Logical Application

Stream Model (LASM) [15, 16].
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Latency in a Chain

Source Lower Bounds Upper Bounds

Periodic max (0; (Fj;w � 1) � yu) +
P

v2fj;wg ev max (0; (Fj;w � 1) � yu) + dw

RBE max
�
0;
j
Fj;w�1

xi

k
� yj
�
+
P

v2fj;wg ev max
�
1;
l
Fj;w

xj

m
� yj
�
+ dw

Latency in Acyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2Pw

ev Lw(t) + dw

RBE max
p2P

�
0;
j
Fp�1

xj

k
� yj
�
+
P
v2Pw

ev max
p2P

�
1;
l
Fp
xj

m
� yj
�
+ dw

Latency in Cyclic Graphs

Sources Lower Bounds Upper Bounds

Periodic Lw(t) +
P
v2P̂w

ev Lw(t) + dw

RBE max
p2P̂

�
0;
j
Fp�1
xj

k
� yj

�
+
P
v2P̂w

ev max
p2P̂

�
1;
l
Fp
xj

m
� yj

�
+ dw

Table 6.1: A summary of latency bounds. Function Fp returns the number of executions
of the source node in the path p required before node w is eligible for execution. Function
Lw(t) returns the latency a sample produced at time t encounters before node w is eligible
for execution when multiple periodic source nodes have paths that lead to node w. P
denotes the set of all paths from source nodes j 2 Iw to node w. Pw denotes the path
from source node j to node w that creates the maximum inherent latency for the sample.
Function L̂w(t) returns the latency a sample produced at time t encounters before node
w is eligible for execution when the graph is cyclic. P̂ denotes the set of all acyclic paths
from source nodes j 2 Iw to node w. P̂w denotes the acyclic path from source node j to
node w that creates the maximum inherent latency for the sample.
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6.2 Contributions

Prior to this work, the two most common ways to execute PGM graphs were with a dy-

namic, non-preemptive FCFS scheduler or with a static, non-preemptive schedule created

o�-line. In the case of FCFS scheduling, the execution order of nodes is indeterminate

and latency requirements can not be guaranteed. Because of this, long simulations and

test scenarios are required to estimate worst case latency values. In the case of static

scheduling, latency requirements can be guaranteed, but they must be evaluated for ev-

ery schedule created. Moreover, in complicated systems with multiple graphs and many

modes of operations, static scheduling may require creating and storing hundreds of

static schedules. In contrast, for any schedulable combination of graphs, our RBE-EDF

scheduler will dynamically create a valid schedule in which no deadline is missed.

From the real-time literature, the two most common models of real-time execution

are the periodic and sporadic task models. The advantage of modeling node execution as

a task in the RBE model rather than as a task in a periodic or sporadic model is that less

latency is imposed when the node is allowed to execute according to its rate speci�cation

rather than when execution is forced to follow a periodic or sporadic execution model.

Our research is the �rst to model the execution of processing graphs with the RBE model.

This work appears to be the �rst to identify and quantify inherent latency in pro-

cessing graphs. Using our synthesis method, the maximum imposed latency a sample

encounters before it is processed by node w is bounded by RBE parameter dw. This is

the only free parameter available to control the total latency a sample encounters.

6.3 Future Work

There are several interesting issues in the synthesis of embedded real-time systems from

PGM graphs that are still unresolved. The research results presented here also touch on

areas of research in other application domains that should be explored in greater detail.

6.3.1 Further PGM Analysis

There are two major problems left open in this dissertation. The �rst is managing

memory requirements in the synthesis of real-time systems from PGM graphs, and the

second is synthesizing a distributed real-time system from PGM graphs.
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6.3.1.1 Managing Memory Requirements

In the past, environmental restrictions on size, weight, and power consumption have

severely limited both the processing and storage capacity of embedded signal processing

systems. Today, however, as increases in processor speed and capabilities continually

out-pace increases in memory densities and performance, processor capacity is less of

a problem for many signal processing applications, and memory usage is becoming a

primary concern.

There are two aspects to memory analysis: code and data storage requirements.

Optimizing compilers and e�ciently written code can help to minimize code space, but

processing graphs also require storage space for intermediate processing results temporar-

ily stored on the graph edges (i.e., space required to bu�er tokens). The space required

to hold the intermediate results on all graph edges simultaneously can be quite substan-

tial. Recently, we have begun work on extending the results presented here to bound

and manage memory usage in signal processing systems synthesized from PGM graphs

[28, 27, 29].

Once the processing graph has been created, the only free variable in controlling the

amount of data bu�ered on an edge is the execution relationship between producer and

consumer nodes. The canonical approach to minimizing memory requirements for the

graph edges is to use static scheduling. Static node execution schedules are created o�-line

and then executed on a periodic basis. Numerous static scheduling algorithms have been

created to minimize memory requirements [41, 54, 64, 55, 9]. The primary trade-o� made

by static schedulers is the storage requirement and execution complexity of the schedule

vs. the storage requirement of data in the graph edges. Typically, achieving minimal

bu�er space requires increased state space for the scheduler. Some scheduling algorithms

produce a simple at schedule with each entry in the schedule representing the execution

of a single node. Other algorithms save scheduler state space by associating a number

of executions with each scheduler entry to reduce state space for multiple executions

of the same node. Still other scheduling algorithms produce slightly more complicated

schedules by creating scheduling loops encompassing many scheduling entries [9]. For

example, consider the chain in Figure 6.1. (Nodes u and o represent external devices

that are not scheduled, and only nodes v and w appear in execution schedules for this

graph.) Three possible schedules for the chain in Figure 6.1 are:

� vwvwvww | a multiple appearance at schedule where the same node appears

multiple times in a list;
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thr() = 1,

cns() = 1

thr(�) = 7,

cns(�) = 3

thr(�) = 4,

cns(�) = 4
&%
'$
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&%
'$

-- - w oprd() = 1prd(�) = 6 prd(�) = 4vu

Figure 6.1: A four-node chain. Nodes u and o represent external devices. Thus, only
nodes v and w are scheduled.

� (3v)(4w) | a single appearance at schedule where a node appears once in the list,

but the node may be executed multiple times before the next node in the list is

executed;

� (3vw)w | a multiple appearance looped schedule [9], which supports scheduling

loops that consist of multiple nodes. The notation in the looped schedule is such

that the 3 applies to all subsequent nodes until the right parenthesis is reached. In

this case, the schedule (3vw)w produces identical execution results as the multiple

appearance at schedule vwvwvww.

The bu�er space required by static schedulers is dependent on the particular schedul-

ing algorithm. For example, the multiple appearance at schedule vwvwvww or the

multiple appearance looped schedule (3vw)w requires storage for 10 tokens on queue �,

while the single appearance at schedule 3v4w requires storage for 16 tokens on queue

�. To derive the storage requirement of the input queue �, we need to know when the

static schedule is executed.

Static schedules are usually executed on a periodic basis with a timer indicating when

to start executing the schedule. Since the schedule executes without inserting idle time

(once it starts), execution cannot begin until enough data has accumulated on the input

queues to the graph to ensure a valid graph execution. The minimal period of a static

schedule is equal to the maximum y value of the execution rates of the set of output nodes

O. For example, the period of a static schedule created for the 2 schedulable nodes in

Figure 6.1 is yo since node o is the only graph output node. The �rst execution of the

static schedule cannot begin before time S where S is bounded such that so � S � so+yo,

and so is the logical release time of the �rst execution of node o. If the graph source node is

periodic, so is computed using Equation (4.15) on page 142. For example, let source node

u execute periodically with a well-de�ned rate speci�cation of Ru = (1; 8). The execution

rates for nodes v, w, and o in Figure 6.1 are Rv = (3; 16), Rw = (4; 16), and Ro = (4; 16).

Evaluating Equation (4.15) yields, so = 8. Since yo = 16, the scheduling period is 16
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time units. To ensure data availability for each execution of node v, the schedule cannot

begin until time 8 (the �rst logical release time of node o, which is also the �rst logical

release time of node w). Hence, with prd(�) = 6, 12 tokens accumulate on the input

queue � before the schedule even begins (assuming source node u �rst produces at time

0). Depending on the schedule, node execution times, and the execution characteristics

of the source node, more data may accumulate during the execution of the schedule.

Therefore, bu�ering for at least 12 + 16 = 28 tokens are required for queues � and �

when a single appearance at schedule is used to execute the two nodes. When deriving

bu�er requirements for queues connected to external sink devices, we assume that the

external device consumes data as soon as it is available. Since node w produces one token

every time it executes, a statically scheduled implementation of the graph requires storage

for at least 29 tokens (and possibly more). It is important to recognize that depending on

the length of the scheduling period and when the static schedule �rst starts, the amount

of data that accumulates on the queues attached to source nodes in an actual application

can be quite substantial.

In contrast to static scheduling techniques, our approach is to use a simple, dynamic,

on-line scheduler for graph execution. With today's processors, it is possible to use

dynamic, on-line scheduling to achieve near optimal memory usage and not be concerned

with minimizing the on-line scheduling overhead. Moreover, and somewhat surprisingly,

dynamic scheduling often requires less memory than static schedules created by o�-line

schedulers designed to minimize memory usage. For example, we have recently shown

that state-of-the-art static schedulers require almost 300% more memory for bu�ering

tokens on graph queues than our dynamic scheduling approach [29]. The primary reason

dynamic scheduling can use so much less memory for bu�ering tokens is that nodes are

able to execute as soon as they are eligible. Thus, we don't have a large accumulation

of data on the queues attached to source nodes, which is what happens when static

scheduling is used.

The open issue in managing memory requirements using our synthesis method is

developing tight bounds on queue lengths for general graphs. We have identi�ed common

special cases, for example chains of nodes or when produce and consume values are

multiples of the other, for which we are able to derive tight bu�er bounds [28, 27, 29],

but we have not yet derived a satisfactory upper bound for all cases.
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6.3.1.2 Distributed Systems

Some of the interesting and important open problems in synthesizing a distributed real-

time system from PGM graphs are: allocating graphs to di�erent processors in the dis-

tributed system, evaluating latency over multiple processors, scheduling rate-based tra�c

on the network, and non-uniform communication costs.

The problem of evaluating latency over multiple processors is perhaps the easiest

to solve, assuming the latency a sample encounters in the network can be bounded.

However, even within this problem, interesting issues arise. What happens if a graph

cycle spans multiple processors? Do processor clocks need to be synchronized to bound

latency? What are the network requirements needed to bound latency in the network?

Since nodes generate data at well-de�ned rates, the data tra�c on the network in

a distributed signal processing system built from PGM graphs will also be rate-based.

If the system has a dedicated network, as is usually the case in embedded systems, do

results from traditional network scheduling theory apply to rate-based tra�c? Can we get

better utilize the network if all tra�c is rate-based, or does this compound the problem?

Does rate-based tra�c, make it easier to bound latency in the network? What type

of communications protocol will best support rate-based tra�c? Is a reservation-based

protocol necessary to guarantee latency?

In practice, communication costs are non-uniform. By communications costs, we

mean the time to either send a message or to access (shared) memory. How does this

a�ect latency analysis or schedulability analysis? Must all queue data be stored in local

processor memory? What happens if data is stored in a shared repository on a remote

processor, as is sometimes the case in embedded systems?

Probably the most important open problem with respect to synthesizing a distributed

system from a PGM graph is determining how to allocate nodes to processors. Algorithms

ranging from traditional graph partitioning algorithms to simulated annealing have been

used to allocate nodes to processors with other graph models. How well do these algo-

rithms work with PGM graphs? Is there one algorithm that works best for partitioning

PGM graphs over a distributed system, or do di�erent algorithms work better for par-

ticular types of graphs?

6.3.2 Other Application Domains

The results of this dissertation were driven by open problems we encountered in em-

bedded signal processing applications. However, our results are also applicable to other
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application domains. For example, our synthesis method and latency analysis can also

be applied to multimedia applications developed with Chatterjee and Strosnider's LASM

system design method [15, 16]. An open problem in doing so, however, is jitter man-

agement. In multimedia applications, jitter is de�ned as variation in the time required

to acquire, process, transmit and display media samples. Most jitter management algo-

rithms rely on periodic (or sporadic) execution models. It is not clear how rate-based

execution a�ects existing jitter management algorithms, or whether they are even appli-

cable. This is somewhat surprising since the RBE model was originally created to more

accurately model the work load created by multimedia applications.

The RBE model was used extensively in this dissertation, but the model itself seems

widely applicable to general real-time systems. In practice, allowing a task to execute

with an expected execution rate is much easier to work with than trying to force it into a

periodic or sporadic execution, especially when precedence constraints exists. However,

there remain unresolved issues in the RBE model. Schedulability conditions must be

developed that account for blocking time that occurs when resources are shared. A

schedulability condition for non-preemptive scheduling is also needed. Perhaps the most

important unresolved problem in the RBE model is limiting the number of releases for a

task that can occur in an interval of time, and then accounting for this overhead.

6.4 Conclusions

From this research, we conclude that predictable, real-time systems can be synthesized

from PGM graphs. Moreover, dynamic scheduling can be used to manage latency (and

memory requirements) in an implementation of the graph. While we recognize that our

synthesis method is not a panacea for building real-time systems from processing graphs,

we have demonstrated that it does provide a viable option to the static or FCFS schedul-

ing techniques commonly used today. For some applications, our dynamic scheduling

approach is far better than existing options for managing latency (and memory require-

ments). We believe that, for very simple applications, static scheduling provides adequate

latency bounds and should probably be chosen over our synthesis method for imple-

menting a graph. However, for complicated signal processing applications with multiple

modes of operations and hard-real-time processing requirements, we believe our synthesis

method should be used over static or FCFS scheduling. Our synthesis method guarantees

real-time execution without storing a schedule for every possible combination of graphs

and modes of operation.
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Our experience developing embedded systems with PGM indicates that integrating

the results of this dissertation into the development environment will improve the software

engineering process. Our algorithms for computing node execution rates and inherent

latency can be used to identify dataow problems and violations of latency requirements

early in the design process when such problems are easiest to correct. For example, we

have found that large increases in the y parameter of the rate speci�cation for a node

(with respect to the rate speci�cations of its producers) often indicates processing in

the graph that should be investigated. There are two common cases in which the large

increase occurs:

1. a �lter that processes samples from an extended time interval, and

2. the produce and consume values on a queue are (nearly) relatively prime.

The �rst case is usually not an error, but its impact on inherent latency should be noted.

As for the second case, it is reasonable for the produce and consume values on a queue

may be relatively prime when the period of the external source device does not match

the rate at which an external output device can receive data and a rate conversion must

occur in the graph. In almost all other cases, however, relatively prime produce and

consume values indicate an unintentional rate change | usually caused by cut and paste

editing of graph source code | that should be corrected.

It seems that most embedded signal processing applications have latency requirements

that are twice the application's maximum inherent latency value. The reason for this is

not clear, but it appears to be common practice to set the latency requirement to twice

the longest time interval over which data is integrated | and the longest time interval

over which data is integrated creates the maximum inherent latency in the application.

The result of this practice is that setting the deadline parameter dv equal to yv for node v

when nodes are mapped to RBE tasks almost always results in a mapping that meets the

latency requirement if the graph is schedulable. Moreover, this means that the simple

schedulability condition

nX
i=1

xi � ei
yi

� 1;

which measures processor utilization, can be used as an e�cient on-line admission control

test for RBE-EDF scheduling. An on-line admission control test is useful when multiple

applications supporting di�erent modes of operation are executed simultaneously on the

processor. For example, the U.S. Navy tries to anticipate all modes of operations in which
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a signal processing system must perform, but it recognizes that on-board operators occa-

sionally need to improvise. Thus, the availability of an e�cient on-line admission control

test is important when unanticipated combinations of graphs or modes of operation are

needed due to ever changing tactical situations.
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