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ABSTRACT

THOMAS C. HUDSON: Adapting a Collaborative, Force-Feedback,
Graphical User Interface to Best-Effort Networks.

(Under the direction of Russell M. Taylor II and Kevin Jeffay.)

Latency is an unavoidable fact of distributed systems, and an unrelenting foe of in-

terface usability. I present methods for lessening the impact of latency on distributed

haptic, graphic, and collaborative interfaces. These three interfaces are present in

the distributed nanoManipulator, a shared tool for remote operation of Atomic Force

Microscopes. The work is carried out in the context of the Internet, where best-effort

service means that network performance is not guaranteed and that applications must

function under a wide range of conditions.

The ability of a distributed control algorithm to tolerate latency is innately tied

up with how data or operations in the algorithm are represented for transmission over

the network. I introduce two new representations for haptics, the warped plane ap-

proximation and local environment sampling, with superior latency tolerance. I show

how image-based rendering is a useful representation for transferring the output of

a remote graphics engine across the network, yielding a tenfold reduction in mean

response time over video-based approaches, and how optimistic concurrency control

is a useful representation for transmitting the actions of a remote collaborator across

the network, requiring 85% less concurrency control overhead than pessimistic ap-

proaches. All of these intermediate representations convey a meaning that is not just

true at a single point space and a single point in time, but that is valid across a

volume of space or across a range of times. These higher-order representations reduce

both the amount of blocking necessary and the rate at which closed feedback loops

must run in an algorithm.

I show how techniques used to adaptively deliver multimedia content – the User

Datagram Protocol (UDP), Forward Error Correction (FEC), and Queue Monitoring

(QM) – are applicable to the streams of data transmitted by force feedback tele-

operators. UDP alone yields a 35% reduction in latency and a 75% reduction in

jitter.

The new algorithms and adaptations for the distributed nanoManipulator’s inter-

faces combined to make this collaborative tool feasible, leading to successful use by
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experimenters more than 2000 miles apart.
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Chapter 1

Introduction

Many interesting applications have feedback-critical user interfaces. Response to

user input must be “immediate” – subject to imperceptible delay – for the application

to be effective. This immediate response to the user is necessary because these appli-

cations tie into the user’s unconscious sensory-motor reflexes, such as proprioception

or parallax. Feedback-critical user interfaces of interest today include haptic force

feedback and head-tracked virtual environments.

At first glance, distributed feedback-critical user interfaces require a high level of

service from the network: minimum bandwidth, bounded latency, bounded jitter, and

bounded loss. Today’s Internet guarantees reliability, but none of these other aspects

of service. A great deal of effort has been expended to devise Quality of Service

(QoS) guarantees for the Internet to support this class of applications, but no QoS

implementation has been deployed (section 3.2).

An alternate approach to distributed feedback-critical user interfaces is to take

the best-effort nature of the Internet as a given. Instead of trying to change the

network, applications can be designed to adapt to whatever network conditions they

encounter (Huitema 1996). Distributed algorithms can vary their use of the network

depending on currently available network resources. Further, an application with

several algorithms implemented to carry out a single task, each of which may provide a

different interface to the user and require different performance from the network, can

change between algorithms to suit the current performance provided by the network.

This dissertation explores adaptive and latency-tolerant algorithms for haptics,

graphics, and collaboration through reports of user experience, experimental evalua-

tion, new analysis techniques, and new algorithms. Adaptation and latency-tolerance

provide effective means of building interactive distributed systems that would other-

wise be constrained or rendered unusable by network delay.
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The work was grounded in a single large project: the extension of the nanoManip-

ulator into a distributed collaborative system. The nanoManipulator provides inter-

active 3-D visualization of data from a Scanning Probe Microscope (SPM) and gives

a user force-feedback control of the microscope’s tip (Taylor 1994). The distributed

version enables collaborative experimentation and manipulation of microscope speci-

mens by scientists hundreds of miles apart. This project is discussed in chapter 2.

1.1 Motivation

Four parameters are commonly used to characterize the performance of a network

connection. The number of bytes that can be transmitted between two endpoints on

the connection in a period of time is the connection’s achievable bandwidth. The

time (measured with a global clock) from the transmission of a packet to its receipt

at the other endpoint is the network’s latency. Latency can vary significantly over

the life of a connection, and this variation – jitter – plays an important role in the

suitability of a network connection for some applications. Finally, some packets sent

are never received; loss is the rate at which this occurs. (Most protocols also attempt

to detect data corruption and throw out corrupted packets, transforming corruption

into loss.)

Groups working on virtual environments and other distributed interactive appli-

cations have stated that their work requires the network to provide some guarantees

of QoS (Macedonia et al. 1994; Leigh et al. 1999; Greenhalgh et al. 1999). Many

approaches to guaranteeing QoS have been proposed, each in some way guaranteeing

network performance to applications. This guarantee is typically expressed as a min-

imum (or fixed) bandwidth, a maximum (or fixed) latency, a maximum jitter, and a

maximum loss rate. Ferrari (1990) surveyed variations in these parameters and other

useful network properties to define a design space for QoS schemes.

For the nanoManipulator, as for most interactive applications (Cheshire 1996),

the critical problem is latency. The bandwidth required for distributed operation is

modest, but humans are very sensitive to latency, which interferes with their work

(Sheridan 1993; Wloka 1995). In a feedback control system, latency is a particularly

severe problem, potentially causing system instability. Loss of messages transmitted

over the network is also a problem; the standard Internet transport protocol Trans-

mission Control Protocol (TCP) provides a reliable (apparently lossless) service but

does so by dramatically increasing latency and jitter when loss occurs. Similarly, most
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approaches to reducing jitter do so by artificially increasing latency by introducing

a buffer to smooth the arrival of data. The boundaries of human tolerance of loss

and latency depend on the mode of interaction and the task attempted, and are for

the most part not known exactly; approximate values from the current literature are

given in subsequent chapters (4, 7, and 8).

A complete guarantee of network performance, such as that envisioned by the

Integrated Services (IntServ) architecture for the Internet (chapter 3), will not nec-

essarily support usable interactive applications. There is a lower bound below which

any QoS approach cannot reduce the latency. This lower bound is dependent on

such physical characteristics of the network as propagation delay. Many interactive

applications have a “breakdown latency”; latency in excess of this limit makes the

application unusable. If QoS approaches cannot guarantee a latency below the upper

limit that the application can tolerate, the application will not be usable. Even la-

tency below this limit can significantly impair interaction. Latency tolerance varies

widely with the nature of the application; a survey of the literature is presented in

chapter 3, and specific cases are examined in later chapters.

Our informal attempts at running the nanoManipulator across a wide-area net-

work revealed that the standard network pathologies – loss, delay, and jitter – were

bad enough to make the application unusable. A first trial, with the microscope at

University of North Carolina at Chapel Hill (UNC) in Chapel Hill, NC and the in-

terface at the ACM SIGGRAPH conference in Los Angeles, CA during late summer

of 1997, showed us just how bad this could be. Loss on the commodity Internet

was high enough that using User Datagram Protocol (UDP) as a transport protocol

caused unacceptably poor performance (figure 1.1), while the error-recovery mecha-

nisms in TCP caused unacceptably high latency and jitter. Something better than

the best-effort Internet was needed to support this application across long distances.

We obtained access to the Internet2 Quality of Service Test Backbone (Qbone)

for a trial from UNC to the Highway1 site in Washington, DC in the spring of 1999.

The Qbone is a testbed for QoS mechanisms, particularly the Differentiated Services

(DiffServ) architecture, which is discussed in chapter 3 (Teitelbaum et al. 1999). The

Qbone could give us Premium service, the highest-quality form of DiffServ, which

yielded a network connection with no loss, ample bandwidth, and roughly 30 ms of

round-trip network latency – good operating conditions for our application. When the

nanoManipulator did not receive Premium service, but had to compete with a high-

bandwidth application for the same available network bandwidth, our application
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Figure 1.1: Two “frames” of surface data from the nanoManipulator in Los Ange-
les, California controlling a microscope in Chapel Hill, North Carolina. Horizontal
black lines in the right-hand image of the surface are caused by data lost during the
transcontinental Internet transmission by the UDP protocol.

became unusable due to latency, loss, and (loss-induced) jitter.

Although this Chapel Hill to Washington, DC connection was a demonstration for

an Internet2 meeting and was strongly supported by a network vendor who wanted to

use the distributed nanoManipulator to showcase their DiffServ support, the admin-

istrative and technical difficulty of establishing this Qbone connection was extremely

high. We began planning and coordinating with the network service providers sev-

eral months in advance, scheduling the Qbone connection to be operational one week

before the conference for testing. Due to incompatibilities among implementations

of the standard and miscommunications between service providers, our connection

did not work until late the night before it was needed – and that it functioned at

all was due to the heroic efforts of one of the vendor’s network engineers. As of this

writing, DiffServ appears to be no closer to wide deployment or effective standard-

ization. Something easier and cheaper than guaranteed QoS was needed to support

our application.

In 2000 and 2001 we used the Internet2 for test deployments of the interface

to Ohio State University (OSU) in Columbus, Ohio and to Microsoft Research in

Seattle, Washington, keeping the microscope in Chapel Hill. Although for this test

the Internet2 did not provide QoS guarantees, it did give us our next-best case: a

lightly-loaded, high-bandwidth network. Round-trip network latency to OSU was in
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the 30-40 ms range, and again our application was usable. Round-trip network latency

to Microsoft Research was higher, averaging 70 ms, and the force-feedback was not

sufficiently high-quality for manipulation of samples in the microscope. This implied

that, although guaranteed QoS may have been sufficient to allow remote operation

of the nanoManipulator from a site roughly 400 miles distant, it was insufficient for

a site nearly 3000 miles away.1,2 Something more effective than QoS methods was

needed to support our application.

The nanoManipulator project has had a private network connecting the Physics

and Computer Science buildings since soon after the project’s inception. This network

was required because our public network at the time was prone to bursts of congestion

that seriously impaired experiments. When deploying the distributed nanoManipu-

lator, we built another private network connecting the originating departments to

our collaborators on-campus (Chemistry and Gene Therapy) and in the metropolitan

area (NIEHS, the National Institute of Environmental Health Sciences). However,

expanding this private network any farther would have been prohibitively expensive

and logistically difficult. Something more widely accessible than a private network

was needed to support our application.

In general, neither building a dedicated network nor gaining access to QoS facili-

ties is feasible for most collaborations. To reach users at these other sites, we must be

able to deploy the application over today’s commodity Internet. In the original de-

sign, all of the nanoManipulator’s interfaces had more stringent latency requirements

than could be satisfied by the Internet, and remote rendering consumed very high

1There was no guaranteed QoS offered by the connection to OSU: however, this lightly-loaded,
high-bandwidth network gave us performance comparable to what we would expect from a guaran-
teed, dedicated circuit. Thus we conclude that QoS methods may be able to solve the problem of
collaborating with OSU.

2The distances I describe above are geographic straight-line distances. Messages sent over the
Internet may travel significantly longer distances. For example, a packet from UNC to OSU passes
through Washington, DC and New York City on its way. For terrestrial high-speed networks most
delay occurs at routers, so the number of routers between two points can also serve as a useful
distance measure. From UNC to OSU a packet may pass through a dozen routers, while to reach
Microsoft Research it transits 18 or more. This is a significant difference, but much less than the
geographic distances would lead one to expect, and helps explain why the delay only doubled when
the geographic distance increased more than sixfold.

The Internet2 provides unusually direct connections between its sites. For messages to go from
the nanoManipulator installation at Arizona State University to community colleges in Arizona over
the regular Internet requires that they transit more than 14 routers, even though this is a relatively
short geographic distance (Razdan et al. 2000).
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bandwidth. (The calculations behind this bound are given in Appendix A). Thus,

changing the application to deal with a high-latency, moderate-bandwidth environ-

ment was necessary.

1.2 Thesis Statement

Feedback-critical user interfaces must meet stringent requirements for their response

time to user input. Network latency can easily increase response time beyond an ac-

ceptable level, rendering distributed applications unusable. Quality of Service guar-

antees cannot reduce latency below a hard limit, and that limit is too high for many

distributed applications. Further, many QoS techniques, seeking to control loss or

jitter, increase network latency. Thus, my thesis:

Interactive applications can be successfully distributed across wide-area

networks by selecting latency-tolerant operation semantics and interme-

diate representations to match the application’s requirements and cur-

rent network conditions. Applying these design approaches to the dis-

tributed nanoManipulator increases user satisfaction while reducing sys-

tem response time and haptic display error.

I have combined and extended adaptive and latency-tolerant approaches to build

a distributed application with three types of remote interaction, each with different

requirements: teleoperation with force feedback, collaboration, and remotely rendered

interactive graphics. These modes of interaction share one common trait that explains

their high sensitivity to latency: they are all part of distributed control and feedback

loops.

The two methods of latency tolerance used in this dissertation are intermediate

representations and operation semantics. An intermediate representation is a

representation of some data chosen for its suitability for a distributed application, and

is not the “native” form in which the data was generated or will be displayed. By

operation semantics I mean the precise definition of an action and the representation

of that action that will be transmitted across the network. By making small changes

to the definitions of operations afforded by the user interface we can make significant

changes to the network performance of the distributed application, often without

changing the user’s perception of those operations.
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1.3 Results

This dissertation presents five results: three in haptics, one in collaboration, and one

in remote rendering.

• A novel metric for measuring the performance of force feedback systems (chap-

ter 4)

• Two novel intermediate representations for networked force feedback (chapter 5)

• Evidence of the usefulness of network adaptations designed for multimedia ap-

plied to distributed force feedback systems (chapter 6)

• Evidence of the usefulness of particular operational semantics and architectural

models for constructing networked collaborative applications (chapter 7)

• Measurements of the network performance of image-based rendering for remote

rendering (chapter 8)

There are several distinct types of data transmitted across the network by the dis-

tributed nanoManipulator. Each has different characteristics and different require-

ments, so each must be considered separately when building an adaptive, latency-

tolerant application. I have implemented adaptations for the three principal streams:

haptics, concurrency control for collaboration, and interactive graphics, discussed in

chapters 4-6, 7, and 8. First, in chapters 2 and 3, I introduce the nanoManipulator

and examine other researchers’ work in feedback-critical user interfaces.
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Chapter 2

Background

In this chapter I discuss the original nanoManipulator, our goals for a distributed

nanoManipulator, and early experiences in our attempt to deploy a distributed sys-

tem. These experiences led to the thesis and experiments documented in this disser-

tation. In these experiences, across all of the nanoManipulator’s interfaces, the chief

problem was latency. I conclude this chapter with a discussion of models commonly

used in the study of latency.

2.1 Scanning Probe Microscopes

Scanning Probe Microscopes (SPMs) allow scientists to see and manipulate nanometer-

scale objects. These objects range from biological specimens, like viruses and DNA,

to substances of interest to materials scientists, such as carbon nanotubes. We refer

to whatever small piece of material is being imaged by a microscope as a specimen.

The current generation of the nanoManipulator system is built around an Atomic

Force Microscope (AFM), one particular variety of SPM. Every experiment discussed

in this dissertation was conducted with an AFM. Figure 2.1 shows a schematic dia-

gram of an AFM: a stage that holds the specimen, a tip that probes the specimen,

and a laser that measures the position of the tip The stage is a surface on which

specimens are mounted, supported by a scanner – typically a hollow cylinder of

piezoelectric crystal. Because piezoelectric materials change their size in response

to electric voltage, the scanner (and thus the specimen) can be made to move small

distances in any direction in response to precisely applied voltages. The tip is a mi-

croscopic, extremely sharp point projecting from the end of a small springy cantilever,
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both typically made of silicon.1 The laser is aimed at the cantilever, and reflected

onto a photodiode. Output from the photodiode can be interpreted to measure the

bend and twist of the cantilever. Finally, the entire system is driven by circuitry that

controls the voltage applied to the piezoelectric crystal based on the photodiode’s

output.

Figure 2.1: Schematic of an Atomic Force Microscope, showing the stage with its
piezoelectric crystal, the tip, the laser, and the photodiode.

Typically, SPMs are operated under closed-loop (feedback) control.2 The SPM

controller moves the tip until it is very close to the specimen and measures the inter-

action between the tip and the specimen. The primary difference between different

types of SPM is the choice of which interaction between tip and specimen to measure.

For example, AFMs move the tip until it is in contact with the specimen and mea-

sure the vertical force exerted on the tip by the contact,3 while Scanning Tunneling

1Tips are commonly manufactured as cones or square-based pyramids ending with a 10 nm radius
of curvature.

2Feedback control systems attempt to maintain some specified output. To compensate for any
errors, they measure the actual output and “feed back” the measured error into the system as a
compensating factor (Nise 1995).

3This is a simplification of the physics of the interaction between tip and specimen. For more
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Microscope (STM)s, another variety of SPM, apply a voltage to the tip, and measure

the electric current between the tip and the specimen. Electrons “tunnel” through

short distances, so an STM need not contact the specimen as does an AFM.

The value of the SPM is not only in sensing characteristics of the sample at a

single point, but in building up an image of a large area of the sample. The tip is

moved back and forth in a raster pattern through a horizontal plane (Figure 2.2),

while the controller varies the vertical position of the specimen in order to keep the

measured value constant. 4 This gives a three-dimensional isovalue map over the

surface - for an AFM, isoforce.

Besides the primary signal – conductivity for an STM, force for an AFM– used to

determine the height of the specimen, several additional signals may be monitored at

the same time. With an AFM, one of the most important is the lateral (horizontal)

force that twists the tip when it encounters obstacles while it images the sample by

moving in a raster pattern.

2.2 The nanoManipulator

The nanoManipulator is an interface to SPMs that includes three-dimensional graph-

ics and haptic force feedback. It was developed to help scientists increase their under-

standing of the data from these microscopes mid-experiment, enabling them to steer

the experiment to respond to data as they gather it (Taylor 1994). For example,

scientists using the nanoManipulator observed that carbon nanotubes that seemed

to be moving randomly when pushed around on a graphite substrate were actually

preferring certain regular orientations regardless of their position on the substrate.

The nanoManipulator allowed them to change their experiment plan mid-stride and

discover a useful nanoscale phenomenon: predictable gear-like interlock between the

nanotubes and the regularly-spaced carbon atoms of the graphite substrate (Falvo

detail, consult Howland and Benatar (1997).

4Here, the output of the control system is the measured interaction between tip and specimen,
and the error signal is the difference between the output signal and the desired output (a constant
specified by the scientist, taking into account the material properties of the specimen). If the error
signal is positive, the specimen is lowered (voltage on the scanner in the Z dimension is reduced)
until the desired output is reached; if the error signal is negative, the specimen is raised. This control
loop needs to execute tens of thousands of times per second. If the measured interaction is force, as
in an AFM, the tip in effect measures the height of the specimen.
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Figure 2.2: Illustration of the scanning pattern of Atomic Force Microscope. Each
solid dot represents a sample taken during a left-to-right movement of the tip (solid
lines); each hollow dot a sample from the right-to-left pass (dashed lines). The regular
grid of dotted lines is a reference to show the intended correspondence between the
two raster patterns. Nonlinearities in the response of the stage to voltage applied by
the control circuitry cause samples taken while the tip is moving in different directions
to not line up.

et al. 2000). The nanoManipulator also provides scientists with the ability to exercise

interactive control of the microscope tip during experiments, putting a human “into

the loop” and enabling new types of experiments. For example, using the nanoMa-

nipulator, scientists were able to precisely manipulate virus particles in liquid more

accurately by hand than was possible using pre-programmed positioning of the mi-

croscope (Falvo et al. 1997). The scientist controlling the force feedback interface

“feels” the surface scaled up a million times, and makes use of their proprioception

and their reflexes in guiding the tip.

The nanoManipulator application records all the data received from the micro-

scope during an experiment. The nanoManipulator can replay this recorded data

as if it were coming from the microscope again, effectively simulating the AFM and

allowing the scientist to “replay” the experiment. This feature allows the complete

history of an experiment to be shown to scientists who were not present when the data

was initially taken, and allows reanalysis of old data using new techniques. Replay

has resulted in the discovery of new facts from old datasets, such as the discovery

of periodic graphite fault planes projecting from an apparently-noisy surface (Taylor

et al. 1993). All of these capabilities – leveraging proprioception and reflexes, mid-
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experiment understanding and changes of plans, replay, and reanalysis – have helped

suggest follow-up experiments and shape the path of research (Taylor et al. 1997).

The nanoManipulator engages scientists using two senses: sight and touch. It uses

interactive 3-D graphics to show users the shape of the surface being imaged by the

microscope. Scientists can look at the surface from different directions, exaggerate

the Z scale, change coloring, superimpose regular grids, make measurements, and

apply numerous other analysis techniques while the experiment is in progress.

Figure 2.3: Conceptual feedback loop between a force-feedback haptic device and a
Scanning Probe Microscope. (1) position of user’s hand is measured, (2) movement
commands are sent to the microscope and it moves, (3) height of sample is measured
at the new location, (4) force is applied to the user.

Touch is provided by a SensAble(TM) Technologies PHANTOM(TM) (Salisbury

et al. 1995), which lets the user direct the tip of the microscope and feel the shape

of the surface. A PHANTOM is a robotic arm with a pen-like stylus on the end; the

arm can sense the position and orientation of the stylus.5 A PHANTOM can also be

made to exert force in three dimensions to change the position of the pen.

A scientist using the nanoManipulator works with this stylus in his hand. The

computer can sense where he positions the stylus. The tip of the microscope is coupled

to the PHANTOM by the software, so that every movement of the scientist’s hand

is imitated by the microscope’s tip on a scale roughly one million times smaller.6

5In the lexicon of virtual reality, this is a six degree-of-freedom, or 6DOF, tracker, with three
dimensions of force display.

6The tip normally remains “in feedback,” using the microscope’s circuitry to exert a constant
force on the specimen, mirroring the scientist’s hand motions in the horizontal plane but moving
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Figure 2.4: Series of linked feedback loops between a haptic device and a Scanning
Probe Microscope. (1) Hardware inside the Phantom measures the position of the
end effector and updates the output force at 1000 Hz. (2) The Phantom sends the
current position to nano at 60 Hz; nano sends new information about the sample at
frame rate. (3) nano sends microscope positioning commands to topo at frame rate;
topo sends microscope position information to nano as movements complete (20-200
Hz). (4) topo interacts with the hardware on the SPM.

The shape of the surface measured by the tip is turned into forces that are exerted

by the PHANTOM against the scientist’s hand, so that he feels as if the probe in

his hand is really in contact with the surface scaled up by a like order of magnitude

(Figure 2.3).7 Implemented directly, this would position-control force feedback:

the user controls the position of a sensor, and the system response is expressed as

forces on the user.8 It is possible to build a force feedback device using the dual,

equivalent formulation of force-control: the manipulator measures force exerted

by the user, and the system response is expressed by moving the manipulator to

a resultant position. The nanoManipulator’s PHANTOM provides position control

through an intermediate representation, the plane approximation, such that the force

exerted on the user is not a direct function of the force measured by the microscope

(section 4.4.2). Although Figure 2.3 showed a single conceptual feedback loop, there

independently vertically and transmitting representative forces back to the scientist’s hand. Direct
3-dimensional control of the microscope tip by the PHANTOM is occasionally used for precise ma-
nipulations of the specimen. This 3D control was not used in the work described in this dissertation.

7Scaling depends on the degree of zoom the scientist chooses, which varies with the specimen
and with his intent, typically from ten thousand to one million times: magnifying a region of the
specimen from 100 to 10,000 nm on a side to an apparent size of 10 cm square.

8In the lexicon of control theory, position is the controlled quantity and force is the feedback
signal.
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are actually several loops, all running at different rates, as shown in Figure 2.4.

2.2.1 Issues of Control in Scanning Probe Microscopes

There are many sources of noise and error in an SPM. Three that are significant for the

nanoManipulator are nonlinearity, hysteresis, and creep. The motion of the scanner

is inherently nonlinear: the distance it moves is not a linear function of the voltage

applied, and the deviation can be as much as 25% from linear. The scanner’s motion

also displays hysteresis, a nonlinearity proportional to the sign of the derivative of the

voltage: the position of a scanner with x volts applied when the voltage is increasing

may differ from the position of that scanner with x volts applied when the voltage is

decreasing by as much as 20% of the total distance the scanner can move.9 Finally,

the scanner’s response to a constant voltage is not constant: after rapidly assuming

an initial position (within 1 millisecond of a voltage being applied), over the next 10

to 100 seconds a scanner may creep as much as 20% of the distance moved in that

first millisecond (Leckenby 2000), exponentially approaching some rest state.

Due to the nonlinear response of the piezoelectric crystals used in SPM stages,

adding human control and force-feedback gives the scientist more precise control of

manipulations of the specimen than are achievable by conventional programmed con-

trol (Taylor and Superfine 1999). The behavior of piezoelectric stages is not consistent

between microscopes’ scanning modes (moving back and forth at relatively high, con-

stant speeds) and the slower, unstructured movements used for manipulation. This

results in unavoidable error. What the user “sees” in the three-dimensional visual-

ization of the microscope’s previous scan data does not match what the microscope

tip will encounter when it makes a modification: the map is not the territory. A

modification based on the “map” – the topography of the surface reported by even

the most recent microscope scan – will not execute where intended, due to hysteresis

and creep. However, as a user prepares to make a modification, he can feel where the

tip is on the surface and compensate for those nonlinearities. When an SPM is to

be used for manipulation, the visualization of the scan lies: the haptics display the

truth.

Direct human control of the microscope tip has consistently enabled more complex

9Although the manufacturer reports this as the worst-case hysteresis, we have never observed
a hysteresis magnitude of more than 20% of the size of the current scan region, which is typically
much less than the possible scan size.
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experiments to be performed than are possible under automatic control. For example,

Finch et al. (1995) were able to use the nanoManipulator to push a gold colloid across

the specimen substrate until it filled a gap in a wire. The first programmed robotic

control of a similar task was carried out five years later by Resch et al. (2000) and

Meltzer et al. (2001).

2.3 The Distributed nanoManipulator

The aim of the distributed nanoManipulator system is to help scientists carry out

their tasks without regard to the distance between scientist and microscope. One

early goal was to provide remote access to scientific equipment: SPMs are expensive

and uncommon, and the three-dimensional graphics display of the nanoManipulator

requires computational power that until recently was not found in most workstations.

The distributed nanoManipulator helps scientists use SPMs and graphics hardware

not present in their labs. Even more important than access to remote equipment

is access to remote expertise: planning an SPM experiment, preparing a specimen

for the microscope, operating the microscope, and interpreting the data all require

expertise and intellectual understanding of a physical regime that is not part of the

background of most scientists. Typically, a domain expert – perhaps a physicist or

a biochemist – who wants to do SPM microscopy on a new type of specimen will

require many months of experience to reliably find the correct specimen preparation

method, microscope settings and imaging mode, and other techniques necessary to

get good data. Giving these domain experts access to an SPM technologist greatly

eases their learning curve.

After an initial implementation involving the Chemistry Department of the Uni-

versity of California at Los Angeles, the nanoManipulator was further developed by

the Department of Computer Science and the Department of Physics and Astronomy

at UNC. The two departments are located in adjacent buildings; collaboration was

straightforward, and a dedicated computer network to serve the project was created.

By the late 1990s, the audience for the nanoManipulator had grown significantly.

It was used for research by UNC’s Departments of Chemistry and Gene Therapy and

in ongoing collaborations with other labs ten to twenty miles from campus. nanoMa-

nipulators were installed in the Chemistry Department of the Catholic University of

Leuven (Leuven, Belgium) and the Computer Science Department of Arizona State

University (Phoenix, AZ). The National Institutes of Health (NIH) National Center
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for Research Resources (NCRR) supported a postdoctoral researcher at UNC to bring

in scientists from across the United States to learn to apply atomic force microscopy

and the nanoManipulator to problems in biology. The UNC Department of Education

had taken the nanoManipulator into local high schools to enrich science education.

Demand for copies of the device was high enough that a company was formed to

transform the nanoManipulator into a commercial product.

This increased use of the nanoManipulator revealed two problems. First, those

sites that installed their own copy of the system needed support from UNC Computer

Science to set it up and to add the features they required. After the installation at

Leuven, one or two graduate students per summer went to Belgium to work on Leu-

ven’s copy of the code. As other sites requested nanoManipulators of their own, the

project realized that it would soon run out of graduate students! Commercialization

of the system was intended to offload this support onto an external organization.

Second, collaborators from across town and the scientists brought in by the NIH

were not accomplishing as much as we, or they, hoped. Bringing in an academic

scientist from a remote site is difficult. Schedules must be aligned so that they can

visit at a time assistants and instruments are available. Airfare and accommodation

must be arranged. During their visit, they typically must understand how our AFM

works, discover how to prepare their specimens for imaging under an AFM, carry out

a preliminary experiment, analyze that experiment, and then use their preliminary

results to plan and carry out a follow-on experiment. The press of commitments

at visitors’ home institutions limits their ability to stay, typically to one week or

less. We repeatedly found that in a single week we could press the process through

a preliminary experiment, but could not do a significant portion of the analysis or

plan any follow-on experiments. Despite the promising nature of the early results,

our visitors usually could not arrange funding for a second visit, or had to wait many

months to come again.

This kind of difficulty – experienced on a much smaller scale by our local col-

laborators – produced what we termed “peak and valley” collaborations, with small

spurts of productivity separated by long periods of low activity (Sonnenwald et al.

2001). This process was frustrating for its participants, and did not produce nearly

as many results as hoped. Results “in limbo” waiting until another visit for comple-

tion can become outdated, lose their relevance, or simply be abandoned in favor of

non-collaborative projects on which steady progress is possible.
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2.3.1 Goals

For all of our visitors and collaborators, the principal difficulties were scheduling

and travel. By late 1997, we had decided to try to overcome these problems using

the Internet. If we could use the public network to give remote users access to our

instrument and our microscopy expertise, they could reduce their need to travel to

our site and would be able to schedule their collaborations more flexibly.

Our first goal was to give remote users access to the microscope and to the nanoMa-

nipulator’s key feature, the ability to have a human control specimen modifications

using force-feedback cues. This is the interaction mode of the system most degraded

by high network latency. It has been known since at least 1966 that force feedback suf-

fers when transmissions between operator and machinery are delayed (Ferrell 1966),

but the nanoManipulator is sufficiently different from previous work in teleoperation

to present new problems and afford new solutions.

When we began work on the distributed nanoManipulator, the 3-dimensional vi-

sualization software used required a powerful SGI workstation. Graphics capabilities

have increased since then; today, the newest PC-class computers and graphics hard-

ware are capable of running the software (the nVidia Quadro2 Pro card could update

a 300x300 scan of the specimen at 30 fps (Helser 2001); more recent graphics hard-

ware has even higher performance). Some visualization techniques that our scientists

want to adopt require significantly more computation to render each frame than the

nanoManipulator’s original modes (Weigle et al. 2000; Bokinsky 2003), so there is

still a need to enable access to more graphics power than is present on any signle

workstation.

Our rendering requirements encouraged us to give users access to a remote ren-

dering engine – originally an SGI Infinite Reality, PixelFlow (Molnar et al. 1992), or

similar special-purpose machine at a supercomputer center. Today a high-end PC or

a PC cluster across a Local Area Network (LAN) can be used as the remote rendering

engine. This process is another distributed feedback loop: the application’s current

state is sent to the rendering engine, which draws the current view and sends the

image back across the network. Every time the application state changes, the user

must wait to see a visual indication of the new state until the updated parameters

have reached the server, a new image has been rendered, and the image has been

received and displayed by the user’s machine. When the application state is changing

in response to user input, significant delay in this loop can make the application un-

usable (chapters 7 and 8). Compression techniques like MPEG (Mitchell et al. 1996)
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are commonly used to “stream” remote video and graphics data across networks,

but these focus on reducing bandwidth requirements rather than latency. Depending

on the network bandwidth available, compression can even increase latency due to

encoding/decoding overhead.

By 1999, we had an additional goal: to enable two scientists to use the distributed

nanoManipulator at one time. The NIH NCRR funded us to add this capability, to

deploy software with the collaborative features to our collaborators, and to conduct

both an ethnographic and an experimental study of the process of scientific collabora-

tion and the utility of our tool (Sonnenwald et al. 2001; Sonnenwald et al. 2001). The

NIH supports the development or purchase of scientific instruments in research labs

across the US. The NIH NCRR funds scientists to travel to those labs to increase

the utilization of these instruments, spread knowledge of their use, and encourage

scientific collaboration. We based our design for the collaborative features on an

ethnographic study conducted for the NIH NCRR, with hours of interviews with and

observations of scientists leading to a prototype, usability reviews, and a formal evalu-

ation experiment (Hudson et al. 2000). The study will continue into 2004 to evaluate

the distributed nanoManipulator as it is used by scientists to do their work.

In summary, to make remote resources as useful as local resources, our original

goals were to give a user access to:

• a remote microscope, with correct, complete data, a complete interface, and the

ability to plan and execute manipulations of the specimen;

• a remote rendering engine, with a clear, accurate, fully-detailed visualization of

the surface that responds to user input and updates at interactive rates;

• and a remote collaborator, both users having full access to the nanoManip-

ulator functionality, the ability to work together or in parallel, awareness of

one another’s actions, and the ability to share data analysis and other external

applications.

2.3.2 A System Architecture

To discuss the ideas I introduce in this dissertation, I make reference throughout to

the architecture of the distributed nanoManipulator. I give a brief description of the

architecture here, with more details, deployment diagrams, and implementation notes

in Appendix B. The core components are shown in Figure 2.4.
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There are two central processes: nano, the user interface, and topo, the microscope

controller. These two processes run on machines connected by a network. There is

also a process controlling the PHANTOM force feedback device; in our deployments,

this runs on a second processor of the dual-processor computer hosting nano, although

it could be hosted on another computer connected to nano by a LAN. Finally, there

may be an additional process, render, responsible for rendering or pre-rendering the

graphics to be displayed at nano; this may run in another thread on nano’s host, or

on a graphics workstation or supercomputer across the LAN or Wide-Area Network

(WAN).

2.4 Interactivity and Latency

This dissertation is about feedback-critical user interfaces. What is the “immediacy of

response to user input” required by an application with this type of interface? Being

feedback-critical is a particularly strong form of the common term “interactive”; in

this section I consider the broad range of definitions of interactive already in the

literature.

One conventional model of interaction used by researchers in human-computer

interaction entails a series of four activities: thought and action by a human, then

the resulting computation and response by the computer (Figure 2.5) (Bhola and

Ahamad 1999). Response time is the time between the user’s action and the user’s

perception of the response – the time elapsed during the computation and response

stages.

Working with the nanoManipulator, we have observed an important distinction

within user interfaces between continuous and discrete input. Continuous input

tasks are tasks executed by a mouse, a Phantom, or other tracking device. Familiar

examples include using a mouse to hilight several words in a text editor, move po-

sition clip art on the slide in presentation software, or select a file in a conventional

windowing system and drag it into a new folder. Discrete input tasks entail typing

short sequences on a keyboard or pressing buttons using a mouse. Feedback is much

less important for discrete tasks than it is for continuous. This same distinction has

been reported in the literature, e.g. by Shneiderman (1998).

Under the four-stage model of human-computer interaction, an application is “in-

teractive” if the application’s response time does not dominate the user’s thought

and action time. In continuous tasks, the user is continuously providing input, so
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Figure 2.5: A simple model of a user interacting with a computer in a closed feedback
loop: the user thinks, then takes an action that is interpreted by the system; the
system makes some computation, then displays a response to be interpreted by the
user. In a teleoperator like the nanoManipulator, the last stage also includes physical
action.

the application must respond as fast as the user can perceive. Shneiderman (1998)

synthesizes many narrow studies from the literature to give 100 ms as a rough upper

bound for response time to continuous tasks in interactive applications.

Researchers in the virtual reality and computer graphics communities frequently

use “interactive” to describe applications, but rarely carefully define or quantify the

term. The general qualitative meaning is that a user sees the system respond to his

input “fast enough.” Writers claiming that a system is interactive often cite its frame

rate – the number of times per second it displays updated imagery – as quantitative

evidence. Any application that updates its display at a rate of 10 frames per second

(fps) or better may casually be called interactive. However, this is only a lower

bound on response time. Most 10 fps virtual reality applications have a response

time much longer than their 100 ms frame time (Wloka 1995). A good frame rate

is necessary, but not sufficient, to guarantee a good response time from a graphics-
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intensive application.

Many graphics applications increase frame rate by using pipelining – each of sev-

eral processors executes a small portion of the work necessary to render a frame then

hands off that frame to the next processor. Increasing the degree of pipelining im-

proves frame rate, but not response time: frame time is equal to the length of the

longest stage of the pipeline, while response time is equal to the total length of the

pipeline. Only for non-distributed, non-pipelined graphics applications does frame

time approximate response time.

In this dissertation, I use the term interactive applications

to refer to applications where closed-loop feedback driven by

continuous input makes low response time critical to productive

use.

Precise characterizations of interactivity are application-specific and depend on the

interface modality. There is no task-independent metric or user study reported in the

literature. In this dissertation, I use response time as the measure of interactivity.

I have measured the response time of the nanoManipulator system for three dis-

tinct types of interface: haptic force feedback (chapter 4), awareness and synchro-

nization information in collaboration (chapter 7), and graphics driven by a remote

rendering engine (chapter 8). All three of these interfaces involve continuous tasks,

for which Shneiderman’s (1998) 100 ms upper bound on response time is approxi-

mately valid. 10 Chapters 4, 7, and 8 survey prior work, giving specific information

on consequences of and bounds on response time as found in the literature.

2.5 Studying Latency

Response time is the sum of various latencies – delays – in a system. Careful study

of latency is not common in the Virtual Environment (VE) community. One recent

study of VE latency is the work of Taylor et al. (1996), who have instrumented

a number of networked VE systems to measure the response time (which they call

“end-to-end lag,” a term typically used in networking research) and built a standard

10With the use of an intermediate representation, discussed in chapter 4, haptics becomes a set
of linked feedback loops, and the “outer” loop that includes the user can sustain a longer response
time; in our experiments, depending on the intermediate representation used, this can be 200 ms or
more. The inner loop requires a response time on the order of 1-2 ms.
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model of system latency. The system they base their model on is a scientific simulation

connected by a network to a virtual environment interface. They identify six basic

sources of latency in such a system:

1. Tracking lag is the time that input devices require to measure and report a

change in the user’s position (measured by a tracker); more generally, the time

to report a button press or release, or any other user input event.

2. Simulation lag is the time required by the simulation to compute a new set

of outputs when given a new set of inputs.

3. Rendering lag is frame time: the time between the data being computed for

a new view and that view being rendered into the frame buffer by the graphics

hardware.

4. Synchronization lag is the time between any one process producing its output

and the next process in a pipeline being ready to consume it.

5. Frame rate induced lag is the time between successive updates of the display

device. (This latency is also known as scan-out time.)

6. Network lag is the time that messages spend travelling through the network

between processes in the system.

As Taylor et al. (1995) emphasize, there are actually two different critical response

times in the system:

View latency is the time between the user changing the parameters of their view

(such as the position of their head) and seeing the view updated to reflect the

new parameters.

Simulation latency is the time between the user changing the controls of the sim-

ulation and seeing the view updated to reflect the new control settings.

When two users share a collaborative application across a network, Bhola et al. (1998)

similarly divide latency into two round-trip times:

Response Time is the time between a user’s input and that user seeing the results

of their input.
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User-User Time is the time between a user’s input and some other collaborating

user seeing the results of their input.

This model of system latency is further discussed in chapter 7, where I analyze the

nanoManipulator’s collaboration subsystem.

The distributed nanoManipulator is a very similar system to those studied by Tay-

lor et al. (1995): a virtual reality interface connected by a network to a microscope.

However, working on the distributed nanoManipulator we have found that there is

another important distinction to be made within the view latency:

Continuous command latency is the view latency in response to continuous in-

put, such as trackers or mice.

Discrete command latency is the view latency in response to discrete input, such

as button presses.

Continuous command latency would ideally be limited to 100 ms or less to get ad-

equate immersion in a three-dimensional interface; current research points to 50 ms

as a worthwhile target for virtual environments (Meehan et al. 2003). Discrete

commands can often tolerate significantly higher end-to-end latency. Many of the ap-

proaches discussed in chapters 7 and 8 result from carefully tuning algorithms to each

of these three types of end-to-end latency: continuous command, discrete command,

and user-to-user.



Chapter 3

Related Work

In this chapter I introduce the Open Systems Interconnection (OSI) model of a com-

puter network, which I use to classify and contrast the approaches to distributing

feedback-critical user interfaces presented in this dissertation. I then examine a crit-

ical divide in approaches to building distributed applications. On one hand, we can

consider changing the network to provide “better” service to the application; on the

other hand, we can change applications to operate with the service that the net-

work currently provides. Finally, I look at how other collaborative science systems –

co-laboratories – have approached this divide.

The two high-level approaches laid out in chapter 1 – changing either the appli-

cation or the network – were explored by researchers in the early 1990s investigating

audio- and video-conferencing. Although the latency requirements of conferencing

are less stringent than those of interactive applications, conferencing presents tougher

bandwidth and jitter requirements, and none of these requirements are satisfied by

the best-effort Internet. Many researchers believed that the network should offer

guaranteed performance to enable reliable support for high-performance and real-

time applications; this desire to “change the network” lead to today’s body of work

on QoS.

Other researchers felt that applications need to adapt to a best-effort network;

this approach – “exploiting the inherent flexibility in the application” – led to work

like the Two-Dimensional Scaling of Talley and Jeffay (1994). Adaptive techniques

like these have become increasingly important with the rise of wireless networks,

which have increased network heterogeneity and consequently reduced the feasibility

of providing guarantees. However, neither network QoS nor application adaptation

provides a simple solution to the problem.
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QoS technology is not widely deployed on public networks, so an application in-

tended for use over the public networks cannot rely on it. Further, although QoS

methods can reduce the effects of wide-area distribution that interfere with an inter-

active application, they cannot eliminate these problems. Most methods of reducing

loss and jitter also increase latency; they cannot support an application that requires

low-latency message transmission as well as low jitter and low loss. This indicates

that effort needs to be put into extending latency-tolerant and loss-tolerant applica-

tion design techniques to apply to a wider range of problems.

3.1 The “OSI Stack” Model of the Network

It is common to both model and implement network software as a stack of independent

layers. Today’s Internet is conventionally described using a five-layer stack, with

Physical, Link, Network, Transport, and Application layers (Kurose and Ross 2002).

During an earlier era of networking research, the OSI proposed a seven-layer model,

dividing the Internet’s Application layer into Session, Presentation, and Application

(Day and Zimmermann 1983; Tanenbaum 1989). The additional layers of the older

model make distinctions that are useful in this dissertation (figure 3.1).

According to the OSI model, the Session layer handles end-to-end interactions

between communicating processes, including directory services, load sharing, and

access rights (Bertsekas and Gallager 1992). In this dissertation’s model of adaptive

applications, I place in the Session layer algorithms that coordinate behavior in the

communicating processes to change the way they use the transport and network

layers. For example, the Session layer contains the code that controls the choice of

transport protocol, e.g. whether a communication uses TCP, UDP, or UDP with

Forward Error Correction (FEC) (see section 6.2). I also place in the Session layer

the use of either synchronous or asynchronous communication.

The OSI model groups data encryption, data compression, and code conversion

into the Presentation layer. In the Presentation layer I place algorithms that encode

intermediate representations, or choose to vary which intermediate representations

are used (for example, see section 5.2.1). This can include algorithms which control

how computations are distributed among processes – for example, choosing whether

to render graphics locally or in a remote process (see chapter 8).

Finally, the Application layer contains the “leftovers.” In this dissertation, those

are the algorithms that choose to vary the user interface in response to network
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conditions.

Figure 3.1: The Internet and OSI network stacks. Although current convention is to
use a five-layer stack, this dissertation proposes roles for the Session and Presentation
layer in implementing an adaptive application.

3.2 Changing the Network

For a LAN, network latencies range from 1 to 10 ms, well below Shneiderman’s 100

ms bound. However, a WAN imposes much higher latencies on message transmission.

Packet-switched WANs like the Internet also suffer from loss and jitter.

Today, all Internet traffic receives the same “best-effort” service. The network

attempts to deliver all packets transmitted, but does not guarantee that any of them

will be received. Latency-critical packets from an interactive scientific or medical
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application may be delayed by email, file transfer, or other less urgent data. QoS

services attempt to remedy this problem by identifying packets that need better

service and protecting those packets from interference by lower-priority traffic. In the

extreme, each flow of packets receiving guaranteed QoS would be isolated from all

other packets on the Internet, traversing through its own virtual private network. Two

major approaches have been proposed for QoS in the Internet: Integrated Services

(IntServ) and Differentiated Services (DiffServ).

Going beyond best-effort, Integrated Services (Braden et al. 1994) provides two

premium levels of service, known as Guaranteed and Controlled-Load. Both ser-

vices attempt to control latency for every packet in a flow that has requested QoS:

Controlled-Load service insures that almost all packets will meet the bounds, while

Guaranteed service gives an absolute promise that every single packet meets the la-

tency bounds (unless some part of the network fails completely). IntServ provides

this bound by reserving network capacity before any data packets are transmitted.

The endpoints of a connection specify the service they need as part of a call setup

procedure. Conceptually, this “Flow Specification” states the peak bandwidth an

application will consume and maximum latency it can tolerate (Wroclawski 1997a;

Shenker et al. 1997). Each router along the network path between the communicat-

ing computers executes an admission control algorithm to determine whether or not

it can meet the guarantees requested by this new traffic source. Once all routers have

agreed that a connection can be supported, data can begin to flow (Braden et al.

1997; Wroclawski 1997b).

IntServ makes a strong guarantee of the performance that will be provided to

packets. However, IntServ is a radical departure from the architecture of the existing

Internet. IntServ requires that routers maintain status for each flow of information

that transits them and participate in end-to-end signalling, roles explicitly forbidden

in the initial design of the Internet Protocol. Although IntServ has been specified

and sample implementations are available, it has not been and is not likely to be

deployed. Implementing IntServ adds a large computational and storage overhead

to routers. Furthermore, IntServ can only make guarantees if it is deployed in every

router along a network path.

A simpler but weaker approach to QoS is Differentiated Services. Nichols et al.

(1999) proposed a strawman design for DiffServ, the “Two-Bit Architecture.” Like

IntServ, Two-Bit DiffServ provides two new levels of service to network flows, which

it calls Premium and Assured. The architecture’s name derives from the fact that
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two bits in the Internet Protocol (IP) header are used to specify (or “differentiate”)

the level of service each packet should receive.

A packet marked for Premium (high-priority) service will be forwarded through a

router before any non-Premium packet waiting in that router’s queues is forwarded.

In return, the application sending Premium packets guarantees that its bandwidth

demands will not exceed given peak and average rates; any packets that do exceed

the limit will be dropped in the network. This contract between the application and

the network is known as a service level agreement. The limited peak (low burst size)

enables the network to minimize the amount of buffering used for Premium flows and

helps reduce latency.

A packet marked for Assured service (with its “A-bit” set) does not have the

absolute preference of Premium packets but instead receives a statistical advantage

over unmarked best-effort traffic. Best-effort and Assured packets are mixed together

in router queues, but when queues begin to overflow best-effort packets are dropped

first.

One of the great strengths of Two-Bit DiffServ is that it should be simple to

implement in routers. A router in the interior of a network need only check the

Premium bit in the header of each incoming packet to determine which queue to

place it into. Premium packets are put into a high-priority queue; all packets from

the high-priority queue are sent before any packet in the low-priority queue is sent.

Assured packets are mixed with best-effort packets in the lower-priority queue which

uses the RED/RIO1 queue management scheme to control packet dropping; best-

effort packets are preferentially dropped. Following the original Internet design, the

complexities of QoS management are pushed to the edges of the network; no state

needs to be maintained at the routers. Unlike IntServ, DiffServ can provide partial

QoS even if only some routers in the network support it.

Current development of both IntServ and DiffServ has shown promising results

on the small segments of the network over which they have been deployed. However,

above and beyond the challenge of deploying these new services across the Internet –

a one-time problem – is the ongoing problem of administering and maintaining QoS.

One of the reasons IntServ appears to not be succeeding in the marketplace is its

complexity – it includes support for flexible, dynamic allocation of QoS to applications

1Random Early Drop / RED with In and Out (Clark and Wroclawski 1997), a congestion control
scheme for routers. DiffServ requires that some method of congestion control be adopted at routers,
and RED is the current favorite.
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that request it on the spur of the moment. DiffServ’s strength – its simplicity – is also

a critical weakness: without automated support for administration and management,

DiffServ requires either expensive, long-term contracts for a given level of QoS, or

a large amount of work by technicians and administrators to set up shorter-term

connections. For an interactive application like the nanoManipulator, meant to be

used intermittently and informally, neither significant administrative overhead (to get

guarantees on short notice) nor high cost of service (to pay for continuous QoS that

will only occasionally be used) is acceptable.

With a private network – one not open to all comers like the Internet – some

widely-distributed interactive applications may be possible. In September 2001,

transcontinental telesurgery was performed: doctors in New York did a laparoscopic

gall bladder removal on a patient in Strasbourg, France (Marescaux et al. 2002).

They had a direct network connection, high-speed fiber-optics from end to end with

no cross traffic. Round-trip latency was 80 ms, high enough to prevent force feedback

from being useful. The straight-line distance between these two points is roughly

7000 km, leading to a round-trip propagation delay of at least 47 ms. Since surgeons

typically use force-feedback as much as vision in performing laparoscopic surgery,

and only video was available (no force feedback was provided), the surgeons worked

slowly, much like the “move-and-wait” use of teleoperators discussed in section 4.4.1.

Other components of the system added at least 75 ms of latency, bringing total system

latency over 155 ms.

One significant contributor to latency in packet-switching is the time each packet

spends sitting in router queues waiting to be routed or serviced. Kessler and Hodges

(1996) proposed the Updatable Queue mechanism to reduce this latency: for certain

types of data, if one message has been sitting in a queue and a newer one arrives,

the old message can be thrown out since it is made obsolete by the new one. In the

nanoManipulator, this could be a report from nano telling the AFM where to move,

or an update from topo telling the Phantom what local plane approximation to use.

The nanoManipulator runs a mechanism derived from Kessler and Hodges’s to reduce

queueing latency at nano.2However, queueing latency can also accumulate at every

router in a network. In a dedicated network we could consider running an updatable

2A more significant contribution of the Updatable Queue mechanism to the nanoManipulator is
its use in matching rates: nano generates commands as fast as it can, and topo processes them at
its own best speed (significantly slower); the Updatable Queue guarantees that excess commands
from nano are thrown away instead of contributing to an ever-increasing backlog.
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queue at every router, significantly decreasing network latency. This is not feasible in

today’s Internet, although it might be enabled by recent proposals calling for “Active

Networks,” in which each connection can specify complex operations to be carried

out on its messages at mid-stream routers (Tennenhouse et al. 1997).

3.3 Changing the Application

Without guaranteed performance from the network, the application must sense what

performance the network is giving it and choose an appropriate algorithm or adapta-

tion scheme to achieve its goals.

In this dissertation, I discuss three classes of adaptive algorithms. Session-layer

adaptive algorithms change the network behavior of the application. Presentation-

layer adaptive algorithms change the way function is distributed between the system’s

processes to change the network behavior required by the application. Application-

layer adaptive algorithms change the application’s user interface to change the appli-

cation behavior required by the user.

3.3.1 Session-Layer Adaptation

Audio and video applications have been the major drivers for QoS networking. Audio

and video hardware that connects to personal computers has become widely available,

supporting teleconferencing. Web sites “stream” audio and video across the Internet.

Consumers are also using Internet telephony. All of this demand for networked audio

and video has created a demand for research: these media require high bandwidth,

low jitter, and low latency, none of which are provided by the Internet. However,

there are many possible tradeoffs, sacrificing some component of media quality in

return for some reduction of network requirements. Thus, networked audio and video

have also driven research into adaptive applications. 3

The network requirements of different video streams vary, depending on their

content, the coding and compression schemes used, and the resolution and frame

rate desired, which in turn depend on the application for which the video is being

used. Early video telephony was aimed at providing acceptable pictures of a person’s

3Audio and video are often called streaming media, and a transmission of A/V data called a
stream.
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head using 64 - 128 kilobits per second over standard telephone lines (Turletti 1993).

General-purpose video requires a higher bandwidth: the H.261 standard can use

bandwidth ranging from from 40 kilobits to 2 Megabits per second (Mbps); MPEG1

aims at rates between 1 and 1.5 Mbps (Mitchell et al. 1996). Although today’s

networking technology can provide aggregate bandwidth far in excess of these levels,

congestion and the “last mile” problem mean that we can not rely on having this

bandwidth available.4

Audio has much more stringent loss and latency requirements than video. For

human speech to be understood, audio data must be delivered in a continuous stream

with few gaps – little jitter. Studies of teleconferencing show that comparable amounts

of jitter and loss make an audio stream incomprehensible long before they begin to

interfere with video. Recent authors have argued that latency must be kept to less

than 200 ms to provide acceptable audio quality (Ferrari 1990).

TCP corrects for loss by detecting when loss occurs and retransmitting the lost

packet. Often, loss is only detected when a timer expires. This unavoidably adds

latency, since loss is equivalent to unexpectedly high delay. FEC has been used to

ameliorate loss in audio and video (Bolot and Vega-Garcia 1996; Bolot and Turletti

1996). FEC anticipates loss and takes action to recover from this loss in advance,

rather than reacting to it. FEC introduces redundancy into the stream; if a packet is

lost, one of the redundant copies of that packet will probably not be. This approach

to controlling loss makes a tradeoff, significantly increasing the bandwidth required

for a stream in exchange for greatly reducing the expected latency required to correct

loss. Bolot and Vega-Garcia (1996) is fully adaptive, monitoring the distribution of

losses in the network to determine the necessary degree of redundancy.

Many audio and video transport systems have been designed to operate in a multi-

cast environment, where one computer is transmitting data to many receivers. Differ-

ent receivers may want differently-parameterized data, or be connected by networks

of differing bandwidths. Systems such as the Heidelberg Transport System (HeiTS)

4In 2004, the existence of the “last mile” problem is debatable. In the mid- to late 1990s,
the network backbone had been upgraded, but many individual PCs were still sharing 10 Mbps
connections with large numbers of other computers. This changed faster than expected. For example,
many university campuses are now wired at 10 or 100 Mbps to every desktop. For Research I
institutions, such as the University of North Carolina at Chapel Hill, bandwidth may no longer be
in short supply. For smaller universities, such as the University of North Carolina at Wilmington,
this moves the bottleneck from the LAN to their uplink to the WAN, where traffic from many
desktop and laptop computers may be aggregated to a link of 10 Mbps or less. A high school is still
lucky to be connected to the Internet at 1.5 Mbps.
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(Delgrossi et al. 1993), the Multimedia Multicast Channel (Pasquale et al. 1992),

and Receiver-Driven Layered Multicast (McCanne et al. 1996) are designed with this

heterogeneity in mind. These systems decompose the audio and video streams into

several substreams, allowing receivers to reconstruct high-quality picture and sound

if they receive all the streams or lower-quality picture and sound if they only receive

a subset of the streams. HeiTS also allows the parameters of an individual substream

to be modified.

Adaptive application research proposes novel techniques for distribution which are

well-suited to network pathologies. These methods can be combined into a parame-

terized system driven by closed-loop feedback: a system which evaluates the current

performance of the network and dynamically changes its data transfer requirements.

When these changes alter the quality of the output, the system is said to be perform-

ing media scaling.

HeiTS performs closed-loop feedback, dropping substreams when multicasting to

less capable receivers or reducing fidelity when unicasting. Talley and Jeffay (1994)

expanded this media scaling from one-dimensional, adapting to meet only a band-

width constraint, to two-dimensional: a network’s feasible packet rate is partially

independent of its feasible bit rate. Additional possible dimensions for adaptation

are added when supporting wireless communication. For example, the Fugue sys-

tem adapts transmitter power, bit rate, quantization (lossyness of compression), and

frame rate (Corner et al. 2001).

3.3.2 Presentation-Layer Adaptation

Time-critical algorithms adapt to meet deadlines: if an exact computation is too

expensive (will take too long and cause the system to miss a deadline), an approxi-

mate computation is performed instead. They are used in situations where a timely,

approximate answer is more useful than an answer that is correct but late. Time-

critical systems have been the focus of a significant body of prior work on adaptive,

non-distributed interactive applications. Like many networked adaptive algorithms,

they cannot directly measure or compute their parameters, and must instead estimate

costs based on recent history. If the previous iteration of a computation missed its

deadline, the next iteration uses a cheaper approximation. Applied to graphics, this

technique has yielded a number of systems that render an approximately-correct or

low-quality image when they do not have enough time to render a high-quality image

(Holloway 1992; Gobbetti and Bouvier 1999; Klosowski and Silva 1999). Some of
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the earliest applications of this idea were systems that displayed a wireframe image

of a scene while the user was moving, and rendered in solid objects when the user

held still. There are also time-critical simulations, which approximate the physics of

a scenario when the fully simulated computations are too expensive to complete in

their allotted time. For example, Hubbard’s (1995) dissertation covered time-critical

collision detection, giving an algorithm that smoothly varied from approximately to

exactly detecting collision or interpenetration of complex polytopes.

A number of authors have used multiprocessing to attempt to minimize latency

inside virtual environment systems (Shaw et al. 1992). Wloka (1995) looked at com-

bining ideas from time-critical computing research with these multiprocessor latency-

minimization techniques. He presented a general multiprocessor architecture for vir-

tual environments and a synchronization scheme to minimize lag (latency) due to

synchronization stalls among the processes. Synchronization stalls occur when one

process produces data before another process needs to use it; the subsequent process

can either use the stale data, which has been sitting in buffers since it was produced,

or wait until the producer has new data for it. Either option adds to the effective

latency of the system – either the amount of time that the data was sitting in buffers

or the amount of time that the consumer process waits for fresh data.

One example of a time-critical system is a Distributed Virtual Environment (DVE):

a virtual environment designed to be distributed across a network, almost always a

wide-area network. Many DVE applications focus on their bandwidth requirement as

the chief obstacle to be overcome (Sandin et al. 1997; Capps 2000). Naive transmis-

sion schemes require large bandwidths to distribute the model or model updates. In

some systems, the “world model” – model of the environment – is transmitted to the

user incrementally. In others, various area-of-interest or level-of-detail schemes are

used to reduce the amount of model data or number of updates that must be sent to

each user (Macedonia et al. 1995; Hesina and Schmalstieg 1998).

Area-of-interest approaches have also been used to control dissemination of audio

and video streams (Benford et al. 1994). Here, again, the dissemination was controlled

to minimize bandwidth consumption by the virtual environments system.

When Capps (2000) writes about latency, it is primarily viewed as a side-effect of

limited bandwidth and large numbers of users: “. . . limitations on network bandwidth

usually affect latency more than round-trip communication times . . . ” In Capps’s

QUICK system, end-users use computers connected over modems (28,800 baud) to

view a huge dataset or virtual space. QUICK assumes that users must dynamically
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download the relevant portions of this dataset, and that bandwidth used is constrained

by their 28,800 baud connection. The nanoManipulator has the opposite situation,

where propagation and queueing times are much greater than transmission time, i.e.

distance and congestion contribute more to latency than does bandwidth. This makes

many of the techniques, and even the conclusions, of prior research inapplicable to

our system.

3.3.3 Application-Layer Adaptation

The third approach I explore is to assume that network latency is beyond the appli-

cation’s control or ability to hide from the user. Instead of trying to influence the

network performance, or change the implementation of the application and its de-

mands of the network, we can change the application’s user interface. Human beings

are highly adaptable; it has long been established that operators can teleoperate with

delays of tens of seconds if they do not use force feedback. Instead depending on

vision, users adopt a “stop-and-wait” approach: they make an incremental change

to the system, then wait for that change to propagate across the delay and for its

effects to be observable (Ferrell 1966). Stop-and-wait is quite slow, and with high de-

lays even stop-and-wait teleoperation is error-prone (Ferrell 1966). Modern research

is trying to find ways to augment the user interface so that humans can operate in

high-latency environments without having to discard their reflexes.

Conner and Holden (1997) devised a consistent set of visual cues for users in a DVE

with latency problems. In their system, users attempted to manipulate objects, but

only one user could manipulate each object at a time. When both tried to manipulate

the same object, race conditions could ensue, and network latency interfered with

user actions. In their system, when a user attempts an operation, the object being

manipulated is rendered transparently until the success or failure of the operation is

known. When a user moves an object, motion blur is used to visually smooth jittery

updates from the network. When an expected message does not arrive from the

network, the object from which that message was expected is defocused to indicate

uncertainty. These three cues – transparency, blur, and defocus – are meant to work

together, to have similar visual impact while approximately informing the user of

several different network states.

Fraser et al. (2000) developed a set of visual cues to address latency and other

characteristic problems of DVEs. A user of their collaborative system was shown

latency in two ways. First, every other user’s avatar is surrounded by a sphere that
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represented the uncertainty in the user’s position, which is the product of network

latency and the user’s potential velocity. Second, every other user’s avatar could also

be annotated with an icon that showed the network latency that user was subject to.

Vaghi et al. (1999) studied the problem of inconsistency in DVEs with high

network latency. In their system, two players competitively played a game of Pong.

The authors simulated a variable network latency between the two players, studying

how their performance changed as a result of several different levels of latency (50 -

999 ms). Vaghi et al. (1999) listed a lengthy set of general approaches to designing

user interfaces that alert the user to latency and help her adapt to it, as well as a set of

specific mechanisms that are suitable to their application. Some of their approaches

are closely related to the techniques I used in chapter 7, and are discussed in detail

there.

The one major project that addresses the effects of network latency on user interac-

tion is Distributed Interactive Simulation (DIS), the United States Army’s massively

multi-user training VE. DIS trains soldiers in simulated combat, on foot, driving, or

flying aircraft. Because the trainees are at military bases spread across the continent,

latency is unavoidable. The simulation can also require high bandwidth, which can

lead to congestion and additional latency. The DIS literature is voluminous; Singhal

and Zyda (1999) provides a summary of the lessons of DIS and of NPSNET (Macedo-

nia et al. 1994), a research system from the Naval Postgraduate School that improved

on DIS’s performance.

DIS is best known for its use of “dead reckoning” to keep track of players’ loca-

tions. In addition to broadcasting her position, a player A broadcasts her velocity

and acceleration. The code driving other players’ displays stores A’s velocity and

acceleration and applies it to its knowledge of her location until players receive a

new update from A. This enables A to send far fewer location updates than would be

necessary otherwise: A models the position that all other players simulate for her and

only sends an update when error between that position estimate and her true position

exceeds an a priori error bound. The system can vary the error bound, adjusting the

rate of A’s updates to adapt to network conditions.

DIS’s designers carefully decided which algorithms would be distributed and which

would be centralized, basing the design on the underlying semantics of the simulation.

Using dead reckoning to estimate positions permits bounded divergence between the

worldviews of different players, minimizing the latency they experience. For data that

players need to agree on – for example, whether or not one player is hit when shot at



37

– DIS maintains consistency by determining “the truth” at a single location. Users

at other locations have their perception of the result delayed by network latency, but

the system ensures that the results they perceive are consistent.

3.4 Collaboratories

Collaboratories (“co - laboratories”) are computer systems that enable cooperation

among scientists. The term is also used loosely to refer to systems that provide re-

mote access to instrumentation. The distributed nanoManipulator is one of several

collaboratories developed near the turn of the millenium. Researchers at the Beck-

man Institute have created a number of programs that allow simultaneous remote

access to a Scanning Electron Microscope (SEM) by many users, including Bugscope

(Potter et al. 2000). Users have a web-based interface that shows them frames of

video captured by the SEM. Buttons on this interface cause the SEM to pan, zoom,

or otherwise modify its parameters in discrete steps. In the Beckman systems, either

each remote user is either independent, completely unaware of the simultaneous in-

vestigations being carried out by other remote users on the same sample, or passive,

merely observing another remote user’s investigation without being able to commu-

nicate with them (Carragher and Potter 1999). Bugscope does provide the ability

to exchange text messages with a technologist operating the microscope during these

sessions.

The Upper Atmospheric Research Collaboratory provides shared access to data

from a number of scientific instruments: incoherent scatter radar and other instru-

ments, mostly based on the ground, that observe Earth’s ionosphere (Olson et al.

1998). The software does not provide direct control of the instrumentation: scientists

who want to vary parameters must send text messages to operators located at the

instruments’ sites.

Neither of these examples is an interactive application within the scope of this dis-

sertation. Both user interfaces are discrete, not continuous; human latency tolerance

is significantly higher in this case.

Arizona State University has a distributed, non-collaborative version of the nanoMa-

nipulator reminiscent of the Bugscope. That is, it provides a web-based interface to

the nanoManipulator’s three-dimensional renderings of a live AFM, and lets users

manipulate the visualization and the AFM from their web browser, but does not

support manipulation or interaction between multiple sites simultaneously viewing
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the data (Razdan et al. 2000). Control of the instrument is discrete, not continuous,

giving this collaboratory a higher latency tolerance than the nanoManipulator but

less manipulative potential.

3.5 Summary

Even applications using QoS-enabled networks may not get the network performance

they need. Thus, it is necessary to build applications that can adapt to the perfor-

mance that the network provides. It is possible to adapt at the application, session,

or presentation layers. This dissertation presents a remote teleoperator, remote ren-

derer, and collaboratory using session- and presentation-layer adaptations, which are

not application-specific, and are thus a good starting point for future applications.



Chapter 4

Haptics and Latency

haptics: active exploration by touch.

The nanoManipulator’s force feedback (or “haptic”) interface – the PHANTOM

robot arm that is coupled to the microscope’s tip – is the component of the system

whose performance is most degraded by distribution across a network. After defin-

ing haptics and considering the problem of measuring haptic quality, I survey prior

attempts to provide force feedback across a network. One of the foci of this body

of research is determining a latency bound: “How much latency is too much?” The

bounds previously discovered do not directly apply to the nanoManipulator, due to

our different implementation techniques;1 I show how to use Fourier analysis to ex-

tend these bounds, deriving bounds for the techniques used in the nanoManipulator,

and give both anecdotal reports by scientists of the nanoManipulator’s usability and

experimental results that appear to validate them. Having latency bounds for the

plane approximation will let implementors know whether or not it will work for their

application before they implement it.

4.1 Haptic User Interfaces

Psychologists divide the sense of touch into two subtypes: the kinesthetic sense,

through which we sense movement or force in muscles and joints; and the tactile sense,

through which we sense shapes and textures (Hannaford and Venema 1995). When

you carry out an action, you feel force exerted on your body by the environment.

1Prior experiments seeking bounds have used point-sampled position control (section 4.4.1); we
used the plane approximation (section 4.4.2).
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I use the terms “haptic interface” and “force-feedback interface” to mean a user

interface that communicates information to a human user via the kinesthetic sense.

Adachi et al. (1995) define a haptic interface as “a device which generates mechanical

impedance,” where the user feels a stiff surface when there is “a sudden transition

from very low to very high impedance.”

Haptics is often used in teleoperation, the control of machinery at one location

by a person at another location. The user transmits commands to the machine over

a network or radio link and receives data about the progress of the operation. Most

teleoperation has involved manipulators – jointed arms with a gripper used to grasp

objects at the remote site. The operator usually uses his own arm and hand to

carry out an action naturally; the manipulator arm mimics his movements. This

gives the operator a kinesthetic and proprioceptive sense of his action. The mapping

from operator input to manipulator action is direct, instead of abstracted. With

appropriately low latency and visual feedback, the operator can use his own reflexes

to carry out the task.

Many manipulators use force feedback: the remote manipulator measures the force

exerted by the environment, and this force is exerted on the operator through the

same device that is reading his position as input. When used in teleoperation of

remote manipulators, force feedback usually improves task performance (Hannaford

et al. 1991). Even when the end-effector is simple – in the nanoManipulator’s case,

just a sharp tip that the user moves horizontally while the computer controls its

vertical position (Figure 4.1) – force feedback can be very useful. See section 2.2 and

Taylor et al. (1997) for the nanoManipulator, and Mitsuishi et al. (1995) for another

example.

The standard implementation of teleoperation is a simple feedback loop: a user

moves an input device (the “master”), the new position of the device is measured

and transmitted over the network to the effector (the “slave”), the slave moves to a

corresponding position, the force exerted on the slave by the environment is measured

and transmitted back to the master, where it is exerted on the user (possibly scaled).

Since the user controls the position of the slave by moving the master, this is known as

position control. Since the measured forces are being fed back to the user, it is also

known as Direct Force Feedback (DFF) – direct in the sense that no intermediate

representation is used.

The nanoManipulator uses position control, but not DFF: it uses an intermediate

representation to model the environment and to compute an appropriate force to
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exert on the user, rather than exerting the force from the environment on the user.

In this dissertation I use the phrase “position control” to refer to any device where

the user controls the position, and DFF only for devices where the force fed back is

directly measured.

Force feedback has also been used in VE interfaces for applications other than tele-

operation, usually applications where the virtual “remote environment” manipulated

is a computer-driven simulation instead of actual physical objects. For example, the

GROPE project used haptics to help scientists understand the interactions of proteins

(Brooks et al. 1990). InTouch lets users “paint” the surface of a computerized model

while feeling as if they were applying a real paintbrush to a real surface (Gregory

et al. 2000).

Figure 4.1: Conceptual feedback loop between a haptic device and a Scanning Probe
Microscope, repeated from figure 2.3. (1) position of user’s hand is measured, (2)
movement commands are sent to the microscope and it moves, (3) height of sample
is measured at the new location, (4) force is applied to the user.

4.2 Evaluating Haptic Interfaces

There are three general requirements for the user interface of any force-feedback sys-

tem: stiffness, correctness, and stability. However, no task-independent, perceptually-

based measurement of the quality of a haptic system in terms of those requirements

has been established. Investigators have compared the effectiveness of force feedback

manipulators by measuring test subjects’ completion times for simple tasks; they have

also tracked error rate, peak force exerted by the effector, variance in force exerted,
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and sum of squared forces exerted.

In assessing users’ perception of remote environments, the first measure of the

quality of a haptic system is the maximum stiffness of the surface that it can present

while maintaining stability. When the user causes the effector to move into contact

with the surface of a specimen, he feels a virtual surface through his input device.

Is the shape he feels stiff – crisp and well-defined? Or is it “mushy” and indistinct.

It is also important that correct surfaces are displayed. If the operator feels a sur-

face contact through the input device when the effector hasn’t actually made contact,

or if the surface geometry felt is misaligned or incorrect, he will make mistakes.

Unstable systems are systems that can go out of control. When sufficiently per-

turbed, an unstable system can begin oscillating; the increasing magnitude of the

oscillations can cause the system to fail. Smaller perturbations can cause oscillations

that do not lead to failure but interfere with normal operation. There is a branch

of mathematics, control theory, which deals with this phenomenon. Particularly in

the face of latency, human input can be a cause of instability in electro-mechanical

feedback control systems. To be safe and correct, every force-feedback system needs

to be stable. Unfortunately, high stiffness contributes to instability, so stability con-

cerns limit the stiffness displayed by force-feedback devices. The stiffer the surface

displayed by the system, the stronger and more sudden the force that will be exerted

on the user when he pushes up against it. He is pushed away from the surface by

the sudden force and attempts to contact it again, beginning an oscillatory cycle.

Stiff surfaces will miscue his reflexes, causing inadvertent over-reactions that lead to

instability.

We need to consider the perceptual capabilities of human users to gauge exactly

how much stiffness and correctness is necessary. These two essential qualities depend

on a number of parameters, many of them determined by the mechanical design of

the input device and the effector. In this dissertation, I look at two of the parameters

that affect stability and correctness: update rate and latency.

4.2.1 Haptic Device Update Rate

Human touch responds to different types of stimuli at different rates. Although a

human being normally cannot discriminate between consecutive forces occurring at

frequencies above 300 Hz, during skillful manipulation tasks we may be sensitive

to vibrations at frequencies as high as 5,000 to 10,000 Hz (Burdea 1996). Haptic

systems must run a control loop at a comparable rate to successfully present stiff



43

force feedback: the force they exert on their human user is updated roughly 500 to

1000 times per second. The force output update rate is typically matched by the rate

at which haptic devices sample their position sensors, so that this is also often an

approximate measure of how frequently the device measures the position of the user’s

hand.

4.2.2 Latency and Latency Bounds

Early work assessing the effects of delay on teleoperators found that 100 ms of delay

in haptic feedback was enough to destabilize position-control teleoperators, causing

them to oscillate to failure (Ferrell 1966). Even smaller amounts of delay would make

the system effectively unusable. Ferrell also found that a stop-and-wait strategy (op-

erators made a small movement, then waited to discern the results of that movement)

avoided instability, but made force feedback unclear and significantly degraded per-

formance. Few studies of the human factors of time-delayed teleoperation were made

from that date until the 1990s, when new theoretical approaches to latency-tolerant

force-feedback needed to be evaluated. Vertut et al. (1981) tried to use delayed tele-

operators without the move-and-wait strategy. To successfully complete their tasks

users had to reduce velocity to 10 cm/s, greatly increasing completion time. An-

derson and Spong (1989) found instability with as little as 40 ms of network delay;

similar figures are reported in the avionics literature (Wickens 1986). In Anderson

and Spong’s experiments, the instability occurred with tasks much less complicated

than those required in the nanoManipulator: linear motion into contact with a hard

surface, or sinusoidal motion without contacting the environment.

All of these studies used position-controlled force-feedback manipulators, so their

results are not directly applicable to the nanoManipulator (section 2.2). In section 4.6

I show how to use Fourier analysis to derive latency bounds for the plane approxima-

tion given these approximate 40-100 ms latency bounds for position control.

4.3 Constraints on Device Update Rate and on La-

tency

Both high update rate and low latency are necessary for stability.

The first constraint on update rate is provided by the hardware that displays forces

to the user. SensAble(TM) Technologies’ 6 Degree of Freedom (DOF) Phantom(TM)
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arm updates its output force at 15,000 Hz, but most haptic devices run at lower

speeds. The 3-DOF Desktop Phantom used in the nanoManipulator is controlled at

1,000 Hz. Burdea’s (1996) survey lists several devices, with update rates as low as 10

Hz and none higher than 3,000 Hz.

Most traditional teleoperators have control software that sends signals across the

network – control signals from controller to manipulator and responses from manipu-

lator back to controller – and updates the force to be displayed at the same frequency

as the hardware’s internal display loop (section 4.4.1). However, most VE applica-

tions use approaches that allow both the VE software and network transmissions to

run at lower rates (section 4.4.2), as do non-force-feedback teleoperators designed for

high-latency situations (section 4.5).

Update rate determines a lower bound for latency – if the software only commu-

nicates with the hardware at 10 Hz, then the hardware will display forces that are as

stale as 100 ms, and the software will use similarly out-of-date measurements of the

user’s input in its calculations. The nanoManipulator typically only receives position

reports from the Phantom every 16.7 ms (at 60 Hz), even though the Phantom can

provide samples every 1 ms (at 1000 Hz). Thus, the nanoManipulator system design,

as implemented, adds over 15 ms of latency to the haptic control loop.

Once update rates are sufficiently high, latency is principally influenced by the

transmission delay. This chapter addresses the problem of latency in haptics: it sur-

veys previous approaches to operating in the presence of transmission delay, proposes

new methods, and evaluates these new methods.

4.4 Force-Feedback Teleoperation

In the next two sections I survey previous work in teleoperation. Direct force feedback,

as described above, is an excellent interface for low-latency remote manipulation.

However, force-feedback teleoperation is so impaired by latency that many researchers

in long-distance remote manipulation have abandoned it for open-loop approaches,

which are discussed in section 4.5.

4.4.1 Direct Force Feedback

DFF position-controlled teleoperators have used a dedicated network or bus to con-

nect the human-manipulated “master” to the mechanical “slave.” Although the band-
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width requirements are small (perhaps 9600 bits per degree of freedom per second),

500 to 1000 tiny messages have to be transmitted from slave to master (with position

commands) and back (with force responses) every second; this is only possible over a

tightly synchronous, dedicated, short-haul network with minimal protocol overhead.

To avoid instability, many teleoperation researchers have reformulated the control

loop to use “passive control” (Anderson and Spong 1989). This exploits an analogy in

control-theoretic analysis between a teleoperator and an electrical transmission line.

Because transmission lines are passive devices – devices that never add energy

to the system – they are provably stable under all time delays. However, a passive

manipulator gives decreased surface stiffness – a spongy or mushy feeling – when delay

is long, and increases tasks’ completion times at all levels of network delay (Lawn

and Hannaford 1993). These make passive control a less-than-optimum solution for

distributing the nanoManipulator.

Most work in passive control assumes a known constant delay. The Internet

suffers from both high latency and high jitter. Variable delays are so difficult to

design control systems around that most researchers do not consider the Internet

a feasible medium for teleoperation. Niemeyer and Slotine (1991) developed a new

mathematical approach to expressing passivity. Their more recent work shows that

a simulated passive teleoperator allows stable teleoperation over the Internet in the

face of unknown, varying latency (Niemeyer and Slotine 1998). Like earlier passive

approaches, their system “feels soft when the instantaneous delay is large,” although it

automatically improves the stiffness displayed as delay reduces. Niemeyer and Slotine

(1998) provide a novel method to compute some of the system parameters that avoids

the numerical errors normally suffered by digital force-control algorithms,2 but in their

simulations the approach still suffers from incremental divergence between master and

slave. Deployed in the nanoManipulator, this technique would mean an increasing

error between the positions of the Phantom and the AFM tip. Thus divergence is

another argument against the use of passive control for manipulation in the AFM.

4.4.2 Intermediate Representations

The high update rate required by traditional approaches to force-feedback teleop-

eration is a significant obstacle to combining haptics with programs that have other

2In a system where only position measurements are available, velocity must be estimated by
taking differences. Unfortunately, this approach to differentiation is known to be highly noisy.
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computational demands. The most common solution used in VE applications is an in-

termediate representation, particularly the plane approximation (Adachi et al. 1995;

Mark et al. 1996).

In chapter 1, I defined an intermediate representation as “. . . a representation of

some data chosen for its suitability for a distributed application, . . . not the “native”

form in which the data was generated or will be displayed.” If a force feedback

system measures and displays positions and forces, then a force feedback system

using an intermediate representation is one that does not transmit positions and

forces over the network. The approaches discussed in this dissertation transmit a

position command from the Phantom to the AFM, but the response from the AFM

is not the measured force exerted on the AFM tip by the sample, even though that

force is what the user would expect to feel. Not transmitting the force allows us to

increase the latency tolerance of the feedback loop.

Direct force feedback measures force exerted at the effector and feeds it back to

the user. Instead, Adachi et al. (1995) specify the force fed back indirectly, as the

tangent plane of the contact between the effector and the environment. The process

that determines the tangent plane can specify the plane at a low rate, say 20 Hz;

a process dedicated to controlling the force feedback device can sample the device

position at the 500-1000 Hz required and compute the force that should be felt at

that position given the plane. When a new plane is specified, the device controller can

interpolate between the old and new planes for 10-20 ms to hide the transition; this

helps present a smooth surface (Mark et al. 1996). Returning to figure 2.4, although

sections (1) and (4) of the teleoperation system – hardwired, direct links from devices

to controllers – may represent the feedback as force, sections (2) and (3) represent

the feedback as a plane.

This plane approximation is a first-order approximation to the shape of the surface,

which is valid in a small region around the point at which it is specified; it is a close

physical analog to using the first two terms of the Taylor series of a function as an

approximation to that function at a point. Interpolation between adjacent samples

also makes the plane approximation moderately tolerant of messages being lost in the

network. It is most applicable to environments that only have a single surface, as it

does not do a good job of displaying a sharp crease where two surfaces come together

or a narrow channel defined by two parallel surfaces.3

3Adachi et al.’s (1995) original test case was a cylindrical surface without features – this kind of
uninterrupted constant curvature is an excellent but simple case for the plane approximation.
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Figure 4.2: Effect of measurement error on perceived surface shape. The dotted line
is the sequence of planes that will be felt by the user. The signal-to-noise ratio is
effectively much worse when the user is moving slowly, because the same magnitude
of noise creates a much higher variance in the slope of the felt surface.

The plane approximation is usually indirect in a second way: instead of measur-

ing the surface stiffness, it assumes a (constant) stiffness for the felt surfaces.4 For

malleable surfaces, subsequent updates to the position of the approximating plane

will move the plane, producing some approximation of the actual surface stiffness.

4The nanoManipulator is also capable of setting the stiffness displayed for a surface region to
be equal to the value of some other data set measured in that region, which can include measured
surface stiffness.
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Finding the Tangent Plane to the Sample

Determining the tangent plane for contact between the effector and the environment

is not particularly difficult in virtual environment applications (Adachi et al. 1995;

Ruspini et al. 1997). However, it is much more difficult to apply this technique to

remote manipulators, since the geometry of the environment is generally not known.

The nanoManipulator uses a simple method of estimating a tangent plane using two

successive samples and an assumed “up” direction. Since the AFM perceives the

sample as a height field, this assumption is valid; the method gives good results in

practice and is presented in Taylor (1994). This method is particularly sensitive

to measurement noise; when investigating some materials, force feedback is nearly

unusable due to the noise in the microscope imaging that substance (Figure 4.2). The

tangent plane estimation method also derives some of its utility from the fact that

samples being examined in an SPM can be treated as height fields: there are no truly

vertical regions of the surface or overhangs reported by the SPM. (A height field is an

array of values each of which represents height above some zero plane. Height fields

have been widely used to approximately represent terrain, but can exactly represent

the data returned by the SPM.)

4.4.3 Total Environment Sampling

Using the plane approximation, the nanoManipulator runs a tight control loop similar

to that of the classical DFF teleoperator: move to one point in the environment,

measure the impedance,5report that impedance to the user as a force, and allow

them to specify the next destination, “close the loop,” by moving to that location.

The general approach that I call total environment sampling begins with a manip-

ulator automatically building a model of the environment as a pre-process. The model

can be used to drive force feedback, or it can be used as the basis for a plan developed

off-line and sent to the manipulator to be automatically executed. This solves some

of the problems faced by automation and hierarchical control (see section 4.5). As

implemented in the nanoManipulator, this is known as “feel-from-grid mode.” The

microscope first makes an imaging pass over the specimen, to determine the complete

topography of an area of the specimen. Measurements are taken on a regular grid,

5The nanoManipulator normally directly measures location, not impedance. However, the force
exerted on the AFM tip is known, so the impedance can be computed, and the user typically
perceives himself to be feeling the impedance in the sense of Funaya and Takanasi (1993).
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typically 300 x 300 points. Once these measurements have been reported to nano,

topo is not involved in the force feedback – when the user moves the PHANTOM,

the topography of the corresponding location in the model of the environment is used

to compute the plane approximation.

There are two significant problems with total environment sampling applied to the

nanoManipulator. First, because of the nonlinearities and drift in the SPM scanner

(section 2.1), the environment model is displaced or distorted; it is not correctly

registered with the true environment. Manipulations planned with reference to this

model will be incorrectly executed by the manipulator.6 Second, some classes of

samples – particularly biological substances – will be inadvertently modified by the

imaging pass, which makes the environment model invalid even before it is fully

constructed.

4.5 Teleoperation without Force Feedback

Because excessive latency in the feedback loop can cause instability (Ferrell 1966),

most researchers trying to do long-distance teleoperation have abandoned force feed-

back. By “opening” the control loop, destructive instability is avoided; instead, la-

tency causes time-dependent position errors. Many open-loop teleoperators attempt

to compensate for the position errors caused by latency, as well as to compensate

for the fact that, without force feedback, operators cannot bring their reflexes and

kinesthetic sense to bear on the problem nearly as effectively.

For example, Goktas et al. (1997) provide one example of an open-loop teleopera-

tor designed to minimize latency-induced errors. Even though open-loop teleoperation

should be significantly more stable than operation with force feedback, the random

latency of the Internet still gives them a great deal of trouble – delayed commands

mean that manipulators move jerkily. To avoid random latency, Goktas et al. use a

network that provides QoS guarantees, allowing them to limit the worst-case delay.

Once the delay is bounded, they can design a controller that assumes worst-case de-

lay, is stable, and minimizes error under that delay condition. They conjecture that

this approach might also be applicable to force-feedback teleoperators, but would

6The locations measured in the imaging pass correspond to particular voltages applied to the
scanner. The nonlinearities discussed in section 2.1 mean that applying the same absolute voltage
to the scanner with a different first derivative will produce a different position.
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require that surface stiffness be kept inversely proportional to latency. This is the

same limitation that caused us to look for solutions other than passive control for the

nanoManipulator’s force feedback interface.

4.5.1 Automation

If one removes the human completely from the real-time control loop, teleoperators

become robots, executing programs devised offline. This is a good solution for au-

tomating tasks that are well understood and need to be repeated many times.

A group at the University of Southern California (USC) has done automatic

nanomanipulation of a gold particle using an SPM (Resch et al. 2000; Meltzer et al.

2001). The USC experiments are similar to manual manipulations carried out five

years previously using the nanoManipulator (Finch et al. 1995). The nanoManip-

ulator group at UNC has considered using automation for construction of micro-

electromechanical systems and other repetitive tasks (Robinett 1998), but finds it

ill-suited to experimental science. Automation relies on an understanding of the en-

vironment in which the effector operates; nanoscience is interesting precisely because

the physics is not well understood. The original impetus for the nanoManipulator was

that automation was not serving scientists well. The intent of the nanoManipulator is

to give the scientist a more central role in the control loop, to enable enough analysis

and understanding as the experiment was carried out that the scientist could replan

mid-stream (Taylor et al. 1997).

4.5.2 Hierarchical Control

Automation requires too much foreknowledge for many tasks in the real world. To

automate a teleoperator, the programmer needs both an understanding of the ex-

ecution environment and a complete plan for the task. If any part of the task is

unknown or uncertain, automation is not completely feasible. Developers of satellite

repair teleoperators, for example, face this kind of task under very high latency; hier-

archical control is one method they use to combine human supervision with as much

automation as feasible (Brunner et al. 1995).

Latency destabilizes teleoperation when the human operator is controlling every

tiny movement of the manipulator, commanding positions and sensing forces. In hi-

erarchical control, or teleprogramming, the operator sends more abstract commands

– “move to this position and orientation,” “pick up this bolt” – which are executed
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by a fast control loop local to the manipulator. This approach has two principal

requirements: a rich set of sensors whose output can be processed automatically to

drive a feedback loop at the manipulator (Lumelsky 1991) and a well-understood

operating environment that can be explicitly modelled. There has been some suc-

cess at abstracting environments so that implicit models can be constructed and

programming-by-example can be used (Brunner et al. 1995).

4.5.3 Environment Modeling

Some force-feedback systems use Total Environment Sampling; similarly, a number

of non-force-feedback systems attempt to build a geometric model of the unknown

environment they are operating in. In systems like Milgram et al.’s (1995) ARGOS,

the hope is that as the model is built it can be used to incrementally create programs:

that after an initial period of exploration, experimentation, and teaching-by-example

the operator can find an automated solution to his problem and take up a supervisory

role (Rastogi et al. 1996). ARGOS uses stereo cameras to captures pictures of the

environment, then applies image-processing algorithms to build a geometric model

of it. Once the user has captured and verified the model, he can use it to plan his

manipulations and execute them under program control without force-feedback.

In the nanoManipulator, the manipulator – the microscope tip – is the only sensor

we have to explore the environment. For well-known environments, this may be suffi-

cient to build a model. For example, some work has been done using image processing

to automatically recognize carbon nanotubes from their SPM scans and build geomet-

ric models of them. A nanoManipulator that uses a combined AFM/SEM (Scanning

Electron Microscope) has also been constructed; the SEM gives us a video-camera-

like image of the surface at magnification sufficient to display the SPM’s working

volume. An ARGOS-like system for the AFM/SEM nanoManipulator is currently

under development, using video images to monitor the sample while the microscope

tip is being used to manipulate (Taylor et al. 2003).

4.6 Relating Direct Force Feedback to the Plane

Approximation

To date, all prior studies on latency bounds in force-feedback systems have been

conducted with position-controlled DFF systems. The plane approximation was in-
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troduced to provide indirect force feedback, less sensitive to latency. Thus, the results

from position control studies do not directly tell us anything about the latency toler-

ance of applications that use the plane approximation.

Azuma and Bishop (1995) used Fourier analysis to compare the theoretical error

performance of various predictors of the motion of a head tracker. A Phantom is also

a tracker – a device that measures and reports the position and orientation of some

object. Fourier techniques can be used to compare the theoretical error performance

of position control and the plane approximation. First, we need to specify an error

metric.

4.6.1 Haptic Error Metrics

When Azuma and Bishop (1995) studied the error performance of algorithms to pre-

dict the motion of user’s heads, the error metric was simple: error was the distance

between the predicted position and the actual, measured position. However, measur-

ing error in human perceptual processes is not straightforward.

Adachi et al. (1995) briefly introduced an error metric d(). When the user is feeling

a plane approximating the surface, the error is the distance perpendicularly from that

plane to the surface (Figure 4.3). This is a psychologically plausible measurement.

The user can be assumed to be exerting force approximately perpendicularly to the

plane; if the plane is updated without any smoothing, the user’s hand will fall through

the distance d() before reaching the new plane. Adachi et al. reported the Just-

Noticeable Difference (JND) for d() – the minimum error that was noticed by a

human user – as 0.8 millimeters, given a surface stiffness of 10000 N/m. Establishing

the JND is an important part of making an error measurement useful.

The Adachi et al.’s definition of d() was with respect to the plane approximation,

but it could reasonably be generalized to point-sampled position control. Instead

of using the normal to the approximating plane, use the direction in which force is

exerted.

For this dissertation I have developed an error metric I call Vertical Error, v().

We choose a “vertical” vector for all measurements, and measure error along it. This

vector is approximately perpendicular to the surface.7 Although v() is not as psycho-

7This condition is most reasonable when dealing with force feedback over a height field. For the
nanoManipulator, this vector can be either the “up” vector internally chosen by the microscope, or
the perpendicular to the surface estimated by the nanoManipulator’s “flattening” operation (Taylor
1994), which skews the surface to compensate for apparent errors in the microscope’s chosen up
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Figure 4.3: Adachi’s error metric, d(s), and Vertical Error, v(s). The figure shows
a nanoManipulator user travelling along a path parameterized by s; the previously
sampled value was z(s−4s) with approximating plane slope z′(s−4s). When a new
sample is returned at z(s) with approximating plane slope z′(s), the user’s hand is at
position h(s).

logically motivated as d(), it is much more tractable under Fourier analysis.

4.7 A Frequency-Space Analysis of Force-Feedback

Error

Fourier analysis decomposes a signal into a sum of an infinite number of sinusoidal

waves, where the waves are described by their frequency in cycles per second and their

magnitude in appropriate units of power. I treat a path over a surface in Fourier terms

as follows: First, parameterize the path with respect to path length s. The sequence

of points that make up the path can be treated as three independent functions:

vector.
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x(s), y(s), and z(s). Any one of these functions is the sum of an infinite number of

sinusoidal waves with a “spatial” frequency σ measured in cycles per meter and a

magnitude in squared centimeters. If most of the energy in the power spectrum of a

path is at low spatial frequencies, the path is relatively smooth; if it has substantial

energy at high frequencies, the path is relatively rough.

For the nanoManipulator, the x and y specified by the user are an input, and

the z at that point is measured by the microscope. Thus, in the remainder of this

chapter, as well as when we return to the question of analyzing haptics in chapter 6,

I analyze z.

Control theory models systems as transforming an input function to an output

function. The system’s transfer function is the quotient of output and input. If the

Fourier transform of the height measured by the microscope of points along the path

as Z(σ), but the transform of the sequence of heights displayed to the user is H(σ),

then the transfer function of the force feedback is H(σ)
Z(σ)

. The magnitude ratio of

the transfer function is ‖H(σ)‖
‖Z(σ)‖ . The phase shift of the system is another descriptor

of the difference between the output and the input, denoted tan α− φ.

In this section, I compute the magnitude ratios and phase shifts of the transfer

functions of DFF and of the plane approximation. Magnitude ratio and phase shift

are both functions of the quantity σ4s, which is the product of the prediction distance

(4s) and the spatial frequency of the path (σ). The prediction distance is the product

of the response time of the force feedback system and the speed at which the user

is moving. Given an input signal – the shape of the path – the magnitude ratios let

us compute the shape of the power spectra of the output and error signals, which

are indicators of the relative smoothness of the path the user will actually feel. Since

the inputs are sampled, finite signals, we only have estimates of their power spectra,

and thus are only estimating the shape of the output spectra; section 4.8 shows how

these estimates are consistent with our experience running the nanoManipulator in a

variety of distributed configurations.

4.7.1 Fourier Analysis of Direct Force Feedback

Teleoperation is most often implemented as position control: the user moves the force

feedback device to a position, the computer measures the position, and the device

responds with some force. Since the device’s output is a force, it is necessary to

measure errors in position control force feedback in units of force.

However, there is also force control teleoperation: the user exerts a force on the
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device, the computer measures the force, and responds by moving the device to some

position; the user feels the device at this new location. We can then measure error in

distance: the distance between the position the user feels and the position the user

should feel in a zero-latency system. Although force control and position control are

dual (opposite) implementation techniques, in use they have equivalent performance

(Anderson and Spong 1989). Thus, although I analyze the performance of force

control teleoperation, the results apply equally to position control.

In Azuma and Bishop’s (1995) language, a DFF force control interface with latency

4t is a zeroth-order predictor: the felt position at a time t, h(t), is equal to the position

that was measured some time earlier, z(t−4t). Vertical error is the difference between

felt position and measured position: v(t) = h(t)− z(t) = z(t− 4t)− z(t).

Instead of parameterizing with respect to time, consider a parametrization with

respect to path length s. During latency 4t the user moves a distance 4s. Assume

that 4s is constant.8 After this reparameterization, we still have three functions:

z(s), h(s), and v(s) – measured, felt, and error signals (Figure 4.3). Now use Fourier

techniques to transform into the frequency domain, such that z(s) ⇒ Z(σ).9 In

the next section I perform the same calculations for the plane approximation, then

compare the results.

measured height z(s)

felt height h(s)

vertical error v(s)

transfer function magnitude ‖H(σ)‖
‖Z(σ)‖

error magnitude ratio ‖V (σ)‖
‖Z(σ)‖

phase of input Z(σ) φ

phase of felt height H(σ) α

phase shift tan(α− φ)

h(s) = z(s− 4s)

v(s) = z(s− 4s)− z(s)

8This requires that the user moves at a constant speed and that 4t is constant.

9Appendix C has the details of these calculations.
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H(σ) = Z(σ)e−jσ4s

V (σ) = Z(σ)(e−jσ4s − 1)

‖H(σ)‖
‖Z(σ)‖ = 1

‖V (σ)‖
‖Z(σ)‖ =

√
2− 2 cos(σ4s)

tan(α− φ) = −σ4s

4.7.2 Fourier Analysis of the Plane Approximation

Parameterizing with respect to path length s, let z(s) be the height in meters of the

surface measured by the SPM, transformed into the space in which the user is feeling;

let h(s) be the height of the surface felt by the user. v(s) be the error in the force

feedback, v(s) = h(s)− z(s).

If the user has moved 4s along the path since the last sample, they have moved

a distance 4x in space, where 4x ≤ 4s. Using the plane approximation, we can say

h(s) = z(s− 4s) + 4x z′(s− 4s); since 4x ≤ 4s, we can consider the worst case by

assuming that the path is a straight line segment and writing h(s) = z(s − 4s) +

4s z′(s− 4s).10

Transformed into the frequency domain, these become H(σ) and V (σ):

h(s) = z(s− 4s) + 4s z′(s− 4s)

v(s) = z(s− 4s) + 4s z′(s− 4s)− z(s)

H(σ) = Z(σ)e−jσ4s(1 + jσ4s)

V (σ) = Z(σ)((cos(σ4s) + σ4s sin(σ4s)− 1)

+ j(σ4s cos(σ4s)− sin(σ4s)))

These equations have the same general form as Azuma and Bishop’s (1995), and

the expected properties that lim4s→0 H(s) = Z(s) and lim4s→0 V (σ) = 0. Azuma and

10The nanoManipulator does not directly measure z′, but approximates it based on the last two
samples x(s) and x(s− 4s). First compute the approximate surface normal at s, ñ(s):

ñ(s) = ((x(s)− x(s− 4s))× (0, 0, 1))× (x(s)− x(s− 4s)).

z′(s) is the z-component of ñ(s). As mentioned in section 4.4.2, this works well in practice, and so
in the development of this fourier analysis I assume that it is a reasonably accurate approximation.
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Bishop (1995) looks at the magnitude ratio and phase shift of the transfer functions to

understand their frequency-dependent behavior. For the plane approximation, these

are:

‖H(σ)‖
‖Z(σ)‖ =

√
1 + (σ4s)2

‖V (σ)‖
‖Z(σ)‖ =

√
2 + (σ4s)2 − 2 cos(σ4s)− 2σ4s sin(σ4s)

tan(α− φ) = arctan

(
σ4s cos(σ4s)− sin(σ4s)

cos(σ4s) + σ4s sin(σ4s)

)

For any given 4s, the ratio will be larger for large σ than for small. The units

of σ are meters−1; large σ means small features on the surface. Thus, any system

using the plane approximation magnifies the effects of small details of surface shape.

The error to signal ratio is larger when the surface has more small features. We can

draw the same qualitative conclusion as Azuma and Bishop (1995): “it is important

to keep the prediction interval small and avoid high-frequency signals.” 4s is our

prediction interval, σ the signal frequency.

Much like Azuma and Bishop (1995), we see a recipe for a constant performance

level, but one with an additional degree of freedom: all of the above expressions

depend on σ4s. 4s is the product of the speed at which the user moves and the

response time of the system; when response time is high, the user can move more

slowly and get the same performance. The bandwidth of σ expresses the roughness of

the surface: for rough surfaces, i.e. surfaces with small features, 4s must be reduced

– response time, speed of movement, or both – to maintain performance.

Unfortunately, the AFM signal includes high-frequency noise. Regardless of the

true bandwidth of the path, the mechanical noise in the AFM will add additional

power to the high frequencies of the spectrum. Furthermore, this analysis only con-

firms that these systems are inherently not stable. Control theory tells us that a

system is stable if its gain is < 1 when the phase shift is ±180◦, but neither DFF nor

the plane approximation ever have gain less than one (that is, ‖H(σ)‖
‖Z(σ)‖ ≥ 1∀σ). Even

if they behave stably for most inputs, there exists some input which can destabilize

them.
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Figure 4.4: Error-magnitude ratio of Direct Force Feedback and the Plane Approx-
imation. So long as the energy in the power spectrum of the path is concentrated
below the crossing point of the graphs, the plane approximation will have less error
than a DFF implementation. The horizontal axis is in terms of σ, the frequency
component of the path, and 4s, the sample interval, which is the product of path
speed and 4t, the system latency.

4.8 Verifying the Theory

Consider the shapes of these two error magnitude ratios (Figure 4.4). The horizontal

axis is σ4s, which is dimensionless. The spectrum of the output error is the product

of the spectrum of the input (the path spectrum, scaled by response time and user

speed) and the error magnitude ratio.

The plane approximation has a smaller error magnitude ratio than does force

control below approximately σ4s = 1.9. If the power in the spectrum of the path is

concentrated below 1.9/4s cycles/meter, we expect to have less error from the plane

approximation than we would from DFF.

As shown in Figure 4.5, six paths over widely varied surfaces were all 100-fold

below peak power by 70 cycles/meter. If 70 cycles per meter is the expected band-

width for surfaces felt by the nanoManipulator, then the power in the input signal will
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be concentrated in the left-hand region of figure 4.4, where the plane approximation

outperforms DFF, so long as the product of user speed and latency is no greater than

0.027 m.

In these same six paths, mean user speed ranges from 3 to 8 cm/s, with peak

speeds between 20 and 30 cm/s. At 8 cm/s, the plane approximation outperforms

DFF up to 337 ms of latency; at 30 cm/s, only up to 90 ms.

A nanoManipulator deployed on a local network has a haptic response time of

approximately 125 ms. In our experience, this make DFF unusable, but is satisfactory

with the plane approximation. At 125 ms latency, so long as speed does not exceed 22

cm/s the plane approximation should outperform DFF. This is reasonably consistent

with the observed mean below 8 cm/s; this should be equivalent to 45 ms latency in

DFF, which is well inside most stability bounds reported above. The observed peak

speeds are on the verge of instability, but should only cause rare glitches.

When we ran the nanoManipulator over the Internet2 between Chapel Hill and

OSU or Washington, DC (section 1.1), average response time was 160 ms, and the

system remained usable. However, when we attempted to control a microscope in

Chapel Hill from a workstation in Seattle, with average response time 195 ms, the

system was unusable. At 195 ms of latency, with a mean speed below 8 cm/s, we would

expect performance equivalent to DFF with 71 ms latency - not good, if perhaps still

stable. However, the observed peak speeds of 20-30 cm/s are equivalent to 170 ms or

more of latency in DFF, which would trigger the observed instability.

4.9 Summary

Haptics is an essential interface for planning and carrying out experiments using the

nanoManipulator. The effective latency bounds for haptics are low, somewhere be-

tween 40 and 100 ms for DFF. However, the plane approximation has always provided

stable and stiff operation at latencies in those range; Fourier analysis methods let us

understand why and extrapolate DFF latency bounds to the plane approximation.

Our observations bear out the Fourier analysis: the plane approximation allows tele-

operation reliably at 120 ms latency, adequately at 160 ms, but not at 195 ms. This

analysis supports my decision to develop new intermediate representations for haptic

force feedback, reported in the next chapter.
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Figure 4.5: Estimated power spectra of measured component six paths along test
surfaces, showing a falloff in energy with increasing frequency. All six surfaces were
100-fold below peak power by 70 cycles/meter.



Chapter 5

Haptics Beyond the Plane

Approximation

In chapter 4, I built an analytical framework for determining how much more latency

the plane approximation can tolerate than can position control. However, the plane

approximation is not a complete solution to the problem of latency in haptics. In

transcontinental or intercontinental use, the system response time can exceed 200 ms.

In our experience, this high latency prevents the system from working acceptably.

In this chapter I build a taxonomy from the force feedback approaches previously

discussed, and identify a productive, previously unpopulated region of the taxon-

omy. I propose two new force feedback modes in this region that enable effective

operation even in the presence of high latency. Although these techniques are not

well-suited to remote manipulation, they are useful for remote haptic sensing. I dis-

cuss some additional approaches to force feedback under high latency suggested by

the taxonomy that were not deployed in the nanoManipulator but may be useful in

similar systems. Finally, I discuss an experiment conducted to evaluate these new

force feedback modes, including its design, its results, and its shortcomings.

5.1 Framework

Milgram et al. (1995) created a three-dimensional taxonomy of teleoperation modes:

the degree to which a manipulator is autonomous, the degree to which a remote

environment is known in advance (“modelled”), and the degree to which the properties

and geometry of the constituent parts of or objects in the remote environment are

known in advance (“structured”). For the distributed nanoManipulator, the design
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purpose is investigation of novel physical systems, and so this discussion assumes an

unmodelled, unstructured environment, and considers how much autonomy is possible

in such environments (Table 5.1).

Table 5.1 reveals that the degree of automation in teleoperation closely parallels

the complexity of of the network representation used to transmit feedback to the

haptic device. At one extreme are traditional teleoperation approaches with direct

human control, suitable for unmodelled and unstructured environments, which have

a low tolerance of latency and use instantaneous measurements of force and position

transmitted at high frequency as the network representation. At the other extreme

lies robotics, with no human in the control loop; this approach has a high tolerance of

latency, but requires a completely modelled and structured environment; the network

representation is abstract commands and status reports transmitted at low frequency.

The techniques discussed in chapter 4 and summarized in Table 5.1 use a number

of different types of intermediate representation (in the ”Network Representations”

column). The two new intermediate representations presented in this chapter occupy

the (previously unfilled) middle of Table 5.1’s continuum, enabling human control of

the teleoperator in high-latency (O(1 second)) situations.

Network latency is the chief obstacle to remote use of the nanoManipulator’s force-

feedback capabilities. In order to combat the effects of latency, we can afford to trade

off other system parameters, such as network bandwidth or measuring capability

at the microscope, so long as they are kept low enough to not become the system

bottleneck. This is an instance of the classic tradeoff between communication and

computation. Table 5.2 lists a number of adaptations which are discussed in this

chapter and the next. The adaptations are classified by their place in the OSI network

model, discussed in section 3.1.

5.2 Novel Intermediate Representations

The two new intermediate representations – local environment sampling and the

warped plane approximation – were explicitly designed to make the tradeoff between

computation and communication. Local environment sampling requires increased

computation and measurement time at the server, as well as increased message size,

but reduces the rate at which messages need to be transmitted and their sensitivity

to latency. The warped plane approximation requires that the client monitor network

latency to construct explicit adjustments in the force feedback. Both techniques are



63

well-suited to haptic sensing, where the user’s goal is to understand the shape of the

surface, but not to remote manipulation, where the user’s goal is to change the shape

of the surface.

5.2.1 Local Environment Sampling

Local environment sampling is an acceleration of total environment sampling, blend-

ing interactive and supervisory teleoperation (section 4.5.3). Local environment sam-

pling attempts to make interactive control feasible at latencies that previously re-

quired supervisory teleoperation. Instead of using sensors or the effector to deter-

mine the shape of the entire environment, as does total environment sampling, local

environment sampling samples only the area immediately around the teleoperator’s

effector. This yields a burst of up-to-date data. In its implementation, we choose to

keep the sampled area very small, requiring little network bandwidth to transmit and

enabling the planning of the immediately subsequent steps of the manipulation. With

local environment sampling, the cycles of sense-transmit-plan-transmit-manipulate

are much shorter and faster than those in total environment sampling. Increasing the

sampled area permits construction of longer plans at lower frequencies, providing a

parameterized continuum from interactive to supervisory manipulation.

For the nanoManipulator, the sensor is the end-effector: the tip of the AFM.

The local environment sampling cycle can be run several times per second,1 yielding

data much less stale and much less distorted by nonlinearities than that from total

environment sampling and thus a more accurate view of the sample (in a small area).

Each of these cycles involves the user’s Phantom position being sampled, a command

sent to topo to examine the corresponding area of the surface, topo taking several

measurements of surface height in that area, and these samples being transmitted

back to nano, where they are displayed by the Phantom as a small “patch” of surface

(figure 5.1).

In distributed computing, carefully choosing the balance between computation and

communication is a classic problem. Local environment sampling is yet another in-

stance: by increasing “computation” (measurement of the environment by the AFM),

1How often depends on characteristics of the sample, the microscope being used, and the scale at
which and resolution with which we are creating this local model. For carbon nanotubes, a “typical”
sample for our materials science collaborators, the microscope can scan a 25 nm square region at
5× 5 resolution in approximately 175 ms.
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Figure 5.1: Samples taken and planar facets generated by local environment sam-
pling. The central point is the position commanded by the user; the microscope
autonomously samples the eight adjacent points and sends them back to the user
with the central point. The user then feels the set of planar facets formed from those
nine points until the next round-trip is complete.

we reduce the frequency of communication necessary to provide distributed haptics.

In the distributed nanoManipulator implementation for this dissertation, local

environment sampling was used to feel the surface, not to make modifications. If the

user leaves the small surface patch most currently measured by the microscope, force

feedback cuts off until data for a new surface patch that contains her current location

is received from the microscope. This forces users to move slowly “in the large,” but

they can make rapid movements across a small distance – an important distinction

which permits users to recognize surface features on samples in the microscope.

We informally call local environment sampling “feelahead” mode, after the image

of a blindfolded pool player feeling very gingerly with the cue to find out where the

balls are.2

Future Work

The implementation of local environment sampling used in my dissertation was fixed

and non-adaptive - adaptation was in choosing to use this technique instead of the

plane approximation or the warped plane (section 5.2.2). However, local environment

sampling could benefit from additional adaptation. Assume that we have a default

25nm× 25nm local sample region. When the user is moving the Phantom slowly, or

2The general task of manipulating nano-scale objects has been likened to feeling among thin
plastic bags full of jello using a screwdriver in the dark (Finch et al. 1995).
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studying to some detail, they are not likely to leave this region for several seconds.

When they are moving the Phantom rapidly, to change which portion of the sample

they are working in or because they perceive no relevant features in the current area,

they will may leave a local sample region faster than it can be measured and sent

from the AFM. Thus, for a slow-moving user we could iteratively refine our model of

the area, in a manner similar to Funaya and Takanasi (1993), while for a fast-moving

user we ought to predict her movements so that we can scan a local sample region of

relevance, or scan a large, low-resolution local sample area.

5.2.2 The Warped Plane Approximation

Transport-level adaptations can reduce the latency seen by a force-feedback teleoper-

ator, allowing the plane approximation to work well over a wider range of networks.

The plane approximation still assumes zero latency, so if latency is high it fails, pre-

senting an incorrect surface shape (as shown in section 4.7). I introduce a variant,

the warped plane approximation, which explicitly measures and compensates for po-

sitioning error due to latency. This yields a haptic representation that preserves the

shape of the sample, making features recognizable, but does not preserve the relative

location of features when latency varies.

When a new approximating plane arrives from the microscope, the plane approx-

imation displays it at the position it was measured. It can be thought of as a Taylor

series expansion of the shape of the surface at this point – valid within a small neigh-

borhood, but with increasing error as distance from that point increases, roughly

proportional to the second derivative of the (real) surface shape. When the plane

arrives, the Phantom is typically offset some small amount from the point at which

the approximating plane was measured due to the user’s movement and the latency

of the AFM’s measurement. However, increased network latency increases the offset,

and thus increases the expected error (figure 5.2c).

With the warped plane approximation, the nanoManipulator maintains both a

record of the recent path of the Phantom and an estimate of the current network

round-trip time. New approximating planes arriving from the microscope are not

displayed at the position they were measured, but are “warped” along user’s the path

a distance proportional to the fraction of the total latency due to network delay.

Thus, the offset between the current Phantom position and the location at which the

plane is displayed is only the offset expected due to the user’s Phantom speed and

microscope latency, independent of the network latency, and a “reasonable” feature
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Figure 5.2: The warped plane approximation. For a surface with shape (a), the micro-
scope generates a series of planes (b). The plane approximation displays these at the
position they were sampled; when latency is high, this produces an incorrect surface
shape (c). The warped plane approximation compensates for latency, maintaining
shape while losing position (d).

shape is displayed (figure 5.2d). Sequential planes have equivalent offsets so long

as user speed and network latency remain constant. If the user stops moving the

Phantom on some feature of interest, the feature seems to “slide away” under their

hand, and they have to backtrack to find it.

5.3 Adaptations in the User Interface

A number of user interface adaptations used in traditional teleoperation applica-

tions can be applied to force-feedback for the distributed nanoManipulator, as can

latency-compensation techniques developed for other kinds of user interfaces. After

preliminary experimentation, we chose not to deploy these methods, but they may
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be of use for other force feedback interfaces coping with high response time.

• Reduced stiffness: A force-feedback control system must have high gain and high

bandwidth3 to display stiff surfaces. However, gain and bandwidth are both

inversely related to stability. To keep a system stable under high latency, we

can reduce the system gain, reducing the stiffness of the surfaces felt, or reduce

the system bandwidth, which reduces the manipulator’s velocity (Vertut et al.

1981). This leads to mushy, indistinct haptics; it has proved adequate for some

teleoperation tasks, but has not satisfied users during typical nanoManipulator

experiments. The lower the stiffness of the force feedback, the harder it is for the

scientists to find features on the surface and use them to guide modifications.

• Predictive displays: Avionics has used measured or computed derivatives –

higher-order information – to display to the pilot the projected state of the

aircraft at some future point in time (Wickens 1986); Distributed Interactive

Simulation uses similar prediction to explicitly compensate for network latency

(section 3.3.3). Teleoperators using satellite-mounted robot arms have guided

their efforts based on a display of where the arm is measured to be as well

as where the operator has commanded it to move. Applying this to an AFM,

we can display to the user both the position to which she has commanded the

microscope tip to move and the most recently known location of the tip. This

gives the user a sense of the total latency in the system – from AFM dynam-

ics and from network delay – and lets her change her behavior to compensate.

nanoManipulator users have not found predictive displays useful; in our experi-

ence, they appear to be well-suited to planning applications, but not to sensing

applications. As discussed in chapter 2, the nonlinearity, hysteresis, and creep

of the AFM makes planning of little use, and require a human being using

their senses to actively control manipulations. One of the goals of the scientists

using the nanoManipulator is to leverage their kinesthetic and proprioceptive

senses to understand the shape of a specimen, which is not aided by a predictive

display.

3Unfortunately, the control theory or signal analysis and networking communities use the term
“bandwidth” differently, and neither has an accepted alternate term. When discussing stability,
bandwidth should be taken in a signal analysis sense, to mean the range of frequencies of signal
that can be transmitted. Generally, transmitting a higher signal bandwidth requires more network
bandwidth, but the former is measured in cycles per second (or, in section 4.7, in cycles per meter)
and the latter in bits per second.
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5.4 Comparing Intermediate Representations

Chapter 4 discussed metrics for evaluating the fidelity of force feedback systems.

Neither Adachi et al.’s d() nor my e() (Figure 4.3) is applicable to the warped plane

approximation, because it attempts to preserve local surface shape rather than surface

position.

After simulating an “ideal” force feedback system, I ran a series of trials of the

plane approximation, the warped plane approximation, and local environment sam-

pling under a variety of different network loads and end-to-end latencies.

The evidence of usefulness for these techniques rests on the testimony of expert

nanoManipulator users, who found the new representations to present a clearer sense

of the surface shape than did the plane approximation. Although I summarize the

trials I conducted, our numerical evaluations of them were inconclusive, serving more

to underscore the limitations of the previously-established metrics than the potential

of the new representations.

5.4.1 Experimental design

To create an “ideal case” force feedback, I used total environment sampling to cre-

ate a canonical representation of the surface. Force feedback using the total-surface

representation stored at nano eliminates network delay, instrument delay, and micro-

scope noise from the haptics. I recorded a path taken by a user feeling on this total

environment sampling surface; the set of planes displayed by nano along this path is

the “correct” force feedback against which the various network representations were

compared.

In looking at the vertical error between the sensed surface and the ideal case, I

considered Root Mean Square (RMS) error, the distribution of RMS error, and the

rate of errors above two thresholds (chosen to approximate minimal perceptible error

and error at which the PHANTOM would detect apparent instability and cut off). I

also considered errors in orientation of the surfaces displayed. None of these analytic

approaches were adequate.

The experiment included six fixed surfaces. Three were mathematical constructs

based on standard waveforms from control theory, intended to informally determine

the response of the haptic system. The other three were data from real experiments,

to determine the performance of the system in actual use. A separate user path was

recorded for each surface, lasting between 60 and 90 seconds. Each surface has a
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short name by which it will be referred to in the experimental results:

Steps A series of small, nearly-vertical steps separated by flat regions (10 nm high

at 50 nm horizontal intervals). The surface was 300 nm square, sampled at 1

nm intervals. Taller steps were not used because they caused instability in the

plane approximation at high network latencies.

Ramps A series of 45◦ ramps separated by flat regions (50 nm high at 50 nm hori-

zontal intervals). The surface was 300 nm square, sampled at 1 nm intervals.

Circles A circular, concentric sinusoidal pattern (20 nm high with period of 40π

nm), centered on the surface. The surface was 300 nm square, sampled at 1 nm

intervals.

Viruses A scanned surface covered with a random scattering of icosahedral virus

capsids (Falvo et al. 1997).

Fibrin A scanned surface with a few strands of fibrin, a biological substance that

forms long, winding tubes (Guthold et al. 2000). Clumps of fibrin adhere red

blood cells to make blood clots.

Nanotubes A scanned surface with a few carbon nanotubes, short stiff cylinders of

interest to materials scientists (Falvo et al. 1997).

Regardless of their actual size, all of these surfaces were scaled to the nanoManip-

ulator’s standard working volume, yielding a human scale of about one square foot

of surface.

For these experiments, I set up a test LAN: two 100 Mb networks connected

through a 10 Mb bottleneck. The nanoManipulator software was deployed on one

side of the bottleneck; a microscope simulator (Appendix B.1) was deployed on the

other. This general scheme abstracts the Internet (figure 5.3).

A large number of simulated web browsers ran on the same side of the bottleneck

as nano; web servers ran on the other side of the bottleneck. By varying the number of

browsers, we could vary the load on the bottleneck (Christiansen et al. 2001). Prior

experiments with this apparatus had found that when large numbers of browsers

were run, performance was irregular for roughly fifteen minutes of each run. Once

it stabliized, 2700 browsers connecting to 3 servers produced a 90% load across the

bottleneck link with 2% loss, and 4500 browsers connecting to 5 servers produced a

98% load with 10% loss. The actual hardware used is shown in figure 5.4.
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Figure 5.3: Conceptual diagram of an experimental network. A local campus (Cloud
1) connects to the Internet, where there is a congested “bottleneck” link. Clients in
Cloud 1 are attempting to communicate with servers beyond the bottleneck in Cloud
2.

Six different sets of experimental network conditions were used, intended to simu-

late different situations in which the distributed nanoManipulator might be deployed.

Each was characterized by a constant delay (added to the LAN by the dummynet

package (Rizzo 1997)) and some additional loss (caused by cross-traffic from the

web browsers). In each case, the traffic generators (web servers and simulated web

browsers) were allowed to run for 30 minutes before the distributed nanoManipulator

test began, producing the expected stable network conditions. The six conditions

were:

1. An unloaded LAN (the nanoManipulator’s original environment): 0 ms of la-

tency, 0% loss.

2. A congested campus or metropolitan-area network: 0 ms of latency, 10% loss.

3. A three-state network with QoS guarantees: 30 ms of latency, 0% loss.

4. A congested, three-state segment of the Internet: 30 ms of latency, 10% loss.

5. A cross-country network with QoS guarantees: 90 ms of latency, 0% loss.

6. A congested, cross-country segment of the Internet: 90 ms of latency, 10% loss.

Under these six different conditions, I replayed each surface’s recorded path for

three different intermediate representations – plane approximation, warped plane ap-

proximation, and local environment sampling– under the six network conditions. The
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Figure 5.4: Implementation map of an experimental network. The “134” and “138”
switched subnets are separated by two routers (red) and two hubs (yellow) configured
to act as a full-duplex 10 Mbps bottleneck.

commands that the nano process sent to the PHANTOM to create force feedback were

logged; this log was then compared to the ideal case.

This experimental approach – replaying one set of user inputs in a number of

different environments – is controllable and repeatable, but suffers from the flaws

discussed by Bhola and Ahamad (1999). Real users would, consciously or not, adjust

their behavior to adapt to perceived changes in latency. A study that uses automated

traces of behavior ignores this fact and is not recreating the actual conditions of use;

a study that includes this phenomenon requires a high degree of repetition across

many subjects to attain repeatability. A user study would be more appropriate if we

had a precise task to perform and a task-relevant metric, but where instead we want

to quantify the response of the various representations to the same consistent input,
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automated analyses should suffice.

The inconsistency of user behavior with recorded traces noted by Bhola and

Ahamad (1999) may help to account for the discrepancy between positive user re-

ports and inconclusive numerical analyses. In Chapter 6 I report on the success of

session-level adaptations in changing the network performance of force feedback in

ways that should be perceptible to the user.

5.4.2 Experimental Results

The analysis in section 4.7 led me to expect that the vertical error for the plane

approximation would be linear in σ4s. I analogously tried treating vertical error as

a linear function of the latency 4t, when there is no loss, the first-order estimates are

shown in table 5.3.

These estimates, combined with figure 4.5, help verify the analytic framework

discussed in section 4.7. They show no apparent difference between TCP and UDP

in the absence of loss; since section 4.7 did not model loss, I did not attempt to make

a fit that I could not justify. They show an increase in v() with increased prediction

distance, which is the product of latency and the speed with which the user moved.

The nanotubes sample has an estimated 70 cycle per meter bandwidth, while both

fibrin and bacteria have bandwidths below 30 cycles per meter. During the nanotubes

experiment, the user moved roughly twice as fast as during the fibrin and bacteria

experiments (8 mm/sec vs. 4 mm/sec). For all six experiments, the RMS error in

the linear estimation of v(t) was approximately one order of magnitude smaller than

the smallest coefficient in the fit.

5.4.3 User Response

Because I had planned an experimental, quantitative evaluation of the new force

feedback modes, user responses were only gathered informally. Scientists experienced

with the nanoManipulator reported that both local environment sampling and the

warped plane approximation let them feel the surface.

5.4.4 Experimental Considerations

I planned the experiment without any explicit replications. The infrastructure had

been previously shown to produce stable, apparently reasonable latency and loss
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(Christiansen et al. 2001), the six trials at each network condition were expected to

be consistent and could thus be used to verify one another’s performance, and each

path had on the order of two thousand data points, so there was redundancy inside

each trial.

I also planned the experiment without sufficient consideration of my intended

analysis methods. This had two repercussions. First, v() does not make sense applied

to the warped plane approximation; neither I nor my committee have yet devised or

discovered a quantitative metric that I can use to evaluate the idea of warping.

Second, even for the the modes that v() was a reasonable metric, I did not verify

that the originally-intended approaches to analysis would work. They did not; it

was more than a year between the data gathering and the final determination of an

acceptable analysis method. Only at this time did I realize that there was so much

missing or bad data in the local environment sampling data that no conclusions could

be drawn; the experimental network had been disconnected, preventing a repeat of

the experiment to gain more data for local environment sampling.

5.5 Summary

This chapter introduced two new intermediate representations for force feedback,

local environment sampling and the warped plane approximation. User evaluations

of these new representations were positive, but experiments comparing them with the

plane approximation were inconclusive.
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Modality Human
Involvement

Required
Understanding of
Environment

Latency Tolerance Network
Representation

Traditional
Teleoperation
(Ferrell 1966)

none none – O(1 ms) instantaneous
measurements of
force and position

Passive
Teleoperation
(Anderson and
Spong 1989;
Niemeyer and
Slotine 1998)

direct none low – O(100 ms) instantaneous
measurements and
derivatives of force
and position

Plane
Approximation
(Adachi et al.
1995)

minimal low first-order
approximation of
environment
geometry

Warped-Plane
Approximation

minimal moderate –
O(200 ms)

first-order
approximation of
environment
geometry,
instantaneous
measurements of
network state

Local
Environment
Sampling

minimal medium – O(1
second)

low-level
commands;
higher-order
approximation of
environment
geometry

Total Environment
Sampling

indirect moderate high – several
seconds

high-level
commands;
description of entire
environment
geometry

Hierarchical
Control (Brunner
et al. 1995)

high high high-level
commands;
description of entire
environment

Automation /
Robotics (Robinett
1998; Meltzer et al.
2001)

supervisory very high very high programs
(sequences of
high-level
commands);
description of entire
environment

Table 5.1: Implementations along a continuum of teleoperation modes, showing de-
creasing human control, increasing required foreknowledge of the environment the
teleoperator is manipulating, and increasing tolerance of latency. The further down
the list a mode lies, the more low-level control is removed from the human and au-
tomated by a computer located at the effector. Novel methods described in this
dissertation are in boldface.



75

Network Layer Technique
Application Reduced stiffness or bandwidth (5.3)

Predictive displays (5.3)
Presentation Warped plane approximation (5.2.2)

Local environment sampling (5.2.1)
Transport UDP as a replacement for TCP (6.2)

FEC (6.2)
Queue Monitoring (5.2.2)

Table 5.2: Proposed adaptations for force feedback systems. Those in boldface were
used in the experiments discussed in this dissertation.

Transport Sample v(t) Estimate RMS Error
Protocol

Fibrin 0.0015 + .000284t 2.1× 10−5

TCP Bacteria 0.0036 + .000674t 4.4× 10−5

Nanotubes 0.0086 + .00224t 3.0× 10−4

Fibrin 0.0017 + .000294t 6.3× 10−5

UDP Bacteria 0.0032 + .000694t 1.5× 10−5

Nanotubes 0.013 + .00214t 3.6× 10−4

Table 5.3: Estimated v(t) as a function of latency 4t for TCP and UDP over the real
surfaces. Fourth column is root-mean-square error of the fit.
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Chapter 6

Network Adaptations for Haptics

Each of the force feedback modes discussed in chapter 5 – plane approximation, lo-

cal environment sampling, and the warped plane approximation – is sensitive to the

network’s operating conditions. All three require bounded latency; local environment

sampling is relatively sensitive to loss, while the warped plane approximation is rela-

tively sensitive to jitter. In this chapter I explore how known techniques for adaptive

audio and video applications can be applied to the haptic data streams produced

by these three modes of operation. Some of this chapter’s results were previously

published in Hudson et al. (2001).

6.1 Characterizing the nanoManipulator’s Haptic

Data Stream

A standard teleoperator requires a low-bandwidth connection for control: for example,

Kim et al. (1992) requires only a full-duplex 8-kilobyte per second stream. However,

this stream consists of 1000 8-byte packets per second in each direction, each packet

having significant computational overhead, and requires minimal latency.

When using the plane approximation (section 4.4.2), topo sends 20 60-byte packets

per second reporting a position and a normal vector; hardware at the force-feedback

device interpolates this series of planes to the 1000 Hz required to give convincing

force feedback. The warped plane approximation (section 5.2.2) has a similar data

rate, changing only how the data is processed.

Using local environment sampling, or “feelahead” mode (section 5.2.1), topo only

transmits a few packets per second , each in excess of 300 bytes .
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The data streams associated with these techniques are summarized in Table 6.1.

Both the warped plane approximation and local environment sampling change the

requirements of the topo⇒nano link, but not the nano⇒topo link. These techniques

both improve the quality of the force feedback felt by the scientist using the tool, but

neither directly addresses the problem of latency and jitter interfering with the control

messages sent from the scientist to the tool. The networking experiments discussed

in section 6.3 address this problem.

Data Stream Endpoints Bandwidth
(bps)

Packet Rate
(per second)

Latency
Tolerance
(ms)

Jitter
Tolerance
(ms)

Microscope Control nano ⇒topo 10,880 20 < O(100) O(100)

Plane-Approximation Point
Data

topo ⇒nano 15,360 20 < O(100) O(100)

Warped-Plane Point Data topo ⇒nano 15,360 20 > O(100) O(30)

Feel-Ahead Point Data topo ⇒nano 15,120 5 > O(100) > O(100)

Traditional Teleoperation topo ⇔nano 8,000 1000 < O(40) O(0)

Table 6.1: Peak bandwidth, packet rate, and latency and jitter requirements for hap-
tic data streams in the distributed nanoManipulator for various latency-tolerance and
adaptive networking techniques. All are “Manual” data streams in the sense of Ta-
ble B.1, caused by the user taking direct, interactive control of the microscope tip
during a manipulation. Network characteristics of a notional stereotypical teleoper-
ator are given for comparison. Latency and Jitter tolerance are approximate values
based on our experiences and the literature.

6.2 Network Transport Adaptations

The plane approximation is a simple improvement on traditional teleoperation ap-

proaches that works well with update rates around 20 Hz and latency under 100 ms

(Table 6.1) (Adachi et al. 1995). When latency increases, instead of changing the

representation or algorithm used, we can first look at changing the way the data

is transported across the network. I used three approaches: replacing TCP with

UDP to reduce latency (section 6.3.1), extending UDP with Forward Error Control

(FEC) to reduce loss (section 6.3.2), and using Queue Monitoring to reduce jitter

(section 6.3.3).

Replacing TCP with UDP significantly reduces both latency and jitter, but intro-

duces loss. Since UDP does not guarantee delivery of packets, I was then faced with
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the problem of data loss. The nanoManipulator originally depended on the fact that

no packet would be lost to log events at the client that occurred on the server.1 I

refactored the application so that logging could occur at either client or server; when

server-side logging was used I could safely lose packets without compromising our

records of the experiment.

In our experience with the nanoManipulator, force feedback using the plane ap-

proximation performs well even under moderate (e.g. 10%) loss. Like audio and

video, 3d tracked sensors send data frequently but tracking applications are tolerant

of losing the occasional update. However, local environment sampling, with its much

lower message rate, is not nearly so tolerant: for our notional 25 nm square nanotube

region, a single lost region message means three to four times as long without valid

force feedback as does a single lost plane approximation update message. To control

loss, I added FEC. Instead of waiting to detect loss and then responding to it, as

Automatic Repeat Request (ARQ) approaches do, FEC attempts to prevent loss by

sending extra copies of messages (Keshav 1997), trading bandwidth for latency.

The plane approximation also performs well under fairly high jitter: in running

TCP it is not uncommon to see jitter (variance in latency) roughly equal to latency

– see Table 6.2 for an example – without the users noticing. However, the warped

plane approximation does not tolerate jitter well at all. UDP shows less jitter than

does TCP, but not little enough to serve for the warped plane approximation. To

run widely distributed experiments with the warped plane approximation requires a

playout queue to smooth jitter. Unfortunately, a playout queue adds latency to the

stream; using one requires striking a precarious balance between latency and jitter.

To determine the length of the queue, and thus the amount of latency it added

to the stream, I use the Queue Monitoring algorithm described by Stone and Jeffay

(1993). This is a control method with two parameters that, by varying the parameters

used, can emulate standard single-parameter methods from the literature (Naylor

1992), as well as provide superior performance for regulating jitter on audio flows.

The queue monitoring experiment is described in section 6.3.3.

1Logging, or recording, events received from the server allows us to “replay” the experiment at a
later time, as discussed in section 2.2.
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6.3 Experiments With Network Transport

A series of experiments (using the same apparatus described in section 5.4.1) proved

the utility of the transport adaptations described above, and determined good pa-

rameter settings to use for each (Hudson et al. 2001).

6.3.1 Adapting Transport to Reduce Latency

The first set of experiments measured the effect of transport protocol on latency. TCP

guarantees lossless, ordered delivery of messages. TCP’s guaranteed, ordered delivery

has the unwelcome side effect that a significant fraction of the lost message’s delay is

also suffered by every message sent between the transmission of the lost packet and its

eventual correct receipt. The behavior of the TCP protocol that increases throughput

in the face of congestion also increases latency. Thus, I altered the nanoManipulator

to allow a choice between TCP and UDP as transport protocols for the haptic data

stream, comparing loss, latency, and jitter over a 90% saturated bottleneck.2

Protocol Mean
Bandwidth
(bps)

Application-
level loss
(packets
per second)

Application-
level loss
(fractional)

Mean
latency
(ms)

Jitter (ms)

TCP 23,474 0 0 145 124
UDP 20,229 0.34 0.018 97 33

Table 6.2: nanoManipulator latency as a function of transport protocol with 90%
bottleneck utilization.

Changing from TCP to UDP reduced latency by 33%, from 145 ms to 97 ms,

and jitter by 75% (Table 6.2). Since 100 ms is a known breakpoint for stability in

traditional teleoperation and an approximate breakpoint for usability in teleopera-

tion with complex intermediate representations, this was an encouraging result. The

price of this improvement, however, was loss, reordering, and potential duplication of

messages.

Adding a sequence number to each message and dropping messages whose numbers

are too low turns duplication and reordering into loss. The plane approximation was

2The experiments reported in this chapter vary conditions from 90% saturation to 98% saturation
of the bottleneck. At 90% saturation, we saw enough latency to make TCP problematic. However,
after switching to UDP, there was not enough jitter to need correction. Only at 98% saturation,
with roughly 10% of packets lost, did UDP suffer enough jitter to be worth amelioration.
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still usable at the ensuing 1.8% loss level, whereas it had been unusable under TCP

with 145ms latency and no loss.

The nanoManipulator needs to record all data taken from the microscope for

later replay or analysis. The original implementation did this recording at nano, but

by instead logging at topo we avoid permanently losing any data to the unreliable

network protocol. The scientist may not see some data while the experiment is in

progress, but it will be guaranteed to be available for replay.

6.3.2 Adapting Transport for Loss

A lossy connection is adequate for the plane approximation, where the microscope

sends data often and temporary lapses are permissable, but does not work well for

local environment sampling.

FEC was added to the system to reduce loss without the latency penalty of reactive

reliability protocols. Instead of assuming that errors are rare and invoking expensive

recovery mechanisms when an error occurs, FEC assumes errors are common and

provides a constant-overhead mechanism to statistically reduce the error rate. FEC

sends multiple copies of every packet; if packet losses are independent3 and one packet

has a 10% chance of being lost, two packets will be lost only one time in a hundred.

Redundancy Mean
Bandwidth
(bps)

Application-
level loss
(packets
per second)

Application-
level loss
(fractional)

Mean
latency
(ms)

Jitter (ms)

0 20,229 0.34 0.018 97 33
1 39,509 0.04 0.0021 94 33
3 71,974 0.004 0.0002 95 33

Table 6.3: nanoManipulator performance as a function of error-correction protocol
with 90% bottleneck utilization. Transport protocol is UDP; error-correction is For-
ward Error Correction (FEC) with the number of redundant copies of every packet
specified in the table.

FEC produced an order-of-magnitude decrease in loss when sending two copies

of every packet (doubling the bandwidth), and a two order-of-magnitude decrease

when sending four copies (Table 6.3). Because this is considerably slower than an

3A common assumption of Internet protocols; not strictly true, but practical.



82

inverse-exponential decrease in loss rate, it would appear that packet losses on our

test network were not actually independent.

This implementation sent duplicates of packet n when it sent packets n+1, n+2,

. . . . Unfortunately, this means that to guarantee in-order playout of packets would

require adding latency equal to the inter-packet time (typically 33 ms) times the level

of redundancy. This is excessive for the purpose of lossless playout for force feedback,

although it would allow a designer to combine a loss-tolerant haptic interface mode

with logging at nano, which is perhaps more convenient for the scientists.

A more sophisticated implementation could send the duplicate packets at 1 ms

intervals.4A triply redundant implementation, enough in this experiment to reduce

loss one-hundredfold, would then only add 3 ms of latency to guarantee low-loss, in-

order playout for the force feedback. This would, however, more likely run afoul of

any temporal correlation of packet losses.

6.3.3 Adapting Transport for Jitter

The warped plane approximation performs well with 150 ms of response time. How-

ever, it breaks down when jitter exceeds 100 ms. When a network is designed to pro-

vide Quality of Service guarantees, one of the services commonly offered is bounded

jitter (See section 3.2). Unfortunately, solutions to the problem of jitter add latency.

Jitter is fundamental to best-effort networks; in order to mask the network’s jitter it is

necessary to add latency. I implemented Queue Monitoring, an adaptive jitter-control

algorithm that can trade off between loss and jitter (Stone and Jeffay 1993).

Although jitter is a useful summary measure of delay variation, it does not capture

the distribution of delays observed. I use two values that more completely describe

the problems caused by delay-jitter in any process that tries to play back continuous

media: gap rate and drop rate. When messages are buffered at a receiver for playout,

two problems can occur. Either the queue can underflow, causing a gap in the playout,

or the queue can overflow, requiring that the receiver throw out (drop) a sample.

For any application which is “playing out samples,” the raw amount of jitter

caused by the network is only a secondary measure which indicates the possible

presence of gaps and drops. If one message is delayed, but is delayed less than

the time it would have waited in buffers before playout, the delay is meaningless – no

4These packets are small enough – less than 100 bytes each, including all headers – that this is
feasible over high-bandwidth networks.
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gap occurs. Thus, even though the message may have been subject to network-level

jitter, the application-level measurement of delay variation for that message is 0.

For this experiment, I loaded the bottleneck routers to 98% (4500 simulated web

browsers, 5 servers). The nanoManipulator used UDP for transport, since we had

already shown that it gave lower latency and jitter than TCP on congested networks

(section 6.3.1).

Buffer
Management
Scheme

Application-
level loss (per
second)

Drop rate
(per second)

Gap rate (per
second)

Mean latency
(ms)

none 2.8 (9.7%) 3.4 (11.7%) 6.2 (21.5%) 89
QM (30, 2) 2.8 (10%) 0.18 (0.6%) 3.0 (10.6%) 94
QM (150, 2) 2.8 (9.7%) 0.06 (0.02%) 2.8 (9.7%) 96
QM (3600, 2) 2.8 (9.5%) 0.003

(0.001%)
2.8 (9.5%) 91

Table 6.4: nanoManipulator performance as a function of buffer management, using
UDP for transport, with 98% bottleneck utilization. QM(x, y) is Queue Monitoring
with threshold x at queue length y. Drop rate is messages lost due to buffer overflow
caused by jitter; gap rate is messages lost due to buffer underflow caused by jitter or
loss.

At 98% utilization and 10% loss, jitter remained in the neighborhood of 30 ms.

However, the gap rate was high; Queue Monitoring (at a variety of parameter settings)

essentially eliminated drops with only a modest additional cost in latency (Table 6.4).

As the experiment with Queue Monitoring shows, the distribution of delays caused

bad performance (high drop and gap rates). In a followup test, the dummynet package

(Rizzo 1997) was used to add additional fixed latency at the router to simulate larger

networks. With 40 ms of added delay from dummynet, transmission using UDP and

no buffer management saw 90 ms of jitter, enough to begin interfering with force

feedback using the plane approximation. Adding Queue Monitoring reduced jitter to

the level seen on the LAN (30 ms).

Queue monitoring helps the warped plane approximation, but it would contribute

to marginally worse force feedback with the plane approximation. Queue monitoring

smooths the playout of messages received from the microscope; the warped plane ap-

proximation explicitly corrects for (and relies on) this, but the plane approximation

does not, and even this small increase in latency would weaken the spatial correspon-

dence between hand position, sample position, and approximating plane position. For

the simpler representation, it is better to always discard late force feedback data from
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the microscope: surface features may be missed, but those that are felt will not be so

distorted.

6.4 Summary

The feedback control loop for the nanoManipulator’s haptic interface requires less

than 20 kbps of bandwidth and no more than 20 packets per second. This is easily

supported by modern networks, but the control loop’s latency constraints are not.

This chapter discussed experiments that verified that using UDP, FEC, and Queue

Monitoring (QM) work for the nanoManipulator as well as for traditional audio and

video streams, extending the useful range of haptic feedback. UDP reduced latency

by 35% (50 ms) and jitter by 75% (90 ms) compared to TCP. FEC on top of UDP

reduced loss tenfold (to 0.2%) by doubling bandwidth to 40 kbps, or one-hundred-fold

(to 0.02%) by quadrupling bandwidth to 80 kbps. QM on top of UDP reduced the

drop rate asymptotically close to zero with less than a 10% (8 ms) increase in mean

latency. All three of these techniques should be considered by future implementors

of networked force-feedback systems.



Chapter 7

Collaboration

The distributed nanoManipulator was conceived to enable scientific research across

distances: to let scientists work with equipment they did not have nearby, whether mi-

croscopes or supercomputers. In practice, access to remote expertise (people) can be

even more important than access to remote equipment. We extended the distributed

nanoManipulator to support synchronous collaboration: sharing the application so

that two scientists, separated by distance, can participate in the same experiment at

the same time, consulting with one another and even trading control of the micro-

scope. This set of extensions is referred to as the Collaborative nanoManipulator.

We used a custom implementation of application sharing that was built to be flexi-

ble in its choice of algorithms, particularly algorithms for concurrency control. This

chapter documents the design choices we made and the experiments I carried out to

evaluate those design choices.

The Collaborative nanoManipulator focuses on sharing and extending the capabil-

ities already present in the stand-alone system. To work together effectively, our users

also want video and audio conferencing, as well as application sharing. For these sec-

ondary purposes, we used commercial off-the-shelf hardware and software running on

an extra computer at each site. The entire system strives to be media-agnostic, rather

than VE-centric, allowing the collaborators to use whatever combination of media is

most appropriate for their current tasks (Robinson et al. 2001); this dissertation ad-

dresses only the VE component. Portions of this chapter were previously published

as “Managing Collaboration in the nanoManipulator,” by Thomas C. Hudson, Aron

Helser, Diane H. Sonnenwald, and Mary C. Whitton, in Presence: Teleoperators and

Virtual Environments, volume 13, number 2.
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7.1 Motivation

Dewan (1997) lists three motivations for synchronous collaboration: distributed col-

laboration, sharing computer state, and going “beyond being there.” The Collabora-

tive nanoManipulator addresses each of these.

Distributed Collaboration: Synchronous collaboration enables people who are

remote from one another to work together. This is often enabled by audio and

video communication links, although for some tasks text “chat” is sufficient. The

Collaborative nanoManipulator provides this capability through auxiliary programs;

the issues that arise in enabling this communication are external to this dissertation.

Sharing Computer State: Synchronous collaboration allows people to share the

state of one computer application while working from multiple computers. In the

Collaborative nanoManipulator, the collaborators share access to the microscope.

They can use a “shared workspace,” so that they see identical views of the experiment.

Beyond Being There: At its best, synchronous collaboration gives people capa-

bilities that they would not have if they were working side-by-side. Users of the

Collaborative nanoManipulator each have their own force-feedback device and their

own workspace, allowing them to simultaneously explore the same recorded dataset

at different points in time or examine the same sample from different viewpoints or

with different visualization parameters.

As discussed in chapter 1, the combination of these capabilities yields several desir-

able benefits. The system provides access to remote instrumentation and expertise,

replacing travel. This, in turn, is expected to improve scientists’ ability to successfully

carry out lengthy, productive collaborations.

7.2 Goals and Requirements

The requirements for the Collaborative nanoManipulator grew out of an ethnographic

study of scientists using the nanoManipulator (Sonnenwald et al. 2001). Based

on the study, we decided to focus on the cognitive tasks – to support the work

of understanding and experimentation that scientists normally carry out with the
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nanoManipulator. Support for scientists’ social behaviors and communication was of

secondary importance.

The primary goal of the Collaborative nanoManipulator is to allow scientists to

share control of an experiment in progress. To do this, they must each have full com-

mand of all the features of the nanoManipulator, including control of the microscope.

They must be able to work on the experiment together, with a common frame of

reference, or work independently. They must be able to easily shift between these

coupled and uncoupled modes of work. They must be able to take turns controlling

the microscope, and must not be able to interfere with one another’s work, but must

not have their work hindered by the user interface that manages all of these features.

Scientists also review the results of past experiments as part of their collaborative

work. The nanoManipulator has long been used for asynchronous collaboration, where

one scientist carries out an experiment and another reviews it hours or days later.

Scientists also wanted to be able to review previously captured data synchronously,

so that two widely-separated people could look at the same recorded datasets at the

same time and consult on analysis techniques or follow-up experiments.

These goals resulted in three requirements that drove the architecture of the shared

nanoManipulator application. First, the application had to be highly interactive,

with both response time and user-to-user time under 300 ms. Second, it had to

support the ability for a collaborator to interleave periods of coupled and uncoupled

– shared and private – work, with the corollary that there be an easy mechanism

for copying application state data back and forth between the independent (private)

and collaborative (shared) work modes. Three, it had to have all the features and

functionality of the single-user system.

7.3 Human Factors

Latency is a significant determinant of the utility of a user interface; collaborative ap-

plications have not one but two significant latencies that must be controlled: response

time and user-to-user time (Bhola et al. 1998).

Response Time is the time between a user’s input and that user seeing the results

of her input.

User-to-User Time is the time between a user’s input and some other collaborating

user seeing the results of that input.
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Bryson and Johan (1996) reports 100 ms as an approximate upper bound for

direct manipulation tasks, and Macedonia et al. (1994) provided the same upper

limit for wargames. Bhola et al. (1998), in the context of a collaborative application,

state the limit varies between 50 and 100 ms; for their user tests of mouse-controlled

drawing packages, 50 ms of response time noticeably interfered with usability and 80

ms made the application unusable. When force feedback is being used, or the input

is driving a control loop, response time becomes even more critical; 50 ms of latency

in flight simulators reduces performance, and only a little more leads to user-induced

oscillations and instability (Wickens and Baker 1995).

When users are attempting to coordinate their actions, or understand how their

actions affect one another, user-to-user time is important. Leigh et al. (1998) and

Vaghi et al. (1999) both report 200 ms of delay interfering with the completion of

closely-coordinated tasks in collaborative virtual environments. (Johnson and Leigh

(2001) report that collaborators are better able to adapt to latency than they are to

jitter, and that collaboration can remain successful with 150 to 200 ms of latency.)

7.4 Design

There are a large number of design decisions to be made in creating a multi-user

collaborative application. Drawing from Dewan’s (1997) list, the following issues

must be considered in the design:

Coupling: Coupling is the relationship between different users’ views of the appli-

cation state. To allow scientists to use the same working patterns we observed in

our ethnographic study (Sonnenwald et al. 2001), we support two modes of coupling.

Each scientist has a private space, where they can work independently. There is also

a shared space, where the two user’s views are fully synchronized: “What You See Is

What I See.” The application state can be copied from private to shared space, to

allow both scientists to look at work done independently, or from shared to private

space, to allow one scientist to take joint work and further develop it on her own.

Collaboration focuses on sharing the scientists’ views of the data. In the private

state, each user’s view is not influenced by the collaborator. In the shared state, all

system parameters are controllable by either user at any time. Collaboration requires

mutual intent – both scientists must explicitly choose to collaborate.
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Access Control: Control of the physical devices in the nanoManipulator system –

the microscope and any subsidiary devices like an ohmeter – cannot be safely shared if

we are to preserve user intent. A single mutex guards access to these devices; the user

who is currently controlling the device must explicitly yield before her collaborator

can take over.

Awareness: Awareness is the extent to which each scientist is given data by the

program about their collaborator’s actions. During a collaborative experiment, both

scientists are connected to the same microscope. They see each other’s changes to

the state of the device, whether they are in private or shared space. When working

together in the shared space, they also see one another’s changes to the visualization

parameters and one another’s pointers (annotated to show the partner’s current mode

of interaction with the application).

Concurrency Control: Concurrency control attempts to guarantee that all users

see a consistent and expected application state. The most critical decision for the

performance and usability of our Collaborative nanoManipulator was the choice of

concurrency control methods; they are discussed in sections 7.7 and 7.8.

The Collaborative nanoManipulator uses Dourish’s (1995) notion of divergence

in its architecture, but not in its implementation. At a high level, supporting both

shared and private spaces allows for a multi-synchronous approach to collaboration.

In a document-based system, synchronous collaborators look at the same document

at the same time, while asynchronous collaborators look at the same document at

different times. Multi-synchronous collaborators work independently in parallel –

simultaneously creating different versions of the same document, then integrating

them. The several spaces of the Collaborative nanoManipulator give us the same ad-

vantages as a more generalized support for divergence: they allow smooth transitions

between interactive collaboration and asynchronous or independent work, directly

supporting patterns of activity we have observed in collaborating scientists (Sonnen-

wald et al. 2001). We do not support reintegration, bringing multi-synchronous

versions together, but only the selection of one or the other version as a starting

point for further synchronous work. 1 As an implementation technique, divergence

1Our collaborative framework was designed to enable mixing of the shared spaces for reintegra-
tion, but users have been satisfied without it. It also appears that our users can much more easily
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provides scalable synchronization: it allows variation from tight coupling (frequent

synchronization) to loose coupling (occasional synchronization). The nanoManipula-

tor’s shared space requires tight coupling, without any variation in synchronization,

so we used implementation techniques that maintain close coupling without paying

the overhead of divergence-based approaches.

Network Layer Technique
Presentation Optimistic concurrency control (7.6.2)

Asynchronous remote procedure call (7.7.2)

Table 7.1: Proposed adaptations for collaborative systems. Those in boldface were
used in the experiments discussed in this chapter.

7.5 Concurrency Control

A concurrency-control protocol ensures that incorrect behavior cannot

occur as a result of concurrent access [to one object] by multiple clients

(Herlihy 1987).

Concurrency control attempts to guarantee that all users see a consistent applica-

tion state: that no errors occur in synchronizing replicas. For example, collaborators

editing a document together should see the same text. The details of a consistency

guarantee are highly application-dependent (Munson and Dewan 1996). Concurrency

control also attempts to guarantee that users see an expected application state, some-

times expressed as the “Principle of No Surprises” or the “Isolation Property.” Users

should never be surprised by the application’s response to their input or have their

input cause unintended effects due to another user’s simultaneous actions (Weihl

1993b).

The literature on collaborative software has a large set of specialized definitions.

When two scientists are collaborating, the software running on each of their computers

is referred to as a peer or client in the collaboration. The collaborative application

lets the collaborators share a number of objects; each peer has a replica of every

object. Synchronization is the process of ensuring all peers agree on the state of the

objects: keeping replicas consistent. Any occurrence at either peer is an event; the

deal with the work model of distinct spaces – private and shared – than a model where they may
choose to have some attributes of their view defined by one “space” and some by the other.
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most significant events are an operation (a change to the value of a replica), a send

(the transmission of a message from a peer), and a receive (the receipt of a message

by a peer). Operations conducted by two peers that would lead to inconsistent state

conflict. Serialization is the process of ensuring that all peers agree on the order in

which events occur. While users are executing operations or replica-update messages

are in transit, the collaboration is active; when no state changes are pending, the

collaboration is quiescent.

Messages must be exchanged between peers to keep replicas consistent. This

sets up a critical problem that limits the performance of distributed systems, stated

by Singhal’s Consistency-Throughput Tradeoff: “It is impossible to allow dynamic

shared state to change frequently and guarantee that all hosts simultaneously access

identical versions of that state.” (Singhal and Zyda 1999)

7.6 Concurrency Control Strategies

The Collaborative nanoManipulator was written within a framework that enabled

concurrency control methods to easily be added and switched among. This permitted

experiments that compared the performance of different algorithms – measuring their

effect on response time and user-user time – in the same setting. Many algorithms

have been devised for concurrency control; the wide range of possibilities is surveyed

below. These range from pessimistic to optimistic concurrency control, serialization

techniques needed to support optimism, and even those applications that operate

without concurrency control.

These algorithms all exhibit a tension between several goals of concurrency control,

among them:

• minimizing response time

• maximizing flexibility and the ability for multiple users to work in parallel

• minimizing the overhead collaboration adds to a user interface

• minimizing the amount of work lost when two collaborators attempt inconsistent

operations.

For this dissertation, I evaluated concurrency control strategies until I found one

that adequately supported the Collaborative nanoManipulator. After surveying the

possibilities, I discuss the architecture that gave the Collaborative nanoManipulator
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the ability to use multiple concurrency control methods, and the experiments that

revealed the methods’ suitability for the Collaborative nanoManipulator.

7.6.1 Pessimistic Concurrency Control

Pessimistic approaches to concurrency control try to prevent users from performing

any operations that could lead to inconsistent state. The simplest way to do this is

with a lock.

Locking in Databases: The first widespread applications that needed to worry

about concurrency control were distributed databases. The typical approach taken

by databases is to lock records being modified so that only one user can operate on

a record at a time. A lock is secured on the records needed by the operation, the op-

eration is performed, and then the lock is released. This sequence of steps introduces

latency due to the overhead of acquiring and releasing the lock; each of these oper-

ations generally requires at least one network round-trip (Weihl 1993a). Database

locks are typically procured automatically, without user intervention. Locking in

databases yields risk of deadlock on operations that span multiple records or tables

(Weihl 1993a). Weihl (1989) has a taxonomy of other approaches used in databases.

Databases are straightforward environments for concurrency control because the se-

mantics are regular and uniform; the variety found in other applications is described

below.

Floor Control: The simplest form of concurrency control seen in non-database

applications is “floor control” (Lantz 1986; Malpani and Rowe 1997). Floor control

uses a single lock to guard access to the entire application or document being shared.

Only one user at a time can actively manipulate the application. Inactive users

press a button to request control of the application. As in a well-run meeting, only

one speaker at a time “has the floor” and can address others or take action, while

others watch and listen. A widely disseminated system that uses floor control is

Microsoft(TM)’s NetMeeting(TM). NetMeeting allows users of Windows workstations

to share standard Windows applications. Only one user has control of the on-screen

mouse pointer at any time; others watch. If an inactive user clicks her mouse, she

takes control – after waiting for network traffic to deactivate the previously active

user’s mouse. In our studies of the Collaborative nanoManipulator deployed with
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NetMeeting, users have found this explicit floor control both confusing and slow,

interfering with their collaboration (Sonnenwald 2002).

Many collaborative systems require the current active user to explicitly relinquish

control before another user can take control, which reduces surprises but adds to the

overhead that managing collaboration imposes on task performance. Some systems

also support queueing requests for control by inactive users, while others go even

further by designating one collaborator as a moderator who can reorder the queue or

revoke the control of the currently active user, much like a moderator under Robert’s

Rules of Order.

Floor control is often a reasonable method of concurrency control for formal meet-

ings held via teleconferencing, just as it is in real life. However, it is not appropriate

for many other modes of work or applications. If used to control access to a large

document, floor control allows only one user to work at a time, removing any possi-

bility of parallel activity. Some collaborations proceed well in this mode, while others

proceed poorly.

Fine-Grained Locks: To allow multiple users to be active at once, locks can be

made fine-grained. In a text document, each paragraph could have its own lock. In

a virtual world, each object could have a lock. Managing fine-grained locks can be

difficult for users, since they may become as complex as the document itself.

This discussion assumes that for each lock one client is the designated server,

arbitrating which client receives the lock when several clients concurrently request

it. A machine other than the clients can also arbitrate lock ownership, but this does

not improve performance. There also exist distributed approaches to arbitrating lock

requests, where no one machine has responsibility; these pay overhead for serialization

similar to that discussed in section 7.6.3.

Implicit Locks: One common strategy that attempts to preserve the flexibility of

fine-grained locks without burdening users with their management is to make them

implicit: the user takes no action outside the normal flow of work to request the lock.

As soon as the user undertakes some manipulation that would require the lock, her

local interface blocks her progress until the lock is obtained. Once she has the lock,

she is allowed to continue with her operation. If she can not obtain the lock because

another user is holding it, her local application may unblock and display a failure

indicator, or continue to block until the other user is finished. When the operation is
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complete, the lock is released.

Implicit lock management algorithms do not know when to release a lock. Consider

a user in a 2D shape editor who moves an object, pauses to consider the location

briefly, and then decides to move it further. If she releases the mouse between the

two movements, the concurrency control system may release her lock. She must then

wait for the network round-trip needed to regain the lock, and must also contend

with other users who may be trying to carry out different operations on the same

object. Correct behavior by the application relies on understanding the user’s intent;

thus, the decision between implicit and explicit lock management can be reduced to

the decision between greater overhead on every operation and occasional unexpected

overhead on some operations. In some sense this is equivalent to the question of

whether users prefer high mean latency with low jitter or low mean latency with high

jitter.

Migrating Locks: This time penalty can be partially ameliorated by “migrating”

a lock to the workstation of the last user who requested it. That is, when a client

obtains a lock it is also assigned responsibility for determining who next receives the

lock. If user A uses an object, releases it, then uses it again, no network traffic is

needed to enable the second use, since the responsibility of managing the lock was

moved to her workstation during her first use of the object. If user B wants to use

the object, she must send a message to A’s workstation rather than to a central lock

server. The lock migration protocol needs to be careful to avoid thrashing – if A and

B both try to use the object frequently, and the lock migrates back and forth between

them, migration adds additional overhead.

Speculative Execution: Whether or not they use migration, even fine-grained,

implicit locks add latency to the user interface. The interface is blocked – unresponsive

– from the time the user begins an operation until the time that the concurrency

control system obtains the required lock(s) and allows the operation to continue.

To avoid this latency, some collaborative systems carry out speculative execution:

the user interface is never blocked, and the user is allowed to begin the operation

without obtaining a lock. However, the system still tries to lock the objects being

manipulated; if a lock can not be obtained, the system has to abort or undo the

operation. Although this avoids any latency overhead, in the case of a conflict this

causes surprise and lost work (Conner and Holden 1997).
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Optimistic approaches carry speculative locking one step farther: they allow the

user to begin working immediately, and take some step less extreme than aborting if

they detect that the user’s input conflicts with another user’s action.

7.6.2 Optimistic Concurrency Control

Optimistic concurrency control algorithms guarantee consistency with low latency.

Following Amdahl’s Law, informally “Make the Common Case Fast”: systems us-

ing optimistic concurrency control perform an operation, then check to see whether

any other peer executed a conflicting operation simultaneously. If conflicts occur, an

application-dependent procedure resolves them (Herlihy 1990). In most applications,

most operations do not conflict, and so can be executed rapidly, without the over-

head of locking. Optimistic concurrency control algorithms do not guarantee that

all replicas at all clients are always consistent, but that they will be consistent when

quiescent,2 after any necessary conflict resolution has occurred.

Typically, asynchronous collaboration applications can use optimistic concurrency

control with manual human intervention for conflict resolution. This is because op-

erations are carried out on local replicas of the application state, and local replicas

are only occasionally synchronized with peers; when synchronization occurs with low

frequency on large amounts of work, manual merges are acceptable. Synchronous

collaboration requires awareness, which leads to frequent synchronization of small

changes. In this case, users generally require automatic conflict resolution.

Optimistic concurrency control avoids the time overhead of locking. Each oper-

ation is applied at a user’s workstation as soon as she requests it. Her operation is

then sent to her collaborators’ workstations, which are responsible for executing it

in such a way as to guarantee consistency. Most optimistic algorithms require that

an ordering be established over all operations – a global order – but do not require

that operations be delivered in order.

The simplest case of automatic conflict resolution for optimism occurs when all

operations are commutative or idempotent and need not be serialized. Operations

on an object arriving that predate (in the global order) the most-recently-executed

2Like silence in speech, quiescence is common in streams of user actions. However, the frequency
of both of these “stillnesses” varies widely between applications and circumstances. Most optimistic
concurrency control algorithms reach global agreement on the result of any one operation relatively
quickly, but in the worst case the effects of some operations may not be everywhere consistently
reflected until quiescence.
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operation on that object can be discarded. For more complex operation semantics,

optimistic systems either undo the later operation, execute the early operation, and

then redo the later operation (undo-redo schemes), or transform the earlier operation

into the operation it “would have been” if it had been executed later in the global

order (transformational schemes).

7.6.3 Serialization

If operations are broadcast from the replica at which they occur to every other replica,

the order in which they occur is unknown. Some additional information is necessary

to put them in a consistent order, or serialize them. For most optimistic concurrency

control methods, peers in a collaborative application must come to a global agreement

on the order in which events occurred. The goal of optimistic concurrency control is

low-latency performance; latency depends on the serialization technique used. Creat-

ing a global ordering of distributed events has historically been an expensive operation

(Birman and Joseph 1987).

Centralized Serialization

The simplest way to serialize is to centralize: all message traffic passes through a single

server, which is responsible for giving it a consistent ordering. Every replica sends

operations requested by its user to the serialization server, which then broadcasts

them to all replicas, including the originator, in the order in which it received them;

the replicas execute the operation when it is broadcast to them. If operation A

arrives at the serialization server before operation B, then every replica in the system

executes A before executing B, regardless of the time at which they were requested by

users. Centralized serialization defines a total order over all operations in the system,

and makes sure that they are delivered to all replicas in the same order.

The drawback to centralized serialization is that every operation coming from a

site other than the server experiences one full network round-trip of latency. Instant

response is impossible; a user cannot see the results of her action until it has been

to the serialization server and back. Over a wide area network, this delay can be

hundreds of miliseconds, enough to interfere with the application’s usability (Prakash

1999). The performance of centralized serialization is similar to that of centralized

locking.

The latency penalty can be statistically reduced by distributing the responsibility
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for serialization. Operations on a single object may only need to have a consistent

ordering with respect to other operations on that object. In this case, serialization

for operations on that object may be migrated to the system that most uses the

object. By moving serialization out of a central server and into the peers, each

object can have one user who sees no latency to operate on it; as the use pattern of

an object changes, serialization for that object can move to whichever peer uses it

most. Migrating, fine-grained serialization has a performance similar to migrating,

fine-grained locking schemes, which have been widely proposed as a mechanism for

concurrency control in shared virtual environments. However, optimistic concurrency

control protocols should be able to do better.

Distributed Serialization

Centralized approaches to serialization suffer because all clients (except, perhaps, one

client which also serves as a serialization server) pay a latency penalty. When a user’s

input commands an operation, that operation does not execute until a message has

been sent to the serialization server and a response received – one full network round-

trip. This means that the performance of the local user interface becomes dependent

on the network latency.

Serialization attempts to order all events that occur in a system. We already

have support for ordering of events built into every computer: the on-board clock.

However, clocks are not well synchronized; out-of-sync clocks will yield incorrectly-

serialized messages. Traditional algorithms for distributed serialization attempt to

provide a global ordering without relying on a “real-time” or “wall” clock. The “global

real-time clock” is regarded as a practical impossibility but a necessary starting point

for theorizing. 3

The logical clock is a distributed algorithm that provides a consistent ordering

of events in a real-time system (Lamport 1978; Babaoglu and Marzullo 1993). Using

the logical clock, we can get rid of the need to have any serializing server. Although

a logical clock does not require a network round-trip to a server in order to serialize

an operation, it is still heavily dependent on network performance. Once a user

requests an operation, the logical clock cannot place it into a total order and allow

it to be executed until a network message has been received from every other peer

3The theory of distributed clocks makes a number of careful distinctions, such as that between
causal and total ordering, which are not necessary in this dissertation.
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in the system (Babaoglu and Marzullo 1993). Thus, delay from the logical clock

is controlled by how much bandwidth we are willing to consume with otherwise-

meaningless “clocking” messages, and the bandwidth grows with the square of the

number of peers. See appendix D for the details of the logical clock algorithm; other

uses of the logical clock are discussed in Raynal (1992).

The vector clock is a construct related to the logical clock that can guarantee

consistent, causal delivery of messages without the added delay of waiting for messages

from every other process in the system (Babaoglu and Marzullo 1993). I give the

vector clock algorithm in Appendix E. Adding a few constraints to a vector clock can

turn its causal ordering into a global ordering.

Both the logical clock and the vector clock add significant implementation com-

plexity to a system, and increase the network bandwidth consumed (in proportion to

the number of peers in a collaboration). Although latency is bounded, within that

bound latency also increases as the number of peers rises. Today, freely-available

software uses the Network Time Protocol (NTP) (Mills 1996) to attempt to synchro-

nize one computer’s clock with another’s, taking into account network latency and

all the other details that have traditionally interfered with accurate synchronization

of clocks. Computers running NTP have a very good approximation of the mythical

global real-time clock. Thus, by time-stamping messages with the clock of the send-

ing peer we can get approximate serialization with a small constant network overhead

and negligible added latency.

I call this approach wall clock serialization: using the peers’ on-board clocks,

synchronized with NTP, to assign timestamps to every operation, guaranteeing that

a consistent, total global order is agreed upon by all peers. Errors in synchronization

– clock skew – lead not to inconsistency or a breakdown of serialization but to a

mismatch between the global order agreed upon by the peers and the order observed

in reality (a noncausal ordering). NTP makes the synchronization error small enough

to be both negligible and imperceptible when the events serialized are part of the

control of the user interface.

Schneider (1993) used wall-clock serialization plus an extra delay (based on an

upper bound of possible clock skew) to provide pessimistic concurrency control. Wall-

clock synchronization does not guarantee in-order delivery of messages without this

extra delay, but the optimistic concurrency control methods discussed above do not

require in-order message delivery. However, using NTP the clock skew bound is so

low that Schneider’s method may be competitive with optimistic approaches.
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7.6.4 Social Protocol

Students of the human side of collaboration use the term “social protocol” to refer

to the communication patterns people use while collaborating. Some collaboration

systems, rather than implementing any of the above concurrency control protocols

to preserve intent, rely on the social protocols performed by their users. People who

are collaborating closely and have audio or text chat channels with which to com-

municate tend to stay aware of one another’s work and talk about what they are

doing well enough to avoid the collisions and inconsistencies that the above meth-

ods attempt to mechanically prevent. Leigh et al. (1999) advocate this approach,

with optimistic methods coming in second-best in the applications they survey and

pessimistic methods worst.

7.7 Implementing the Collaborative nanoManipu-

lator

There are several frameworks and toolkits for building multi-user distributed virtual

environments; many are surveyed in Meehan (1999). Were we building the Col-

laborative nanoManipulator from scratch, we would have liked to have adopted a

framework like Suite (Dewan and Shen 1998). Working with a large existing appli-

cation, we found it easier to write our own support software for concurrency control

(10,000 lines of source) than to rewrite the entire application (125,000 lines of source)

to fit within an external framework. This gave us considerable freedom to experiment

with various concurrency control methods and to tune them to suit the application

semantics. However, we also agree with Leigh et al. (1999) that it is much better to

build an application for collaboration from the ground up than to attempt to retrofit

it.

7.7.1 A Model-View-Controller Decomposition

The normal use of the Model-View-Controller paradigm (see Appendix F) is to factor

an entire application into one Model, one View, and one Controller. However, the

Collaborative nanoManipulator handles two types of commands with very different

semantics: commands that modify the state of the microscope and commands that

modify the the user’s view of the data returned by the microscope. We found it useful

to follow this division, designing the application around two Models, each with its
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Figure 7.1: The nanoManipulator as two models, two controllers, and three views.
Separating the two models gives us a clean separation of concurrency control methods.

own View and Controller. This gave us a clear separation of concerns in the code and

made it easy to use a different concurrency control method for each Model.

Figure 7.1 shows our decomposition of the Collaborative nanoManipulator into

two controllers, two models, and three views. The two Controllers are each integrated

with one View as a traditional GUI (implemented using Tcl/Tk) with buttons, sliders,

drop-down menus, and other standard widgets to allow users to view and request

changes to the current state of the microscope and the visualization methods applied

to that state. The third View renders data from the microscope Model using the

methods and parameters specified by the visualization Model.

For example, in the Collaborative nanoManipulator system, there is a replicated

Model of the microscope. This Model contains such information as, “What is the

current location of the microscope tip? What is the current force exerted by the

microscope on the sample? What is the topography of the surface recently scanned?”

This is the current position and geometry of objects in the world data sensed by a

device external to the virtual world, rather than directly controlled by the user and

the parameters that control that device. The mechanics of Atomic Force Microscopy

are discussed in Section 3. A locking mechanism is required for this model because two

users trying to direct the tip of the microscope at the same time while it interacts with

a sample could cause damage to both microscope and sample and would guarantee

that neither users intention would be satisfied.
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The way the data in the Model of the microscope is visualized (View) is controlled

by a complex set of parameters, which form a second, subsidiary Model that we call

the visualization Model. The data in the visualization Model answer such questions

as, “From what position (in a virtual space) is the user viewing the sample? What

color map is applied to the sample? How is it illuminated? Are isocontour lines

displayed?” This is information about the rendering modes used by the program and

about the position and geometry of purely virtual objects.

Because of the continuous nature of its inputs, control of the visualization Model

is very sensitive to latency. The operations in the visualization Control are easily

commutable and non-critical. The latency requirement and low probability of causing

an inappropriate application response suggest that the visualization Model can be

treated with optimistic concurrency control.

The data in the visualization-Model defines the difference between shared and

private work: if two collaborators have consistent visualization-Models, they see the

microscope data in the same way; if not, they work independently. Separating a set

of requirements into distinct Models this way, along the borders between feasible con-

currency control schemes, helps us determine the architecture of the overall program

and helps us build in flexibility.

The “Microscope-Model” had a single consistent master state that was main-

tained on a computer physically collocated with the microscope; state changes were

sent from the microscope to local replicas at each copy of the nanoManipulator. The

Microscope-Model required coarse-grained, pessimistic concurrency control to guar-

antee that user intent was preserved across a series of operations; failure to do so

could damage the microscope or the sample and ruin the experiment.

We chose to use a single lock for all of the microscope’s controls to guarantee

that the intention of the user is preserved. If we had used fine-grained locking for the

microscope, we could guarantee that individual operations were atomic – that changes

to microscope variables were not corrupted – but could not preserve intent. If one

user engages the microscope tip with the surface and begins to feel along a path, while

the other user unknowingly increases the force exerted by the microscope tenfold, the

sample or the tip can be damaged, something neither user intended. This is similar to

the concept of transactions in a database, which recognize that fine-grained locking

is not enough when one operation in a database depends on another.

State for the visualization-Model, or “View-Model”, was fully replicated between

the peers. I implemented two forms of concurrency control for this replicated state.
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Both were based on a simple optimistic approach, but varied in the form of serializa-

tion they used. At one extreme was server-based serialization, which was expected to

perform equivalently to server-based locking. At the opposite extreme was wall-clock

serialization. In addition to NTP, additional clock synchronization code running in

a user-level library helped bound clock skew and ensure that the ordering of events

was causally consistent. As did NPSNET and AVIARY, we found that wall-clock

serialization works extremely well for shared VE.

For server-based serialization, one of the collaborating peers was chosen as the

server. This caused the application’s frame time to be added to network round-

trip time in determining the system’s response time and user-user time. Because of

the single-process architecture of the nanoManipulator, frame time appears multiple

times in many control loops; all of my measurements of collaborative performance

are strongly dependent on frame time (as well as network delay). Repeating these

experiments with faster graphics hardware reduces the performance advantage of

optimistic, wall-clock serialized approaches, but they should always provide a faster

response time than the other algorithms.

7.7.2 Synchronizing Replicated Models

We used the Virtual Reality Peripheral Network protocol (Taylor et al. 2001) as the

Session layer for the Collaborative nanoManipulator, giving us the ability to make

asynchronous remote procedure calls. With asynchronous Remote Procedure Call

(RPC), when a process requests an operation from another process, the requesting

process does not wait for values to be sent back by the remote server, but instead

resumes execution immediately. Receipt of the response from the remote server will

trigger a callback in the requesting process. This non-blocking communication helps

to decouple the application from network latency, allowing an interactive application

to reduce response time for operations that are being carried out across the net-

work. In this way, asynchronous RPC is more useful for interactive applications than

is traditional synchronous RPC. Asynchronous RPC typically leads to a complex

programming style centered on callbacks; however, this same style is also required

by modern graphical user interfaces, and was adopted for most of the Collaborative

nanoManipulator.
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7.8 Experiments with Collaboration

Our infrastructure enabled several different implementations of concurrency control

for the View-Model. I conducted a series of experiments to measure the relative utility

of two.

I placed two dual-processor 500 MHz Windows NT workstations running the Col-

laborative nanoManipulator on the department network, a switched 10/100 Mb Eth-

ernet LAN. For the following experiments, instead of connecting to a live microscope,

I replayed a streamfile – the recorded data that came from a live microscope during

a past experiment. This increases repeatability while maintaining the timing of data

arriving from an actual microscope. During these experiments, the computers were

equipped with Intense3D(TM) Wildcat(TM) 4000 graphics hardware.

7.8.1 Timing Measurements

My baseline measurements determined that with a single scientist using the nanoMa-

nipulator (non-collaborative), average response time was 214 ms. Thus, even though

the frame rate was 15 fps or better, which in an ideal implementation would lead to

a response time under 66 ms, 214 ms lapsed between user input to the application

(changes to the View-Model) and the corresponding update of the screen.

I measured the performance of the concurrency control implementations by ap-

proximately repeating the same series of operations with the Collaborative nanoMa-

nipulator in different concurrency control modes. The operations used were a series of

movements of the surface, variations of surface scale, and movements of the measure

lines. See table 7.2 for a summary of results.

A client hosting the serialization server sees no perceptible degradation in per-

formance. However, any other collaborating client experiences a dramatic difference,

with response time increasing in my experiments to 533 ms. The average cost of net-

work communication and serialization was 319 ms, more than doubling the response

time. Remote collaborators strongly objected to the system’s high latency, refusing

to use the collaborative system. An improved implementation, or a dedicated seri-

alization server, might reduce this by the frame time of the collaborating peer, but

that would still leave more than 105 ms of overhead for centralized serialization due

to network latency, O/S latency, and the cost of concurrency control algorithms.

Another option is to use implicit fine-grained migrating serialization, so that the

latency penalty only needs to be paid once for each extended series of manipulations.
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When a user tries to manipulate one particular object or variable, responsibility for

serializing operations on that users object migrates to the users host. The initial

operation incurs network latency while waiting for serialization to migrate, but once

the responsibility has been assigned to the users host computer further operations do

not see any network latency (until another user attempts to manipulate that object

and the responsibility is migrated to the other users computer). However, this is a

complex approach that does not completely eliminate serialization latency and does

not degrade gracefully. Two users attempting to manipulate the same facet of the

application state can experience both surprise (as they repeatedly undo one anothers

work) and significantly heightened latency (if the responsibility for serialization ping-

pongs back and forth between their clients, they pay the serialization latency penalty

many times over; less pathological failure modes still leave one user experiencing

network latency in their attempts to carry out an operation.)

Exploring alternatives, we used the “wall clock” (the workstations’ built-in clocks)

to serialize messages for our concurrency control protocol. Dimension4 software syn-

chronized the clocks. Our peak measured error between a clock and the reference

source while running Dimension4 was less than 10 ms; a conservative bound on error

between workstation clocks would then be 40 ms, below users’ threshold of percep-

tion. Even clock mis-synchronization on the order of 100ms does not lead to a visibly

inconsistent ordering of events.

Mode Mean Response Time
(ms)

Mean Response Time
due to Concurrency
Control (ms)

Single-user (baseline) 214 –
Server-based serialization 533 319
Wall-Clock serialization 262 48

Table 7.2: Latency cost of concurrency control methods. Response time is time
between receipt of user input and display of corresponding output.

Tests on a private network (also a switched 10/100 Mb Ethernet LAN, but without

the background traffic of our departmental network) showed similar results.

In practice, the only weakness we have found in the wall-clock approach is that

our users do not realize the necessity of Dimension4’s NTP client and shut it down;

PC clocks are sufficiently inaccurate that the clocks on two workstations can become

out of synch by an hour or more within a few days, leading to obvious errors when

users try to collaborate.
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7.8.2 User Perception

Members of the nanoManipulator team conducted a controlled experiment to evaluate

users perceptions of the system and their success using it. In the experiment, 20

pairs of upper-level undergraduate science majors participated in two lab sessions

during which they used the replay feature of the Collaborative nanoManipulator to

explore and analyze AFM data collected earlier. During one lab session the study

participants worked face-to-face using the nanoManipulator in single-user mode and

during the other lab session they worked remotely (in two different locations) using the

Collaborative nanoManipulator. Order of the two conditions, face-to-face and remote,

was counterbalanced, i.e., ten pairs worked remotely first and ten pairs worked face-

to-face first. A detailed description and discussion of the experiment can be found in

Sonnenwald et al. (2002). In this section I focus only on interview data related to

concurrency control and, specifically, user comments comparing the explicit, coarse-

grained floor control of the analysis and productivity applications and the implicit,

optimistic concurrency technique employed for shared visualization-view parameters.

After each lab session, the experimenters interviewed participants asking for their

perceptions of the system. In particular, they were asked what they found most

satisfying and dissatisfying about using the technology. The questions were open-

ended and participants were free to discuss any aspect of the technology, including

visualization functionality, scientific data analysis tools, haptic feedback, audio and

video conference capabilities as well as concurrency control. Eight participants (out

of 40) specifically discussed the relationship of concurrency control and usability of

the system in their responses. The responses indicate that participants preferred

the ability to work simultaneously in the shared nanoManipulator application, which

uses optimistic concurrency control, over the explicit floor control required in the

off-the-shelf shared application software, Microsoft NetMeeting.

Some participants also preferred the Collaborative nanoManipulator system over

working face-to-face because they each had full access to a system, they could go into

the private work mode and make progress independent of their lab partner, they could

cooperate to accomplish a task, and/or they could work in parallel to accomplish the

entire task more quickly.

In summary, collaborating study participants reported that the optimistic concur-

rency control as implemented in the shared nanoManipulator application provided

advantages over the explicit floor control found in both the shared applications and

in face-to-face cooperation. Verbal communication was used to help resolve conflicts
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that arose when control had to be explicitly passed. In comparison, participants did

not report extra verbal communication was needed to mediate sharing in the shared

nanoManipulator application.

7.9 Summary

Building the Collaborative nanoManipulator, I found that the Model-View-Controller

paradigm was a useful way to analyze Collaborative Virtual Environment (CVE)s.

Extending Model-View-Controller to include multiple parallel or hierarchical Models

highlights the differing concurrency control requirements of different subsets of an

applications state data and helps us design the applications architecture. To support

the interactivity requirements of our CVE, we used asynchronous RPC and optimistic

concurrency control. Optimism is a valuable technique particularly well suited for

minimizing latency of continuous, easily reversed inputs to a VE, such as a users

viewpoint position and orientation. It is less amenable to supporting transactions

and complex assemblies of primitive operations, but can be used to do so with a

moderate software engineering effort.
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Remote Rendering

When we began this research, rendering the nanoManipulator’s three-dimensional

view of the sample at a sufficiently high frame rate was too demanding a task for

personal computers. High-end Silicon Graphics, Incorporated (SGI) workstations

were capable, but were not found in the labs and offices of our collaborators. Thus,

the third interface I investigated for this dissertation is remote rendering: graphics

being drawn by a workstation or supercomputer and transmitted over the network to

be displayed at the user’s PC.

In 2004, PCs are fast enough to provide all the graphics power that the nanoManip-

ulator currently requires. However, there are still calls for remote rendering. Models

or simulations that drive graphics applications may be too big to run on desktop

machines (Aliaga et al. 1999; Stone et al. 2001). Volume visualization and advanced

shading techniques require hardware support to run in real-time (Bokinsky 2003).

All of these new applications can be rendered on capable machines and transmitted

across the network for display.

8.1 Human Factors

When describing the human factors of an interactive graphics system, we should recall

chapter 2’s distinction between continuous and discrete modes of input.

Input with a tracked device – a PHANTOM, or a mouse – is continuous input: the

user needs to see the rapidly updated graphics that show the intermediate positions

through which they move the device. He is controlling his movements with a reflexive

feedback loop; if the update is delayed, he will overshoot his target.

Input via the keyboard or “buttons” on two-dimensional graphical user interfaces
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is discrete input: the user is executing an action for which they do not need immediate

feedback.1

Users can tolerate latency of as high as one second for discrete input. However,

continuous input has a bound below 100 ms, for some tasks below 50 ms (chapter 2).

Image-based remote rendering takes advantage of this distinction. Most continuous

inputs change only the position or orientation of the user’s viewpoint, and Image-

based rendering (IBR) can re-render these changes at the client without waiting

for an update from the server. Most inputs that significantly change the image to

be displayed, invalidating the current image-based representation, are discrete, and

so users more tolerant of the wait for the server to recompute and retransmit a

representation.

8.2 Approaches to Remote Rendering

8.2.1 Video-Mode Rendering

The simplest approach to remote rendering is to have the graphics engine render a

scene from the client’s viewpoint, capture this image, and transmit the image to the

client for display. This approach has been used for remote scientific and medical

visualization, particularly when there are no continuous inputs being modified, or

where the continuous inputs are modified through user interfaces implemented at the

client and then final values are transmitted to the server for rendering (State et al.

1994).

With this “video-mode,” where every image seen at the client is an image rendered

at and transmitted from the server, significant bandwidth is consumed (tables 8.2

and 8.5) and significant delay is unavoidable – every image is out-of-date by at least

one round-trip-time. This requires the distributed control loop to operate at the same

frequency as the user’s screen is to update.

Transmitting raw, uncompressed video over the network has primarily been used

by remote medical imaging applications where perfect image quality is necessary

(Poulton 1991). The nanoManipulator does not have such stringent requirements,

and compression techniques like the Motion Picture Experts Group (MPEG) standard

1When the user is moving a mouse cursor to point to a button in a GUI, they are making a
continuous input, but clicking on the mouse to “press” that button is a discrete input.



109

could improve on the results reported in this experiment.

8.2.2 Image-Based Rendering

MPEG gains extra compression by transmitting an image plus some “dead reckoning”

information about how groups of pixels in that image are moving. At future times,

the dead reckoning information can be used to create an updated version of the image.

This means the transmitted information is valid from one viewpoint at a number of

different times – since consecutive frames of video are related to one another, MPEG

can exploit temporal coherence.

Image-based rendering can be thought of as a form of compression that exploits

spatial coherence. IBR transmits an image, plus information about the distance

from the viewpoint to groups of pixels in the image. From other nearby viewpoints,

the depth information can be used to create a “warped” version of the image. This

means that the transmitted information is valid at one time from a number of different

viewpoints – IBR exploits spatial coherence.

Depth Meshes

There are two implementations of IBR used in the nanoManipulator. The first begins

with Mark et al.’s (1997) method of obtaining images with depth information: an

image is rendered at the server, and both the pixel buffer and the depth buffer are

read out of the hardware. These two arrays are then transmitted to the client to be

warped to the user’s current viewpoint and displayed.

For the nanoManipulator, further optimizations are possible. Because the AFM

reports a height field, we can guarantee that there will not be any occlusion in the

captured image by rendering in an orthographic projection from directly over the

center of the sample. This special-case lets us avoid one of the most chronic problems

of IBR, “holes” due to occlusion. The quality of the output image does not depend on

how far the image is warped from its original viewpoint. The nanoManipulator also

takes advantage of its fixed viewpoint at the server to minimize network bandwidth,

sending to the client only the portion of the image that has changed since the previous

frame. During regular steady-state scanning of the sample by the AFM, this is only

the pixels corresponding to the most recently updated measurements received from

the AFM. When the user makes a command that changes the appearance of the entire

surface, such as changing the color map applied or turning on contour lines, the entire
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image must be retransmitted. This causes a huge disparity in the amount of data sent

over the network – 150x to 300x in typical operation. Since the nanoManipulator’s

commands that change the surface appearance are discrete, this drives the difference

in response time between continuous and discrete commands that appears in the

tables below.

8.2.3 Textured Meshes

Since transmitting the geometry measured by the microscope requires very little band-

width, we tested another specialized variant of IBR in the nanoManipulator. In “tex-

ture mesh” mode, the rendering server captures the pixel buffer, and transmits the

changed portion to the client. The raw geometry is sent from the microscope to the

client, and is textured with the image received from the rendering server. This mode

was intended for cases where the client system was incapable of running the desired

pixel-shading algorithm fast enough.

8.2.4 Limitations of Image-Based Rendering

Simple approaches to image-based rendering do not correctly handle specular lighting.

Unfortunately, specular lighting provides significant cues about the shape of surfaces.

Understanding surface shape is the goal of the nanoManipulator’s rendering, and so

IBR seems to be less than the ideal choice. This dependence on specular lighting

is particularly true for a number of the specialized pixel-shading algorithms that we

would like to support (Bokinsky 2003).

8.3 Experiments

A first round of experiments was run between two SGI machines. The server was

a 300 MHz R12000 processor with InfiniteReality2E graphics. The client was a 250

MHz R4400 processor with InfiniteReality graphics. The two machines were directly

connected by 100 Mbps Ethernet to the same Cabletron switch. A similar series of

experiments was run between the server SGI and a client PC, a 550 MHz Pentium 3

machine running Windows NT 4 with Intense3D Wildcat 4000 graphics.

All experiments were performed using the same input data, a recorded nanoMa-

nipulator experiment manipulating a fiber of fibrin laid down on a micra substrate.

The input surface was scanned at a 300× 300 resolution.
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Similar, but non-identical, sequences of user input were used for each experiment,

consisting of changes of position and orientation of the surface, changes of which

dataset determines the geometry or coloring of the surface, and changes of the map-

ping between dataset values and colors.

The data from the first experiment are given in tables 8.1, 8.2, and 8.3. The

subsequent three tables give the data from the second experiment.

“Local” rendering is a reference value: the client rendering all images with no net-

work transmission or support from the server. “Output Image Resolution” is the size

of the window in which images were displayed at nano. “Surface Detail Resolution”

is the resolution at which colormaps were displayed. “Geometry Resolution” is the

number of vertices that were rendered, and thus the detail at which height informa-

tion was conveyed. Although the sample was measured at a 300× 300 resolution by

the microscope, some of the rendering modes subsampled this set of measurements,

while others effectively interpolated new points of surface detail (due to the texture

hardware on the client machine being optimized for texture sizes that are powers of

two).

Response time is strongly bimodal: continuous inputs tend to cause viewpoint

updates, which can be immediately warped at the client, while discrete updates tend

to cause regeneration of the entire surface, which requires a large transmission from

the server. Recall from chapter 2 that human tolerance of latency differs significantly

between the two kinds of input. Thus, in tables 8.1 and ?? I list these two submeans

– Unblocked and Blocked – as well as overall mean response time.

The entries for video bandwidth in table 8.5 are surprising, until they are cross-

referenced to table 8.6. In this set of experiments, bandwidth saturated between 5 and

6 Mbps because the server’s rendering time was increasing linearly with increasing

resolution. Table 8.2 shows a similar but less marked phenomenon.

8.4 Summary

With local rendering, the SGI maintained a response time of 125 ms, the PC 332

ms. The SGI client had mean response time below 100 ms for roughly equivalent-

quality modes of both depth and texture rendering. However, the texture mesh

implementation took more than twice as long to handle blocked requests than did the

depth mesh implementation.

On the PC client, both depth and texture meshes had worse mean performance
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Rendering
Mode

Output
Image
Resolution

Surface
Detail
Resolu-
tion

Geometry
Resolu-
tion

Mean
Response
Time
(ms)

Mean
Un-
blocked
Response
Time
(ms)

Mean
Blocked
Response
Time
(ms)

Local 1024× 768 300× 300 300× 300 125 125 n/a
Depth 512× 512 100× 100 100× 100 27 20 2721
Depth 512× 512 200× 200 200× 200 47 30 3639
Depth 512× 512 300× 300 300× 300 93 47 5119
Depth 512× 512 512× 512 512× 512 325 167 11567
Texture 512× 512 128× 128 300× 300 80 60 2072
Texture 512× 512 256× 256 300× 300 95 70 2284
Texture 512× 512 512× 512 300× 300 134 79 2558
Texture 512× 512 512× 512 100× 100 30 21 2384
Texture 512× 512 512× 512 200× 200 45 28 2428
Texture 512× 512 512× 512 300× 300 134 79 2558
Video 128× 128 300× 300 300× 300 187 n/a 187
Video 256× 256 300× 300 300× 300 368 n/a 369
Video 512× 512 300× 300 300× 300 963 n/a 993
Video 1024× 768 300× 300 300× 300 2297 n/a 2343

Table 8.1: Comparison of response time of various remote rendering techniques and
resolutions running on SGI hardware.

than local rendering. These mean times were strongly bimodal, however, and response

time to unblocked inputs (changes of viewpoint) was significantly improved.

Both IBR modes were faster than and consumed less bandwidth than the video

mode. The response time of video mode was so poor that its specular cues were

worthless, obviating one of the expected disadvantages of IBR.
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Rendering
Mode

Output Image
Resolution

Surface Detail
Resolution

Geometry
Resolution

WAN
Bandwidth
Required
(kbps)

Local 1024× 768 300× 300 300× 300 n/a
Depth 512× 512 100× 100 100× 100 43.2
Depth 512× 512 200× 200 200× 200 187
Depth 512× 512 300× 300 300× 300 337
Depth 512× 512 512× 512 512× 512 685
Texture 512× 512 128× 128 300× 300 37.8
Texture 512× 512 256× 256 300× 300 115
Texture 512× 512 512× 512 300× 300 600
Texture 512× 512 512× 512 100× 100 526
Texture 512× 512 512× 512 200× 200 560
Texture 512× 512 512× 512 300× 300 600
Video 128× 128 300× 300 300× 300 3,740
Video 256× 256 300× 300 300× 300 8,340
Video 512× 512 300× 300 300× 300 11,600
Video 1024× 768 300× 300 300× 300 14,000

Table 8.2: Comparison of bandwidth requirements of various remote rendering tech-
niques and resolutions running on SGI hardware.
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Rendering
Mode

Output
Image
Resolution

Surface
Detail
Resolution

Geometry
Resolution

Server
Mean
Rendering
Time (ms)

Client
Mean
Rendering
Time (ms)

Local 1024× 768 300× 300 300× 300 n/a 121
Depth 512× 512 100× 100 100× 100 109 19
Depth 512× 512 200× 200 200× 200 94 28
Depth 512× 512 300× 300 300× 300 96 53
Depth 512× 512 512× 512 512× 512 129 208
Texture 512× 512 128× 128 300× 300 90 56
Texture 512× 512 256× 256 300× 300 94 60
Texture 512× 512 512× 512 300× 300 74 66
Texture 512× 512 512× 512 100× 100 108 20
Texture 512× 512 512× 512 150× 150 118 24
Texture 512× 512 512× 512 300× 300 74 66
Video 128× 128 300× 300 n/a 116 4
Video 256× 256 300× 300 n/a 208 9
Video 512× 512 300× 300 n/a 571 37
Video 1024× 768 300× 300 n/a 1370 112

Table 8.3: Comparison of rendering performance of various remote rendering tech-
niques and resolutions running on SGI hardware.
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Rendering
Mode

Output
Image
Resolution

Surface
Detail
Resolu-
tion

Geometry
Resolu-
tion

Mean
Response
Time
(ms)

Mean
Un-
blocked
Response
Time
(ms)

Mean
Blocked
Response
Time
(ms)

Local 1024× 768 300× 300 300× 300 332 322 n/a
Depth 512× 512 100× 100 100× 100 61 19 2986
Depth 512× 512 200× 200 200× 200 179 46 3707
Depth 512× 512 300× 300 300× 300 383 123 6828
Depth 512× 512 512× 512 512× 512 789 357 12458
Texture 512× 512 128× 128 300× 300 296 121 4343
Texture 512× 512 256× 256 300× 300 452 147 3893
Texture 512× 512 512× 512 300× 300 390 146 4342
Texture 512× 512 512× 512 100× 100 72 30 4238
Texture 512× 512 512× 512 200× 200 115 40 4898
Texture 512× 512 512× 512 300× 300 390 146 4342
Video 128× 128 300× 300 300× 300 237 n/a 237
Video 256× 256 300× 300 300× 300 592 n/a 592
Video 512× 512 300× 300 300× 300 1660 n/a 1663
Video 1024× 768 300× 300 300× 300 4125 n/a 4130

Table 8.4: Comparison of response time of various remote rendering techniques and
resolutions running on PC hardware.
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Rendering Mode Image Resolution Geometry
Resolution

WAN Bandwidth
Required (kbps)

Local n/a 300× 300 n/a
Depth 100× 100 100× 100 40.5
Depth 200× 200 200× 200 339
Depth 300× 300 300× 300 549
Depth 512× 512 512× 512 859
Texture 128× 128 300× 300 58.9
Texture 256× 256 300× 300 219
Texture 512× 512 300× 300 662
Texture 512× 512 100× 100 768
Texture 512× 512 150× 150 709
Texture 512× 512 300× 300 662
Video 128× 128 n/a 3,470
Video 256× 256 n/a 5,150
Video 512× 512 n/a 5,230
Video 1024× 768 n/a 5,940

Table 8.5: Bandwidth requirements of various remote rendering techniques and res-
olutions running on PC hardware.

Rendering
Mode

Output
Image
Resolution

Surface
Detail
Resolution

Geometry
Resolution

Server
Mean
Rendering
Time (ms)

Client
Mean
Rendering
Time (ms)

Local 1024× 768 300× 300 300× 300 n/a 178
Depth 512× 512 100× 100 100× 100 84 16
Depth 512× 512 200× 200 200× 200 110 58
Depth 512× 512 300× 300 300× 300 132 133
Depth 512× 512 512× 512 512× 512 141 385
Texture 512× 512 128× 128 300× 300 112 141
Texture 512× 512 256× 256 300× 300 103 169
Texture 512× 512 512× 512 300× 300 104 175
Texture 512× 512 512× 512 100× 100 137 49
Texture 512× 512 512× 512 150× 150 94 56
Texture 512× 512 512× 512 300× 300 104 175
Video 128× 128 300× 300 n/a 125 17
Video 256× 256 300× 300 n/a 325 7
Video 512× 512 300× 300 n/a 1163 49
Video 1024× 768 300× 300 n/a 4348 256

Table 8.6: Comparison of various remote rendering techniques and resolutions running
on PC hardware.
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Network Layer Technique
Presentation Video-mode remote rendering (8.2.1)

Image+Depth remote rendering (8.2.2)

Table 8.7: Proposed adaptations for remote graphics systems. Those in boldface were
used in the experiments discussed in this chapter.
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Chapter 9

Conclusion

This dissertation evaluated presentation- and session-level adaptations that let the

nanoManipulator, a local-area network application, function effectively when dis-

tributed across a wide-area network. In engineering the distributed nanoManipulator

for the Internet, the chief difficulty was latency. Latency interferes with using a remote

microscope or a remote rendering engine and makes it difficult to work synchronously

with distant collaborators. From the set of latency-compensation techniques that

were found to be effective, we can identify three prevalent themes that emerged in de-

signing and implementing an interactive collaborative distributed teleoperator: avoid

blocking, choose an appropriate intermediate representation, and minimize the fre-

quency with which distributed feedback loops must run.

Distributing an interactive application across a wide-area network can be a very

difficult proposition. If the original implementation was not done with distribution

in mind, a complete rewrite may be necessary. Not only does the code need to

be refactored into a distributed system, every algorithm needs to be considered for

appropriateness. For the distributed nanoManipulator, the three critical questions to

ask of every algorithm were:

• Does it introduce unnecessary blocking?

• Does it use an appropriate intermediate representation?

• Does it distribute a feedback loop across a network connection?

No one technique is suitable for all interfaces or all distributed configurations. For

example, FEC controlled packet loss without the latency penalty of TCP’s reactive

reliability, giving us another network protocol option for haptics. FEC assumes errors
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are common and provides a constant-overhead mechanism to statistically reduce the

error rate. Contrast this with collaboration, which under identical network conditions

benefited from optimistic concurrency control. Optimistic approaches assume errors

are rare and reduces the overhead of normal, correct operation by relying on expensive

recovery mechanisms. Thus, we can not simply endorse optimistic or pessimistic

approaches – each class of interface must be considered independently.

Portions of this work have been published in (Hudson et al. 2000), (Hudson et al.

2001), (Jeffay et al. 2001), (Hudson et al. 2003), and (Hudson et al. 2004).

9.1 Results

My thesis in this dissertation is that using appropriate intermediate representations

allows feedback-critical applications to be distributed across wide areas. I have shown

five results that support this thesis:

Analysis of Force Feedback: Chapter 4 showed how we could apply Azuma and

Bishop’s analytic methods to force feedback, relating previous studies of the latency

tolerance of position-controlled teleoperation to the latency tolerance of the plane

approximation. It explains the dependence of system stability on surface roughness,

speed of motion, and the latency in the teleoperator. It proposes a new metric, v(),

and discusses its strengths and weaknesses compared to Adachi et al.’s d(). This

technique allows us to mathematically evaluate the latency tolerance of a wider range

of intermediate representations than previously tractable.

Intermediate Representations for Force Feedback: Chapter 5 introduced two

new intermediate representations for teleoperation, discussing their motivation and

relating them to previous work. These representations perform well under operating

conditions where force-feedback teleoperation was previously infeasible due to latency.

• Local environment sampling, or “feelahead” mode, which increases the number

of measurements taken by the remote effector for every position commanded in

order to decrease the frequency with which measurements of the environment

must be transmitted across the network.

• The warped plane approximation, which emphasizes correctly conveying the

shape of individual features on the specimen over conveying the absolute posi-

tion of features.
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Network Adaptations for Force Feedback: Chapter 6 discussed experiments

that verified that using UDP, FEC, and QM work as well for the force feedback

data of the nanoManipulator as for traditional audio and video streams in changing

network behavior, even though the semantics of the force feedback data are quite

different from those of traditional streaming media. UDP reduced latency by 35%

and jitter by 75% compared to TCP. FEC on top of UDP reduced loss tenfold by

doubling bandwidth, or one-hundred-fold by quadrupling bandwidth. QM on top of

UDP reduced the drop rate asymptotically close to zero with less than a 10% increase

in mean latency. The chapter also summarizes the results of a study comparing both

e(s) and traditional application-level audio quality metrics for TCP, UDP, and FEC.

Optimistic Concurrency Control for Collaboration: Chapter 7 compared op-

timistic and pessimistic approaches to concurrency control for the distributed nanoMa-

nipulator. Optimism reduced the latency penalty from concurrency control by 85%,

which will allow for more network latency to be tolerated. The chapter also carefully

distinguishes the portion of the application state that can be treated optimistically

from that which can not, and discusses using multiple instances of a Model View

Controller (MVC) architecture to take advantage of the distinction.

Image-Based Rendering for Remote Graphics: Chapter 8 showed that texture-

and depth mesh-based image based rendering techniques could provide a better re-

sponse time than video-based remote rendering, while consuming less bandwidth. For

similar-quality renderings, the SGI hardware produced one tenth the mean response

time when used in an IBR mode as it did in a video mode.

Using these five methods reduced response time for remote rendering and collab-

oration, reduced haptic display error, and increased satisfaction of both haptic and

collaborative users. The combination of techniques allows the nanoManipulator to

be successfully distributed across a wide-area network.

9.2 Future Work

The frequency-mode analysis discussed in chapter 4 requires information about the

spectrum of motion along a path. This data was not reported in previous studies

of position-control force feedback; obtaining it would allow the relationship between
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position control and the plane approximation or other intermediate representations

to be more precisely characterized. Frequency analysis can be applied to more com-

plex intermediate representations, although the mathematics become correspondingly

more complex. Neither metric, d(s) or e(s), is completely general or satisfactory.

The distributed nanoManipulator was a relatively easy target for optimistic con-

currency control. Systems where collaborating users can interact in more complex

ways will provide more challenges, requiring more elaborate algorithms for resolving

conflicts than the nanoManipulator used, but should still be well-suited to it. (Sig-

nificantly more complex systems have used optimistic concurrency control, although

most have not been feedback-critical or taken continuous input.) Some of this work

is already occurring in the games industry, but has not been studied or documented

in the academic literature.

Not long after this work began, the computer science community began deni-

grating remote rendering as unnecessary because of the wide availability of high-

performance graphics hardware for PCs. However, recent emphasis on Grid comput-

ing underscores the fact that massive datasets and complex simulations are not widely

distributable (Karonis et al. 2003). For the Grid, we may want to do the rendering

at a server and send it over the network not because the client computer is incapable

of doing the rendering, but because it is incapable of doing the computation that

drives the rendering or managing the data that drives the computation (Reed 2003).

As the capabilities of hardware and the demands of problems evolve, the balance of

power between remote and local rendering will continue to shift. Volume rendering

is currently an excellent target for the application of these techniques (Norton and

Rockwood 2003).

Finally, the haptic adaptation in this dissertation was manual: when the user

realized that force feedback was problematic, she could shift to a different intermediate

representation, or change the network algorithms used. Automatic adaptation has

been implemented for the simpler network adaptations in multimedia, and would

make users of the distributed nanoManipulator even less aware of network latency.

9.3 Summary

In this dissertation I introduced new intermediate representations for haptics that

tolerate more latency than the previous work, showed how adaptations in the trans-

port layer of the network stack could increase the feasibility of distributed haptics
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by reducing latency, jitter, and loss, and showed how optimistic concurrency control

and image-based rendering provide better response time than traditional approaches

to distributing collaboration and rendering. They combine to make the distributed

nanoManipulator feasible; shared live microscopy has been conducted over hundreds

of miles, and shared review of prior experiments over thousands of miles. This in-

crease in our ability to carry out distributed collaborative science is due to the use of

latency-tolerant operation semantics and intermediate representations.
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Appendix A

Network Time Budgets

Even dedicated or QoS-enabled networks to all of our collaborators would not be

enough to provide the performance our application requires. As we saw in our Inter-

net2 trial to Microsoft Research (section 1.1), a high-speed network without signifi-

cant congestion can still have a significant, unavoidable delay. In a store-and-forward

network, four components contribute to latency: routing, queueing, transmission,

and propagation. Each router requires some time to determine where next to send

a packet, even if they are advertised as routing “at wire speeds.” If the network

is congested, packets may spend time waiting in queues before they can be sent

out over their outgoing link. Transmitting each bit on the network takes a small

amount of time; 1 signals “on the wire” then must physically propagate to the next

router. An increase in bandwidth can directly reduce transmission time, indirectly

reducing queueing time, and improved hardware can reduce routing time, but prop-

agation time is limited by the speed of light. Consider a best-case scenario today:

assume a direct one gigabit network connection between UNC in North Carolina

and Microsoft Research in Washington state, a wire distance of 2800 miles, pass-

ing through ten routers. At each router a packet queues for one transmission delay;

the router then spends 10 ns computing its route before beginning to transmit it.

Sending 60 byte packets (including all headers) over this network requires 100 ns

for routing ( 10 ns
route computation

× 10 routers), 480 ns for transmission (1 ns
bit

× 480 bits
packet

),

12 ms for propagation (300,000 kilometers
second

× 3600 kilometers), and 4.8 µs for queueing

(480 ns
packet

× 1 packet
router queue

× 10 routers). This network, better than today’s configuration,

is already limited by the speed of light to no more than 41 round trips per second

and 24 ms of network-originated latency. Actual speed of signals through a network

is slower than the speed of light in a vaccuum; electrical signals propagate slower in

copper, while optical fiber requires repeaters and amplifiers that convert from light

1The time is proportional to the link speed, so on a low-bandwidth network this may actually be
a significant amount of time: a fast modem (56kb) or ISDN line (64kb) requires about 16µs per bit.
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to electrical signals and back. With a congested network, queueing delay can increase

fiftyfold; most of today’s networks will be ten to one hundred times slower to transmit,

thus multiplying queueing delay another ten to one hundred times. A ten megabit

network link with similar routers would instead require 48µs for packet transmission

(100 ns
bit

× 480 bits
packet

); with an average of twenty packets in each router queue another 19.2

ms would be added to response time ( 48 µs
packet

× 20 packets
router queue

× 10 routers).

The current state of the Internet is significantly worse than this ideal 24 to 43 ms

of delay per round-trip. Niemeyer and Slotine (1998) measured a mean round-trip

time greater than 100 ms between MIT and a site in California; the delay was nowhere

near constant, with variance of 50%. There was also a strong 10 Hz component to

the delay variation.
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Appendix B

Design and Implementation of the

Distributed nanoManipulator

Design Given the functions desired in a distributed application and a set of com-

puters to host the system, we can view design as determining how functions should

be divided between processes and processes divided between hosts. This partition-

ing, and the choice of which algorithms are used to implement the desired functions,

determines the application’s network requirements. The problem of balancing com-

munication with computation seen here is the same as that found in parallel systems.

Placing all function into one process removes all network requirements but may place

too large a computational load on the host processor, while splitting function up into

many small processes may cause the network requirements to grow too large. De-

signers of interactive applications need to be especially careful with communication

costs, because network latency impedes interactivity.

In designing the distributed nanoManipulator we have little flexibility to choose

a partition. The application’s goal is to give access to remote resources. We need

to assign at least one process to each site, and then determine what demands those

processes place on the network.

The distributed nanoManipulator centers around the user interface process, nano.

If the nanoManipulator is being used to review old experiments, no additional pro-

cesses are necessary; if it is being used to run an experiment, nano closely interacts

with topo, the microscope control program. When multiple scientists are collaborat-

ing, one nano process serves each scientist. Remote rendering also requires a render

process for each nano. Figure B.1 shows the distributed nanoManipulator deployed

across a wide-area network to conduct a collaborative experiment and use remote

rendering, which requires one topo, two nano, and two render processes.

For each nano, an additional minor process controls the Phantom force-feedback

device, usually spawned as an extra thread within nano or on a machine connected

to nano by a LAN. Other minor processes may control additional devices, such as an
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Figure B.1: Deployment diagram for the distributed nanoManipulator. This diagram
shows two scientists engaged in an experiment, both using remote rendering servers.
One topo, two nano, and two render processes are spread across a wide-area network.

ohmmeter, or parallelize complicated tasks; these processes are typically colocated

with the microscope (and thus connected to topo by a LAN). Although some of these

processes have data streams not easily distributed interactively across a WAN, they

are not discussed in this dissertation.

The basic data flows required by the nanoManipulator are given in Figure B.2

and Table B.1. During an experiment, each nano requires a medium-bandwidth

stream to the topo for imaging a sample and automatic manipulations, but a low-

bandwidth low-latency stream for human-guided manipulations of the sample. To

collaborate, the two nano processes must be connected by another low-bandwidth low-

latency stream. Remote graphics makes more stringent demands, since a nano and its

render require a high-bandwidth low-latency stream. Since we have little flexibility in

choosing how we partition functions across the network, this dissertation concentrates

on ways to change the algorithms we use in the distributed nanoManipulator to reduce

the demands the system makes on the network.
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Figure B.2: Data flow diagram for the distributed nanoManipulator. Each stream’s
requirements are given in Table B.1.

Implementation Often, maintaining a program is more difficult and consumes

more resources than the original design. Programs tend to become significantly more

complex as additional features are added that were not planned for in the original

design. This was already a problem with the nanoManipulator, so I began with a

regimen of “preventative maintenance” on the nano process before attempting to

build the distributed nanoManipulator.

To document the software system, I refer to a number of software patterns. A

software pattern is a named solution to a common software problem. Identifying the

fact that a certain approach has been widely and succesfully used across numerous

systems to solve the same problem is a significant contribution to the art of program-

ming; giving it a standardized name allows practitioners to discuss it meaningfully

and makes it easier to teach. The current standard reference work for software pat-

terns is Gamma et al. (1995), the “Gang of Four” book; all patterns which do not

explicitly cite some other source are taken from that book. (Gamma et al.) also

popularized a standard form for describing patterns; the essential components are a

name, a description of the problem solved, a description of the solution, and a de-

scription of the consequences, especially the trade-offs. The pattern community hopes

that software patterns can be assembled into a language, similar to the architectural
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Data Stream Endpoints Bandwidth (bps) Message Rate
(per second)

Approximate
Latency
Tolerance

Microscope Control nano ⇒topo 6,080 10 1 second

Manual Microscope Control nano ⇒topo 10,880 20 50 ms

Scan Data topo ⇒nano,
topo ⇒ render

20,672 1 1 second

Point Data topo ⇒nano 192,000 250 1 second

Manual Point Data topo ⇒nano 15,360 20 50 ms

Collaboration Data nano ⇔nano 7,680 10 250 ms

Graphics Control nano ⇒render 19,840 20 50 ms

Rendered Data render ⇒nano 18,284,544 2,048 50 ms

Table B.1: Peak bandwidth, packet rate, and latency requirement for major data
streams in the distributed nanoManipulator before applying latency-tolerance tech-
niques and adding adaptive networking. “Manual” data streams occur when the user
interactively guides surface modifications using the PHANTOM. Bandwidth figures
include overhead of TCP/UDP and IP headers assuming no fragmentation occurs.

pattern language of Alexander (1977).

At the beginning of my work, the nanoManipulator was a large program, primarily

written in C, with many global variables, low cohesion, and high coupling. Cohesion

is unity of purpose within components: class A will be simpler to understand and

maintain if it tries to do one thing, not ten things. Coupling is dependence between

components: for example, when file A requires file B, otherwise entirely unrelated,

in order to compile, perhaps for access to a declaration of a small struct, the two are

unnecessarily coupled. A can not be tested without using B, and changes in B will

require changes (or at least recompilation) of A.

I used refactoring techniques similar to those advocated by Fowler (1999), in-

crementally moving code around the program without trying to add new functions.

Bit-by-bit this changed the nanoManipulator into a C++ program. Following the

precepts of Lakos (1996), I undertook to fix the physical as well as the logical design,

avoiding unnecessary dependencies between components through careful levelization1

and insulation.2 Bodies of C code with high cohesion were grouped together into en-

capsulating C++ classes, or “Wrapper Facades” (Schmidt et al. 2000). (A Wrapper

1“A subsystem is levelizable if it compiles and the graph implied by the include directives of the
individual components (including the .c files) is acyclic” (Lakos 1996).

2“Insulation is the process of avoiding or removing unnecessary compile-time coupling,” the
physical analog of logical encapsulation (Lakos 1996).
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Facade is a specialization of the general Facade pattern introduced by the Gang of

Four.) The two largest subsystems wrapped in this manner were the graphics code

and the interface to the microscope. I reduced coupling between these two subsys-

tems, making them independent of one another by removing all calls from either to

the other and moving all shared information onto lower-level data structures that were

simple to maintain in shared memory. Throughout the nanoManipulator I applied

naming conventions similar to Lakos’ to further increase maintainability.

Having made the code more modular and having separated independent concerns,

I began reworking these wrapped subsystems into components that could be dis-

tributed. The public interface of the Wrapper Facade was moved into a Protocol, or

Abstract Base Class3 (Meyers 1992). Another specialization of this base class was

written as a “Proxy,” a class that could serve to relay function calls to an object,

whether it was located in another process or on another machine across the network.4

Code to marshal and unmarshal the function call arguments was added to the base

class (making it no longer abstract), and the Wrapper Facade extended to receive

calls relayed across the network by the Proxy.

This tripartite division into base class (abstract Protocol with network handlers),

“Remote” class (Proxy), and implementation is the standard approach of the Virtual

Reality Peripheral Network (Taylor et al. 2001). I used VRPN as the underlying

Session layer (See Figure B.3) for the distributed nanoManipulator, giving us asyn-

chronous remote procedure call (RPC) capabilities. With asynchronous RPC, when

a process calls a stub, the stub does not wait for values to be sent back by the remote

server, but instead returns control to the calling process immediately. This decouples

the application from network latency, allowing an interactive application to reduce

response time for operations that are being carried out across the network. In this

way, Asynchronous RPC is more useful for interactive applications than is traditional

3An abstract base class is a common C++ technique where a class specifies no implementation,
only an interface. Subclasses inherit the interface and must supply a complete implementation. This
helps lead to a clean use of inheritance, which is notoriously problematic in C++. It also increases
insulation (Lakos 1996).

4The classical precursor of the Proxy pattern is Remote Procedure Call (RPC) (Birrell 1984).
Instead of making a function call f(a), we call a “stub” function fstub(a). fstub(a) converts the
parameter a to a “neutral” representation and sends it over the network to a server. The server
executes f(a) and sends back its result, which fstub() returns to the calling process. Birrell et al.
(1993) introduced Network Objects, an object-oriented version of RPC similar to the design used
by VRPN.
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Physical layer (1)
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Figure B.3: The OSI Reference Model and the framework for adaptive applications I
develop in this dissertation.

synchronous RPC. The one drawback to asynchronous RPC is that it typically leads

to a more complex programming style centered on callbacks; however, this same style

is also required by modern graphical user interfaces, and was adopted for most of the

distributed nanoManipulator.

The original nanoManipulator used an unorganized collection of global variables

for its user interface. When we added collaboration to the system (Chapter 7), user

interface management code became necessary. I created a flexible hierarchy that

allow executing operations on a portion or the entirety of the user interface by calling

functions on the hierarchy elements. This approach is related to the Composite

pattern, but less extreme.

The distributed nanoManipulator uses an architecture in line with Wloka’s (1995)

recommendations (Chapter 3): one thread dedicated to each high-rate input and

output device (the PHANTOM and the AFM), one thread dedicated to graphics, and

the application and low-rate input and output services in a final independent thread.

Our normal deployment does not have enough processors to map each thread to its

own CPU, so the graphics and application threads are merged, but Chapter 8 discusses
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the possibilities when they are independent processes, whether on one computer or

separated by the network.

B.1 The Microscope Simulator

To increase repeatability and reduce risk, instead of connecting to a live AFM with a

real sample, the quantitative experiments discussed in this dissertation connected to a

simulator program known as afmsim. This program shares its high-level C++ classes

with topo. However, instead of a device controller, the underlying implementation is

software that reads in a data file from a previous experiment and emulates an instance

of topo reporting the same data. afmsim repeatedly “scans” the surface, sending back

reports using inter-report timing sampled from topo. It accepts commands from nano,

although most are silently ignored. The value of afmsim is that having once scanned

a sample in the AFM, we can be sure that experiments evaluating nano’s treatment

of that sample will always get the same data, without the risk of a tip breaking or a

sample being contaminated that would happen were we to run the experiments with

an AFM but with more flexibility to change the events of the experiment than we

would have replaying the original data file. Thus, we can apply local environment

sampling to a dataset that was gathered using standard point sampling and the plane

approximation, something not possible using the nanoManipulator’s standard replay

capability.
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Appendix C

Fourier Analysis: Detailed

Calculations

Let the phase of Z(σ) be φ, and the phase of H(σ), α. Then phase shift is tan(α−φ).

Axioms, definitions, and basic algebraic manipulations:

e−jσ4s = cos(σ4s)− j sin(σ4s)

‖x1x2‖ = ‖x1‖ ‖x2‖
‖x‖ =

√
<(x)2 + =(x)2

F(z(s− 4s)) = e−jσ4sZ(σ)

F(z′(s− 4s)) = jσe−jσ4sZ(σ)

Z(σ) = x + jy

φ = arctan
y

x

α = arctan
=(H(σ))

<(H(σ))

tan(α− φ) =
tan α− tan φ

1 + tan α tan φ

=

=(H(σ))
<(H(σ))

− y
x

1 + y
x
=(H(σ))
<(H(σ))

=
x=(H(σ))− y<(H(σ))

x<(H(σ)) + y=(H(σ))

Direct Force Feedback:

h(s) = z(s− 4s)

H(σ) = Z(σ)e−jσ4s

‖H(σ)‖ = ‖Z(σ)‖ ‖e−jσ4s‖
= ‖Z(σ)‖

√
(cos(σ4s))2 + (− sin(σ4s))2
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= ‖Z(σ)‖
√

cos2(σ4s) + sin2(σ4s)

= ‖Z(σ)‖
v(s) = z(s− 4s)− z(s)

V (σ) = Z(σ)e−jσ4s − Z(σ)

= Z(σ)(e−jσ4s − 1)

‖V (σ)‖ = ‖Z(σ)‖ ‖(e−jσ4s − 1)‖
= ‖Z(σ)‖

√
(cos(σ4s)− 1)2 + (− sin(σ4s))2

= ‖Z(σ)‖
√

(cos2(σ4s)− 2 cos(σ4s) + 1 + sin2(σ4s))

= ‖Z(σ)‖
√

2− 2 cos(σ4s)

tan(α− φ) = −σ4s

Plane Approximation:

h(s) = z(s− 4s) + 4s z′(s− 4s)

H(σ) = e−jσ4sZ(σ) + jσ4se−jσ4sZ(σ)

= Z(σ)e−jσ4s(1 + jσ4s)

= (cos(σ4s)− j sin(σ4s))Z(σ)

+jσ4s(cos(σ4s)− j sin(σ4s))Z(σ)

= Z(σ)(cos(σ4s) + σ4s sin(σ4s)

+ j(σ4s cos(σ4s)− sin(σ4s)))

‖H(σ)‖ =
√
<(H(σ))2 + =(H(σ))2

<(H(σ)) = Z(σ)(cos(σ4s) + σ4s sin(σ4s))

=(H(σ)) = Z(σ)(σ4s cos(σ4s)− sin(σ4s))

‖H(σ)‖ = ‖Z(σ)‖
√

(cos(σ4s) + σ4s sin(σ4s))2 + (σ4s cos(σ4s)− sin(σ4s))2

= ‖Z(σ)‖(cos2(σ4s) + (σ4s)2 sin2(σ4s) + 2σ4s cos(σ4s) sin(σ4s)

+ (σ4s)2 cos2(σ4s) + sin2(σ4s)− 2σ4s cos(σ4s) sin(σ4s))1/2

= ‖Z(σ)‖
√

1 + (σ4s)2

v(s) = h(s)− z(s)

V (σ) = H(σ)− Z(σ)

= Z(σ)(e−jσ4s(1 + jσ4s)− 1)

= (cos(σ4s)− j sin(σ4s))Z(σ)
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+jσ4s(cos(σ4s)− j sin(σ4s))Z(σ)− Z(σ)

= Z(σ)((cos(σ4s) + σ4s sin(σ4s)− 1)

+ j(σ4s cos(σ4s)− sin(σ4s)))

‖V (σ)‖ =
√
<(V (σ))2 + =(V (σ))2

= ‖Z(σ)‖
√

(cos(σ4s) + σ4s sin(σ4s)− 1)2 + (σ4s cos(σ4s)− sin(σ4s))2

= ‖Z(σ)‖(cos2(σ4s) + 2σ4s cos(σ4s) sin(σ4s)

− 2 cos(σ4s) + (σ4s)2 sin2(σ4s)− 2σ4s sin(σ4s)

+ 1 + (σ4s)2 cos2(σ4s)− 2σ4s cos(σ4s) sin(σ4s) + sin2(σ4s))1/2

= ‖Z(σ)‖(cos2(σ4s) + sin2(σ4s) + 1

+ 2σ4s cos(σ4s) sin(σ4s)− 2σ4s cos(σ4s) sin(σ4s)

+ (σ4s)2 cos2(σ4s) + (σ4s)2 sin2(σ4s)− 2 cos(σ4s)

− 2σ4s sin(σ4s))1/2

= ‖Z(σ)‖
√

2 + (σ4s)2 − 2 cos(σ4s)− 2σ4s sin(σ4s)

tan(α− φ) =
σ4s cos(σ4s)− sin(σ4s)

cos(σ4s) + σ4s sin(σ4s)
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Appendix D

The Logical Clock Algorithm

A logical clock can be used to create a total ordering of messages in a distributed

system (Lamport 1978; Babaoglu and Marzullo 1993). Processes are event-driven,

with three types of events: sends of messages to other processes, receives of messages

from other processes, and internal events that do not directly involve communication

but may cause messages to be sent or be caused by received messages. Every process

maintains a local variable LC. Every message sent is given a timestamp, TS(m),

equal to LC(e), the value of LC when m is sent. When an event e occurs, LC is

updated:

LC =





LC + 1 if e is a send or internal event

max(LC, TS(m)) + 1 if e is a receive event

Events are consistently ordered by their timestamps, which increase monotonically.

To obtain a causal ordering of events (if e1 causes e2 in some process, then all processes

receive all messages sent by e1 before any sent by e2), messages received must not be

executed immediately. Instead, once a process has received messages with timestamps

greater than TS(m) from every other process except the sender of m, message m is

“stable” and can be executed.
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Appendix E

The Vector Clock Algorithm

The vector clock algorithm is a more complex approach to generating a total order

than the logical clock algorithm, but it also provides more efficient causal execution,

reducing the need to wait for messages from other processes (Babaoglu and Marzullo

1993).

Every process maintains a local array variable V C. Every message sent is given a

timestamp, TS(m), equal to V C(e), the value of V C when m is sent. When an event

e occurs at process i, V C is updated:

V C[i] = V C[i] + 1 if e is a send or internal event

V C = max(V C, TS(m)) if e = receive(m)

V C[i] = V C[i] + 1

Causal ordering is guaranteed by only executing at process i a message from

process j after executing all events that had been executed at process j before the

message was sent. The information needed to determine whether or not this is true

is encoded in V Ci, the virtual clock at process i, TS(ex
j ), the message’s timestamp,

and knowledge of which process originated the timestamp. First, if the previous event

from j, ex−1
j , has already been executed, then V Ci[j] = TS(ex

j )[j]−1 = x−1. Second,

if all other events that were executed at j before ex
j have been executed at i, then

V Ci[k] ≥ TS(ex
j )[k] for all k 6= j.
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Appendix F

The Model-View-Controller

Paradigm

The Model-View-Controller (MVC) paradigm (Krasner and Pope 1988) was first in-

troduced as a standard structure for applications in the Smalltalk programming lan-

guage, and has since been widely used to build many types of interactive applications,

including collaborative tools or “groupware” (Graham et al. 1996). It specifies two

facets of an architecture: the division of function among modules and the pattern of

communication between modules. Application data and logic are grouped together in

the Model, input-handling functions into the Controller, and output into the View.

The Model notifies both View and Controller if any of its data changes, and they are

responsible for determining whether or not the change is relevant to them (figure F.1).

Figure F.1: Basic interactions between components in the Model-View-Controller
paradigm. Controllers send changes to Models; Models informs Views of changes,
and interested Views request details.

There are several reasons for this decomposition. This formalized architecture

provides a clear separation of concerns between application logic and application
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interface, while allowing the interface (both View and Controller) to be specialized to

the Model as necessary. Where specialization is not necessary, it promotes reuse. For

a modern example, Java Swing user interface components are based on a modified

MVC pattern to increase their breadth of applicability.

The communication pattern of Model-View-Controller is more suited to imple-

mentation on a single machine than it is to being distributed across a network. Every

update from a model to a remote view or controller has at least three messages

cross the network: a notification from the model, a query from the remote machine,

and then the actual data from the model. Several groups have made extensions or

optimizations that improve its performance (Schuckmann et al. 1999). The most

common approach is to allow the model to push data preemptively to the remote

modules along with the change notification. Either (1) all changes are broadcast to

all dependents, or (2) dependents register in advance their interest in specific types

of data with the Model, which then sends them only the updates they are interested

in. The first option increases the bandwidth used by the system, while the second

increases its complexity (figure F.2).

Figure F.2: Three implementations of the Model-View-Controller paradigm. The
classic design requires moderate bandwidth and has high latency; typical improve-
ments increase either bandwidth or implementation complexity to reduce latency.

The separation into Model, View, and Controller has also been used to design the

division of function in a system without adhering to communication pattern specified

by Krasner and Pope (1988). It is in this sense that we speak of an MVC decompo-
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Figure F.3: A description of the multi-buffered variables in UML. Inheritance was
used to extend the preexisting IntegerVariable class to have multiple states, each
implemented as an instance of a SharedInteger from the VRPN library.

sition of the Collaborative nanoManipulator.

F.1 Implementing Model-View-Controller in the

nanoManipulator

For its visualization-Model, the nanoManipulator uses a fine-grained object-oriented

design. For each primitive value (integer, float, or string) in a Model, there is one

heavyweight object, which we will call a Variable (subclassed into IntegerVariable,

FloatVariable, and StringVariable). The Variable object knows how to display its

value in the two-dimensional graphical user interface and accept updates to its value

from the user interface. It also implements a callback system, which propagate

changes of the Variables value to all interested entities. (In the language of Gamma

et al. (1995), this callback system is the push variant of the observer pattern.)

We subclassed Variable, adding two buffers: one for each mode (private or shared).

All concurrency control and networking concerns were handled by these buffers, so

that we only needed to add to the interface of the primitive value objects the ability

to select which mode was active for that object. This separation of concerns was

very valuable in debugging and maintenance. When the user changes their collabo-

ration mode, the value in an objects buffer for that mode becomes the objects value,

triggering the objects associated callbacks. (These object buffers are similar to the

memento pattern.)

An example is shown in figure ref fig:multibufferUML. Instances of the preexisting

IntegerVariable class (1) were replaced with MultibufferedInteger (3), which inherited
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both from IntegerVariable and a new utility class named MultibufferedVariable (2).

MultibufferedVariable abstracted out the type-independent requirements of managing

multiple buffers and switching between them. The buffers were subclasses of Share-

dObject (4); for a MultibufferedInteger, these were instantiated as SharedIntegers

(5). SharedObject and its descendants are classes that know how to keep one value

synchronized over a network connection; which value is actually used at any point in

time is controlled by the Multibuffered containers.

As defined, this architecture can support arbitrary numbers of users, each with

their own private state and all having access to one shared state. If this system were

to support additional shared states, each MultibufferedVariable would keep track of

more than two SharedObjects. Variables that have special widgets in the GUI are

supported by classes inheriting from MultibufferedVariable. To support datatypes

other than the standard integer, float, and string, one would add additional pairs

of classes descending from MultibufferedVariable and from SharedObject. (The net-

worked SharedObject implementation uses the push, aspect variant of the observer

pattern.)

The original nanoManipulator kept Variables as an unstructured “sea” of globals.

We converted this into a hierarchy. Using the hierarchy to group related interface

parameters together increased the maintainability of the code. It also let us present

meaningful chunks of the user interface coherently to the users. For example, all

variables related to the color used to render the microscope data the name of the

dataset to map to color, the colormap to apply are grouped into a “color” submodel.

This is grouped with a contour map submodel, lighting submodel, and others into

the “viewing parameter” submodel, which, together with other high-level application

state, forms the visualization Model (figure F.4).

We have experimented with using this hierarchy to allow the user to mix together

their shared and private states, so that they can choose to have some parameters of

their visualization View matching a collaborator while keeping others independent.

For example, if one user normally labels their data with a colormap in shades of red

and green, and another user is red-green colorblind, the colorblind user could apply

their own colormap while otherwise seeing everything as the first user specified. In

practice, we have found little demand among our users for this kind of mixed View.

The fine-grained approach to maintaining the nanoManipulators state allowed ex-

tensive use of a few base classes and was an excellent design for the original single-user

application. When extended to a distributed application, it showed several shortcom-
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Figure F.4: Sample nested sub-Models within the visualization Model. The visu-
alization Model is divided into replay control and viewing parameter Models; the
latter is further divided into smaller Models which contain parameters relevant to
one particular aspect of the view, such as contour maps or lighting.
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ings. There are a number of complex objects composed from these primitive value

objects; for example, the rendered orientation of the data received from the micro-

scope is a quaternion but is implemented as four independent floating-point numbers.

Changes to several of the values comprising a single complex object happened in a

coordinated manner within a single process, but when transmitted across the net-

work occurred as distinct changes to the remote copy of the complex object. This

caused both unnecessary network traffic and a good deal of difficulty with the design

of the callbacks controlling these complex objects. For example, quaternions could

transiently take on non-normalized values, which should not be displayed to the user.

A system that would support composition of primitive value objects into com-

plex objects would provide cleaner sharing. This coarser-grained system would not

invalidate any of our results or proposed architecture. However, it could violate the

separation of concerns (the layering) that placed basic synchronization in the Share-

dObject and selection in the MultibufferedVariable, since the network synchronization

would need to know about the embedding of the SharedObject into the coarse-grained

MultibufferedVariable to synchronize each coarse-grained variable atomically.

Programmers have also resisted a coarse-grained system because they perceive it

to entail a loss of flexibility. Instead of declaring ad-hoc variables as each is required,

programmers using a coarse-grained system must explicitly write code for these clus-

ters of variables to be recognized and treated as a single unit by the networking layer.

Sun RPC and Java Remote Method Invocation (RMI) have solutions to this: data

structures or function calls can be analyzed by a preprocess that automatically con-

structs the code for their network transmission. Similarly, we have built a set of Perl

scripts that parses a message-parameter-definition file and automatically writes C++

functions to pack and unpack those data structures (convert them from machine-

native representation as several variables to network representation as a string of

bytes, and vice-versa).
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