
Class-Based Thresholds: Lightweight Active Router-
Queue Management for Multimedia Networking

by

Mark Anthony Parris

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the De-

partment of Computer Science.

Chapel Hill

2001

Approved by:

Advisor: Kevin Jeffay

Reader: F. Donelson Smith

Reader: Bert Dempsey

Reader: David Stotts

Reader: Ketan Mayer-Patel



ii

© 2001

Mark Anthony Parris

ALL RIGHTS RESERVED



iii

ABSTRACT

MARK PARRIS: Class-Based Thresholds: Lightweight Active Router-Queue Manage-

ment for Multimedia Networking

(Under the direction of Kevin Jeffay.)

In the best-effort Internet, congestion can cause severe degradations in the perform-

ance of both reliable data transfer flows and multimedia flows.  These reliable data trans-

fers are typically based on TCP, a responsive protocol.  Responsive protocols are those

that respond to congestion by reducing the rate at which they transmit data.   This behav-

ior is desirable because when all traffic is responsive, the traffic sources cooperate to ame-

liorate congestion by arriving at an aggregate operating point where the generated load

matches the available capacity.  In contrast, multimedia applications are typically based on

unresponsive protocols, such as UDP, where the transmission rate is determined by the

application, independent of network conditions.  There exists a fundamental tension be-

tween these responsive and unresponsive protocols.  When both traffic types are present

during periods of congestion, unresponsive traffic maintains its load, forcing responsive

traffic to reduce its load.  Consequently, unresponsive traffic may benefit from this behav-

ior and consume more than its fair share of the available bandwidth while responsive flows

receive less than their fair share and suffer poor throughput.   In the extreme, congestion

collapse is possible.  This offers a disincentive for using responsive protocols.

Recent proposals have attempted to address this problem by isolating responsive traf-

fic from the effects of unresponsive traffic.  They achieve this goal by identifying and se-

verely constraining all unresponsive traffic.  We take the position that some unresponsive

traffic, specifically multimedia, is necessarily unresponsive.  Maintaining the fidelity of the

media stream places bounds on minimum levels of throughput and maximum tolerable la-

tency.  Since responsive protocols focus on reducing the transmission rate to match the



iv

available capacity independent of application-level concerns, these bounds may be difficult

or impossible to meet with responsive protocols.  As such, we argue that in addition to

isolating responsive traffic, multimedia should not be unduly constrained and must also be

isolated from the effects of other unresponsive traffic.  In this dissertation we propose and

evaluate a novel algorithm to allocate network bandwidth by allocating buffer space in a

router's queue.  This algorithm is called Class-Based Thresholds (CBT).  We define a set

of traffic classes: responsive (i.e., TCP), multimedia, and other.  For each class a threshold

is specified that limits the average queue occupancy by that class.  In CBT, when a packet

arrives at the router it is classified into one of these classes.  Next, the packet is enqueued

or discarded depending on that class's recent average queue occupancy relative to the

class's threshold value.  The ratio between the thresholds determines the ratio between the

bandwidth available to each class on the outbound link.

CBT and other router queue management algorithms from the literature (FIFO, RED,

and FRED) are implemented in a FreeBSD router and evaluated in a laboratory network

using several combinations of TCP, multimedia, and generic unresponsive traffic. We

show that CBT can be tuned to offer prescribed levels of performance for each traffic

class.  We present analysis that predicts network performance when using CBT based on

initial configuration parameters, explain how this analysis can be reversed to derive opti-

mal parameter settings given desired network performance, and empirically demonstrate

the accuracy of this analysis.  We present experimental data that contributes to our under-

standing of how existing queue management schemes perform, articulate relationships

between parameters and performance metrics, and determine optimal parameter settings

for each algorithm under various traffic mixes.  We empirically demonstrate that CBT ef-

fectively isolates TCP while providing better-than-best-effort service for multimedia by

comparing CBT's performance to the optimal performance for other algorithms.  Finally,

we show CBT provides better protection for TCP than RED and FIFO and better multi-

media performance than RED, FIFO, and FRED.



v

ACKNOWLEDGMENTS

Completing my dissertation would not have been possible without the support of my
colleagues and friends.  I gratefully thank:

My committee:
Kevin Jeffay for guidance, motivation, and support,
Don Smith for insightful advice and well-considered opinions as well as ifmon, thru-

put, and trouble-shooting old hardware, and
Bert Dempsey, Prasun Dewan, Ketan Meyer-Patel, and David Stotts for their feed-

back.

My colleagues:
Terry Talley, Steve Goddard, Peter Nee, and Don Stone for showing it can be done

and breaking Kevin in,
David Ott for the HTTP model, maintaining the lab so I didn’t have to, and taking care

of the finishing touches,
Michele Weigle for vidsim,
Mikkel Christiansen for conversations and comments,
Ramkumar Parameswaran for the MPEG tool,
Felix Hernandez for maintaining the DiRT lab and repeatedly delaying upgrades,
Jan Borgersen for the Proshare model,
K. Cho for ALTQ,
Marc Olano for putting together a dissertation style template that works, and
Wu-chi Feng for providing the MPEG frame traces.

And my other friends:
Betsy for understanding, encouragement, and having faith in me,
Dad for asking, “where are my pages?,”
Mom for her love,
Christine for getting tired of me being lazy,
Eileen for commiserating with me,
Stefan for showing the process is survivable,
Max and Cleo for having no idea what a dissertation is and not caring at all, and
Darkside, Pleiades, and ENB for making the past eleven years fun.  I have no regrets.

This research was supported in part by funding and equipment donations from the Na-
tional Science Foundation (grants IRIS 95-08514, CDA-9624662, and ITR 00-82870),



vi

the Intel Corporation, Sun Microsystems, Cabletron Systems, Cisco Systems, the IBM
Corporation, and MCNC.



vii

TABLE OF CONTENTS

I. INTRODUCTION .................................................................................... 1

1. Background....................................................................................................2

1.1. The Nature of Internet Traffic..................................................................5

1.1.1. Types of Traffic and Percentages .................................................6

1.1.2. Reliable Data Transfer and TCP...................................................9

1.1.3. Interactive Multimedia and UDP ................................................11

1.2. The Congestion Control Problem...........................................................14

2. Active Queue Management ...........................................................................17

2.1. Our Approach - Class Based Thresholds................................................20

3. Thesis Statement: .........................................................................................21

4. Empirical Validation .....................................................................................21

4.1. Empirical Comparison ...........................................................................21

4.2. Summary of Results...............................................................................23

II. RELATED WORK................................................................................ 25

1. Introduction..................................................................................................25

2. Transport-level Approaches..........................................................................26

2.1. TCP’s Responsiveness...........................................................................27

2.2. UDP’s Unresponsiveness.......................................................................28

2.3. Responsive Unreliable Protocols............................................................28



viii

2.3.1. Streaming Control Protocol .......................................................29

2.3.2. Loss-Delay Based Adjustment Algorithm...................................30

2.3.3. Analysis of Responsive Unreliable Approaches...........................32

3. Application-level Approaches .......................................................................32

4. Integrated End-System Congestion Management ..........................................36

5. Integrating Application Level Prioritization with Router Drop Policies..........37

6. Router Based Quality of Service ...................................................................38

6.1. Integrated Services Architecture............................................................39

6.2. Differentiated Services...........................................................................40

7. Summary ......................................................................................................44

III. ROUTER QUEUE MANAGEMENT................................................... 47

1. Buffering in Routers .....................................................................................49

1.1. DropTail When Full (FIFO)...................................................................50

1.2. Active Queue Management Concept......................................................52

2. The Evolution of Active Queue Management Policies ...................................53

2.1. Solving the Problems of Lock-out and Full-queues ................................53

2.2. Providing Notification of Congestion.....................................................56

2.2.1. ICMP Source Quench................................................................57

2.2.2. DECbit ......................................................................................58

2.2.3. ECN – Early Congestion Notification.........................................59

2.2.4. RED – Random Early Detection ................................................60

2.2.5. Summary ...................................................................................65

2.3. Non-TCP-Friendly flows .......................................................................66

2.3.1. FRED ........................................................................................67

2.3.2. Floyd & Fall...............................................................................69



ix

2.3.3. RIO – RED with In and Out.......................................................70

2.3.4. Summary ...................................................................................72

2.4. Summary of Evolution of Active Queue Management............................72

3. Key Algorithms in Greater Detail..................................................................74

3.1. Drop-Tail (FIFO) ..................................................................................74

3.1.1. Algorithm Description................................................................75

3.1.2. Evaluation..................................................................................76

3.2. RED......................................................................................................77

3.2.1. Algorithm Description................................................................79

3.2.2. Evaluation..................................................................................84

3.3. FRED....................................................................................................84

3.3.1. Algorithm ..................................................................................85

3.3.2. Evaluation..................................................................................92

4. Packet Scheduling.........................................................................................94

4.1. Class-Based Queueing (CBQ)................................................................95

4.1.1. Algorithm ..................................................................................96

4.1.2. Evaluation..................................................................................99

5. Evaluation of Router Queue Management...................................................101

6. Summary ....................................................................................................104

IV. CLASS-BASED THRESHOLDS ....................................................... 106

1. Problem and Motivation..............................................................................106

2. Goals..........................................................................................................108

2.1. Traffic Types and Isolation ..................................................................108

2.1.1. TCP.........................................................................................108

2.1.2. Multimedia...............................................................................109



x

2.1.3. Other .......................................................................................109

2.2. Predictable Performance for Traffic Classes .........................................110

2.2.1. Bandwidth Allocation ..............................................................110

2.2.2. Manage latency........................................................................110

2.2.3. Resource Allocation via Queue Management............................111

2.3. Minimize Complexity...........................................................................111

3. The Algorithm............................................................................................112

3.1. Design.................................................................................................112

3.1.1. Classification............................................................................112

3.1.2. Managing Queue Occupancy....................................................113

3.1.3. Different Drop Policies for Different Types of Traffic...............114

3.2. Algorithm Description .........................................................................115

3.2.1. Declarations and Definitions.....................................................115

3.2.2. Drop Modes ............................................................................118

3.2.3. Departing Packets....................................................................119

3.2.4. Early Drop Test .......................................................................120

3.2.5. Computing the Average ...........................................................121

4. Configuring CBT........................................................................................122

4.1. Equations for Bandwidth Allocation ....................................................123

4.2. Setting the Other CBT Parameters.......................................................127

4.2.1. Weights for Computing Average Queue Occupancy.................127

4.2.2. Maximum Drop Probability......................................................127

4.2.3. Maximum Queue Size..............................................................128

5. Demonstrating the Effectiveness of CBT.....................................................128

5.1. Behavior When All Classes Consume Their Bandwidth Allocation.......132



xi

5.1.1. Throughput..............................................................................132

5.1.2. Latency....................................................................................133

5.2. CBT Behavior When Overprovisioned.................................................135

5.2.1. Equations for Predicting Reallocation of Bandwidth.................136

5.2.2. Predictability of Throughput Reallocation................................142

5.2.3. Equations for Predicting Latency .............................................148

5.2.4. Predictability of Latency...........................................................151

5.3. Summary.............................................................................................152

6. The Generality of CBT ...............................................................................153

6.1.1. Number of classes....................................................................153

6.1.2. Sensitivity................................................................................153

6.1.3. Modes .....................................................................................154

6.1.4. Examples .................................................................................154

7. Summary ....................................................................................................154

V. EMPIRICAL EVALUATION ............................................................. 155

1. Methodology..............................................................................................155

1.1. Network Configuration........................................................................156

1.2. Traffic Mixes.......................................................................................157

1.3. Metrics................................................................................................160

1.4. Configuration of Queue Management Algorithms ................................162

2. Comparing Algorithms................................................................................168

2.1. Blast Measurement Period ...................................................................169

2.1.1. TCP Goodput ..........................................................................169

2.1.2. Throughput for Other Traffic ...................................................172

2.1.3. Multimedia...............................................................................176



xii

2.1.4. Summary of Blast Measurement Period....................................189

2.2. Multimedia Measurement Period .........................................................190

2.2.1. TCP Goodput ..........................................................................191

2.2.2. Multimedia...............................................................................193

2.2.3. Summary of Results for Multimedia Measurement Period.........201

3. Summary ....................................................................................................202

VI. SUMMARY AND CONCLUSION.................................................... 204

1. Class-Based Thresholds ..............................................................................206

2. Analyzing CBT...........................................................................................207

3. Empirical Analysis of Algorithms ................................................................208

4. Empirical Comparison of Algorithms ..........................................................210

4.1. Blast Measurement Period ...................................................................211

4.2. Multimedia Measurement Period .........................................................212

4.3. Summary.............................................................................................213

5. Future Work...............................................................................................213

5.1. Limitations and Suggested Refinements ...............................................213

5.1.1. Imprecision in CBT..................................................................213

5.1.2. Accurately Predicting Bandwidth Needs...................................217

5.2. Further Analysis ..................................................................................218

5.2.1. Complexity and Overhead ........................................................218

5.2.2. More Realistic Conditions........................................................219

5.3. Deployment Issues...............................................................................220

5.3.1. Packet Classification ................................................................220

5.3.2. Negotiating Allocations............................................................222

6. Summary ....................................................................................................223



xiii

APPENDIX A. METHODOLOGY .......................................................... 224

1. Experimental Model....................................................................................224

1.1. Alternatives for Experimentation .........................................................224

2. Network Configuration...............................................................................228

2.1. Network Configuration........................................................................228

2.1.1. Physical Network Configuration...............................................229

2.1.2. End-systems.............................................................................231

2.1.3. Router Configuration ...............................................................231

2.1.4. Induced Delay..........................................................................231

3. Traffic ........................................................................................................232

3.1. Understanding the Traffic Loads..........................................................234

3.2. Other Traffic .......................................................................................235

3.3. Multimedia ..........................................................................................237

3.3.1. Proshare ..................................................................................237

3.3.2. MPEG .....................................................................................239

3.4. TCP ....................................................................................................252

3.4.1. HTTP ......................................................................................254

3.4.2. BULK......................................................................................260

4. Traffic Mixes ..............................................................................................264

4.1. Timing of when each type of traffic is introduced.................................265

5. Data Collection...........................................................................................268

5.1. Network Monitoring............................................................................268

5.2. Application Level Monitoring ..............................................................269

5.2.1. Measuring the Performance of Proshare ...................................270

5.2.2. Measuring the Performance of MPEG......................................271



xiv

5.3. Router Queue Management Overhead .................................................272

5.4. Summary.............................................................................................272

6. Statistical Issues .........................................................................................272

7. Performance metrics ...................................................................................274

7.1. Bandwidth Usage Measures.................................................................274

7.2. Latency ...............................................................................................276

7.3. Frame-rate...........................................................................................277

8. Summary ....................................................................................................278

APPENDIX B. CHOOSING OPTIMAL PARAMETERS........................ 281

1. Methodology..............................................................................................282

2. FIFO ..........................................................................................................284

3. RED and FRED Analysis ............................................................................291

3.1. Understanding the Charts and Figures..................................................291

3.2. Fixed Parameters .................................................................................294

4. RED...........................................................................................................295

4.1. RED Threshold Settings ......................................................................296

4.1.1. HTTP and Proshare .................................................................298

4.2. BULK and Proshare ............................................................................311

5. FRED.........................................................................................................318

5.1.1. BULK-Proshare.......................................................................329

6. CBT ...........................................................................................................334

6.1. Constant Parameters............................................................................334

6.2. Determining Threshold Settings from Bandwidth Allocations...............336

6.3. Evaluating Parameter Settings .............................................................339

6.4. HTTP-MPEG......................................................................................340



xv

6.5. BULK-MPEG .....................................................................................349

6.6. HTTP-Proshare...................................................................................352

6.7. BULK-Proshare ..................................................................................354

6.8. Constraining Other ..............................................................................357

6.9. Summary.............................................................................................358

7. CBQ...........................................................................................................359

7.1. HTTP-MPEG......................................................................................360

7.2. BULK-MPEG .....................................................................................369

7.3. HTTP-Proshare...................................................................................371

7.4. BULK-Proshare ..................................................................................372

7.5. Summary.............................................................................................374

8. Summary ....................................................................................................375

REFERENCES......................................................................................... 376



xvi

LIST OF FIGURES

Figure 1.1 Transport-Level Protocols as Percentage of Internet Traffic (figure taken from
[Claffy98])......................................................................................................7

Figure 1.2 Application-level Protocols as Percentage of All Internet Traffic (figure taken
from [Claffy98]) .............................................................................................8

Figure 1.3 Experimental Network Setup.........................................................................22

Figure 3.1 Reference Implementation Model for a Router ..............................................47

Figure 3.2  RED’s Packet Drop Modes ..........................................................................61

Figure 3.3  Aggregate TCP throughput (KB/s) over Time (seconds) with RED in the
Presence of an Unresponsive, High-Bandwidth UDP Flow............................64

Figure 3.4 Algorithm for Drop-Tail (FIFO) Queue Management ....................................76

Figure 3.5 Aggregate TCP Throughput (KB/s) over Time (seconds) with FIFO in the
Presence of an Unresponsive, High-Bandwidth UDP Flow............................77

Figure 3.6 Definitions and Declarations for the RED Queue Management Policy............78

Figure 3.7 Algorithm for Computing the Average in RED Routers .................................79

Figure 3.8 Algorithm for Packet Arrivals in RED Routers ..............................................81

Figure 3.9 Algorithm for Making the Early Drop Decision in RED Routers....................82

Figure 3.10 Algorithm for Packet Departures in RED Routers........................................84

Figure 3.12 Definitions and Declarations for FRED........................................................87

Figure 3.13 Algorithm for Computing the Average in FRED Routers .............................88

Figure 3.14 Algorithm for Packet Arrivals in FRED Routers ..........................................90

Figure 3.15 Algorithm for Packet Departures in FRED Routers .....................................92

Figure 3.16 Aggregate TCP Throughput (KB/S) vs. Time (seconds) in the Presence of an
Unresponsive, High-Bandwidth UDP Flow for FIFO, RED, and FRED. .......93

Figure 3.17  Adding a New Class for CBQ.....................................................................97

Figure 3.18 Scheduling for CBQ ....................................................................................98



xvii

Figure 3.19 Processing an Arriving Packet in CBQ.........................................................99

Figure 3.20 Transmitting a Packet in CBQ .....................................................................99

Figure 3.21 Comparing Aggregate TCP Throughput (KB/s) over Time (seconds). .......100

Figure 3.22 Aggregate TCP Throughput (KB/s) vs. Time (seconds) under FIFO, RED,
FRED, and CBQ.........................................................................................101

Figure 4.1 High-level Pseudo-code for CBT.................................................................112

Figure 4.2 Definitions and Declarations for CBT ..........................................................117

Figure 4.3 Algorithm for Packet Arrivals in CBT Routers ............................................118

Figure 4.4 Algorithm for Packet Departures in CBT Routers........................................120

Figure 4.5 Algorithm for Probabilistic Drops in CBT Routers.......................................120

Figure 4.6 Algorithm for Computing the Average in CBT Routers ...............................121

Figure 4.7 Traffic Loads (KB/s) over Time (seconds)...................................................129

Figure 4.8 Traffic Loads and Bandwidth Allocations (KB/s) over Time (seconds) ........131

Figure 4.9 Traffic Loads (KB/s) over Time (seconds) with All Loads Exceeding
Allocation...................................................................................................132

Figure 4.10 Throughput (KB/s) over Time (seconds) for each Traffic Class..................133

Figure 4.12  Intended and Observed Multimedia Latency (ms) vs. Time (seconds)........134

Figure 4.16 Relation Between Bother, Loadother, and Eother (KB/s) over Time (seconds) for
Multimedia .................................................................................................137

Figure 4.17 B′  (KB/s) over Time (seconds) .................................................................138

Figure 4.18 Loads and Bandwidth Allocations (KB/s) over Time..................................143

Figure 4.19 Expected Throughput (KB/s) over Time (seconds) ....................................145

Figure 4.20 Throughput and Expected Throughput (KB/s) over Time (seconds). .........146

Figure 4.21 Throughput (KB/s) for TCP and Multimedia over Time.............................147

Figure 4.22 Multimedia Throughput as a Percentage of Aggregate Multimedia and TCP
Throughput over Time (seconds) ................................................................148

Figure 4.24 Observed Latency Compared to Predicted Latency (ms) over Time (seconds)152



xviii

Figure 5.1 Experimental Network Configuration ..........................................................157

Figure 5.2 Sample Traffic Mix and Measurement Periods. ............................................160

Figure 5.3 TCP Goodput Averaged Over 1 Second Intervals During the Blast
Measurement Period for HTTP+Proshare ...................................................170

Figure 5.4 TCP Load Averaged over 1 Second Intervals for HTTP+Proshare During the
Blast Measurement Period ..........................................................................171

Figure 5.5 TCP Goodput for All Traffic Mixes During the Blast Measurement Period ..172

Figure 5.6 Throughput for Other Traffic Averaged Over 1 Second Intervals with
HTTP+Proshare During the Blast Measurement Period...............................173

Figure 5.7 Throughput for Other Traffic Averaged over 1 Second Intervals with
HTTP+Proshare During the Blast Measurement Period...............................176

Figure 5.8 Multimedia Offered Load Averaged Over 1 second Intervals for
HTTP+Proshare During the Blast Measurement Period...............................177

Figure 5.9 Multimedia Throughput Averaged over 1 Second Intervals for HTTP+Proshare
During the Blast Measurement Period.........................................................178

Figure 5.10 Multimedia Throughput Averaged Over 1 Second Intervals During the Blast
Measurement Period. ..................................................................................179

Figure 5.11 End-to-End Multimedia Latency During the Blast Measurement Period for
HTTP+Proshare .........................................................................................181

Figure 5.12 End-to-End Multimedia Latency Averaged Over 1 Second Intervals During
the Blast Measurement Period.....................................................................182

Figure 5.13 Multimedia Load Averaged Over 1 Second Intervals for BULK-MPEG for
CBQ During the Blast Measurement Period ................................................184

Figure 5.14 Actual Frame-Rate Averaged Over 1 Second Intervals for HTTP+MPEG
During the Blast Measurement Period.........................................................186

Figure 5.15 Actual Frame-Rate Averaged Over 1 Second Intervals for MPEG During the
Blast Measurement Period ..........................................................................187

Figure 5.16 Playable Frame-Rate Averaged Over 1 Second Intervals for HTTP+MPEG
During the Blast Measurement Period.........................................................188

Figure 5.17 Playable Frame-Rate Averaged Over 1 Second Intervals During the Blast
Measurement Period ...................................................................................189



xix

Figure 5.18 TCP Goodput Averaged Over 1 Second Intervals During the Multimedia
Measurement Period for HTTP+Proshare ...................................................191

Figure 5.19 TCP Goodput Averaged Over 1 Second Intervals During the Multimedia
Measurement Period for All Algorithms......................................................192

Figure 5.20 Multimedia Throughput Averaged Over 1 Second Intervals During the
Multimedia Measurement Period for HTTP+Proshare.................................193

Figure 5.21 Multimedia Throughput Averaged Over 1 Second Intervals During the
Multimedia Measurement Period.................................................................194

Figure 5.22 End-to-End Multimedia Latency During the Multimedia Measurement Period
for HTTP+Proshare....................................................................................195

Figure 5.23 Multimedia Latency During the Multimedia Measurement Period ..............197

Figure 5.25 Actual Frame-Rate Averaged Over 1 Second Intervals During the Multimedia
Measurement Period ...................................................................................199

Figure 5.26 Playable Frame-Rate for HTTP+MPEG.....................................................200

Figure 5.27 Playable Frame-Rate During the Multimedia Measurement Period .............201

Figure A.1 Logical Network Configuration ..................................................................229

Figure A.2 Physical Network Configuration .................................................................230

Figure A.3 Example of a Traffic Mix............................................................................234

Figure A.4 Load Generated by a UDP Blast .................................................................236

Figure A.5 Proshare Load ............................................................................................238

Figure A.6  MPEG Frame sizes by Type.......................................................................241

Figure A.7  MPEG Packets per Frame (Ethernet Packets) ............................................241

Figure A.8  MPEG Average Bytes per 66ms ................................................................242

Figure A.9  MPEG Average Packets per 66ms .............................................................243

Figure A.10 Average MPEG Loads from Different Traffic Mixes .................................244

Figure A.11 MPEG Load During Run #1 .....................................................................245

Figure A.12  MPEG Load During Run #2 ....................................................................245



xx

Figure A.13 MPEG Frame Sizes over Time (Crocodile Dundee Movie) .......................247

Figure A.14 MPEG Load.............................................................................................248

Figure A.15 MPEG Packet Loss vs. Frame Loss ..........................................................252

Figure A.18  Generated Load vs. Simulated Browsers..................................................255

Figure A.19  HTTP Load Alone (but with bottleneck link of 10Mb/s) ..........................257

Figure A.20  HTTP Load with and without other traffic types present. .........................258

Figure A.21 HTTP Average Load with and without Other Traffic Types......................259

Figure A.22 BULK Load with no other traffic types (but with 10Mb/s bottleneck link) 262

Figure A.23 BULK Load in the Presence of Other Traffic Types..................................263

Figure A.24 Average Bulk Load with and without Traffic ............................................264

Figure A.25 Traffic Mix for BULK+MPEG..................................................................265

Figure A.26 All Traffic mixes.......................................................................................267

Figure A.28 Location of Network Monitoring..............................................................269

Figure A.29 Location of Multimedia Traffic Generator.................................................270

Figure B.1  Latency (ms) vs. Maximum Queue Size (packets) with FIFO during the Blast
Measurement Period (HTTP-Proshare) .......................................................285

Figure B.2 Latency (ms) vs. Maximum Queue Size (packets) with FIFO (BULK-Proshare)
...................................................................................................................286

Figure B.3 Maximum Queue Size (packets) vs. Throughput (KB/s) with FIFO for All
Traffic Mixes during Multimedia Measurement Period ................................288

Figure B.4  Maximum Queue Size (packets) vs. Packets Lost (packets/second) for FIFO
with HTTP-Proshare during Blast Measurement Period ..............................289

Figure B.5 Maximum Queue Size (packets) vs. Frame-rate (frames/second) for FIFO with
HTTP-MPEG during the Blast Measurement Period ...................................289

Figure B.6  Maximum Queue Size (packets) vs. Throughput (KB/s) with FIFO during the
Blast Measurement Period ..........................................................................290

Figure B.7 Latency (ms) during Blast Measurement Period for RED and HTTP and
Proshare .....................................................................................................293



xxi

Figure B.8 TCP Goodput (KB/s) During Multimedia Measurement Period with RED for
HTTP and Proshare. ...................................................................................299

Figure B.9 Aggregate Throughput (KB/s) during Multimedia Measurement Period with
RED for HTTP and Proshare......................................................................301

Figure B.10 TCP Efficiency during the Multimedia Measurement Period with RED for
HTTP and Proshare ....................................................................................303

Figure B.11 TCP Efficiency during Blast Measurement Period with RED for HTTP and
Proshare .....................................................................................................304

Figure B.12  TCP Load (KB/s) during Blast Measurement Period with RED for HTTP
and Proshare...............................................................................................306

Figure B.13 TCP Throughput (KB/s) during Blast Measurement Period with RED for
HTTP and Proshare ....................................................................................307

Figure B.14 Network Latency (ms) during Blast Measurement Period for RED with
HTTP and Proshare ....................................................................................309

Figure B.15 Network Latency (ms) during Multimedia Measurement Period with RED for
HTTP and Proshare ....................................................................................310

Figure B.16 TCP Goodput (KB/s) During Multimedia Measurement Period with RED for
BULK and Proshare. ..................................................................................313

Figure B.17 Aggregate Throughput (KB/s) during Multimedia Measurement Period with
RED for BULK and Proshare .....................................................................314

Figure B.18 TCP Efficiency during Multimedia Measurement Period with RED for BULK
and Proshare...............................................................................................315

Figure B.19 TCP Efficiency during Multimedia Measurement Period with RED for BULK
and Proshare...............................................................................................316

Figure B.20 Network Latency (ms) during Multimedia Measurement Period for RED with
BULK and Proshare ...................................................................................317

Figure B.21 TCP Goodput (KB/s) During the Multimedia Measurement Period with
FRED for HTTP-Proshare..........................................................................320

Figure B.22 Aggregate Throughput (KB/s) during Multimedia Measurement Period with
FRED for HTTP-Proshare..........................................................................321

Figure B.23 TCP Throughput (KB/s) during the Blast Measurement Period with FRED
for HTTP-Proshare.....................................................................................322



xxii

Figure B.24 Aggregate UDP Throughput (KB/s) during the Blast Measurement Period
with FRED for HTTP-Proshare ..................................................................324

Figure B.25 Network Latency (ms) during the Multimedia Measurement Period for FRED
with HTTP-Proshare...................................................................................325

Figure B.26 Network Latency (ms) during the Blast Measurement Period with FRED for
HTTP-Proshare ..........................................................................................326

Figure B.27 TCP Efficiency during the Multimedia Measurement Period with FRED for
HTTP-Proshare ..........................................................................................328

Figure B.28 TCP Efficiency during the Blast Measurement Period for FRED with HTTP-
Proshare .....................................................................................................329

Figure B.31 TCP Goodput (KB/s) During Multimedia Measurement Period with FRED
for BULK-Proshare ....................................................................................331

Figure B.32 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput (KB/s)
during Blast Measurement Period for HTTP-MPEG ...................................342

Figure B.33 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput (KB/s)
during the Blast Period with HTTP-MPEG on a One-to-One Scale.............343

Figure B.34 Multimedia Bandwidth Allocation (KB/s) vs. Packet Loss (packets/s) during
the Blast Measurement Period for HTTP-MPEG ........................................344

Figure B.35 Bandwidth Allocation for Multimedia (KB/s) vs. Frame Rate (Frames/s)
during the Blast Measurement Period for HTTP-MPEG..............................345

Figure B.36 Multimedia Bandwidth Allocation (KB/s) vs. Latency (ms) during the Blast
Measurement Period for HTTP-MPEG.......................................................346

Figure B.37 Multimedia Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s) during
the Blast Measurement Period for HTTP-MPEG ........................................347

Figure B.38 TCP Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s) during the
Blast Measurement Period for HTTP-MPEG..............................................348

Figure B.39 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-MPEG ...........................................350

Figure B.40 TCP Bandwidth Allocation (KB/s) vs. TCP Throughput during the Blast
Measurement Period with BULK-MPEG....................................................352

Figure B.41 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with HTTP-Proshare .........................................354



xxiii

Figure B.42 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-Proshare ........................................356

Figure B.43 Multimedia and TCP Throughput vs. Allocations on a 1:1 scale during the
blast measurement period with BULK-Proshare..........................................357

Figure B.44 Bmm (KB/s) vs. Other Throughput during the Blast Measurement Period
Across All Traffic Mixes.............................................................................358

Figure B.45 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput (KB/s)
during the Blast Measurement Period for HTTP-MPEG..............................362

Figure B.46 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput (KB/s)
during the Blast Period with HTTP-MPEG on a One-to-One Scale.............363

Figure B.47 Multimedia Bandwidth Allocation (KB/s) vs. Packet Loss (packets/s) during
the Blast Measurement Period for HTTP-MPEG ........................................364

Figure B.48 Bandwidth Allocation for Multimedia (KB/s) vs. Frame Rate (Frames/sec)
during the Blast Measurement Period for HTTP-MPEG..............................365

Figure B.50 Multimedia Bandwidth Allocation (KB/s) vs. Latency (ms) during the Blast
Measurement Period with HTTP-MPEG.....................................................366

Figure B.51 Multimedia Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s) during
the Blast Measurement Period with HTTP-MPEG ......................................368

Figure B.52 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-MPEG ...........................................370

Figure B.53 Multimedia Bandwidth Allocations (KB/s) vs. Selected Metrics during the
Blast Measurement Period forHTTP-Proshare ............................................372

Figure B.54 Multimedia Bandwidth Allocations vs. Selected Metrics during the Blast
Measurement Period with BULK-Proshare .................................................374



I. INTRODUCTION

At its most basic level the Internet provides a service to transfer units of data, packets,

from a sender to a receiver. The service specification promises only a “best-effort” attempt

to deliver packets and no guarantee is given.  Loss of connectivity, incorrect routing ta-

bles, or periods of overload (congestion) can all result in packet loss.  The most common

cause of loss is congestion.  As a result, many transport protocols, such as TCP, use

packet loss to infer the presence of congestion and respond by reducing a connection's

transmission rate to avoid overload.  When all protocols have this agreed upon behavior,

they arrive at an aggregate load that matches the capacity of the link.  Other protocols,

like UDP, either do not have a mechanism for detecting loss or do not respond to it as an

indicator of congestion.  Two forms of application-level traffic, reliable data transfer and

interactive multimedia, rely on, respectively, TCP and UDP.  Unfortunately, a fundamental

tension exists between these two approaches.  During periods of congestion, responsive

protocols reduce their generated loads in response to loss while unresponsive protocols

maintain their loads, consuming most of the capacity of the link. Consequently, the traffic

using protocols that respond to congestion may suffer poor performance while the traffic

using unresponsive protocols benefits from maintaining or increasing its load.  Most of the

work addressing this tension has focused on rewarding the responsive behavior and pun-

ishing the unresponsive behavior.  We take the position that in some cases this unrespon-

sive behavior is necessary to the successful behavior of the application (e.g. interactive

multimedia) and not all unresponsive applications are problematic.  In this dissertation we

present a router queue management discipline, Class-Based Thresholds (CBT), that pro-

tects and encourages responsive behavior, discourages needlessly unresponsive behavior,

and still allows unresponsive behavior when necessary.



2

1. Background

Before considering our router queue management algorithm, it is helpful to review the

interaction between congestion, buffering in routers, and the traffic types that share a net-

work. The Internet is a collection of small networks connected by store-and-forward de-

vices called routers.  To understand the router's purpose, recall that the Internet is a “net-

work” in a graph-theoretic sense.  Routers and end-stations are the nodes and the links

that connect them are the graph's edges.  Interior nodes with multiple edges are routers

while leaf-nodes with single edges are end-systems. Each router has multiple bi-directional

links that it could direct the packet along.  Using information from a routing table, the

router decides the next link the packet must cross to move the packet closer to its ultimate

destination. Each of these links has a finite, fixed capacity and the amount of data that

needs to be forwarded along a given link may, at times, exceed the capacity of the link.

When this happens the link is overloaded and said to be congested.  This congestion may

be transient or persistent.  It may be transient because packets happen to arrive in a bursty

manner. That is, a large number of packets arrive nearly simultaneously, in a group, fol-

lowed by a gap during which few packets arrive. Bursty traffic is a common phenomenon

in the Internet [Leland94], [Willinger95].  In the transient case the congestion can be

remedied by providing a queue of buffers in the router to allow packets for a given out-

bound link to be stored briefly before being forwarded.  Alternatively, the congestion may

be persistent because the offered load is consistently exceeding the capacity of the link. In

the persistent case, the buffering would have to increase with the length of the congested

period in order to avoid discarding, or dropping, packets because of queue overflow.

To better understand the relationship between queue-induced latency and traffic load,

consider the concept of traffic intensity. Traffic intensity is the ratio between the rate at

which bytes arrive and the rate at which they are transmitted.  If L is the average number

of bytes per packet, a is the packet arrival rate, and R is the transmission rate (in

bytes/second) then traffic intensity is La/R.  If packets actually arrived periodically, then

no buffering would be needed so long as La/R ≤ 1.   However, the actual arrival process is

bursty.  A burst of N packets may arrive every (L/R)N seconds, averaging a traffic inten-

sity of 1.  Moreover, since the N packets arrive as a burst, a buffer is necessary to accom-



3

modate this traffic pattern and the average buffer size grows large, (n-1)/2*L.  Since an

arriving packet has to wait for all of the packets in front of it in the buffer to be transmit-

ted, the longer the buffer grows the more time it takes for arriving packets to transit the

router.  Therefore, the average time each packet spends in the buffer is the average size of

the buffer divided by the transmission rate, (n-1)/2*L/R.  The resulting delay is referred to

as queue-induced latency. With infinite buffers and bursty traffic, queue-induced latency

increases rapidly, approaching infinity as traffic intensity approaches 1.  When congestion

is persistent, traffic intensity averages near 1, thus queue-induced latency can approach

infinity with sufficient buffer capacity.  Since memory costs money and latency is undesir-

able, buffering alone does not offer a suitable solution to the problem of persistent con-

gestion.   Instead, buffer capacity is allocated to accommodate transient, bursty congestion

but when those buffers fill, arriving packets are dropped.  Although routers can address

transient congestion with sufficient buffering, router buffering is not a viable solution to

persistent congestion.  Instead, persistent congestion has traditionally been addressed by

end-systems recognizing congestion indicators such as lost packets and responding to

congestion by reducing the transmission rate. When an end-system responds to indications

of congestion by reducing the load it generates to try to match the available capacity of the

network it is referred to as responsive.

Responsive traffic is one of two major types generated by the end-systems.  (The other

is unresponsive.)  From a network management perspective, responsive traffic is highly-

desirable. In principle, when all flows are responsive, they adjust the load they generate to

arrive at an aggregate load that stabilizes near the available capacity of the network and

the network performs well. As a result, network utilization is high but overload is uncom-

mon. The primary example of, and indeed the de-facto definition of, a responsive trans-

port-level protocol is the Transmission Control Protocol (TCP) [Stevens94].  TCP is the

protocol most commonly used for reliable data transfer.  We will examine TCP and its re-

sponsiveness more closely in Sections 1.1.2 and 1.2. Conversely, an unresponsive flow is

one that generates network load without any consideration of the current network condi-

tions.  The load generated at any time is solely a function of the operation of the applica-

tion.   The primary example of an unresponsive protocol is the unreliable datagram proto-



4

col (UDP) [Postel80].  UDP is commonly used by applications such as interactive multi-

media where timely delivery of data is more important than reliability.  However, when

flows are unresponsive the load may continuously exceed the capacity of the network re-

sulting in persistent congestion and poor performance for all flows.  Note that the source

of the responsive behavior is of no concern.  It may be the result of a transport level pro-

tocol like TCP, a general application-level protocol, or a protocol unique to a single appli-

cation.  Henceforth, we refer to responsive and unresponsive protocols, meaning mecha-

nisms at any of these levels.

There is a fundamental tension between these responsive and unresponsive protocols.

Responsive protocols assume that the other flows sharing the network are also working

towards the common goal of stabilizing the network load to match the network capacity.

But, an unresponsive protocol sends its load into the network regardless of network con-

ditions.  When both types of flows are present during persistent congestion, the responsive

flows reduce their load on the network but the unresponsive flows potentially maintain

their load.  Thus, the unresponsive flows benefit at the expense of responsive flows since

the unresponsive flows achieve high throughput by using the capacity freed when the re-

sponsive flows reduce their load. In the worst case, the unresponsive flows generate a load

greater than the available capacity of the link. In that case, the network remains congested

while responsive flows reduce their generated load to essentially zero.  Meanwhile, some

or all of the unresponsive flows also still fail to receive the desired performance because

the load they generate still exceeds the capacity of the link resulting in loss for those flows.

A somewhat better scenario for unresponsive traffic (i.e., the set of flows using unrespon-

sive protocols) has the aggregate load generated by the unresponsive traffic summing to

less than the capacity of the network.  In that case, the unresponsive traffic should be able

to get good performance while only the responsive traffic’s performance suffers.  Unre-

sponsive traffic is able to achieve its desired throughput level while the responsive traffic

reduces its load to (potentially) a small fraction of what it would receive if all flows were

responsive.   However, in this scenario responsive flows are still suffering poor perform-

ance due to the interaction of their behavior and unresponsive traffic's greedy approach.



5

Responsive traffic's vulnerability to the effects of unresponsive flows offers a disincen-

tive to use responsive protocols.  Application designers seeking high throughput may be

tempted to use unresponsive protocols.  However, if all flows are unresponsive, then con-

gestion will be even more common since the end-systems will not adjust their loads to find

a stable operating point.  Incentives should be found to encourage the use of responsive

protocols.

To better appreciate how this tension affects performance in the Internet it is helpful to

consider the makeup of traffic in the Internet and the behaviors of the most common pro-

tocols at the application and transport levels.  It is also useful to consider the current pro-

posals for addressing the tension between responsive and unresponsive flows.  In the re-

mainder of this chapter, we first consider the nature of Internet traffic, its composition and

the requirements and characteristics of the different types of traffic, particularly reliable

data transfer using TCP and interactive multimedia using UDP.  We then consider the

problem of congestion control and some of the current approaches that have been taken to

address both congestion in general and the tension between responsive and unresponsive

flows specifically.  Next, router queue management approaches are considered, including

our approach, CBT.  From there we present our thesis and outline our experimental ap-

proach to supporting it.  Finally, we present an overview of the remainder of this disserta-

tion.

1.1. The Nature of Internet Traffic

Different types of applications present different demands on the Internet.  Application

designers usually create application-level protocols to meet the specific demands of their

application.  For example, HTTP has a well-defined format for specifying a requested ob-

ject, the transfer format to use, and any additional information.  However, those applica-

tion designers also follow the modularity argument that says that they should select a

transport level protocol (e.g. TCP or UDP) to provide basic transport-level services when

possible.  For example, HTTP needs a reliable byte stream to insure files arrive intact so

the designers chose to use TCP as the transport protocol because it offers ordered reliable

delivery.  Conversely, video conferencing applications seek to deliver the most recently



6

recorded frame to the play-out station as soon as possible.  If a frame is lost, the emphasis

is on making sure the next frame arrives quickly, not on retransmitting the old frame until

it arrives successfully.  As such, those designers often choose UDP as the transport proto-

col because it offers an unreliable, datagram service.

In this section we present measurements of typical backbone traffic showing the major

traffic types found.  Then we identify two major categories of Internet traffic, reliable data

transfer and interactive multimedia.  For each, we present the transport level protocols

they most commonly use and the reasons why.

1.1.1. Types of Traffic and Percentages

Internet traffic can be described at many levels.  For the purposes of this discussion we

will consider the distribution of Internet traffic by transport-level and application-level

protocol.   Figure 1.1 shows a typical graph of the traffic monitored on an Internet back-

bone link classified by transport protocol type [Claffy98].  See also [McCreary00,

Charzinski00] for more examples.  Table 1.1 shows a subset of the data in a tabular for-

mat. 1  The high percentage of TCP traffic is immediately obvious from the graph.  Fur-

ther, UDP is the second most common type of traffic.  These two protocols represent 95%

and 5% of the bytes, respectively.  This shows that TCP clearly is the predominant trans-

port protocol in the Internet.  Moreover, UDP is the only other transport protocol using a

significant fraction of the link’s capacity.

                                               
1 The data shown here comes from monitoring the connection between a core router and the backbone at a
junction point including several backbone trunks as well as a connection point for local traffic near a ma-
jor U.S. East Coast city.



7

0:00 6:00 12:00 18:00 24:00

100

40

80

60

20

0

P
e

rc
e

nt
a

g
e 

of
 T

ra
ff

ic

Other
IPv6
IP-in-IP
ICMP
UDP
TCP

Figure 1.1 Transport-Level Protocols as Percentage of Internet Traffic (figure taken
from [Claffy98])

% of Bytes % of Packets % of Flows

TCP 95% 90% 80%

UDP 5% 10% 18%

ICMP 0.5% 2% 0%

Table 1.1 Transport-Level Protocols as Percentage of Internet Traffic

Figure 1.2 shows a graphical representation of the same traffic, broken down by appli-

cation-level protocol.  Table 1.2 shows the same data in a tabular format.  Once again, one

type of traffic clearly dominates the link. That traffic type is HTTP, the traffic type used by

the world-wide web.  HTTP depends on the transport layer protocol, TCP, to achieve re-

liable data transfer of objects (e.g. HTML documents and images).  The second highest

category in the chart is other, the combination of miscellaneous application protocols that

individually represent less than 1% of the traffic.   As noted in [Claffy98], the web may



8

actually be under-represented in these measurements because the most common port num-

bers in the category of other traffic are associated with various web-related protocols.

0:00 6:00 12:00 18:00 24:00

100

40

80

60

20

0

P
e

rc
en

ta
ge

 o
f 

T
ra

ffi
c

Other
Telnet
FTP
NNTP
SMTP
DNS
WWW

Figure 1.2 Application-level Protocols as Percentage of All Internet Traffic (figure
taken from [Claffy98])

Protocol % of Bytes % of Packets % of Flows

WWW (TCP) 75% 70% 75%

DNS (UDP) 1% 3% 18%

SMTP (TCP) 5% 5% 2%

FTP (TCP) 5% 3% 1%

NNTP (TCP) 2% <1% <1%

TELNET (TCP) <1% 1% <1%

Table 1.2 Application-level Protocols as Percentage of All Internet Traffic



9

1.1.2. Reliable Data Transfer and TCP

As this data shows, reliable data transfer, specifically HTTP, is the most common type

of traffic in the Internet.  Here, reliable data transfer refers to the reliable transmission of

a single, contiguous unit of data from one end-system to another, putting an exact dupli-

cate of the data unit on another end-system.  TCP's ordered, reliable byte stream abstrac-

tion was designed for this type of task.  Below we discuss the properties of and types of

applications that use reliable data transfer.  We then discuss the abstraction of an ordered

reliable byte stream offered by TCP and why TCP is the transport protocol of choice for

reliable data transfers.

Reliable data transfer is distinguished by a binary correctness property.  If the data

does not arrive correctly it is useless.  Proper delivery has three properties focused on the

integrity of the data: completeness, correctness, and order.   The data unit must be com-

plete; reception of only a part of the data holds no value.  The data must also be correct;

corruption of any part of the data removes all value.  And, the data must be properly or-

dered;  These integrity properties are the primary requirements for reliable data transfer.

Performance is also a concern, but secondary to the data’s integrity.   Applications should

transfer their data in a reasonable period of time but the timeliness of the data’s arrival

does not effect its usefulness. Consequently, reliable data transfer needs a mechanism that

provides a reliable ordered data stream connecting the sender and the receiver.

The predominant choice among transport-level protocols for reliable, ordered delivery

of data is the Transmission Control Protocol, TCP. TCP offers the application-level pro-

grammer the abstraction of a reliable, ordered byte stream.  It is these three properties that

make TCP very attractive for services that move data from one location to another.

However, it is a fourth property, added after the initial design of TCP and essentially

invisible to the application-level programmer, which makes TCP especially well suited to

the shared nature of the Internet.  That property is TCP's responsiveness to congestion

[Jacobson88].  Below, we discuss how the properties of ordering and reliability are

achieved.  We will discuss how the initial design of TCP was extended to respond to con-

gestion in Section 1.2.



10

TCP was initially designed to offer the abstraction of a byte stream connecting two

applications on separate machines connected by a network.  Data sent from one applica-

tion will eventually arrive at the other application in the order it was sent.  In the relatively

rare case of network failures (e.g. physical link failure, or route failure) that break the

"pipe" between sender and receiver, the application-level abstraction will report failure of

the connection. The network protocols (e.g., IP) neither insure that data arrives nor that it

arrives in the order sent.  The network layer only provides best-effort, possibly unordered,

forwarding of packets to the destination.  TCP orders these packets using a sequence

number in each message it sends. Contiguous bytes of data are made available to the ap-

plication-level receiving process.  Non-contiguous bytes are not immediately delivered to

the application and instead are stored in the protocol stack until the missing bytes arrive.

This leads to the issue of retransmissions.

If a packet fails to arrive at the receiver it leaves a gap in the sequence number space.

If the packet has been lost, the sender must retransmit the packet necessary to fill such a

gap.   However, the sender must have some mechanism to recognize when a packet has

been lost.  TCP achieves this with a feedback mechanism.  Data that arrives successfully at

the sender is acknowledged in a reply from receiver to sender.  Failure to receive ac-

knowledgement of a packet after a reasonable period of time indicates that the packet was

lost.  This time-out period may be measured either in time as a function of the round-trip

time between sender and receiver or by the number of subsequent packets with a higher

sequence number that arrive at the receiver.  TCP receivers send multiple, duplicate ac-

knowledgements of the highest contiguous byte received.  Whether loss is detected via

time-out or duplicate acknowledgements, the sender retransmits the lowest numbered un-

acknowledged message.  This cycle is repeated as many times as necessary.   As a result,

achieving this reliability can introduce significant latency, on the order of round trip times,

when a packet has to be retransmitted.  This retransmission of data is the key to TCP’s

reliability and this reliability makes TCP ideally suited to reliable data transfer.   

1.1.3. Interactive Multimedia and UDP

Interactive multimedia's correctness is less discrete than that of reliable data transfer.

Loss or out-of-order delivery may be tolerable.  However, throughput and latency are im-



11

portant performance factors.  We explain these factors below and then explain why UDP

is a better choice than TCP for interactive multimedia.

While reliable data transfers have long dominated the Internet, multimedia, such as

audio and video, is one of the newest forms of traffic in the Internet.  It can be widely used

interactively, either to allow two or more individuals to converse or to allow a user at one

end-system to interact with a remote environment.  This remote interaction may be real,

such as controlling some remote robotic device, or virtual, such as interacting with a vir-

tual environment being generated at a remote location.

Interactive multimedia’s primary characteristic is that the quality of the content is time-

dependent.  Data may arrive at the viewing station slightly later than the ideal time it

should be played and still be useful.  However, data that is delayed significantly may be

useless.  If the throughput is lower than intended the quality of the play-out may suffer but

still be useful.  However if the throughput falls below some minimum level the media

stream may be useless.

The fundamental generic data units for multimedia are frames that are periodically

generated.  Depending on the specific media type, the receiver can tolerate some lost

frames.  In particular, loss may be preferable to the increased latency required to insure

reliable delivery.  Increased reliability usually comes at the cost of the increased latency to

sense the loss and then retransmit the lost data.  Because of concerns over smooth play-

back as well as interactivity, significant latency may degrade the properties of an interac-

tive multimedia interaction.   We discuss each of these properties, throughput, loss, la-

tency, and jitter, in greater detail below.

Consider how interactive multimedia works, in a perfect network.  In the simplest

case, a continuous stream of independent and discrete samples (frames) of analog audio or

video are periodically recorded at the recording station, transmitted across the network to

the viewing station, and then played back with the same periodicity.  The periodicity at the

recording station is the recording rate and the periodicity at the viewing station is the dis-

play rate.  With a sufficiently high recording and display rate these consecutive frames give

the illusion of continuity.  However, sometimes the display rate may be insufficient to



12

maintain the illusion of perfect continuity.  Even in these cases where the discrete nature is

perceptible, the quality may be tolerable.  The tolerances on display rate vary with the type

of media stream and the content.  In a video stream with a great deal of motion, such as a

football game, the display rate must be very high to be tolerable.  In a narrated slide pres-

entation a low video display rate may be fine because the image changes slowly and dis-

cretely.  If the video is combined with an audio stream with a higher play-out rate the in-

teraction may be quite satisfactory. However, audio media has a more strict minimum ac-

ceptable play-out rate than video.  While visual media has both an instantaneous (e.g.

photograph) and continuous (e.g. motion-picture) dimension, audio lacks the instantane-

ous dimension.  If audio samples are missing at play-out you have noticeable gaps or

"pops".

Another key aspect of multimedia lies in the fact that frames are independent.  (For the

purposes of this introduction we will ignore encoding schemes and features such as refer-

ence frames and the considerations they present.)  By independent we mean that if a single

frame fails to reach the playback station, that frame can simply be skipped, essentially re-

ducing the frame-rate for that instant.  Loss of one frame does not effect the value of the

other frames.  Moreover, the loss of one frame may be beyond the human perception

threshold.  Even moderate loss may only result in a decreased frame-rate that although

perceptible, remains above the user's tolerance threshold.  Although reliability at some

level is desirable, perfect reliability it is not a primary requirement for the transmission of

interactive multimedia in the Internet because of frame independence.

Next, consider latency.  Minimizing latency is another important property for interac-

tive media.  In order for the media to be used interactively (e.g. for human-to-human con-

versations) the delay between the time that a frame is recorded and the time that it is

played must be minimized.  We refer to this delay as end-to-end latency. The most com-

mon example of interactive media is a telephone conversation.  Studies have indicated

there are definite upper bounds on the order of 250 to 400 ms for tolerable one-way la-

tency for interactive audio [Ferrari90],[Wolf82].  Also, consider the effect of latency on

control of a remote device.  In order for the control to be natural, the time between taking

an action and receiving the feedback based on that action should be nearly instantaneous.



13

Users expect to see the results of their input adjustments with no apparent delay, on the

order of 100 ms [Schneiderman98].  In some cases, delays of 50ms are noticeable and de-

lays of 80ms are irritating [Bhola98].  Interactive multimedia demands low latency for the

interaction to be useful.

Even when dealing with non-interactive media, latency, particularly variance in la-

tency, is a serious issue.  We refer to the variability in latency as "jitter".  For example, jit-

ter results in irregular or random movement that appears in a video playback with variable

latency.  If the latency is variable, the inter-arrival time between frames will be variable.  If

frames are played back as soon as they arrive, the display of the frames will lose the illu-

sion of continuity.  In this context, jitter applies to all types of media, referring simply to a

non-periodic playback rate of the frames.  Jitter can be addressed by artificially adding de-

lay to those packets that arrive quickly at the receiver by buffering those packets

[Stone95]. This technique causes all packets to have the same, potentially large, delay but

avoids variation in latency.  Typically the buffer is configured to be sure all packets incur a

delay on the order of the maximum end-to-end delay.  Thus, it is useful to have an upper

bound on the end-to-end latency in order to limit the amount of buffering and latency that

must be allocated at the receiver.  The variability in latency needs to have a reasonable

bound in order for end-system jitter management techniques to be effective.

The protocol commonly used for interactive multimedia is UDP.  UDP offers a da-

tagram service that makes a best-effort attempt to deliver data to the destination.  UDP is

basically a transport-level wrapper for IP.

UDP appeals to designers of multimedia applications because is an extremely light-

weight protocol.  Because it simply guarantees the transmission and not the delivery of the

packet, it offers a more stable transmission rate and less transport-level buffering.   This

lack of transport-level buffering eliminates one potential source of latency.  Datagrams are

never retransmitted.  Transmission is never delayed because a previous packet is unac-

knowledged.  Datagrams are only buffered if the network interface lacks capacity to

transmit them, or, at the receiver, if the receiver is not ready to receive them.  Since inter-



14

active multimedia applications are more concerned with timely delivery of frames than re-

liable delivery, UDP is well-suited to this application domain.

In contrast, TCP is less well-suited for multimedia. Since latency and throughput are

primary concerns and the data stream is loss tolerant, TCP is less appealing.  TCP’s pri-

mary design feature, reliability, carries some overhead in terms of limited effective band-

width and latency.  Because all data must be buffered at the sender until acknowledged

and at the receiver until properly ordered, and because buffer space is limited, TCP’s

transmission rate for new, unsent data is limited.  When the sender's buffer is full, the ap-

plication is blocked from transmitting new data until older data has been successfully de-

livered.  This can result in significant latency during periods of congestion.  During periods

of intense congestion, a 10% drop rate may result in latency up to 70 seconds for some

TCP flows [Cen98].  Another TCP feature, ordering, may appear desirable since frames

should be played in order.  However, out-of-order arrival usually occurs because of loss.

To correct this problem one must wait for the out-of-order frame to be retransmitted and

arrive before processing the later packets, resulting in high latency.   Instead, multimedia

application designers use UDP and treat the out-of-order frame as lost and discard it.

Since multimedia places an emphasis on the most recent data and is tolerant of some loss,

this policy works well.  Multimedia application designers usually choose the lighter-weight

semantics of UDP and rely on application semantics to deal with pathologies.

1.2. The Congestion Control Problem

Having described the TCP and UDP protocols and the nature of the applications that

use them, it is helpful to give more detailed consideration to congestion and the way that

the two protocols behave in the presence of congestion. The protocols vary widely in the

ways that they contribute to and respond to congestion.  TCP is responsive; it heuristically

recognizes and responds to congestion. Conversely, UDP is unresponsive; it does not rec-

ognize congestion so it does not respond to it.  To better understand how and why the

two most popular protocols take such different approaches to this problem, we must first

consider the nature of congestion.  Why does it happen, how is it identified, and how can

it be avoided?



15

Congestion on a link occurs when the traffic arriving at a given link (i.e. load) exceeds

the maximum capacity of that link.  This congestion may occur because the outbound

link’s capacity is less than that of a single inbound link and all of the traffic arriving on that

inbound link is destined for the lower capacity outbound link.  It may also, more com-

monly, occur because packets arriving from multiple inbound links are all destined for the

same outbound link and, in aggregate, those packets exceed the capacity of the outbound

link.  The congestion may be transient, resulting from the chance simultaneous arrival of

packets on multiple inbound links or it may be persistent as the aggregate load consistently

exceeds the outbound link’s capacity.

Traditionally, there have been no widely used explicit indicators of congestion in the

Internet. There was no widely used mechanism for providing feedback to end-systems to

indicate that a particular link was congested. (Although the source quench option of

ICMP was designed to allow routers to signal congestion, it has not been widely used in

routers or end-systems.  For more discussion of source quench, see Chapter III.)  Instead,

end-systems had to infer the presence of congestion by noting packet loss and assuming

that loss was due to overflow in a congested router's queue.   In order for loss to be an

effective indication of congestion, either the transport or application-level protocol must

detect loss by the absence of expected packets at the receiver, and report the loss to the

sender.  TCP must detect loss in order to implement reliability through retransmissions.  It

can use this same mechanism to infer congestion and respond accordingly.

There are proposals for explicit congestion indicators as well.  Recent proposed exten-

sions to TCP recommend taking advantage of a an explicit congestion notification (ECN)

bit in the IP header which would indicate congestion may be imminent [Floyd94].  Those

proposals recommend that routers set this ECN bit in the IP header of packets when per-

sistently occupied queues indicate congestion.  The receivers of messages with the ECN

bit set would then be responsible for informing the senders that congestion may be immi-

nent.   Since this mechanism would indicate congestion before queues overflow, the send-

ers would be able to adjust their transmission rate and actually avoid loss, rather than sim-

ply respond to it.  This would reduce the need for retransmissions since the notification

occurs before packet loss actually occurs.  Unfortunately, ECN, like many Internet pro-



16

posals faces the problem of inertia. There are many deployed implementations of the

transport protocols that would need to be modified to respond to this ECN bit.  Changing

all of the deployed implementations is an immense task.  Further, until more routers be-

come ECN capable, there is little motivation to use ECN.  As a result, we continue to fo-

cus on the implicit indicator, loss, as the primary indicator of congestion and next consider

the effects of congestion.

Once a link becomes congested, if the congestion persists it may lead to a pathological

condition called congestion collapse. Congestion collapse is a phenomenon where the ca-

pacity of the network, or of a given network link, is fully utilized but little or no useful

data is actually reaching its intended destination. The most well-known form of congestion

collapse led to the development of congestion control mechanisms in TCP.  When TCP

was first deployed it had no congestion control mechanism.  It became apparent that mul-

tiple TCP streams sharing the same network resources and achieving reliability through

retransmissions could quickly lead to one form of congestion collapse called retransmis-

sion collapse [Nagle84].  In retransmission collapse, flows respond to packet loss by

maintaining their transmission rate and retransmitting the lost packets.   This maintains the

overload situation and causes the congestion to persist or grow.   Moreover, the same

data may be transmitted over the links that lead to the congested router multiple times

before being dropped at the congested router.  This wastes capacity on all of the links.

The links may be fully utilized but little useful data actually reaches the receivers.

Clearly, recognizing and responding to congestion in a way that does not lead to con-

gestion collapse is a key element of maintaining good performance in today’s best-effort

Internet.  Congestion may be addressed with congestion avoidance algorithms in each

sender or with techniques to manage and allocate link capacity in the routers.  Currently,

the primary congestion avoidance technique is TCP's congestion control policy

[Jacobson88].  TCP interprets loss as an indicator of congestion and adjusts its transmis-

sion rate accordingly.  When congestion is detected, a given flow decreases its transmis-

sion rate geometrically.  This is accomplished by halving the number of bytes that a flow

may have sent but not yet received acknowledgement for.  When losses cease, the flow's

transmission rate is increased linearly, adding one segment per round-trip time.  Using this



17

technique, individual TCP flows probe for network capacity.  The intent is to find equilib-

rium where the load matches the capacity of the bottleneck link.  When all senders address

congestion in this fashion, most of the data passing through the network is actually useful

data that reaches the senders.

However, many applications use other transport protocols that are not responsive, of-

ten with good reason.  For example, UDP is selected for multimedia specifically because

the protocol doesn't introduce any artificial delays.  Moreover, because responsiveness

requires a feedback mechanism, UDP can not be changed to be responsive without losing

compatibility with previous versions.  Alternative means of responding to, or avoiding

congestion must be considered to address the demands presented by traffic that does not

use TCP.

2. Active Queue Management

Within the infrastructure of today’s best-effort Internet, there are several approaches

to providing good congestion management.  Most of these approaches involve changes to

the end-system at either the application-protocol or transport-protocol levels.  Many of

these approaches are discussed, in Chapter II.  However, end-system reactions to conges-

tion can be improved by having routers identify, manage, and signal congestion within the

best-effort Internet.  By taking an active approach to deciding which packets to drop (or

mark as with ECN) and when to drop them, routers can provide better feedback to re-

sponsive flows.  They can also identify and regulate unresponsive flows.  In contrast, tra-

ditionally the buffers in routers were treated strictly as queues with fixed, finite capacity.

That is, they were first-in, first-out (FIFO) queues with drop-tail when full behav-

ior.Having end-systems address congestion by responding to loss is not perfect.  First,

notification by drops is somewhat arbitrary.   Only those end-systems that have packets

dropped recognized congestion.  The distribution of packet drops is determined by the

pattern of packet arrivals since packets are only dropped if the queue is full when they ar-

rive.  Some flows might send bursts of packets that arrive at a near full queue, forcing

most of the packets from that flow to be dropped.   In contrast, in the same interval an-

other flow may send a more evenly spaced stream of packets, all of which are fortunate



18

enough to arrive when the queue is not quite full because the queue drains slightly be-

tween bursty arrivals.  Consequently, some flows may receive multiple implicit notifica-

tions (i.e. multiple lost packets) while others receive few or none.  Recent efforts have fo-

cused on equitable notification for all flows.  This was accomplished by extending the op-

tions of when to drop packets and which packets to drop beyond simply dropping the

newly arriving packet when the queue is full.  These alternative approaches that make ac-

tive decisions on when to drop packets and which packets to drop are referred to as Ac-

tive Queue Management (AQM).   We discuss Active Queue Management in detail in

chapter III but provide a brief overview here.

The most recent AQM approaches use statistics about the recent average queue occu-

pancy as an indicator of congestion.  By monitoring the average queue size they recognize

situations where congestion is persistent or imminent and differentiate between those

situations and ones where the congestion is transient because of bursty arrivals.

Recently, members of the Internet community recommended that some form of AQM

be deployed at most routers in the Internet [Braden98].  They specifically suggested the

deployment of a mechanism called Random Early Detection (RED) [Floyd93].  RED

monitors the average queue occupancy and drops arriving packets probabilistically when

the average is too high. Below a minimum threshold the probability is zero and above a

maximum threshold the probability is one.  Between those thresholds the probability a

packet will be dropped increases with the average occupancy.  RED thus offers a reasona-

bly accurate mechanism to detect congestion by comparing the average queue length to

these maximum and minimum thresholds.  Moreover, the algorithm provides an effective

mechanism to distribute the notifications of congestion among all flows.  Although the ba-

sic mechanism of probabilistically dropping arriving packets distributes drops more evenly,

it is further enhanced by the use of a mechanism that increases the likelihood an arriving

packet will be dropped as the number of packet arrivals since the last packet drop in-

creases.  This makes it less likely that multiple packets in the same burst will be dropped.

However, as we will show in Chapter III, RED does nothing to address the tension

between responsive and unresponsive flows.  During a congested period, RED will drop



19

an equal percentage of the packets on each flow.  Responsive flows will interpret these

drops as congestion indicators and respond by reducing the load they generate.  However,

unresponsive flows will continue to generate the same load.  If the network remains con-

gested, all the flows will continue to be subjected to drops and the responsive flows will

continue to reduce their load, allowing unresponsive flows to dominate the link.  In re-

sponse to this issue a second recommendation was made calling for continued research

into mechanisms to identify and constrain unresponsive flows [Braden98].

Most of the approaches to this problem have been TCP-centric.  That is, the ap-

proaches are based on the observation that TCP’s congestion avoidance policy makes it a

good network citizen as it achieves equilibrium between load and capacity.  As such, other

flows should be encouraged to behave in a more TCP-like way and those that don’t should

be harshly constrained.  Floyd and Fall define tests to identify high-bandwidth, unrespon-

sive, or non-TCP friendly flows (i.e. flows that are responsive, but slower to respond than

TCP) and propose that such flows should be severely constrained by preferentially dis-

carding packets from those flows [Floyd98].  Similarly, extensions to RED, such as Flow-

based RED (FRED), propose that all flows should have access to an equal share of the

link’s capacity [Lin97]. FRED takes advantage of the fact that packet drops serve a dual

role, notification and constraint. Responsive flows are primarily subject only to drops for

notification following a RED like algorithm.  However, FRED’s designers use packet

drops specifically to constrain those flows that do not respond to congestion notification

to have no more than a fair share of the queue, and thus the outbound link.

2.1. Our Approach - Class Based Thresholds

We take a different perspective on the tension between responsive and unresponsive

flows.  We recognize that some flows are unresponsive because the nature of the commu-

nication does not lend itself to having a feedback channel that can be used to implement a

TCP-like detection of congestion.  Further, application requirements may constrain the

responsiveness.  Moreover, we realize that aggressively constraining flows like interactive

multimedia may drop the value of the interaction to zero.  This actually contributes to in-

efficiency, as those packets that reach the receiver have no value since the degradation of



20

the multimedia stream because the other losses makes it useless.  Instead of punishing all

unresponsive flows, we seek to isolate classes of flows from one another, protecting re-

sponsive flows from the effects of unresponsive flows, and protecting different types of

unresponsive flows from one another.  We propose a new algorithm, class based thresh-

olds (CBT), that offers these properties.

The implementation of the CBT algorithm introduced here defines a set of traffic

classes.  Flows belong to one of several classes and CBT maintains statistics for each class

of traffic. Each class’s average queue occupancy in a router is monitored and statistics are

maintained. The algorithm assures that each class is limited to a fixed average queue occu-

pancy by using an occupancy threshold.  Arriving packets of classes that exceed this

threshold are discarded.  The relative queue occupancy of each class also determines the

relative share of the outbound link used by each class.  For example, if a given class occu-

pies 10% of the bytes in the queue, then as the queue drains, that class will represent 10%

of the traffic on the outbound link.  Adjusting these occupancy thresholds allows a net-

work administrator to allocate shares of the outbound link to each class.    Further, be-

cause the sum of the thresholds determines the maximum average queue occupancy, these

thresholds also control the maximum average queue-induced latency.  Finally, CBT is

light-weight.  It does not have the algorithmic or state maintenance overhead associated

with packet scheduling techniques that provide similar functions.  Instead, CBT maintains

a small number of statistics and performs a simple test at each queue's arrival to determine

whether or not to enqueue the arriving packet.

3. Thesis Statement:

In this dissertation we will show:

Our active queue management algorithm, class-based thresholds, can ef-

fectively isolate responsive traffic from the effects of unresponsive traffic.

Moreover, CBT also isolates unresponsive traffic types from one another.

Further, analysis shows that CBT can be configured to allocate bandwidth

and manage latency and that the performance under varying loads is pre-



21

dictable.  Finally, empirical analysis confirms that CBT is superior to well-

known AQM algorithms and comparable to a packet scheduling approach.

4. Empirical Validation

To determine the effectiveness of our algorithm we compare it to other queue man-

agement approaches, specifically FIFO, RED, and FRED.  Moreover, we also conduct the

same experiments using a packet-scheduling discipline, Class-based queueing (CBQ), as a

"gold-standard" for comparison.  Performance with packet scheduling will be near optimal

in terms of reliable data transfer and multimedia performance.   We argue the merits of

active queue management over packet scheduling regarding complexity, infrastructure,

and state in Chapter VI.  The experiments compare the performance of TCP, multimedia,

and other traffic as they traverse a congested network with a bottleneck router running

one of the algorithms discussed.  We use multiple types of TCP and multimedia traffic in

different combinations to explore a wide range of parameter settings for each algorithm.

We describe the nature of our empirical experiments in more detail below.

4.1. Empirical Comparison

We have implemented CBT and FRED within the FreeBSD kernel with ALTQ exten-

sions [Cho98]. ALTQ is a set of extensions to the default IP-layer packet queueing poli-

cies in a FreeBSD router to support development of experimental packet schedulers and

active queue management schemes. In addition to our active queue management imple-

mentations, we also used the existing ALTQ implementation of RED and CBQ.

To test the implementation we have constructed a simple network consisting of two

switched 100 Mbps Ethernet LANs that are interconnected by a 10 Mbps Ethernet.

FreeBSD routers route traffic between the 100 Mbps Ethernets across a full-duplex 10

Mbps Ethernet as shown in Figure 1.3. The speed mismatch between the “edge” and

“backbone” (i.e. middle) networks exists to ensure the backbone network is congested. A

series of machines at the edges of the network establish a number of connections to ma-

chines on the opposite side of the network. Connections include a mix of TCP connections

and UDP connections.  Several of the UDP connections are multimedia.



22

For the TCP flows, the kernel on each machine introduces a delay in transmitting

packets from each connection to simulate a larger round-trip time. This allows us to create

conditions that emulate a wide-area backbone link.

FreeBSD
Router

10 Mbps

100 Mbps 100 Mbps

FreeBSD
Router

ftp,
UDP blast,
& ProShare
generators

ftp,
UDP blast,
& ProShare
generators

Figure 1.3 Experimental Network Setup

Traffic is generated in all of the experiments using a scripted sequence of flow initia-

tions. This ensures comparable traffic patterns are generated in each experiment and hence

the results of experiments may be compared. The timing of the traffic and the specific

traffic types used varies between experiment types (but not between instances of the same

experiment).

The types of traffic representing TCP and multimedia vary.  In some traffic mixes a

small number of long-lived reliable data transfers (BULK) are the representative TCP traf-

fic type.  In other experiments we used a large number of light-weight short-lived flows

that are part of an HTTP model. Multimedia also had two types of traffic, a set of Pro-

share flows and MPEG flows.  Proshare is a proprietary video-conferencing application

from Intel.  The Proshare flows represented a series of independent frames while the

MPEG flows had the common MPEG dependencies between I, B, and P frames.  This al-

lowed us examine the effect of congestion on actual frame-rate vs. playable frame-rate.

Our other, unresponsive, traffic was a small number of UDP flows sending at a fixed rate

which in aggregate summed to greater than 10 Mb/s.

Using this methodology we considered each algorithm’s behavior under a variety of

traffic conditions.  We initially explored the parameter space for each algorithm, deter-

mining the effects of adjusting different parameters and selecting the optimal parameter

settings for each combination of algorithm and traffic mix.  We then compared the per-



23

formance of the algorithms under the same traffic mixes.  In each case, the algorithms

where configured with their optimal parameter settings for the given traffic mix.

4.2. Summary of Results

Our experiments revealed several important results:

• We determined optimal parameter values for FIFO, RED, FRED, and CBT under a

variety of traffic conditions.  Along the way we found several important insights on the

relation between different parameters and key performance metrics.  For example, the

maximum threshold value is linearly related to the maximum average queue-induced

latency for RED.

• TCP receives a better share of bandwidth when facing misbehaving or unresponsive

multimedia flows with CBT than with RED. Performance with CBT is comparable

with FRED.

• Using CBT, the number of drops on low-bandwidth protected flows is substantially

lower than when RED or FRED are used.

• Using CBT, we can approach the class isolation and multimedia drop rate of CBQ.

• Moreover, CBT achieves these results with less complexity than FRED or CBQ.

FRED maintains state for every flow. CBQ must schedule every packet dequeue.

• CBT also offers flexibility in assigning router resources to different classes of traffic

instead of the uniform distribution offered by FRED.

CBT shows promise as an extension to conventional RED to constrain unresponsive

traffic and to support self-identified multimedia flows in today’s Internet.

In the remainder of this dissertation, we first consider related work in congestion con-

trol in chapter II.  Then we focus on active queue management in chapter III.  In chapter

IV we examine CBT in detail including the algorithm, and empirical verification of analyti-

cal results. Chapter V shows the results of our empirical evaluation of those algorithms

while chapter VI summarizes and discusses future work. Appendix A covers the experi-

mental methodology and Appendix B reviews the choice of optimal parameters.



II. RELATED WORK

1. Introduction

At a high-level this dissertation addresses the problem of congestion in the best-effort

Internet.  In this work, we focus on the specific problem of tension between unresponsive

flows and network stability when end-to-end congestion  control mechanisms like those in

TCP are the only mechanism.  However, other researchers have considered the more gen-

eral problem of congestion from different perspectives.  We consider the related work

here.

We begin by considering the approaches currently used widely in the Internet.  These

approaches focus on dealing with congestion in the transport-level protocols.  The domi-

nant example of this approach is TCP.  TCP has been modified from its original deploy-

ment to infer the presence of congestion and adjust its transmission rate accordingly.  Ap-

proaches like TCP's responsive congestion avoidance work well when all other traffic is

also responsive.  This is not always true.  UDP, the second most common transport proto-

col, is unresponsive.   This creates a problem as UDP may starve TCP flows by claiming

the capacity that TCP flows free when they reduce their transmission rate in response to

congestion.

In response to this issue, the Internet research community is calling for making all

traffic more responsive to congestion [Braden98].  There have been proposals to add re-

sponsiveness at all levels of the protocol stack.  At the transport level, Cen et al., and Si-

salem et al. propose protocols that maintain the low overhead associated with unreliable

protocols while adding the capability to respond to congestion by adjusting the transmis-

sion rate independent of the application [Cen98, Sisalem98].  Others have proposed appli-

cation-level approaches which detect changes in application level-performance and make

application level adjustments, such as change the recording parameters (e.g., frame-rate,



25

resolution), in order to adjust the load placed on the network [Talley97, Delgrossi93].

Additionally, Balakrsihnan, et al., offer an integrated congestion management architecture

for end-systems that manages congestion for all flows on the end-system at the transport-

level, while providing an API to integrate application level control and feedback [Balak-

rishnan99].  Finally, others propose integrating network and application level approaches.

In these approaches, some routers use application level tags to determine either which

packets to drop or the order in which to forward packets [Hoffman93, Delgrossi93].

In contrast to these changes to the end-system protocols, there are also router-based

approaches, both for constraining unresponsive traffic and for allocating bandwidth so ca-

pacity is available for responsive traffic.  These proposals and implementations introduce

traffic management into the Internet architecture through designs such as the differentiated

service architecture [Nichols97], [Clark97], and the integrated services architecture

[Braden94].  However, these architectures have not been widely deployed and may require

significant and complex modifications to the network infrastructure.  These approaches

provide policies for allocating network bandwidth and offering guarantees on latency and

throughput.  In contrast, there are other network-centric approaches that focus on pro-

viding better feedback to responsive flows as well as identifying and restricting unrespon-

sive flows.  Those approaches will be discussed in detail in Chapter III.  In this chapter we

cover transport-level, application-level, and integrated end-system approaches.   We then

consider the router-based quality of service (QOS) approaches.  Finally, the strengths and

weaknesses of each are summarized.

2. Transport-level Approaches

At the transport level, many protocols provide mechanisms to detect and respond to

congestion by adjusting the rate at which they send.  These mechanisms range from the

idealized responsiveness of TCP to the complete absence of responsiveness in UDP.  In

contrast to the well-established UDP, recent work has focused on several responsive

forms of unreliable datagram protocols.  This work includes the Streaming Control Proto-

col (SCP) [Cen98] and the Loss-Delay Based Adjustment (LDA) [Sisalem98].  Both the

current and proposed protocols are considered at greater length below.



26

2.1. TCP’s Responsiveness

TCP is the primary example of a congestion avoidance solution.  In response to the

congestion collapse phenomenon, TCP’s response to packet loss was modified

[Jacobson88].  Before considering TCP's response to congestion it is helpful to review

how TCP's transmission rate is controlled by a windowing mechanism. The TCP protocol

buffers units of data called segments at the sender and the receiver.  At the sender these

segments are buffered until the receiver has acknowledged them.  At the receiver, the

segments are buffered until all prior segments of the data stream have been received and

passed to a higher protocol layer.  At the sender, a mechanism called a congestion window

determines the number of consecutive segments that may be sent without receiving ac-

knowledgement for the first segment in the window. As segments are acknowledged the

congestion window advances to cover new segments (and those segments are then trans-

mitted).  Since it takes one round-trip time (RTT) for the data to reach the receiver and

for the acknowledgement to arrive, the protocol transmits one window's worth of bytes

per RTT.  Thus, adjusting the size of this window effectively adjusts the transmission rate

for the flow.

To avoid congestion collapse, TCP senders respond to loss not only by retransmitting

the data that was lost, but also by decreasing the rate at which they introduce data into the

network. In principle, when a packet-loss is suspected at the sender the packet is retrans-

mitted but the transmission rate of new data is decreased geometrically.  TCP senders

make this adjustment by decreasing the size of the congestion window by half. This geo-

metric back-off is balanced with a linear increase in the size of the congestion window

when no packet-loss is detected.  Using this control loop, the TCP streams are able to ad-

just the load they place on the network to attempt to match the available capacity of the

network.  As a result, most of the data passing through the network is actually useful data

that ultimately reaches the receivers.

2.2. UDP’s Unresponsiveness

In contrast to TCP, UDP is a transport level protocol that is unaware of the network’s

state.  One of UDP’s key characteristics is that it is lightweight, with each datagram sent



27

and then forgotten.  At the protocol level, the receiver does not acknowledge receipt of

the datagram.  There is no feedback from the receiver of any kind.  Without a feedback

channel the UDP sender cannot detect network congestion, either implicitly or explicitly.

As a result, it cannot respond to congestion.  Instead, UDP simply passes whatever data

the application generates to the network (i.e., IP) layer as fast as possible.  Once the

packet has been forwarded to the network layer the UDP sender's task is complete.

Making UDP responsive in a backward compatible way would be quite difficult.  Like

TCP, UDP was also widely deployed before the congestion collapse problem was first

identified. However, unlike TCP, UDP had no feedback channel as part of its initial de-

sign. TCP designers were able to leverage their existing feedback scheme and only change

the behavior of the senders, not the protocol itself nor the application using the protocol.

As a result they were able to gradually deploy TCP implementations that were both capa-

ble of congestion avoidance and compatible with older implementations of the protocol.

In contrast, adding congestion detection to UDP would require a redesign of the protocol

that would make new versions of the protocol incompatible with previous versions.

2.3. Responsive Unreliable Protocols

Another approach to addressing the tension between responsive and unresponsive

flows is to introduce new transport level protocols to replace UDP.  These protocols pro-

vide feedback from receiver to sender and use this information to adapt the transmission

rate of the sender to the available capacity of the network.  However, these protocols can

be more light-weight than TCP because they need not include reliability among their fea-

tures.  They can also incorporate other desirable delivery semantics for streaming media.

Two examples of this approach are the Streaming Control Protocol (SCP) [Cen98] and

the Loss-Delay Based Adjustment Algorithm [Sisalem98].  Both of these protocols pro-

pose techniques for adjusting the transmission rate of the sender in a TCP-friendly way

based on congestion indicators without the overhead associated with TCP’s reliability.

2.3.1. Streaming Control Protocol

SCP is an extension to UDP designed to support streaming media.  The design goals

include providing a smoother transmission rate which responds to network conditions



28

while minimizing latency.  The authors base their design on TCP’s window-based policy

for congestion avoidance.  Like TCP, they use acknowledgements to detect congestion via

packet loss and they increase the sender’s window linearly during slow-start (i.e. the ini-

tialization period when a TCP connection quickly increases its transmission window) and

decrease it geometrically during congestion.  However, they also include additional feed-

back and additional protocol states.  The acknowledgements not only confirm the receipt

of a packet, they also report an approximation of the observed recent arrival rate of pack-

ets at the receiver, r.  This rate is maintained as a running average. When this rate be-

comes constant, the sender enters a steady-state in which it departs from TCP’s technique

of probing network capacity  and instead maintains a window-size slightly larger than that

indicated by the current bandwidth-delay product (where the bandwidth is determined by

the receiver’s observed packet-rate and delay is the round-trip time when the network is

uncongested).  If the bandwidth available to a flow remains constant, the excess will not

reach the receiver.  However, if the available bandwidth increases those additional packets

will r each the receiver,  resulting in an increase in the observed packet-rate at the receiver,

and the sender’s transmission window will grow.  Of course, if the available bandwidth

decreases due to congestion, drops will occur and the sender will enter the congested state

and decrease its window size geometrically. While TCP's generated load oscillates around

the around available network bandwidth, SCP converges to a rate that matches the avail-

able network bandwidth.  Since the protocol stabilizes, the application can adapt the qual-

ity of the media stream in order to generate data at a rate the matches the available capac-

ity, providing the best interaction possible with the available bandwidth.

Further, SCP reduces latency in two ways.  First, SCP does not repeatedly overload

the network with TCP-like oscillating probing techniques.   Because TCP relies solely on

the absence of acknowledgements as congestion indicators, it attempts to determine the

available network capacity by increasing its window-size until network buffers overflow,

causing lost packets.  However, filling these network buffers is also a source of latency.

The second reason that SCP improves latency is the absence of retransmissions.  With

TCP, the authors encountered situations in which repeated drops and retransmissions re-

sulted in up to 70 seconds of latency.  With TCP, a packet may wait at the sender through



29

multiple round-trip times or worse, through multiple retransmission time-outs on the order

of seconds.  During this time, the sender’s window does not advance so the data that lies

outside the current send window can not be transmitted.  In contrast, SCP does not re-

transmit lost data so while the send window’s rate of advancement may be restricted while

waiting for acknowledgement or time-outs of acknowledgements, it is never blocked for

retransmissions.

SCP offers a transport level alternative to UDP and TCP which combines some of the

most desirable features (from a streaming media point of view) of each.   It regulates the

transmission rate in a TCP-like manner while minimizing latency by adjusting the probing

mechanism and by not retransmitting lost data.  However, SCP has several shortcomings

common to responsive protocols.   SCP's shortcomings are discussed in section 2.3.3.

2.3.2. Loss-Delay Based Adjustment Algorithm

LDA is an extension to the Real Time Transport Protocol (RTP) to adjust the trans-

mission rate in a TCP-friendly way.  Although RTP is rate-based, not window-based,

LDA seeks to adjust the rate so that it corresponds to TCP's congestion window behavior.

Further, LDA uses a model of the expected behavior of a TCP flow that improves upon

previous models.  That is, the transmission rate responds to periods of congestion with a

geometric decrease in the transmission rate and uses an additive increase during periods

without congestion to increase the transmission rate.  The goal is to transmit data in a

TCP-friendly way.  That is, transmit at the same rate that a TCP source would, given the

same round-trip time and loss-rate.

The original model of TCP behavior is based on average loss and delay over the life-

time of a connection [Floyd98]. In this model, throughput is given by equation 2.1.

lRTT

M
rTCP ×

×= 22.1
(2.1)

M is the maximum packet length. RTT is round trip time and l is the average loss over

the lifetime of the connection. rTCP is the rate a TCP connection would be expected to send

at under such conditions.  However, using this long-term model to make short-term

changes in network conditions leads to very oscillatory adaptations [Sisalem97].   The



30

model also has limited value if there is queueing delay or sharing of the bottleneck link

with competing connections [Ott97].  Consequently, although this model is useful for gen-

eral analysis of TCP, it is of limited value for actually controlling transmission rates in ac-

tual applications.

As a result of these shortcomings the authors propose the LDA algorithm.   The LDA

algorithm relies on the RTP control protocol, RTCP, to report the bandwidth of the bot-

tleneck link and computes the RTT and the propagation delay, τ, based on other values

returned by RTCP.  After a given sampling interval the LDA algorithm computes a new

transmission rate by either using an additive increase or a geometric back-off.  The rate of

increase or decrease is a function of the current transmission rate and the bandwidth of the

bottleneck link.  If the current rate is a small share of the bottleneck the additive increase

is large and if the current rate is a large share the additive increase is small.  The intent is

to allow flows needing a small share of the link’s capacity to converge faster to their fair

share.  In all cases, the increment is bounded to be no more than one packet per round-trip

time.  The current rate is simply incremented by the additive increase rate.  If losses are

detected, the rate is decreased proportional to the indicated losses based on a reduction

factor provided as a configuration parameter.

The authors note that streaming media cannot tolerate lots of oscillation in the band-

width, so they use a smaller reduction factor to decrease the rate of change.  Unfortu-

nately, this also decreases the rate of convergence.  In one experiment, the algorithm took

300 seconds for 4 flows to converge. LDA is noteworthy because of its rate-based ap-

proach for an unreliable transport protocol.  Also, the use of actual measurements of the

bottleneck link, loss-rate, and RTT as factors in the rate-adjustment lead to a less oscilla-

tory response to changes in network conditions.

2.3.3. Analysis of Responsive Unreliable Approaches

There are four major concerns with SCP, LDA, and other proposed new protocols.

The first is inertia.  Convincing application designers to build their applications on a new

protocol is a serious challenge.   Even as new applications are built using these protocols a

large number of applications will continue to use existing protocols.   A second concern is



31

that although these protocols are responsive, they may not be as responsive as TCP, al-

lowing applications built on these protocols to receive higher throughput than a corre-

sponding TCP application.  This is balanced by the third concern, that if the protocols are

responsive in a TCP-like way, they will also be vulnerable to the same aggressive unre-

sponsive flows that TCP and other responsive approaches are vulnerable to.  The final

concern is that these protocols adjust the transmission rate independent of the application.

Unless the application itself is redesigned to adjust the load it generates to match these

adjusted transmission rates these approaches simply have effect of moving the bottleneck

out of the network and into the transport protocol.  Queues will build up in the end-

system, resulting in loss or application-level blocking.  This need to adjust the transmission

rate at the application level leads to the consideration of application level approaches.

3. Application-level Approaches

Moving up one layer in the protocol stack, there are also solutions to consider at the

application level.  Many applications that use UDP as their underlying transport level

protocol also establish a separate feedback path from receiver to sender.  In the case of

interactive applications, this second path is already present to carry the media stream of

the other participant.  In those cases, feedback can be piggy-backed on the media stream.

However, there are also applications that do not have a feedback stream and are unaware

of the state of the network.  Application's responses, if any, to network congestion are

considered below.

Responsive applications include some application-level feedback method that allows

them to infer information about the current state of the network using heuristics.  These

applications respond to current network conditions by adjusting the load they generate to

better match the available capacity of the network.  Unlike the transport level approaches,

these approaches are able to adjust the transmission rate in a controlled way by adjusting

the parameters of the media stream.  This is in contrast to transport level approaches that

decrease the transmission rate unpredictably. Responsive applications seek to directly

control the manner in which the quality of the media stream changes.  Instead of allowing

random changes in quality due to loss and latency in the network, responsive applications



32

adjust the quality of the media stream in a controlled way at the sender to eliminate net-

work effects. Moreover, they may also probe the network to attempt to draw more accu-

rate conclusions about the specific types of congestion present.

For example, Talley proposed a novel probing technique to determine the current net-

work conditions and address them properly.  He defined two different types of constraints

that exist at network bottlenecks [Talley97].  The more commonly recognized constraint

is a capacity constraint.  A capacity constraint is one where the limiting factor is purely the

quantity of bytes that can be transmitted on the bottleneck link.   The other constraint, the

access constraint, is subtler.  An access constraint is one where the limiting factor is the

number of packets that can be transmitted on the bottleneck link.  Access constraints typi-

cally occur when the processor speed in the router is too slow or if there is shared media

access.   For example, the time required by a router to analyze each packet header may be

greater than the time necessary to transmit the bytes that make up the packet.  For shared

media (e.g. FDDI rings), the time required to access the media may dominate the trans-

mission time.  In this scenario, although the outbound link is underutilized, the router is

still the bottleneck point.  This typically occurs when very small packets are being trans-

mitted.  Talley points out that applications may address access constraints by sending

larger packets while maintaining the same bit-rate.   Bundling multiple frames into a single

packet decreases the packet-rate while maintaining the byte-rate, but increases latency.

However, the increase latency is less noticeable than a degraded frame-rate.  The overall

result is little change in quality of the media stream.  Applications often mistakenly re-

spond to access constraints with techniques intended to address capacity constraints.

However, these approaches often work because many efforts to reduce the bit-rate also

reduce the packet rate (e.g., decreasing the frame-rate).   Talley proposed a novel mecha-

nism for probing the bit-rate and packet-rate dimensions to determine the optimal operat-

ing point for applications.  Once this point was determined the application could adjust its

packet-rate or bit-rate accordingly.

Reducing the bit-rate or packet-rate of a media stream in a controlled way can be ac-

complished with media scaling.  Media scaling refers to the idea of adjusting the quality of

the media stream to adjust the load generated by the media stream.  Delgrossi presents a



33

taxonomy of scaling techniques [Delgrossi93]. Scaling may be transparent or non-

transparent. Transparent scaling is decoupled from the media semantics and non-

transparent scaling requires knowledge of the media semantics.  Non-transparent scaling

requires some interaction with the upper protocol layers.  It may require adjusting the pa-

rameters of the coding (or even recoding a stream).  Frequency, amplitude, and color

space scaling are examples of non-transparent scaling techniques.  Respectively, these

methods change the number of discrete cosine transform coefficients, reduce color depths

for each pixel, and reduce the number of colors available. All non-transparent techniques

require knowledge of the coding technique in order to make changes at the coding level.

In contrast, transparent techniques usually operate simply by discarding some, possibly

prioritized, units of the data stream.  There are two transparent media scaling techniques:

temporal and spatial.

Temporal media scaling adjusts the load generated by an application by adjusting the

frame-rate. If the network appears more congested the number of frames per second re-

corded and transmitted can be decreased to decrease the load on the network. As a result,

the illusion of continuity will suffer, perhaps perceptibly.   However, if the network is con-

gested and packets are being dropped, the frame-rate at the playback station decreases

anyway, perhaps in unpredictable ways.  Further, network links closest to the sender waste

bandwidth by relaying data that never reaches the receiver, potentially contributing to

congestion collapse.  By adjusting the frame-rate at the sender, one avoids wasting net-

work bandwidth and adjusts the quality of the interaction in a controlled and predictable

way.  Alternatively, if the network appears less congested, the number of frames per sec-

ond recorded and transmitted can be increased to improve the illusion of continuity.

Alternatively, spatial media scaling adjusts the load generated by an application by ad-

justing the number of bytes included in each frame.  For example, in video if one reduces

the number of pixels making up each image, the quality of each individual image de-

creases. Both images are acceptable but the higher resolution image is preferred.  The ap-

plication can respond to network conditions by decreasing or increasing the number of

bytes in each frame to better match the offered load to available capacity.



34

Although application level adaptation is an effective means of controlling the way a

media stream's quality degrades during congestion, it is still based on the assumption that

media streams must degrade when the network is congested.  One would prefer no degra-

dation.  Moreover, these adaptations only occur after a change in performance is detected

at the end-systems.  This change must be detected at the receiver and then addressed at

the sender, requiring at least one round-trip time.  During that interval the network condi-

tions will still effect the media quality in an uncontrolled way.  Moreover, as with all re-

sponsive techniques, this approach is vulnerable to the effects of unresponsive flows.  This

is particularly noteworthy because there are a great number of legacy applications without

adaptations that will continue to be unresponsive even when applications with adaptations

are deployed.

While these techniques allow applications to adjust their load, there are also many ap-

plications that do not adapt.  They simply send frames at the desired rate and display those

frames that arrive.  In a sense, interactive applications that take this approach, such as

video-conferencing, rely on the participants to act as a feedback and recovery mechanism.

If the quality degrades slightly the participants may attempt to recover by asking each

other to occasionally repeat things.  If the quality suffers too much they may choose to

reduce the frame-rate to zero by terminating the interaction.  The users may also adjust the

transmission rate by adjusting media scaling parameters through a user interface.  Unre-

sponsive applications are less vulnerable to aggressive flows as they continue to maintain

their load, regardless of network conditions.  However, this also means their flows help

contribute to congestion collapse.  Further, when the network is congested these non-

adaptive applications have no control over the way in which the media quality degrades.

4. Integrated End-System Congestion Management

The approaches reviewed thus far all suffer due to a lack of integration.  Transport-

level approaches simply reduce the transmission rates without providing feedback to the

applications (which could be used to adapt the quality of the media stream).  Application

level approaches must be implemented on an application-by-application basis.  Balakrish-

nan, et al., propose an integrated congestion management architecture [Balakrishnan99].



35

The central feature of this architecture is a congestion manager (CM) which manages the

transmission rates of all flows on a given end-system in a TCP-friendly way.   Moreover,

the CM aggregates flows by source-destination address so that all flows between a given

pair of end-systems share information about the state of the path between the end-systems

and share that path in a controlled way.   Because the transmission rate is managed in ag-

gregate, and shared between flows according to weights and hints, flows benefit from in-

formation learned by other flows.   Finally, although the sender's congestion manager

performs best when paired with a receiver that also has a congestion manager, the con-

gestion manager does work even when no congestion manager is available on the receiver.

This approach does not replace existing layers such as TCP or UDP.  Instead, the con-

gestion manager introduces an additional layer between the transport and network layer

that manages the rate at which data is transmitted into the Internet in a TCP-friendly way.

Further, this architecture exposes an application-level programming interface that makes

applications aware of changes in the transmission rate.  Using this information, applica-

tions can adapt to network conditions by adjusting the rate at which they generate data

(e.g. by adjusting frame-rate).  Moreover, because callbacks inform the application just

before its data will be sent, the application can choose to send the timeliest data.

This approach is attractive because it offers applications seeking a responsive protocol

an alternative to TCP without the overhead associated with reliability.  Moreover, the API

allows applications to adapt their data stream based on the current transmission rate. Fi-

nally, this approach can be deployed incrementally because end-systems using the conges-

tion manager will work with end-systems without the congestion manager.  However,

during the incremental deployment of such an approach, those systems that use the con-

gestion manager will expose all their flows to the effects of unresponsive flows currently

suffered by responsive flows.  Moreover, this integrated approach requires modifying or

replacing all applications as well as the end-system protocol stacks.

5. Integrating Application Level Prioritization with Router Drop Policies

Although application level adaptations are effective because they adjust fidelity in a

controlled way, they have the overhead of requiring separate implementations for each



36

application or media class.  Moreover, it takes one full RTT to detect and respond to con-

gestion in this way.  In contrast, queue management algorithms in routers can detect con-

gestion and respond immediately by discarding packets.  However, the resulting degrada-

tion in the media fidelity is unpredictable.   A few approaches integrate application level

approaches with network support to take advantage of the strengths of each.

To understand these approaches, recall that non-transparent scaling requires knowl-

edge of the media scaling while transparent scaling is decoupled from the media semantics

[Delgrossi93].   Integrated approaches rely on transparent media scaling techniques.

Hoffman offers such an integrated approach that combines application level tagging of

data combined with prioritized packet discard policies in network elements that have no

direct awareness of the media semantics [Hof93].  The approach relies on tagged sub-

flows that represent different scales of quality where the information necessary to generate

the highest quality image is tagged with the lowest priority.  During periods of congestion

filters in the network discard either individual elements of low priority flows or shutdown

those flows entirely leaving the end user with a lower quality stream.  For example, an ap-

plication may separate a MPEG [Le Gall91] stream into separate sub-flows for the I, P,

and B frames. There are decoding dependencies between frames.  Both B-frames and P-

frames reference I-frames for decoding.  B-frames also reference P-frames but B-frames

are never referenced.  Consequently, the B-frames would be the first ones dropped since

all other frames could still be decoded despite the loss.  Similarly, P-frames would be the

next choice if dropping B-frames wasn't sufficient.  This approach also allows for the pos-

sibility of changing the filtering based on congestion.

Integrating application-level tagging with router based decisions of when packets need

to be discarded allows network elements to identify and address congestion.  Moreover,

this congestion is addressed while degrading the quality of the media stream in a con-

trolled way.  Moreover, this approach removes some of the delay found in application-

level adaptations.  Instead of waiting one round trip time for notification that performance

has changed, the router can respond to changes in network conditions as the queue grows.

However, this approach can also contribute to a form of congestion collapse because the



37

application maintains load on the links leading to the bottleneck router even though pack-

ets arrive only to be discarded.  Further, as with all responsive techniques, this approach

may also be vulnerable to unresponsive flows.  However, if the prioritized drop policy

treats packets from unresponsive flows as lower in priority, this could offer protection for

the higher-priority sub-flows.  The major draw back to this approach is that it requires in-

tegrated changes to the routers and the applications.   However, this approach of indicat-

ing drop-priorities leads to the more general proposals to address drop preference as part

of an architecture for realizing differentiated services, described below [Ferguson97].

6. Router Based Quality of Service

Instead of considering ways to adapt the media stream, we now consider how to adapt

the network to reduce the need for media adaptations.  Historically, the Internet has been

a best-effort network with end-systems expected to behave cooperatively to address con-

gestion.  However, that perspective is changing.  There are proposals to offer services

other than best-effort.  Below, two approaches are presented that attempt to provide a

quality of service better than simply best-effort.  They are integrated services and differen-

tiated services. They also attempt to provide better congestion management for best-effort

flows when congestion does exist.

6.1. Integrated Services Architecture

The Integrated Services Architecture (or int-serv) [Braden94] specifies an infrastruc-

ture to offer specific levels of quality of service (QoS) to flows by explicitly reserving ca-

pacity for flows and assuring this allocation by scheduling the forwarding times of packets

in each router along the flow's path.  This approach requires some mechanism to reserve

resources. Using a signaling protocol, a user or administrator can request the level of

service desired for a particular class of traffic.  This class may simply be a single flow or

may be an aggregation of flows.  Each router participating in the signaling protocol then

applies an admission control algorithm to determine if there are resources available to

meet the requested level of service while continuing to service the currently admitted

classes.   If all of the routers along the path from sender to receiver have available re-



38

sources, the class is admitted.  Each router is then responsible for insuring that each class

receives its negotiated level of service.

However, integrated services is both algorithmically complex and requires high levels

of coordination.  It also requires significant state in the routers.  Link capacity is typically

managed with a packet scheduler.  In order for packet scheduling to work routers must

maintain state for each class of traffic.  This state includes the negotiated service level, the

definitions of which flows belong to the class, and data for the scheduling algorithm.  Ad-

ditionally, the scheduling itself can be computationally complex.  Further, deployment is

hampered by lack of viable options for incremental deployment.  The guarantees are only

effective if every router along the flow’s path conforms to the integrated services archi-

tecture so the value of partial deployment is limited.  Dynamic routing changes, which are

common, significantly increase the complexity of the admission control process.

However, this integrated approach does essentially avoid congestion for those flows

with the higher service level.  Since the approach only allows packets to enter the network

if they are within their negotiated resource demands or if there is excess capacity, only the

class causing overload (by exceeding their negotiated allowance) ever suffers any per-

formance short-comings.   Moreover, if a given class is in a state of overload that class

may be able to employ any congestion avoidance techniques that are appropriate and only

need be concerned with interaction with other flows of the same class.

6.2. Differentiated Services

The differentiated services architecture also seeks to offer a form of quality of service

but largely within the infrastructure of the current best-effort Internet.  This approach rep-

resents a midway point between the integrated services architecture with its associated

guarantees and the traditional best-effort approach.  No end-system signaling or other

changes to existing protocols are required.  Instead, clients or organizations negotiate

long-term service agreements with their internet service providers (ISPs) for specific

classes of traffic. A service level agreement may deal with all traffic from a particular client

network or it may be more restricted, covering only flows associated with particular

source and destination addresses. These agreements are realized through some ISP provi-



39

sioning scheme.  As with integrated services, the possibility of dynamic routing changes

complicates the provisioning task.  Moreover, service level agreements that specify band-

widths from one host or network to any other network are even more complex to provi-

sion.  As a consequence, the agreements do not specify guarantees, just an agreement to

offer a differentiated service. The clients agree to conform to the service level agreements

(i.e. the specification of the transmission rate and burstiness of traffic from that client) and

the service-provider promises to minimize drops as long as the traffic is within the negoti-

ated profile.  If the class deviates from its profile, packets from that class may be dropped

preferentially.  If the end-system is responsive and adjusts its load to stay within its profile,

then the drops will cease. If the end-system is unresponsive, then the prioritized dropping

mechanism will serve to constrain and isolate the class.  Note that for many classes, even

in-profile classes are not guaranteed to receive their bandwidth allocation.  They are

merely promised preferential treatment over classes that are out-of-profile.  If the network

is underprovisioned in-profile packets will also be dropped.  (The exceptions to this case

are the expedited forwarding services that, if properly allocated, can guarantee perform-

ance.  However, the expedited forward service is not commonly offered due to the ineffi-

ciencies of reserving bandwidth and the complexity of arranging service level agreements

across ISPs.)

There are two popular models for realizing differentiated service.  In one model, the

so-called 1-bit differentiated services [Clark97], as a packet enters the provider’s autono-

mous system, it is examined and tagged as in-profile or out-of-profile based on the class's

behavior relative to its profile.  In this scheme the router places all packets in the same

FIFO queue and uses a RED-based (discussed in Chapter III) queue management policy

called RIO to decide which packets to drop. The mechanism of RIO is also described in

Chapter III and briefly here. RIO is RED with IN and OUT.  The RIO algorithm maintains

two sets of RED statistics that apply to the two types of traffic.  For in-profile packets,

drop decisions are based on threshold setting compared to the average queue occupancy

by in-profile packets alone.  Out-of-profile packets are subject to comparisons between

lower thresholds and the average queue occupancy by all traffic. Essentially, when decid-



40

ing whether or not to drop an arriving packet, RIO applies significantly more constraining

tests to the out-of-profile packets.

Another alternative is the so-called two-bit approach [Nichols97].  In this scheme cli-

ents negotiate premium and assured service profiles. Premium service guarantees delivery

of packets with negligible queueing delays if they are within the negotiated profile but it

also guarantees that if a flow is out of profile, its packets are dropped to limit the flow to

its negotiated profile.  Essentially premium traffic has a virtual leased line.  If the load ex-

ceeds the capacity of this virtual line, packets are discarded.  This assures that with proper

admission control premium traffic also cannot starve best-effort traffic.   Alternatively,

packets using the assured service incur the same delay as best-effort traffic, and the

strength of the bandwidth allocation depends on how well individual links are provisioned

for bursts of assured packets.   However, this is balanced by the fact that assured traffic is

permitted to exceed its allocation without being automatically discarded so long as capac-

ity is available.

Consider how packets are classified.  When packets are transmitted (or when they exit

their originating autonomous system) they are marked with a premium bit (P), an assured

bit (A), or neither.  This packet marking is a function of both the packet matching the filter

for a given profile and the traffic class conforming to its traffic specification.  If premium

traffic exceeds its negotiated profile, the excess packets are dropped.  If assured traffic

exceeds its profile, those packets are forwarded along with the other best-effort traffic, but

not marked as "assured".  At the subsequent routers, premium traffic is placed in a sepa-

rate high-priority queue that is serviced before other traffic.  Assured traffic is treated as

in-profile traffic in a RIO queue shared with all other traffic where the other traffic is

treated as out-of-profile traffic and dropped preferentially.

Although the two models are popular alternatives to realizing the differentiated serv-

ices architecture, neither is part of the architecture itself.  Rather, these are mechanisms

for realizing per hop behaviors (PHB).  PHBs are just one component of the architecture,

which specifies the policies and framework without specifying the mechanisms for realiz-

ing these policies.  Other components include traffic monitors, markers, traffic shapers,



41

classifiers, and droppers as well as the framework that ties them together.  The architec-

ture specifies the field in the IP headers that can be used to associate packets with a par-

ticular service level, and some suggested service levels and associated PHBs. The archi-

tecture defines the mechanism, service level agreements, for agreeing on service levels

between domains as well as the expected behaviors of differentiated service capable and

compliant domains.  The behaviors include, but are not limited to, policing of packets at a

domain's ingress routers and shaping of traffic at a domain's ingress routers to be sure

traffic conforms to the service level agreements.  In fact, one strength of the differentiated

services architecture lies in the fact that it loosely defines a framework for providing dif-

ferent levels of service without specifying the specific services or mechanisms for realizing

those services.  This approach should allow network service providers to innovate and in-

corporate new technology into their offerings.  However, this strength may also be inter-

preted as a weakness as it is difficult to evaluate the effectiveness of the differentiated

services architecture without a concrete implementation to study.  Instead, individual pro-

posals for realizing differentiated services such as the one-bit and two-bit schemes above

must be evaluated.

Consider the queue management scheme proposed for both schemes: RIO.  Although

RIO does attempt to provide better service for packets marked as in-profile, it offers few

guarantees.  Although RIO is more likely to drop out-of-profile traffic, in-profile traffic

may still be dropped when the queue's average occupancy by in-profile traffic grows large.

Moreover, RIO offers little control over latency for assured traffic.  The latency incurred

will be a function of the number of packets (including out-of-profile traffic) sharing the

queue.  The performance improvements for assured traffic are limited.

In contrast, the premium service offered in the two-bit scheme is very attractive as it

offers a promise of bandwidth and low latency.  However, in order for this service to hold

value it must be priced to limit its use.  If the link's capacity is fully allocated for premium

traffic, that premium traffic, although policed, could in aggregate starve best-effort traffic.

This is contrary to one of the stated intents of the premium service, that it not starve best-

effort traffic.  Therefore for the premium service to have value its use must be limited.



42

Moreover, not all traffic types will be willing to accept bounds on throughput (even when

excess capacity exists).

Also, note that unlike integrated services, the differentiated services approach requires

no signaling and only per-class state (and ISPs can control the number of classes).  Con-

figuration and resource allocation is part of a long-term configuration.  Per-flow state at

every router is unnecessary because packets are marked at their network entry points and

carry their identification bits in the packet headers.  Differentiated-services offers an at-

tractive model offering simple quality of service without extensive overhead.

How well does the differentiated services architecture addresses the tension between

responsive and unresponsive flows?  The differentiated services architecture alone does

not answer this question.  The answer lies in the way in which the differentiated services

architecture is used and what profiles are established.  Consider an example in which

streaming media is tagged as a premium service, TCP tagged as assured, and everything

else left as best-effort.  The streaming media would receive excellent performance as long

as the profiles and service allocations were properly configured.  However, if the stream-

ing media were under provisioned (because of the difficulty of predicting maximum trans-

mission rate for a stream), it would suffer loss, even when the network was underutilized.

Moreover, even though TCP as an assured service should work well, the assumption in

the differentiated services community seems to be that TCP would be in the best-effort

traffic category.  Since TCP probes the network's capacity, flows would periodically ex-

ceed their profile limitations in either the premium or assured service.   Moreover, TCP

flows seldom have specific throughput or latency requirements.  They simply seek to share

the available capacity.  Unless one assumes clients will pay to have all unresponsive flows

classified as premium traffic, both of the differentiated service models leave TCP vulner-

able to the effects of unresponsive traffic.

7. Summary

The unregulated nature of the Internet lends itself to congestion.  Various approaches

have been taken to addressing this congestion problem.  One set of approaches focuses on

end-systems detecting network conditions at either the application or transport level and



43

adjusting transmission rates to find equilibrium between generated load and available ca-

pacity.  On the other end of the spectrum are proposals to use admission control and re-

source allocation to eliminate or reduce the possibility of congestion occurring.

Both transport level and application level approaches have their strengths and weak-

nesses.  Transport level approaches can suffer from their detachment from the actual ap-

plication.  Decreasing the transport-level transmission rate while the application continues

to generate data at the same rate may result in a queue forming in the end-system's proto-

col stack.  The resulting queue-induced delay and possible loss due to overflow has the

same negative effects on this single flow as queues forming in the routers.  However

transport-level approaches do benefit from the modularity argument as they should be

more straight-forward to distribute and use.  In contrast, application level approaches are

better integrated with the actual behavior of the application.  Changes to the transmission

rate at that level can be based on changes to the media encoding or frame-rate, offering a

more controlled and consistent change in the media quality.  However, these application

level approaches suffer from the modularity argument.  The more that generic mechanisms

such as congestion control are integrated into higher layers of the protocol stack, the more

specialized the implementations of these mechanisms become as they are bound more

closely to particular applications.  As a result, each application or group of applications

will require its own solution to congestion control.

The modularitry argument is also one motivation for pursuing congestion control from

a network-centric perspective.  Since congestion is a problem across many communication

layers, the modulartity argument implies its solution should be implemented at the lowest

possible common layer.   The approaches that integrate application level marking with

router-level drop prioritization follow this argument.  Each application uses a general

mechanism to indicate the relative importance of packets or flows.   The routers then de-

termine the network conditions and use the priority information to be sure to drop the

least important packets first.  This combination of application-level marking with a general

drop prioritization in the routers can be an effective way to minimize the impact of drops

on media streams.  These transport-level, application-level, and integrated approaches all

focus on making the protocols more responsive.  As such, they still suffer from one of the



44

key problems: responsive traffic's vulnerability to unresponsive and aggressive traffic.  Of

course, if all protocols adopted responsive techniques then unresponsive traffic would

cease to exist, and, thus, cease to be a problem.  And, the availability of these new proto-

cols encourages more applications to use responsive protocols.  However, until all traffic

is responsive steps must be taken to isolate and protect responsive traffic.  This is the mo-

tivation behind the router-based approaches.

The router-based quality of service approaches also follow the modularity argument.

They use admission control and service allocation to isolate class of traffic from one an-

other and insure that classes receive their requested throughput.  However, these alloca-

tion schemes can suffer from the fact that only those who can afford to pay for these guar-

antees receive them, leaving the best-effort traffic to compete for the left-over link capac-

ity.  And, the problem still exists there because there are mixes of responsive and unre-

sponsive traffic.   In the integrated-services approach, overhead is also a factor.  Packet-

scheduling is complex to implement and it requires additional state in the router.  Also, the

problems associated with admission control and dynamic routing remain open problems.

Moreover, all of the network-centric approaches and transport-level approaches suffer

from the problem of inertia.   Changing all the network routers to implement a new policy

and the associated mechanisms is overwhelming.  Although some of the proposed ap-

proaches can be deployed incrementally their effectiveness may be limited.  For example, a

guaranteed service that is only available in some of the routers along the path a flow trav-

erses can not provide any real guarantee to the end-system.

All of these approaches show promise.  However, we choose to approach the problem

from the perspective of active queue management, asking, "how effectively can an algo-

rithm offer feedback, bandwidth allocation, and controlled latency by only managing the

queue occupancy in the router?"  Toward that end, the next chapter addresses the related

work in active queue management.



III. ROUTER QUEUE MANAGEMENT

This chapter considers router-based mechanisms for controlling congestion and allo-

cating network bandwidth.  It is helpful first to consider a reference implementation ar-

chitecture of a router as shown in Figure 3.1.

Routing
Decision

Buffering

Buffering

Buffering

Buffering

Routing
Agent

Routing
Database

Traffic
Management Agent

Routing Output DriverInput Driver

State

Figure 3.1 Reference Implementation Model for a Router

A router may forward packets between several networks.  Although most network

links are bidirectional, for the purposes of this diagram and discussion inbound (on the

left) and outbound (on the right) links are treated as logically separate entities.  A router

has two broad functional components, the forwarding engine below the dotted line and the

background processing engine above the line. The background processing engine is simply

loaded into router memory and executed by a general purpose CPU.  Relative to the for-

warding functions, the background processing engine rarely executes and is used to main-

tain and update state used by the forwarding path components.  This background proc-



46

essing engine includes the routing agent that maintains the routing database and optional

traffic management agents such as admission control or bandwidth management agents.

In contrast, the forwarding path is executed for every packet arriving at the router.

The forwarding path can be divided into three major components: the input driver, the

routing driver, and the output driver.  The function of the input driver is very simple; it

assembles a packet from the bits arriving on the inbound link and passes that packet along

to the routing component.  Routing is the defining function of a router.  Using the routing

database each arriving packet is directed to the output driver associated with the link for

the packet's next hop.  This work focuses on the packet forwarding aspects of the router

and not the routing decisions.  The output driver includes buffers (queues) that are used to

temporarily store packets before they are placed on the outbound link.   The input driver

may also contain buffers but here we only consider the more common case of output buff-

ers.   By default, the queues are managed as simple FIFO queues and when these queues

are full the arriving packet is dropped.  This queueing paradigm is often referred to as

"drop-tail" queueing.  When the queue fills, arriving packets are discarded until a packet is

dequeued from the head of the queue opening space in the queue.

There are two types of algorithms employed in routers to do more sophisticated man-

agement of these buffers for congestion control and bandwidth allocation: queue man-

agement and packet scheduling.  Ordering of packets is the primary difference between

these two approaches.   We define queue management approaches as those that deal with

when to drop packets and which packets to drop while forwarding packets in the same

order in which they arrived.  In contrast, we define scheduling as those approaches that

reorder the transmission of packets to give some flows or classes of flows priority over

others.   The recent focus in queue management has been on providing effective feedback

to the end-systems while scheduling has focused on issues of resource allocation, specifi-

cally link bandwidth allocation, for providing quality of service.   However, both ap-

proaches are general.  Scheduling can certainly provide feedback to the end-systems by

discarding packets and, as this work shows, queue management can be used to allocate

bandwidth.   Further, packet scheduling and active queue management are not mutually

exclusive.  They can be integrated into a single resource management policy.  For exam-



47

ple, different active queue management policies may be used to manage each of the indi-

vidual queues used by a packet scheduler.  However, it is helpful to consider the two ap-

proaches independently before considering the hybrid approaches.

In this chapter, we discuss queue management at length.  First, the general purpose of

these queues is discussed along with some of the issues associated with designing a

queueing scheme.   Next, several active queue management algorithms are considered in-

cluding their design, and their strengths and weaknesses.  Packet scheduling is then briefly

reviewed because in later chapters the performance of our active queue management pol-

icy will be compared to several other queuing algorithms and that comparison will include

a packet scheduling scheme as a "gold standard".  Finally, the performance of multimedia

is considered for each of the algorithms considered here.

1. Buffering in Routers

Routers contain buffers, implemented as simple, first-in-first-out queues, to avoid un-

necessary packet loss and to maintain high link utilization. These queues accommodate

transient overloads that are primarily due to bursty packet arrivals.  A burst of packets

may arrive at a queue when, for example, a collection of packets destined for a common

outbound link arrive nearly simultaneously on multiple inbound links.  The burstiness

could also be due to a burst of packets arriving on a single higher capacity link, all des-

tined to exit the router on a single lower capacity outbound link.  In either case, these

bursty arrivals result in a load that exceeds the outbound link’s capacity.   Hence, these

two cases are equivalent with respect to the impact on the queue at the outbound link so

the source of the burstiness can be ignored, instead focusing on its effect on the allocation

of queue capacity in routers.   If the average arriving traffic load is less than the capacity

of the outbound link, these buffers act as a smoothing filter to allow for significant vari-

ance in the load arriving over small time scales (e.g., the time it takes to transmit k packets

where k is the length of the queue.)  Network managers attempt to allocate queue capacity

sufficient to accommodate the largest burst that can reasonably be expected.  This buffer-

ing may allow them to keep the outbound link busy with useful work even when there are



48

no packets arriving, thereby increasing the link utilization.  Buffering allows routers to

both avoid unnecessary packet loss and to maintain high link utilization.

However, when the network is congested, these queues can become a source of la-

tency and delay notification of congestion.    

Determining the amount of space to allocate to a link’s queue is based on a funda-

mental trade-off between accommodating burstiness and minimizing queue-induced la-

tency. If the queue is too small, packets will frequently be dropped solely due to the bursty

nature of the traffic resulting in lost data and false congestion indicators.  If the queue is

too large, latency will increase and end-systems will not receive timely notification of net-

work congestion when it happens.  The result will be congestion that persists for lengthy

periods of time, even when the end-systems are responsive.  During periods of true con-

gestion one would like to minimize the amount of time it takes for the buffer to overflow

in order to provide notification of congestion (by dropping packets) as soon as possible.

Finally, if congestion is persistent, a large buffer causes those packets that do arrive at the

receiver successfully to do so with significant delay.  Network managers must balance

these two conflicting demands when determining the amount of buffering to allocate to

each outbound link.

1.1. DropTail When Full (FIFO)

First-in-first-out, drop-tail-when-full was the original queue management scheme used

in Internet routers.  With this scheme packets are enqueued at the tail of a queue as they

arrive and dequeued from the head of queue when there is capacity on the link. Drop-tail

is the policy of dropping the arriving packet when the queue is full.  (Other alternatives

include dropping the packet at the head of the queue.)  Drop-tail and FIFO are used inter-

changeably in this dissertation.

Braden, et al., point out several problems with simple drop-tail-on-full and recom-

mends that Internet routers employ more sophisticated techniques for managing their

queues [Braden98].  The two major problems they identify are the problems of lock-out

and full-queues.



49

Lock-out refers to a phenomenon in which the shared resource, link bandwidth, is un-

fairly consumed exclusively by a small number of flows.  The remaining flows are locked-

out of (i.e., denied access to) the queue and, consequently, locked out of the outbound

link. In this phenomenon the queue is occupied only by the packets from a small number

of flows while the packets associated with most flows are consistently discarded.   As a

result, most flows receive none of the link bandwidth, and starve.  This phenomenon oc-

curs because of timing effects which result in some flows’ packets always arriving to find

the queue full.  For example, consider a situation where many sources are periodically

sending bursts of packets that in aggregate exceeds the queue's capacity.  If these sources

become synchronized, all sending nearly simultaneously, the first packets to arrive (e.g.

from the source closer to the bottleneck link) will find a queue with some available capac-

ity while the subsequent packets will be discarded.  If the same relative order is maintained

between the sources, those sources that send first will consistently make progress while

the other flows will consistently have all packets discarded and, thus, starve.

Full-queues are queues that are usually occupied to capacity.  If bursts of packets ar-

rive to a full queue, many packets are dropped simultaneously.  This can lead to large os-

cillations in the network utilization.  If the dropped packets are from different flows there

may be synchronized responses (back-off) among multiple flows.  Synchronized back-off

is a phenomenon in which many sources simultaneously receive congestion notification

and reduce their generated load.  As a result, the overall load on the network may drop

below the capacity of the link and then rise back to exceed the link’s capacity resulting in a

full queue and once again leading to simultaneous drops.  This oscillating behavior is ex-

actly counter to the buffer’s intended function, acting as a smoothing filter.  Note that full

queues and long queues are not necessarily equivalent.  A long queue is one containing a

large number of packets, regardless of capacity, while a full-queue is one containing the

maximum number of packets it can hold.  Long queues cause problems because of queue-

induced latency.  However, the fact that a queue is long says nothing about its available

capacity.  A high capacity queue may have many packets enqueued but still have a great

deal of unused capacity, leaving it with capacity to accept newly arriving packets and al-

lowing it to perform its intended function of accommodating packet bursts.  While full



50

queues may also be long queues, the length of the queue is not the primary problem with

full queues.  A queue that is usually full is not able to perform its primary function of ac-

commodating bursts.

1.2. Active Queue Management Concept

Active queue management (AQM) is the concept of managing the queue to avoid full

queues and lock-out.  Most AQM policies take steps to detect congestion based on recent

queue behavior.  They then drop packets early, before queues overflow, with the intent of

providing early feedback to responsive flows and to help maintain lower average queue

occupancy.  For responsive flows, AQM in principle offers the following advantages:

1. It reduces the number of packets dropped in the router.  Limiting the number of drops

is important for many reasons and accomplished in several ways.  As active queue man-

agement maintains lower average queue occupancy and avoids the problem of full queues,

it allows bursts of packets to be enqueued without loss. It is also important to reduce the

number of drops because any given TCP flow has difficulty dealing with multiple drops

and its time-out mechanism may be invoked.  Finally, packet drops result in retransmis-

sions by the TCP sender, leading to reduced link efficiency at upstream links.  If, instead, a

fraction of the arriving packets are dropped before the queue overflows the responsive

flows should be able to adjust their load so that average aggregate load approaches the

capacity of the link.  With most of the AQM techniques individual flows see a smaller

number of drops than they otherwise would and there is less need for retransmissions.

2. Provide lower queue-induced latency.  AQM maintains average queue occupancy sig-

nificantly less than with FIFO.  As a result, the queue-induced latency is less than that for

a full queue with the same capacity.  This is important for interactive applications where

end-to-end latency is a serious performance consideration.

3. Avoid lock-out. Most arriving packets will be enqueued because the queue is not full

so the chances that a single flow will repeatedly have most or all of its packets dropped is

low.  Instead of a small number of flows having many of their packets dropped when there

is congestion, many flows will see a small fraction of their packets dropped, encouraging

all responsive flows to adjust their generated load.



51

2. The Evolution of Active Queue Management Policies

To understand the issues and decisions involved in the design and operation of an

AQM policy it is useful to consider the evolution of queue management in routers. This

section considers different queue management policies, the issues addressed by each pol-

icy, and the issues uncovered by each policy for future consideration.

Early active queue management policies focus on solving the problems of lock-out and

full-queues. They seek to avoid lock-out by finding techniques to more evenly distribute

drops across all flows.  To avoid full queues, the algorithms discard some packets before

the queue reaches overflow and, rather than drop the arriving packet when the queue is

full, they consider dropping other packets.  There were two techniques in this regard,

"drop-front-on-full" and "random-drop-on-full".

2.1. Solving the Problems of Lock-out and Full-queues

Drop-front-on-full is very similar to drop-tail-on-full policies.  Its behavior can easily

be deduced from the name.  Like drop-tail, the decision of when to drop is based on queue

overflow.  However, instead of dropping the arriving packet, drop-front discards the old-

est enqueued packet, the packet at the head of the queue.  Drop-front addresses the lock-

out problem observed with drop-tail [Laksham96].   If some of the packets in a burst of

packets arrive to a full queue there is a high probability that the subsequent packets in the

burst will also be dropped.   Alternatively, if the packets are dropped from the front of the

queue there is a good chance that the packets dropped will be a subset of a larger burst, be

parts of two different bursts, or a spread of packets from multiple flows that have other

packets elsewhere in the queue.  So drop-front helps avoid lock-out.

Additionally drop-front gives marginally earlier feedback.  This is because the packets

that are dropped would have arrived at the receiver earlier than the packets that arrive

when the queue is full.  Thus, the loss will be detected earlier than loss of later packets.  It

also decreases latency.  Normally packets pass through the queue at a rate based on the

speed of the outbound link.  With drop-front when the queue is full, packets may pass

through the queue at the speed of the greater of the arrival rate or the service rate.  This

reduces the queue-induced latency for those packets that are ultimately transmitted.  Note



52

that data at the head of the queue is older than data at the tail of the queue.  So, the deci-

sion to drop old data and enqueue new data may be well suited to applications that are

delay sensitive and can tolerate drops.  Real-time media applications, for example video

conferencing, are concerned with timeliness, and delays impede interactivity.

By dropping something other than the arriving packets, drop-front solves the lock-out

problem.  However, because it waits for the queue to fill before dropping packets, it still

has the problems associated with full queues.

Random Drop [Hashem89] is another policy which addresses the lock-out problem by

enqueueing the arriving packets and discarding a random packet within the queue.  By

choosing a packet at random this algorithm avoids dropping consecutive packets which

were potentially part of the same burst.  Choosing packets at random also helps to distrib-

ute drops across all flows, giving some feedback to most flows, rather than giving lots of

feedback to a small number of flows.  The random dropping also means that the likelihood

a given flow will have a packet dropped is in direct proportion to the number of packets

that flow has enqueued.  A drawback of this approach is complexity.  For a traditional im-

plementation of a queue as a linked list, random drop has more overhead than drop-tail or

drop-front as it requires an O(N) walk of the queue for every drop compared to the O(1)

operation in the other policies.  Further, random drop still drops packets only when the

queue is full.  Thus, both random drop and drop-front solve lock-out but still have prob-

lems associated with full-queues.

Early Random Drop [Hashem89] drops packets before the queue fills to address the

problems associated with full queues.  It also uses randomization to avoid the consecutive

drops of arriving packets that can lead to lock-out.  Of course, if the decision to drop

packets were a binary one based solely on the current queue size, this technique would

simply be addressing the problem of long queues by reducing the queue’s capacity and

would fail to address the problem of full queues.  Ideally an algorithm would allow the

queue to fill in response to a burst while trying to avoid allowing the queue to fill too

quickly because of congestion.  Unfortunately, it is not easy to distinguish between the

two cases so a solution must be found that balances the two concerns.  To do this, the de-



53

signers of early random drop make the drop decision probabilistic. When the queue size

exceeds a threshold, all arriving packets are considered for dropping with the same, fixed,

drop probability.  Whenever a packet arrives to a queue that is occupied beyond the

threshold value, a random value is selected from a uniform [0,1] distribution and com-

pared to the drop probability to determine whether or not to drop the arriving packet.

(Note that the term random is overloaded in active queue management.  It may mean se-

lecting a random packet from the queue, as with random drop, or it may mean performing

a probabilistic test before dropping the arriving packet.)

By using a probabilistic drop test, the queue can continue to grow up to its allocated

capacity, but some packets are discarded before the queue is full.  As a result, some of the

flows get feedback before the queue fills and if flows are responsive the queue’s growth

rate is reduced.  Thus, probabilistic dropping signals congestion while still maintaining ca-

pacity for bursts.   Moreover, with the probabilistic approach, all flows should have the

same percentage of their packets dropped.  This is because the probability of dropping a

packet from a given connection is roughly proportional to that connection's share of

bandwidth through the gateway.  That means with flows transmitting at a higher rate have

more of their packets dropped, thus providing more feedback to those flows that consume

the greatest bandwidth. Since the drops are more widely distributed in time compared to

drop-tail, the probability of consecutively arriving packets being dropped is lower and

there is less likelihood of synchronized back-off.

Early random drop does address both lock-out and full-queues.  However, the tech-

niques used for identifying congestion (monitoring instantaneous queue occupancy) and

providing feedback (dropping a fixed percentage of arriving packets) need refinement.

This approach assumes that instantaneous queue occupancy is a good indication of the

state of the network.  Unfortunately, high occupancy may reflect either a transient over-

load due to burstiness or the onset of persistent congestion.  As a result the instantaneous

queue occupancy is not a very strong indication of persistent congestion.  The algorithm

also assumes dropping a fixed percentage of the arriving packets is an effective indication

of congestion.  Unfortunately, a constant drop-rate does little to distinguish between slight

and severe congestion.   In the original work the author noted that adding more dynamic



54

elements to the algorithm, such as a dynamic threshold and/or a dynamic drop probability

in response to network conditions was a consideration for future work.  Subsequent algo-

rithms followed these suggestions to focus on providing better identification and notifica-

tion of congestion.

In summary, Drop-front and Random Drop address the lock-out problem by choosing

packets other than the arriving packet to drop when the queue overflows.  However, be-

cause they each wait until the queue is full to act, neither addresses the problem of full

queues.  In contrast, the early random drop algorithm drops some packets probabilistically

before the queue overflows.   By dropping packets early, early random drop addresses the

problem of full-queues and by only dropping a random sample of the arriving packets it

addresses the problem of lock-out.  However, none of these algorithms are particularly

concerned with accurately detecting congestion or with distributing the feedback evenly

among the flows.  Their primary focus is simply to manage the queue’s size without cre-

ating any of the pathological conditions that result from the FIFO queueing policy.

2.2. Providing Notification of Congestion

All of the techniques discussed up to this point have focused as much on managing the

queue to avoid ill effects as much as they have with notifying the end-systems of conges-

tion.  Moreover, the most common method for notifying the end-systems has been allow-

ing the end-system to infer congestion when packets fail to arrive because the router dis-

cards them.  However, traditionally packets were not discarded with the intention of sig-

naling congestion but with the intention of managing the queue occupancy.  Moreover,

packets may be lost due to other reasons including network failures.   However, managing

congestion with congestion management has been popular because these techniques can

be deployed without any changes to the existing end-to-end protocols.  However, an al-

ternative approach is to provide explicit notification of congestion to the end-systems.

This can be done by sending explicit control messages to the affected hosts. However, the

most common technique is packet marking.  Packet marking refers to the technique of

marking a bit in the header of data packets to indicate the presence of congestion.  This

technique separates congestion notification from data loss.  Data is only lost when queues



55

overflow because congestion is persistent. In addition to the use of explicit notification,

better designs also address issues of more clearly identifying congestion and distributing

this notification to all flows.  The active queue management policy, RED, includes these

concerns among its many goals.  First, we consider an explicit feedback mechanism, ICMP

source quench, and two noteworthy packet marking approaches, DECbit and ECN.  This

is followed by a review of the active queue management algorithm, RED.

2.2.1. ICMP Source Quench

The capability to send explicit feedback to sources has been present in the Internet

since 1981 via the Internet Control Message Protocol  (ICMP) source quench message

[Postel81].  Whenever a router discards a packet because of a full queue, ICMP specifies

that the router should send a source quench message to the source that generated the mes-

sage.  The source is then expected to reduce its load.  However, in practice this mecha-

nism has been ineffective.   Generating the ICMP source quench messages demands router

resources during a period of congestion.  Moreover, the messages use link bandwidth on

the return path.  And, in many cases these messages have no effect as they are ignored by

end-system protocols.  Due to these factors and the fact that TCP's congestion control

mechanism has proven effective using loss as an implicit congestion indicator, later speci-

fications of router requirements recommended that routers not generate ICMP source

quench messages [Baker95].  Moreover, if the routers do generate source quench mes-

sages, they should limit the frequency with which they send them.  Subsequent approaches

to provide explicit notification avoided the overhead of generating and transmitting feed-

back packets by choosing to mark packets that were being forwarded to the receiver and

expect the receiver to notify the sender.

2.2.2. DECbit

One early proposal for explicitly signaling congestion via packet marking was DECbit

[Jain88].  This work took a different approach to dealing with congestion; it integrated the

router's detection and notification of congestion with the end-to-end protocol.  All of the

other queue management techniques examined were detached from specific knowledge of

the transport protocol.  They simply assume the transport protocols were able to respond



56

to loss as an indicator of congestion, or that discarding packets would be sufficient to con-

strain the network load.  In DECbit the router’s behavior is not only changed, but the end-

system’s transport layer behavior is also changed.  Unlike packet dropping techniques

where notification must be limited because of the trade-off between notification and data

loss, packet-marking techniques can be applied to all packets when congestion is detected.

Packets are not discarded as long as space is available.  Instead, the central issue becomes

one of correctly identifying periods when the network is congested.

DECbit proposes the idea of detecting congestion in a router by monitoring the aver-

age queue size over an interval of time.  The averaging interval is defined in terms of peri-

ods when they queue has been occupied ("busy").   A busy period is one in which the

queue continuously has packets enqueued.  The averaging interval covers the most recent

busy period, the subsequent idle period (i.e., no packets enqueued), and the current busy

period.  When the weighted average queue size is greater than one over this measurement

interval, all packets are marked.  When the average queue size is less than one over the

interval, no packets are marked.

The transport protocol must be aware of the marking strategy.  If a packet arriving at

the receiver is marked, the corresponding acknowledgement must be marked.  Then, the

sender should maintain statistics on how many acknowledgements were marked in the

most recent window of data.  A window of data includes the data from the earliest unac-

knowledged packet to the packet most recently transmitted.  The size of this window ef-

fectively establishes a limit on the maximum amount of data the sender can transmit per

round-trip time.  Adjusting this window size, regulates the load placed on the network.  In

this algorithm, if more than half of the packets in the most recent window were marked,

the window size is decreased exponentially.  Otherwise it is increased linearly.

One of the key innovations of DECbit was the idea of monitoring average queue size

in a router as an indication of congestion.  While instantaneous queue occupancy is highly

dependent on the burstiness of arrivals, the average queue occupancy is a much better in-

dicator of the state of congestion.  The DECbit technique of computing average queue

size based on busy and idle periods means that the period the queue size is averaged over



57

can vary significantly.  Another alternative would be to use a weighted running average.

However, the designers of DECbit avoided a weighted exponential running average be-

cause they believed there would be a bias if the measurement interval was much different

from the average round trip time.

2.2.3. ECN – Early Congestion Notification

Early Congestion Notification (ECN) [Floyd94] is a proposed IETF standard for

marking IP packets to indicate congestion.  Unlike DECbit, ECN is simply a mechanism to

signal congestion without a corresponding policy statement of how to respond to the indi-

cator.  There are recommendations on how to take advantage of the information provided

by the ECN marking but the policy and mechanism are separated [Floyd94],

[Ramakrishnan99], [Salim00].   ECN simply specifies a protocol for indicating the end-

systems are capable of responding to ECN markings and for marking the packet to indi-

cate congestion has been detected.

It is important to note a key difference between dropping and marking as congestion

indicators.  Packet drops are an implicit and overloaded indication of congestion while

marking is an explicit and unambiguous indicator.  Congestion is not the only source of

packet loss and networks were not originally designed to use packet drops as a congestion

indicator.  It was noticed that under FIFO queueing with finite queues congestion could be

inferred from packet loss.  As routers were not attempting to recognize congestion, it was

perfectly reasonable for end-systems to only use hints and implicit indicators to adjust their

load.  However, when designers began to detect congestion by monitoring the average

queue size, the next logical step was to explicitly signal this congestion.

The major benefit of marking packets instead of dropping them is, of course, that con-

gestion can be detected and addressed without losing data.  This is particularly important

for low-bandwidth flows or flows in slow-start as they may require a time-out to detect

loss.   As a result, low bandwidth flows would sit idle for multiple round-trip times be-

cause of one packet loss while higher bandwidth flows continue to make progress.

Avoiding loss is equally important to latency sensitive applications that cannot afford to

retransmit data.  However, the major shortcoming of marking packets is that unless the



58

infrastructure is in place to interpret and respond to the marking, it has no value.  As a re-

sult, routers must continue to use the implicit technique of dropping packets unless they

know the end-systems are capable of dealing with the markings.  That is one of the

strengths of ECN; all packets signal whether or not the end-systems are ECN-capable or

not.  (Issues of fraudulent use of ECN bits are ignored.)  ECN’s major deployment to date

has been as part of Random Early Detection routers.

2.2.4. RED – Random Early Detection

Random Early Detection (RED) was proposed by Floyd and Jacobson.  RED com-

bines the ideas of:

• probabilistic drops,

• early notification,

• better congestion detection by monitoring average queue size,

• a drop probability associated with the average queue size, and

• optionally, marking packets instead of discarding them.

RED provides feedback to responsive flows before the queue overflows in an effort to in-

dicate that congestion is imminent instead of waiting until the congestion has become ex-

cessive.  This scheme also distributes the drops more fairly across all flows.

RED can indicate congestion in one of two ways, by dropping packets or by marking

packets.  The marking technique depends on the transport protocol but the most common

technique uses the Early Congestion Notification (ECN) marking with TCP.  However,

ECN is not yet widely deployed in end-systems so the common implementations of RED

will use ECN only if the packet to be marked/dropped is tagged as ECN capable.  Other-

wise, it will use implicit notification; the packet will be dropped.  For ease of discussion,

henceforth only dropping will be considered as the feedback mechanism.

RED monitors congestion by computing the average queue size.  It tracks the queue

occupancy as a weighted exponential running average.  In this way, both the long-term

behavior of the queue as well as the recent behavior is factored into the drop decision.



59

This avoids congestion detection that is overly sensitive to transient increases in queue

size caused by the bursty nature of the Internet.

Time

Max Queue Size

Max Threshold

Min Threshold

Forced drop

Probabilistic drops

No drops

Average queue length

Queue Size
Drop probability

Figure 3.2  RED’s Packet Drop Modes

RED’s packet dropping decisions are mode-based.  Figure 3.2 illustrates the ideas be-

hind the RED algorithm.  This figure shows the instantaneous (blue) and weighted average

(red) queue size (in packets) over time.  The current mode, indicated on the right hand

side, is determined by the relation between the average queue size and the minimum and

maximum thresholds.  When the average queue size is less than the minimum threshold

this indicates no congestion so no action is taken.  This is no drop mode and the probabil-

ity that an arriving packet will be dropped is zero.  In this mode arriving packets are al-

ways enqueued.   At the other extreme, when the average queue size is greater than the

maximum threshold, or if the queue is full, the algorithm infers persistent and severe con-

gestion.  All arriving packets are dropped.  The probability an arriving packet will be

dropped is one.  This mode is referred to as forced drop mode.  Finally, when the average

queue size is between the two thresholds the algorithm operates in a probabilistic (i.e.,

random) drop mode.   In this mode, arriving packets are dropped at random.  The prob-

ability that a given packet will be dropped ranges between zero and one as a function of

three parameters: maxp, the current average queue size, and count.  The input parameter,

maxp, determines the maximum probability that two consecutive packets will be dropped

while in probabilistic drop mode.  The variable, count, tracks how many packets have been

enqueued since the last packet was dropped.  Let us consider this function in greater de-

tail.



60

RED’s goal is to give some feedback to flows as congestion occurs and to distribute

feedback evenly among flows. The average queue size is an indicator not only that con-

gestion seems to be occurring but also of its severity.  Severity here may refer to duration

or how extreme the overload is.  In either case, associating average queue size with con-

gestion severity is a reasonable heuristic.  An average queue size near the minimum

threshold indicates congestion may have just begun or that the load is only slightly greater

than the capacity.  An average queue size near the maximum threshold indicates the con-

gestion may be persistent or the recent load is much higher than the available capacity.

The more severe the congestion is, the more feedback is needed.  In probabilistic drop

mode, the drop probability is linearly related to the average queue size.  Additionally, in

order to avoid consecutive drops (and resulting phenomenon like global synchronization

or lock-out) the function limits the likelihood that two consecutive packets will be

dropped to maxp.  When the previous packet was dropped and count is zero, the maxi-

mum probability is maxp.  As count increases, the drop probability also increases.  The ef-

fect of count can actually lead the drop probability to reach one hundred percent quickly

so some packets will always be dropped while in probabilistic mode.  A subsequent variant

of RED proposed a more gentle transition from probabilistic drop mode to forced drop

mode [Floyd97c].   The original design has a discontinuity in the drop probability,  from

maxp to 1, when the average queue size exceeds ThMax,  Instead, a second linear transition

ranges the drop probability from maxp to 1 as the average queue size ranges from ThMax to

twice ThMax.   This variation has been implemented in [Rosolen99].  This variation avoids

severe discontinuities in the feedback delivered to the end-systems but avoids increasing

the packet dropping probability too quickly during periods of moderate congestion, yet

quickly increases the drop probability during severe congestion in order to constrain the

queue size.

In summary, RED’s innovations include the use of a weighted running exponential av-

erage.  The use of the average means that the long-term behavior of the queue is consid-

ered but recent behavior counts more.  Additionally, RED’s choice to relate the probabil-

ity that an arriving packet will be dropped to the current average queue size allows RED

to signal not only congestion, but the severity of congestion.  The choice to relate the drop



61

probability to the number of packets that have arrived since the last drop insures both that

some feedback is given whenever the algorithm is in probabilistic drop mode and that con-

secutive drops are minimized when congestion is not severe.  As with Early Random

Drop, dropping packets early solves the problem of full queues and also allows the queue

to continue to accommodate bursts.  Since packets are dropped before the queue actually

fills, a longer overload is required to fill the queue.  Moreover, because most flows are

assumed to be responsive, RED can rely on the flows responding to dropped packets to

adjust their load to alleviate the congestion, allowing the queue to drain.

RED’s probabilistic drop function helps solve the lock-out problem.  By making the

drop process random instead of binary, RED is able to spread the drops across many

flows, giving most flows some feedback while still allowing most flows access to the

queue.  Over a given interval, all flows should see the same percentage of their packets

dropped.  If the average drop probability over an interval were 5% packet loss, a flow

sending 100 packets/second during that interval should see 5 packets/second dropped

while a flow sending 20 packets/second should only see 1 packet/second lost.  The design-

ers of RED felt that this was a reasonable notion of fairness.  It certainly greatly improved

upon the complete lack of fairness in drop-tail where some flows may have 0% packet loss

while others may see 100% packet loss.



62

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

Time

T
hr

ou
gh

pu
t

Figure 3.3  Aggregate TCP throughput (KB/s) over Time (seconds) with RED in the
Presence of an Unresponsive, High-Bandwidth UDP Flow

However, RED operates on the assumption that all flows are responsive.  If a flow has

some of its packets dropped, RED assumes that the flow will reduce its load.  Unfortu-

nately, unresponsive or misbehaving flows represent a growing fraction of the traffic in the

Internet.  Under all of the queue management policies considered so far, when these flows

are mixed with responsive flows they may steal bandwidth from their responsive counter-

parts.   Figure 3.3, taken from the experimental setup described in Chapter 5, gives an ex-

ample of this.  It shows the performance of TCP in the presence of an unresponsive flow

when using the RED algorithm to manage the queue on the bottleneck link.  Many TCP

flows are active throughout the interval shown, but from time 15-70 seconds, a single,

high bandwidth UDP flow is introduced.  The UDP flow is able to consume almost all of

the network’s capacity as the TCP throughput drops to nearly zero.

To understand the starvation effect, consider the feedback loop that occurs with RED.

All flows have the same fraction of their packets dropped.  The responsive flows respond

by reducing their generated load in half.  The unresponsive flows continue to send at the



63

same rate.  The overall load on the link is reduced so the overall drop-rate decreases.  As a

result, the unresponsive flows have a smaller fraction of their packets dropped and their

overall throughput increases.  Meanwhile, the responsive connections still detect loss and

the cycle repeats until the unresponsive flows either use almost all of the link's capacity or

they have received all of the capacity they need, leaving responsive flows to share the

leftover capacity.  The TCP throughput does not decrease all the way to zero because the

congestion windows only decrease to one segment and some flows are always trying to

send data.   Moreover, in this experiment there are many TCP flows so in aggregate their

load, even with very small transmission windows, is still measurable.  The same phenome-

non occurs in all of the policies discussed so far.  All of these methods provide feedback to

the responsive flows encouraging them to reduce their generated load while aggressive

flows ignore such feedback, maintaining their load and consuming the freed capacity.

2.2.5. Summary

Better notification of congestion is an important goal of active queue management

schemes.  It is important that congestion be accurately recognized and end-systems noti-

fied in an accurate, timely, and low-impact manner.  ECN and DECbit both provide a low

impact notification of congestion in terms of packet loss.  Both offer a packet marking

scheme which allows end-systems to detect congestion explicitly, without requiring that

packets be discarded.  As a result, data loss and the associated retransmissions are reduced

and notification does not have to be limited to limit data loss.  However, explicit marking

schemes require modification of the end-systems to recognize and respond to this notifi-

cation.  Because of the inertia that must be overcome, these schemes are being deployed

slowly and packet-drops continue to be a key implicit notification of congestion.

DECbit and RED focused on the problem of how to accurately identify congestion.

Like prior queue management schemes, both identify congestion by monitoring the be-

havior of the queue.  However, while their predecessors examined the instantaneous queue

length, RED and DECbit, consider the average queue length.  By examining the average,

they consider the recent rather than the current behavior of the queue.   Further, RED in-

creases its notification (by increasing the drop probability) as the average queue size in-

creases.  In this way RED gives some indication of the severity of the congestion in addi-



64

tion to its simple presence. The RED algorithm will be examined in detail in section 3.2.

RED, DECbit, and ECN all were important contributions to the accurate identification and

notification of congestion.

2.3. Non-TCP-Friendly flows

Any flow that does not respond to drops as an indicator of congestion by employing a

congestion control mechanism that is at least as reactive as TCP is considered to be non-

TCP-friendly.  Non-TCP-friendly protocols are a superset of unresponsive flows.  Non-

TCP-friendly flows represent an additional vulnerability for AQM techniques.  However

AQM can also be enhanced to address this problem.  Beyond streaming media and multi-

cast bulk data transport [Floyd95b], non-TCP-friendly flows arise from the proliferation of

protocols and implementations of protocols.  Some TCP implementations do not imple-

ment the congestion avoidance mechanisms properly.  In other cases, vendors are rumored

to intentionally back-off slower and recover faster than specified in an effort to offer a

faster TCP than other vendors.  Non-TCP-friendly flows can lead to a form of congestion

collapse.  These flows can dominate the link’s capacity because the TCP-friendly flows

will reduce their load more aggressively when they detect drops while the other flows may

maintain their load, consuming the freed capacity.

Recall that drop-based congestion management techniques have an underlying as-

sumption that the flows transiting the queues and links are responsive.  Responsive flows

will respond to drops by decreasing their generated load and may respond to periods

without drops by increasing their generated load.   However, if responsive flows are mixed

with unresponsive flows, then when the responsive flows reduce their load the unrespon-

sive flows simply have more capacity available for their use.  As a result the congestion

may be maintained, forcing the responsive flows to even further reduce their generated

load until unresponsive flows dominate the link.  The same principle applies when TCP-

friendly flows share the link with flows that are responsive, but do not reduce their load as

aggressively as TCP.

Recently, the Internet Engineering Task Force has made several recommendations to

improve Internet performance [Braden98].  Foremost among their recommendations was a



65

call for widespread deployment of RED or similar AQM policies to address the problems

previously discussed.  Their second recommendation was for continued research into

mechanisms to identify and address problems with non-TCP-friendly flows.  Three ap-

proaches to dealing with unresponsive flows are outlined below.  First, FRED is consid-

ered.  FRED attempts to insure all flows get roughly equal shares of the link’s capacity.

Then comes Floyd & Fall’s work which focuses on using the RED drop history to identify

different types of problematic flows.  Finally, a policy called RED with In and Out (RIO)

is considered.  RIO uses RED to offer differentiated services, focusing on whether or not

traffic conforms to service profiles to decide whether to perform strict or relaxed drop

tests on the packets.

2.3.1. FRED

Flow Random Early Drop (FRED) was proposed as a mechanism to provide fairness

between flows in the network [Lin97].   Previous AQM policies approached queue man-

agement as an effort to manage the behavior of the queue and to provide consistent feed-

back to responsive flows.  FRED's developers approached the problem from a different

perspective.  They begin by dropping RED’s implicit assumption that most, if not all,

flows are responsive.  Then they treat the problem as one of resource management

through active queue management.  By managing which packets gain access to the queue

they can manage how the capacity of the outbound link is allocated.

The designers identify three types of flows: robust, fragile, and non-adaptive. Robust

flows are responsive flows that have a significant throughput, such that their response to a

small number of drops is simply to reduce their generated load. In contrast, fragile flows

are those that are also responsive but are extremely sensitive to dropped packets.  For ex-

ample, a very low bandwidth TCP flow with a small RTT may have a very small conges-

tion window.  As a result, a single lost packet is likely to be detected only through a re-

transmission time-out.  While only one packet is actually lost, that flow has no throughput

over the time-out interval.  Moreover, even when multiple robust flows are involved, if a

new flow joins the mix, that flow starts with a small window so it may be trapped in slow-

start even if its packets are being dropped at the same rate as other flows.  Both fragile

flows and robust flows in slow start may suffer much more severely from a given drop-



66

rate than other responsive flows that have their transmission-rate/window-size established.

The third type, non-adaptive or unresponsive flows, was not addressed in the design of

prior AQM policies.  One may assume that since unresponsive flows are subject to the

same drop-rate as responsive flows their bandwidth will be constrained.  However, as pre-

viously illustrated, unresponsive flows may maintain the load they place on the network

and if so, cause responsive flows to back out of the way.  As a result, unresponsive flows

are allowed to consume as much of the link’s capacity as they wish.

While RED provided a notion of fairness by dropping an equal percentage of the

packets from all flows, the designers of FRED noted that this approach did little to offer

fair bandwidth allocation, particularly when the assumption that all flows are responsive

was false.  The designers of FRED suggest that a congestion management technique

should insure that all flows receive a fair share of the network’s capacity. A fair share is

defined as the minimum of a flow’s desired capacity or 1/nth of the link capacity when n

flows are active.  They also propose that fragile flows should be protected from probabil-

istic drops because their response is much more severe than other flows.   Robust flows

should receive good feedback but be isolated from the effects of unresponsive flows.  To-

ward that end, unresponsive flows should be identified and strictly constrained to a fair

share of the network capacity.

FRED accomplishes these goals by monitoring the performance of all active flows with

per flow statistics.  By keeping statistics for each flow the algorithm can identify fragile

flows (those with a very small number of packets in the queue) and protect them from

probabilistic drops.  Further, it can constrain each flow to its fair share of the queue during

periods of congestion.  Finally, by recording the number of times that a flow exceeds its

fair share, the algorithm can identify misbehaving flows.  They can then be tightly con-

strained to limit their effect on well-behaved flows.

One of major contributions of FRED was the perspective that assumes that fairness

dictates that all flows should have access to an equal share of the link’s capacity.   This is

in contrast to RED’s perspective that assumes constraining all flows by an equal percent-

age of drops is fair.  Floyd & Fall and RIO also offer different perspectives on fairness.



67

FRED is also noteworthy as one of the first Active Queue Management policies to 1)

consider unresponsive flows in its design, 2) maintain per flow statistics, and 3) penalize

unresponsive flows.

2.3.2. Floyd & Fall

Floyd and Fall also offered an approach to deal with misbehaving and unresponsive

flows [Floyd98].  They propose that the router should identify different classes of flows

and deal with them by preferentially dropping packets from unresponsive, high-bandwidth,

or non-TCP-friendly flows.  They propose techniques for identifying the level of respon-

siveness of a flow based on the recent drop history under the RED algorithm.  The authors

derive the sending rate of a TCP flow, T, expressed in terms of the minimum round trip

time, R, the drop rate, p, and the maximum packet size, B, in bytes as:

pR

B
T

*

*3/25.1≤ (3.1)

TCP-friendly flows are those whose sending rate can be predicted using this equation.

By periodically determining the percentage of the total dropped packets that belong to a

given flow, the algorithm can deduce the flow's arrival rate both relative to the other flows

and relative to that flow's behavior in previous sampling intervals.   By examining the way

that flows adjust the arrival rate in response to drops the algorithm can determine which

flows are responsive, unresponsive, or aggressive.  Comparing the number of drops for a

given flow relative to other flows can determine whether or not that flow is high band-

width.

They then propose that routers should take steps to deal with these flows.  The stan-

dard recommendation is that flows that do not behave in a TCP-friendly manner should be

constrained severely.   The intent of this work is to encourage the use of end-to-end con-

gestion control and discourage the use of applications that fail to use some congestion

control technique.  The proposal for accomplishing this is to identify flows that do not re-

spond to congestion in a TCP-like manner and constrain those flows.



68

2.3.3. RIO – RED with In and Out

RIO is an active queue management technique proposed for use in the differentiated-

services initiative of the IETF.  The differentiated-services model provides a very simple

facility for negotiating and supporting service contracts between service providers and

end-users.  It allows end-users or network administrators to negotiate profiles specifying

the type of traffic load they will place on the network. The service provider then promises

to give traffic that conforms to its negotiated profile preferential treatment.  RIO is an in-

tegrated approach that combines service profiles, policing at network ingress points, and a

preferential drop policy based on the RED queue management mechanism [Clark97].  As

packets pass through network ingress points, they are policed to be sure they conform to

the negotiated profile.  Those packets that conform to the profile are marked as in-profile

while those that exceed the negotiated profile are marked as out-of-profile. RIO recog-

nizes these two specific categories of packets.  By applying the RED algorithm differently

to each category of packets, the router can preferentially drop out-of-profile packets be-

fore dropping those that are in-profile.  In this way, RIO provides feedback to responsive

flows and isolates the flows that conform to their profiles from the effects of those flows

that misbehave.  The service profiles and the queue management approach are considered

in more detail below.

Flows are associated with a service profile.  The profile constitutes an agreement on

the behavior of that flow (or group of flows) between the end-system on one side and the

service provider on the other.   Upon ingress to the service provider’s network, packets

are tagged as In or Out of profile by a policing mechanism, such as a token bucket.  If the

flow is conforming to its service profile all of its packets will be marked as in-profile.  If

the flow is exceeding its profile, then those packets that represent its excess will be tagged

as out-of-profile and those packets may be preferentially dropped.

The semantics of the queue management are as follows.  All packets share a common

queue but two separate sets of statistics and configuration parameters are maintained.

One set of statistics is maintained to track the queue occupancy only for In packets.  The

other set of statistics applies to both In and Out packets.  In packets are evaluated based

only on the behavior of In packets.  Out packets are evaluated based on the behavior of



69

the entire queue. Out packets are dropped more aggressively by using smaller thresholds,

increased drop probabilities, and by basing the tests on aggregate behavior of all packets.

In contrast the decision to drop an In packet is based on the average queue occupancy by

In packets compared to a higher threshold setting and a lower drop probability.   As a re-

sult, out-of-profile packets are generally dropped before in-profile packets are dropped.

RIO isolates in-profile traffic from the effects of out-of-profile traffic.  As long as the

in-profile traffic does not exceed the threshold on in-profile queue occupancy, no in-

profile packets are discarded.  However, the relationship between queue occupancy and

throughput does depend on the behavior of out-of-profile traffic.  Consider an example

where out-of-profile and in-profile traffic are maintaining average queue occupancy equal

to their respective thresholds.  Then, in-profile traffic has average queue occupancy equal

to the threshold for in-profile traffic while out-of-profile traffic has average queue occu-

pancy equal to the difference between the thresholds for out-of-profile and in-profile traf-

fic.   The ratio between the average queue occupancies determines the ratio between link

capacity available to each class.

RIO is noteworthy as it represents one of the first instances of combining classification

with queue management.  Instead of classifying packets to assign them to different priority

queues to be dealt with by a scheduling mechanism, RIO uses a simple binary classification

to determine which set of AQM parameters to apply.  All of the packets still go in the

same queue so there is no need for the complexity of a scheduling mechanism.  Moreover,

order is maintained.  This has positive effects for both multimedia and TCP.  Because

multimedia packets are usually played out when they are received, out-of-order packets

are often discarded to maintain the illusion of continuity (since subsequent frames have

already been displayed).   For TCP, out-of-order packets can trigger duplicate acknow-

ledgements and unnecessarily trigger congestion control mechanisms.  However, the sepa-

rate statistics allow the two classes to be managed in different ways.

However, unlike most other active queue management techniques, RIO extends be-

yond the router itself.  RIO requires profiles to be established for each flow or group of

flows at the network ingress points and for policy meters to be employed to determine if



70

flows conform to their profiles and tag them accordingly.   As a result, RIO is able to iso-

late out-of-profile traffic from in-profile.  This results in constraining non-responsive flows

effectively.  As long as non-responsive flows like multimedia have enough capacity allo-

cated in the negotiated profile those flows will not be penalized as long as they conform to

their profile.

2.3.4. Summary

Each of the three approaches in this section approached the issue of fairness and isola-

tion between different types of flows in a different manner than RED.  RED simply applied

the same drop-rate to all flows in an effort to give equal feedback and equally constrain all

flows.  FRED took the approach that fairness means allowing all flows to claim equal

shares of the link capacity.   Floyd & Fall took the approach that TCP is the defining ex-

ample of being a good citizen and that all other traffic should be encouraged to follow that

model.  They encourage constraining unresponsive flows.  While the first three approaches

all gave a particular definition of fairness, RIO provided the most flexible approach, simply

constraining those flows that violate their service profiles.  In the case of RIO, fairness can

be determined during the profile negotiation and the traffic’s level of responsiveness is ir-

relevant if it conforms to the profile.

2.4. Summary of Evolution of Active Queue Management

Originally, queues were added to routers to provide some buffering for the bursts that

are common in Internet traffic.  The original queue management algorithm was simply a

FIFO queue with drop-tail-when-full semantics.  However, these FIFO queues have prob-

lems with lock-out and full-queues.  Drop-front and Random Drop use different forms of

randomization to address lock-out.  The Early Random Drop continued to apply the idea

of randomness by dropping packets probabilistically before the queue filled.  By dropping

some packets early, when the queue exceeds a threshold, the Early Random Drop policy

avoids full-queues.

After lock-out and full-queues were addressed, researchers began to explore other re-

finements to manage the queue.  These refinements included more accurately detecting

congestion and giving more controlled feedback.   In both DECbit and RED, accuracy re-



71

sulted from inferring trends by monitoring the average queue size.  The recent behavior of

the queue was a better indication of congestion than the instantaneous queue size since a

single burst may fill the queue but only sustained congestion would keep the queue occu-

pied and increase the value of the average.  Further, in RED changing the percentage of

packets dropped in relation to the average queue size did a better job of reflecting the se-

verity of the congestion.  The end-systems observed more drops when the congestion was

persistent or severe.   Research on DECbit and ECN also explored packet-marking tech-

niques to provide feedback without data loss.  By marking some packets when congestion

is detected, but before queues overflow, these packet-marking techniques allow respon-

sive flows to adjust their load and potentially avoid any data loss due to buffer overflow.

Finally, with these refinements in place the research community turned its attention to

problems associated with flows that were not TCP-friendly.  Recently, with the advent of

streaming media, interactive applications, multicast, and point-cast technology, the amount

of non-TCP friendly traffic in the Internet has increased.  Previous queue management

solutions could not protect responsive protocols, such as TCP, from these less responsive

flows.  FRED, RIO, and Floyd&Fall present three different alternatives to this problem.

The designers of FRED propose that all flows are equal and attempt to insure that all

flows can have an equal share of the link’s capacity if they need it.  FRED accomplishes

this goal by maintaining per-flow statistics and penalizing those flows that repeatedly ex-

ceed their fair-share.  In contrast, Floyd & Fall differentiate between flows based on their

responsiveness.  They propose that TCP, as a good network citizen, should be protected

and other flows, whether unresponsive, not TCP-friendly, or simply high-bandwidth

should be constrained.  They propose extensions to RED queue management to identify

the different types of flows so they can then be preferentially constrained.  Finally, RIO,

detaches the question of what is fair from the mechanism.  RIO, as a mechanism to use in

the differentiated-services architecture, simply assures that traffic is allowed to use its allo-

cated bandwidth as specified in a service profile. Maintaining two sets of statistics and

thresholds, RIO insures that packets that are out-of-profile are subjected to a more ag-

gressive drop policy that those that are in-profile.  This issue, of how to effectively man-



72

age different types of flows with Active Queue Management remains a key problem and is

the focus of this dissertation.

3. Key Algorithms in Greater Detail

This dissertation compares four different queue management schemes: First In, First

Out (FIFO), Random Early Detection (RED), Flow Random Early Detection (FRED), and

Class-Based Thresholds (CBT).   Each scheme implements a different policy for deciding

when to discard packets from the router’s outbound queue.   The different policies result

in different levels of feedback for responsive traffic, different levels of constraint on unre-

sponsive flows, and different end-to-end performance and network utilization.

This section describes each of the four queue management schemes to evaluate. Ad-

ditinally, a packet scheduling scheme, Class Based Queueing (CBQ) is described.  CBQ

will be used as a gold standard for comparison with the active queue management

schemes.

3.1. Drop-Tail (FIFO)

The default queueing behavior in Internet routers has long been drop-tail-when-full.

There was no special rationale in providing these queueing semantics.  They are simply the

default behavior of a finite capacity queue.  The focus when these queues were added to

routers was simply to have a queue of some form to provide buffering associated with the

outbound link.  That buffer is there simply to accommodate transient overloads that result

from the bursty nature of the Internet.   The general rule of thumb in determining the

buffer’s capacity was simply to allocate space equivalent to two to four times the delay-

bandwidth product [Villamizar94].  This would allow for the simultaneous arrival of a

TCP window’s worth of data for all of the well-tuned flows to be buffered without loss.

Overall, drop-tail buffering has performed well.  The primary evidence in support of

this claim can be found in the more than one hundred million hosts currently connected to

the Internet.  However, drop-tail buffering does have some significant performance flaws.

As discussed above, drop-tail can lead to lock-out and full queues.  Further, it offers no

protection or isolation between flows or classes of flows.



73

3.1.1. Algorithm Description

The algorithm for implementing a drop-tail FIFO queue is a simple modification of the

standard queue as a linked list. The code is shown below in Figure 3.4.  When a packet

arrives, if the queue is not full, the packet is enqueued. If the queue is full, the packet is

dropped.  When a packet departs, it is dequeued and sent.  The enqueue and dequeue

functions are expected to update the value of q_len.

Constants:

int q_limit; // Upper limit on queue size

Variables:

int q_len = 0; // Current queue occupancy

General Functions:

void enqueue(P); // Enqueue P and update q_len

Packet dequeue(); // Dequeue P and update q_len

void send(P); // Transmit P

void drop(P); // Discard P

for each arriving packet P {

if ( q_len < q_limit  ) { // If queue is not full

enqueue(P);

} else {

drop(P);

}

} // End for each arriving

for each departing packet {

P = dequeue(); // dequeue and send the packet

send(P);

} // End for each departing

Figure 3.4 Algorithm for Drop-Tail (FIFO) Queue Management

3.1.2. Evaluation

FIFO scheduling accomplishes its major design goal: accommodating bursty traffic.

However it suffers from problems of lock-out and full queues.  Further, FIFO provides no

isolation or protection between flows or classes of flows.  It is possible for aggressive, un-

responsive flows to dominate the queue and, consequently, the link’s capacity just as

demonstrated for RED in Figure 3.3.  The same phenomenon for FIFO is illustrated in



74

Figure 3.5.  This example shows the result of an experiment designed to illustrate this ef-

fect on a 10 Mbps link.  The plot shows TCP’s utilization of the outbound link on a router

employing a FIFO queueing discipline. The aggregate throughput of all TCP connections

collapses when a single high-bandwidth UDP flow is introduced between time 15 and 70.

The experimental environment in which these data were measured is described in Appen-

dix A.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

Time

T
hr

ou
gh

pu
t

Figure 3.5 Aggregate TCP Throughput (KB/s) over Time (seconds) with FIFO in the
Presence of an Unresponsive, High-Bandwidth UDP Flow

While FIFO’s wide spread deployment led to the subsequent discovery of these subtle

problems, it is important to note that FIFO queueing was never intended to address any of

the problems pointed out here.  It was simply designed to accommodate transient over-

loads resulting from the bursty nature of Internet traffic.  Its simple design results in very

little processing overhead in the router yet helps to avoid a great deal of unnecessary

packet loss.



75

3.2. RED

RED monitors the average queue size and based on its relation to two thresholds, op-

erates in one of three states.  These states are no drop, early drop, and forced drop mode.

By monitoring the average queue size, RED can react to trends in the queue’s behavior

and avoid being unduly influenced by the bursty nature of Internet traffic.  When the aver-

age queue size is small, RED infers that there is little or no congestion and operates in no

drop mode, simply enqueueing all arriving packets.  When the average queue size is mod-

erate, RED operates in early drop mode.  In this mode, RED probabilistically drops pack-

ets based on a random probability that is linearly related to the average queue size.  The

random factor distributes drops evenly across all flows, avoiding lock-out, and the deci-

sion to drop before the queue fills helps to avoid full queues.  Relating the drop probability

to the queue size allows for some indication of the severity of the congestion to be com-

municated to the end-systems.   Finally, when the average queue size is large or if the

queue is full, the algorithm operates in forced drop mode.  In that mode, all packets are

dropped on the assumption congestion is severe and the queue size must be reduced to

avoid overflow.  The actual algorithm is described below.



76

Constants:

float w; // Weight for the running avg

float max p; // Maximum drop probability for RED

float Th Max; // Max threshold

float Th Min ; // Min threshold

float drain_rate; // The drain-rate for the queue (link capacity)

int q_limit;

Variables:

float q_len = 0; // Current queue occupancy

float q_avg = 0; // Average queue occupancy

int count = -1; // Num packets that have arrived since last drop

bool old; // Indicates transition into early drop mode

bool idle; // Indicates if class has no packets enqueued

time last; // The time when the class went idle

General Functions:

void enqueue(P); // Enqueue P and update q_len

Packet dequeue(); // Dequeue P and update q_len

void send(P); // Transmit P

void drop(P); // Discard P

Time now(); // Return current time

float random(); // Return random between 0 and 1

Defined functions:

Bool drop_early(); // Should we do an early drop

void compute_avg() // update q_avg

Figure 3.6 Definitions and Declarations for the RED Queue Management Policy

3.2.1. Algorithm Description

The RED algorithm attempts to detect congestion by tracking the average queue be-

havior.  Figure 3.6 shows the definitions and declarations associated with the algorithm.  It

maintains statistics including the current queue occupancy, q_len, the weighted running

average of the queue occupancy, q_avg, and the number of packets that have arrived since

the last packet was dropped, count, and the last time the queue was active, last.   The al-

gorithm also uses two flags to track the current state.  One flag, idle, indicates if the queue

is currently empty.  The other, in_early_drop, indicates when the algorithm is in early-



77

drop mode.  Parameters also control the precise the behavior of the threshold.  These pa-

rameters include a maximum and minimum threshold size, ThMax and ThMin, a limit on the

queue size, q_limit, the weighting factor to assign to each new sample of the queue size,

w, a maximum drop probability, maxp, and the expected drain-rate of the queue,

drain_rate.

compute_avg() {

local time delta_time;

local int n;

if ( q_len ) { // if the queue is still occupied take one sample

q_avg = ( 1 – w ) * q_avg + w * q_len;

} else { // if the queue was empty we have to adjust the sampling

idle = false;

// if the queue is empty, calculate how long the queue has been idle

delta_time = now() – last;

// n packets could have been dequeued during the interval

// based on drain-rate

n = delta_time * drain_rate – 1;

// treat is as if n samples were taken with a qlen of 0

q_avg = ( 1 – w )^n * q_avg;

}

} // End compute_avg

Figure 3.7 Algorithm for Computing the Average in RED Routers

Computing the Average

A key component of the RED algorithm is its calculation of average queue size.  The

algorithm used to compute the average can be found in Figure 3.7.  The algorithm samples

the queue size every time a packet arrives.   The average is maintained by giving the cur-

rent sample a weight of w and the previous average a weight of 1-w.  The intent of the

sampling method is for the sample-rate to be, on average, at least as high as the drain-rate.

Since every packet that arrives results in a sample, it is obvious how the sample rate

matches or exceeds the drain-rate over any interval when the queue is not idle.  At the end

of an idle period, the averaging algorithm behaves as if a sample were taken at the drain-

rate of the queue.  To do that the function calculates the number of packets, N, that would

have been dequeued if the queue had been active.  They then update the average with N

samples of a queue length of zero.



78

for each arriving packet P {

// count the number of packets since the most recent drop

count++;

compute_avg(); // update the average for

drop_type = NO_DROP;  // Assume we won’t drop this

// If we’ve exceeded the queue’s capacity

if ( q_len ≥ q_limit  ) {

drop_type = FORCED_DROP;

// If the average is greater than Th Min  and there is a queue.

} else if (( q_avg > Th Min ) && ( q_len > 1)) {

// Activate some drop mode

if ( q_avg > Th Max ) { // forced drop mode

drop_type = FORCED_DROP;

} else if ( not in_early_drop ) {

// first time exceeding Th Min

// take note (update count & in_early_drop) but don’t drop

count  = 1; // initalize count as we enter early mode

old= true ;

} else { // Not the first time exceeding Th Min

// probabilistic drop mode

if ( drop_early() ) {

drop_type = EARLY_DROP;

}

}

} else {

old = false ; // avg below Th Min .

}

if ( drop_type == NO_DROP ) {

enqueue(P);

} else {

drop(P);

count = 0; //  packet dropped – reinitialize count

}

} // End for each arriving

Figure 3.8 Algorithm for Packet Arrivals in RED Routers

Drop Modes

For every arriving packet, a decision is made whether or not to drop the packet. The

drop policy is mode-based. Figure 3.8 illustrates the algorithm for dealing with packet ar-



79

rivals.  The main purpose is to determine which mode to operate in.  Initially, the algo-

rithm assumes the packet will be enqueued and the algorithm is in NO_DROP mode.  If

the number of packets exceeds the queue’s capacity, then the arriving packet must be

dropped.  This is a forced drop.   In general, the current mode is determined by the aver-

age queue occupancy, q_avg.  When the average queue size is greater than ThMin and a

queue already exists (q_len > 1), the queue is in one of its drop modes.   In this situation,

if q_avg is greater than ThMax, the algorithm operates in forced drop mode and the arriving

packet is discarded.  Alternatively, q_avg must be less than or equal to ThMax, putting the

algorithm in early drop mode.  In early drop mode, the algorithm performs an early drop

test, described below.  If the test is positive, the arriving packet is dropped.  Otherwise,

the packet is enqueued, just as it is if no queue exists or the average is less than the ThMin.

drop_early() {

local float p a, pb;

// first approximate drop probability linearly based on q_avg

// relative to Th Max and Th Min

pb = max p * ( q_avg – Th Min  )/( Th Max – Th Min  );

// Then adjust the probability based on the number of packets

// that have arrived since the last drop.

pa = p b/(1 – count * p b );

if ( random() < p a ) return true;

return false;

} // End drop_early

Figure 3.9 Algorithm for Making the Early Drop Decision in RED Routers

Early Drop Test

The algorithm for the probabilistic test associated with the random drop mode can be

found in Figure 3.9.  The parameter, maxp, is an input parameter that defines the upper

end of a linear range of packet drop probabilities based on the relation of the average to

ThMax and ThMin.  It is used to calculate an intermediate value, pb where







−
−=

MinMax

Min
pb ThTh

Thavgq
maxp

_
(3.1)



80

The value maxp is the maximum probability that an arriving packet will be dropped if the

immediately previous packet was dropped.  In this role, maxp contributes to, but does not

define, an upper bound on the likelihood of consecutive packets being dropped.

However, the probability that a given packet will be dropped is also a function of the

number of packets that have arrived since the last packet was dropped.  The variable,

count, records the number of packets that have arrived since the last packet that was

dropped.  It is used to compute the final drop-probability, pa, of the arriving packet as

( )b

b
a

pcount

p
p

⋅−
=

1
(3.2)

Note that while in early drop mode this means that for a given current queue average, a

drop is guaranteed at least every (1/pb – 1) packets.  In the most extreme case, where

q_avg approaches ThMax, pb approaches maxp.  As a result, a drop is guaranteed to occur

at least once every (1/maxp)-1 arrivals.  So for a maxp value of .1, when the average queue

occupancy approaches ThMax a drop is guaranteed to occur every 9 packets.  In the other

extreme, when the average queue occupancy is near ThMin, this guarantee on drop fre-

quency approaches infinity.  As the average increases, the number of consecutive packets

that can arrive without a drop decreases.

Departing Packets

Figure 3.10 shows the algorithm for departing packets in RED routers.  There is sim-

ply a bit of extra record keeping that must be done when packets are dequeued.  If the

packet’s departure leaves the queue idle, the time must be recorded and the idle state must

be noted for use when the calculating the average.



81

for each departing packet {

P = dequeue(); // dequeue and send the packet

send(P);

if ( q_len == 0 ) { // If the queue is idle

if ( not idle ) {

idle = true;

last = now(); // record time queue became idle

}

} else {

idle = false;

}

} // End for each departing

Figure 3.10 Algorithm for Packet Departures in RED Routers

3.2.2. Evaluation

The RED algorithm meets its design goals, avoiding the problems of lock-out and full-

queues.  It also provides effective feedback to responsive flows.  It is also worthwhile to

note that RED can be deployed without changes to existing protocols or infrastructure

beyond the single router that it is being added to.  As a result, it can be gradually deployed

into the Internet.  However, as seen in section 2.2.4, RED is still vulnerable to misbehav-

ing flows.  Although a RED router that uses drops as its notification method can constrain

unresponsive flows somewhat, the unresponsive flows will still force the responsive flows

to reduce their load to near zero.

3.3. FRED

Next, consider the FRED algorithm.  Recall that FRED was designed to offer fair ac-

cess to the link’s capacity.  By maintaining per-flow statistics and using tests on these sta-

tistics in addition to the standard RED statistics and tests, the FRED algorithm seeks to

isolate flows from one another.  By doing this, the algorithm protects robust flows from

unresponsive flows, limits drops for fragile flows, and constrains unresponsive flows.  Ad-

ditionally, robust or unresponsive flows are subject to the standard RED algorithm to pro-

vide evenly distributed feedback among the flows.  The version of the FRED algorithm

used is modified to support many flows (as described in [Lin97] ) because in these experi-

ments the TCP flows outnumber the number of buffers available in the router.  This ver-

sion of the algorithm allows every flow to have exactly two packets buffered in order to



82

allow fair bandwidth sharing as the number of active flows approaches the number of

packets enqueued.  The actual algorithm is considered in detail below.

3.3.1. Algorithm

FRED seeks to provide fairness by assuring that all active flows receive a roughly

equal share of the link’s capacity.  To do this the algorithm attempts to insure that all ac-

tive flows have equal access to the link by allowing roughly equal occupancy in the queue.

Toward that end, the FRED algorithm maintains statistics both on the overall queue be-

havior and the queue-related behavior of every active flow.  In this context, a flow is con-

sidered active if it has any packets enqueued.   The state that must be maintained in a

FRED router is reflected in the variables and constants associated with the algorithm.

These definitions can be found in Figure 3.12.  There is one instance of each of several

constants which are used to configure and fine-tune the algorithm.  The values w, maxp,

ThMax, ThMin, drain_rate, and q_limit, correspond to their counterparts in the RED algo-

rithm.  Every active flow is allowed to have a fixed number of packets in the queue with-

out being subject to drops.  This minimum allowable queue occupancy is defined by a new

constant, minq.  As long as a given flow is well-behaved and the algorithm is not in forced

drop mode, that flow is allowed to have up to minq packets in the queue without being

subjected to drops.

Many of the global variables are the same as in RED.  They include q_len, q_avg,

count, idle, and last.  However, FRED introduces three new global variables.  First, the

algorithm keeps track of the number of flows that are currently active using the counter

Nactive.  Using that value and the average total queue occupancy it computes avgcq, the

average number of packets that each flow should have enqueued.  Finally, the value f is

the index of the flow associated with the current packet.

The index f is used to access instances of the per-flow variables q_lenf and strikesf.  A

flow is the set of packets sharing a common source-destination address tuple.  The number

of packets that are currently in the queue and associated with flow f is recorded in q_lenf.

The value strikesf is used to record the number of times flow f has exceeded its fair share

(as computed by FRED).  Note that these statistics are maintained only for active flows.



83

Since active flows are those which have packets in the queue, the state associated with

these per-flow values is O(q_limit).

Finally, there are several important subroutines used by the algorithm.  The functions

enqueue, dequeue, send, drop, now, random, and drop_early correspond to their counter-

parts in RED.  The function flow_classify returns the flow index for a given packet.  The

function compute_avg is described below.



84

Constants:

float w; // Weight for the running avg

float max p; // Maximum drop probability for RED

float Th Max; // Max threshold

float Th Min ; // Min threshold

float drain_rate; // The drain-rate for the queue (link-capacity)

int minq // Mimimum allowable queue occupancy

int q_limit; // The upper limit on the queue size

Global Variables:

int q_len; // Aggregate queue length

float q_avg = 0; // Average queue occupancy

int count = -1; // Num packets that have arrived since last drop

float avgcq; // Average per flow queue size

int Nactive; // Number of active flows – initially 0

boool idle; // The queue is currently idle

time last; // The time when the queue went idle

int f; // The index of the flow this packet is associated with

Per-flow Variables:

int q_len f  = 0; // Current queue occupancy for flow f

int strikes f  = 0; // Number of overruns for flow f

General Functions:

Class flow_classify(P) // returns the connection id of packet P

void enqueue(P,f); // Enqueue P and update q_len

Packet dequeue(); // Dequeue P and update q_len

void send(P); // Transmit P

void drop(P); // Discard P

Time now(); // Return current time

float random(); // Return random between 0 and 1

Defined functions:

Bool drop_early(); // Should we do an early drop

void compute_avg() // update q_avg for class cl.

Figure 3.12 Definitions and Declarations for FRED



85

compute_avg() {

local time delta_time;  // BEGIN RED AVERAGE

local int n;

// if the queue is still occupied take one sample

if ( q_len || not idle ) { 

q_avg = ( 1 – w ) * q_avg + w * q_len;

} else { // if the queue was empty we have to adjust the sampling

// if the queue is empty, calculate how long the queue has been idle

delta_time = now() – last;

// n packets could have been dequeued during the interval

// based on drain-rate

n = delta_time * drain_rate – 1;

// treat is as if n samples were taken with a qlen of 0

q_avg = ( 1 – w )^n * q_avg;

} // END RED AVERAGE

if ( NActive) { // BEGIN FRED AVERAGING

avgcq = q_avg / Nactive;

} else {

avgcq = q_avg;

}

avgcq = MAX(avgcq,1); // any flow may have one packet

if (( q == 0 ) && ( not idle )) {

last = now();

idle = true;

} // END FRED AVERAGING

} // End compute_avg

Figure 3.13 Algorithm for Computing the Average in FRED Routers

Computing the Averages

One of the key steps in the FRED algorithm is the computation of the average per

flow queue occupancy.  This average, avgcq, is computed at the same time the total queue

average is maintained.  The basic algorithm is shown in Figure 3.13.  The computation of

the average queue size is exactly the same as that for RED, discussed in 3.2.  Only the ad-

ditions necessary for the FRED algorithm will be considered.  Once the average total

queue size, q_avg,  is computed, avgcq is computed by dividing q_avg by Nactive, the

number of active flows.  If there are no active flows, then the average queue occupancy



86

per flow is the entire average queue size.  The algorithm does insure that all flows are en-

titled to one queue slot.  Finally, there is a bit of record keeping to track when the idle pe-

riod begins.

Deciding When to Drop

Both the average queue occupancy and other queue statistics are used to determine

whether or not to drop arriving packets. Like RED, the FRED algorithm is state based and

these states largely depend on the current average queue size.  However, there are also

sub-states and special actions that take place regardless of the current state.  In addition,

specific flows may be in a state where they are more tightly constrained than other flows

because of prior misbehaving.  Figure 3.14 shows the section of the FRED algorithm that

deals with packets arriving at the router.  When a packet arrives it is first classified.  If this

is a new flow, one with no other packets currently enqueued, its state is initialized.   Next,

if the queue had been idle, then the algorithm updates the average.  This is necessary to

insure the average reflects the recent idle period and not the active period immediately

prior to the idle period.  After these record keeping steps, the algorithm begins the drop

tests.  First are the fair-share tests.  There are two conditions that lead to a packet drop

due to fairness concerns.  They are:

q_lenf ≥ ThMin - If the flow's occupancy exceeds ThMin packets in the queue the arriving

packet is discarded.

 (q_lenf ≥ avgcq ) && ( strikesf > 1 ) – If the flow has already been marked as misbehav-

ing (as indicated by the strikes) it is limited to exactly its fair share of the queue,

avgcq.



87

for each arriving packet P {

f = flow_classify(P);

if f has no state table { // Initialize this flow

qlen f , strike f =0;

}

if ( q_len == 0 ) compute_avg(); // only update if queue was idle

// Fair-share test

if ( ( q_len f  ≥ Th Min  ) ||

(( q_len f  ≥ avgcq ) && ( strikes f  > 1 )) {

strikes f ++;

drop(P);

return;

}

if ( Th Min  ≤ q_avg < Th Max ) { // probabilistic drop mode

count++; // count the number of packets since most recent drop

// Robust Flow Test

if (( q_len f  ≥ MAX(minq, avgcq) ) && ( drop_early() )) {

drop(P);

count = 0;

return;

}

} else if (q_avg < Th Min ) ) { // no drop mode

count = -1;

} else { // two packet mode

if ( q_len f  ≥ 2 ) { 
count = 0;

drop(P);

return;

}

}

if (q_len f  == 0)  Nactive++; // If this is a new flow

compute_avg();

enqueue(P);

} // End for each arriving

Figure 3.14 Algorithm for Packet Arrivals in FRED Routers

If the flow fails any of the tests for fairness, the packet is dropped and a strike is re-

corded against the flow.  Once a flow gets two strikes, it is considered to be a misbehav-



88

ing flow and is tightly constrained by the second condition of the fairness test.  Note that

flows do have the opportunity to move out of the misbehaving state.  Whenever a flow

ceases to have packets in the queue its state table entry is removed.  The next time a

packet arrives from that flow it is treated as a new and different flow with no strikes.  This

allows responsive flows to recover from occasional burstiness while maintaining a con-

straint on unresponsive flows that constantly have packets enqueued.

After the fair share test, FRED essentially applies the standard RED tests to decide

whether or not to drop the packet.  The major difference involves testing the flow for ro-

bustness before applying the probabilistic test.  All flows are allowed to buffer up to minq

packets during probabilistic drop mode without loss to protect fragile flows  A flow is

considered robust if it has more than minq packets in the queue.  A very small number of

packets in the queue may indicate it is a low bandwidth, fragile flow.  In that case drop-

ping a packet may trigger a retransmission time-out, severely impacting the flow’s per-

formance.  The test for robustness compares q_lenf to the greater of minq and avgcq.   If

the flow is exceeding its fair share and the minimum limit it is considered robust and the

drop_early test is applied.  If the test is true the packet is dropped.  (Note: the drop_early

function is the same as that for RED, shown in Figure 3.9.)

Finally, the algorithm checks to see if the current average indicates the current mode

should be no drop mode or forced drop (i.e.,  two-packet) mode. If q_avg ≤ ThMin, then

the algorithm is in no drop mode and the count is reset to –1.  Otherwise, the average

must be greater than ThMax.  Since this is the version of the FRED algorithm modified to

support many flows, the packet is dropped if that flow already has two or more packets in

the queue.  If the packet is dropped the count of packets since the last drop is reset to

zero.  If none of the drop tests are positive the packet is enqueued and the average is up-

dated.  However, before that happens, the number of active flows is also updated if there

are no packets from this flow currently enqueued.

Packet Departures

Figure 3.15 shows the algorithm for dealing with packet departures in FRED.  When-

ever a packet departs the queue it must be classified.  If the q_lenf is now zero, reflecting



89

the absence of flow f’s packets in the queue, then the number of active flows is decre-

mented and the state for this flow is deleted.  Note that this deletion of state allows flows

that respond to congestion slowly to escape from being labeled as misbehaving.

for each departing packet {

P = dequeue(); // dequeue and send the packet

compute_avg();

f = classify(P);

send(P);

if ( q_len f  == 0 ) { // If the class is idle

Nactive--;

delete state for flow f;

}

} // End for each departing

Figure 3.15 Algorithm for Packet Departures in FRED Routers

Note that FRED computes the average on enqueue and dequeue.  In contrast, RED

only calculated the average on enqueue, missing the changes in the queue size that happen

due to dequeue operation while no packets are arriving.   The designers of FRED felt the

RED method led to undersampling that led to an inflated average (because many incre-

mental decreases in queue size are not sampled) and, potentially, to unnecessary drops and

low link utilization.

3.3.2. Evaluation

FRED seeks to provide fairness between flows.  It does this by isolating flows from

one another by maintaining per-flow statistics and constraining those flows that consume

more than their fair share.  The results of this approach can be compared to the results

with FIFO and RED using the TCP Throughput graph in Figure 3.16. The traffic load is

the same as in the earlier experimental evaluation of RED and FIFO and the results with

those algorithms are superimposed for comparison.  The misbehaving UDP blast is active

during time [15, 70] seconds. While there is some decrease in TCP throughput, the overall

performance is much better than that seen when simply using RED or FIFO.  FIFO has the

lowest throughput during the blast while the throughput for RED is slightly better and

FRED's is much better.  There is no congestive collapse. The difference in the results il-

lustrated in the RED case and here is that in the FRED case, the unresponsive UDP flow is



90

constrained to consume a fair share of the router’s outbound queue. With hundreds of

TCP connections  (as part of this experimental set-up), there are a large number of active

flows (relative to the queue size of 60) at any given time, resulting in every flow being al-

located 2 buffers in the queue. Because the UDP flow is unresponsive (and high-

bandwidth), it exceeds this share and is constrained to never occupying more than 2 slots

in the queue. This results in a significantly higher level of packet loss for the unresponsive

UDP flow than under RED (and hence higher throughput for all other well-behaved

flows). Under RED, the unresponsive UDP flow could monopolize the queue and achieve

significantly higher throughput. Under FRED, each active TCP flow gets at least the same

number of buffer slots in the router queue as the unresponsive UDP flow does, resulting in

better aggregate throughput for TCP.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Time

T
hr

ou
gh

pu
t

FIFO
RED
FRED

Figure 3.16 Aggregate TCP Throughput (KB/S) vs. Time (seconds) in the Presence of
an Unresponsive, High-Bandwidth UDP Flow for FIFO, RED, and FRED.

By using the RED drop policy for robust, well-behaved flows, the FRED algorithm

continues to provide well distributed feedback to responsive flows just as RED did.  In



91

addition, FRED is able to constrain misbehaving flows, limiting them to a fair share of the

queue.

One point of debate with FRED is the definition of fair.  RED attempted to be fair by

assuring that all flows received feedback and were constrained in proportion to their actual

packet arrival rate.  RED attempted to insure that the throughput of all flows was de-

graded by the same percentage by dropping the same percentage of packets for all flows.

(The inequities resulting from combinations of responsive and unresponsive traffic will be

disregarded for the purposes of this discussion.)  However, FRED attempts to insure that

all flows are constrained to roughly equal shares of the link’s capacity.  This fails to con-

sider the fact that flows are associated with applications that may have minimum tolerable

throughput values.   Perhaps it is more reasonable to assume that all flows can tolerate a

10% degradation in throughput than to assume that the high bandwidth flows can tolerate

a 50% degradation.  Consider streaming video.  Human perception thresholds demand a

minimum latency, frame-rate, and image fidelity in order for the interaction to have value.

If the initial data flow is degraded slightly it may remain tolerable, but below some mini-

mum packet-rate, the frame-rate and/or image fidelity degrade to uselessness.  At that

point, the data that does make it through the network is simply wasting network band-

width.  The notion of fairness is a worthwhile concept to explore.  However, it may be

necessary to introduce flexibility by making the thresholds configurable instead of simply

trying to offer equal shares.

In summary, FRED offers good TCP performance and constrains misbehaving flows

well.  However its notion of fairness by allocating all flows an equal share may be too in-

flexible.  FRED is noteworthy for its application of the queue management on a per-flow

basis, for its identification of robust and misbehaving flows, and for its introduction of the

concept of fairness to queue management.   

4. Packet Scheduling

The techniques considered up to this point were various forms of queue management.

Now, consider packet scheduling, another router-based mechanism for managing conges-

tion and bandwidth allocation. With all of the queue management mechanisms considered



92

so far, the packets that successfully transit the queue are transmitted on the outbound link

in the same order they arrived at the queue.  It is this ordering that distinguishes queue

management from packet scheduling.  With scheduling, packets are not necessarily trans-

mitted in the order in which they are received.  However, order is maintained within a

given class.  Packet scheduling algorithms may reorder packets to insure that performance

objectives are met.  This technique is explained below.

Scheduling is used to insure that resources are effectively utilized.  That means both

that the resource is fully utilized whenever possible and that clients receive the resources

they need when they need them.  In the case of packet scheduling, the resource is the out-

bound link’s capacity. Different flows or classes of flows negotiate a contract with the

router for their desired performance characteristics.  The packet scheduler attempts to be

sure that all of the clients receive their negotiated share of the link's capacity. The router

then associates that class of traffic with a queue that will be serviced at a rate sufficient to

insure the desired performance.  When packets arrive at the router, they are classified to

determine which queue they are associated with and enqueued.  When the link is ready to

transmit a packet, the scheduler then selects the queue to service next.  Because of differ-

ences in queue length, service rate, and arrival rate, packets in one queue may effectively

pass packets in other queues that arrived earlier.

4.1. Class-Based Queueing (CBQ)

In our work, CBQ is used as a representative example of a packet scheduling tech-

nique. While the AQM policies simply make drop decision on a single FIFO queue, CBQ

maintains multiple queues for each class of traffic, servicing the different queues at differ-

ent rates to provide guarantees on the throughput for each class.  When some class of

traffic does not consume its allocated bandwidth, the excess can be reallocated to other

classes by servicing those queues during the time that would have been spent servicing the

idle queue.  Because CBQ is able to offer guaranteed performance for different classes of

traffic it is used here as a "gold standard" measurement to compare with the active queue

management schemes.  In the experiments presented later on in this dissertation we will



93

run each traffic pattern through a CBQ router and then compare how close AQM tech-

niques can come to realizing the performance of CBQ.

4.1.1. Algorithm

The CBQ algorithm can be broken into four parts. One component, adding a class, is

part of the background processing engine, while the other three parts are part of the for-

warding path.  Every packet must be classified and enqueued, queues must be scheduled

for service, and the appropriate queue must have a packet dequeued and transmitted. The

basic function of each of these components is described with pseudo-code below.Adding
a New Class

The mechanism for adding a new class to a router may range from an end-system re-

questing a reservation via a network control message to configuration performed locally

by a network administrator.  How the request to setup a new class arrives is not a con-

cern.  The focus is on what happens once the request is made.  Figure 3.17 shows pseudo-

code for processing a request to add a new class.  The setup method is passed a data

structure, class_info, that contains information about the new class.  First, the routine

performs admission control, checking if there is sufficient capacity available to service the

new class in addition to all of the currently supported classes.  If not, the request is re-

jected.  If there is capacity, a new queue is created and the class's requested service rate

and pattern matching rules are recorded for that queue.  The service rate will be used by

the scheduler to determine when  to dequeue a packet from this queue.  The pattern

matching rule will be used by the classifier as packets arrive.  The new queue is added to

the list of queues (Q) serviced by the scheduler.  Finally, the method either responds af-

firmatively or negatively to the request.  This may require sending a message if the request

arrived over the network or simply displaying a notification to an administrator on a con-

sole.



94

setup(class_info) {

// If there is sufficient capacity to meet the class's requested

// allocation

if ( capacity_available(Q, class_info) ) {

// Allocate a new queue with the desired service rate.

// Also record the pattern matching rule to use for classifying

// packets.

queue = new queue(class_info.service_rate,

class_info.pattern_matching_rule);

add_queue(Q,queue);  // Add this queue to the list of queues

// Confirm that the new class can be supported

reply_affirmatively();

} else {

// There isn't enough capacity so reply

reply_negatively();

}

} // End setup

Figure 3.17  Adding a New Class for CBQ

Scheduling

Although the concept of scheduling the queues is straight forward, the actual imple-

mentation is quite complex.  In concept, the scheduler should insure that over any given

time interval each non-idle queue transmits data in proportion to the allocation associated

with that queue's class.  However, the fact that the queues must be serviced in discrete but

variable size units (packets) complicates the task. The scheduler cannot transmit half of a

packet and the packets from one queue may be twice the size of the packets from another

queue.  As a result the scheduler must, for each queue, keep track of the allocation, the

time at which the last packet was sent, the size of the last packet, and the size of the

packet at the head of each queue.  Using this information the scheduler must compute the

next time that each queue should be serviced.  Maintaining this state increases the amount

of memory required in the router.  Each time a packet is transmitted, the scheduler must

update the next service time for each queue and perform a sort to determine the queue



95

that must be serviced next.   This sorting increases the computational complexity of serv-

icing a packet.

Figure 3.18 shows pseudo-code for the actual selection of the next queue to service.

Other functions, such as updating the service times based on the size of the packet sent are

incorporated into other components, such as the dequeue routine.  In the scheduling rou-

tine, it first sorts the queues by the next service times and returns a list of the indices

sorted with the earliest service time first.  Next, this sorted list is traversed until a queue

that has a packet enqueued is found (i.e., Q[i].len > 0). The index of that queue is returned

to the calling routine.  Since a class without packets enqueued is skipped, when some class

is not using its allocation the interval required to service all of the queues decreases.

Consequently, the services rate (servicings/time) for all of the other classes increases in

proportion to their initial bandwidth allocation.

queue_index schedule() {

// get a list of queues sorted by service time

indices_sorted = sort_times(Q);

// Find the earliest service time for a queue that has a packet

// in the queue.

for ( i = 1; Q[indicies_sorted[i]].len == 0; i++ );

return(indices_sorted[i]); // return the selected queue index.

} // End schedule

Figure 3.18 Scheduling for CBQ

Packet Classification and Enqueue

Figure 3.19 shows the pseudo-code for handling a packet arrival.  An arriving packet

is examined and classified to determine which queue it should be assigned to.  Classifica-

tion can be performed using the pattern matching rules for each queue. The classification

process is not specified as part of the algorithm but it is commonly based on pattern

matching using the source and destination address, port, and protocol fields in the packet

header.  Techniques exist to classify packets in O(log2 address_bits) time.  [Waldvogel97].

Although different queue management policies (such as RED) can be used to manage in-



96

dividual queues, in this example all queues are simple drop-tail FIFO queues.  As long as

there is room in the queue the packet is enqueued. Otherwise it is discarded.

for each arriving packet P {

cl = classify(P); // Determine the class of the packet

// If there is room in the class of that queue.

if ( Q[cl].qlen < qlimit ) {

Q[cl].enqueue(P);

} else { // If there's no room

drop(P); // discard the packet

}

} // End for each arriving

Figure 3.19 Processing an Arriving Packet in CBQ

Dequeueing Packets

The pseudo-code for servicing the outbound link is shown in Figure 3.20.  When the

outbound link is ready for another packet, the CBQ algorithm checks the schedule to de-

termine which queue should be serviced next.  After selecting the queue, a packet is de-

queued and transmitted.  Once the packet is transmitted the schedule must be updated

based on the size of the packet transmitted.

when outbound link is ready {

cl = schedule(Q); // Select a queue to dequeue from

P = Q[cl].dequeue(); // Dequeue a packet

transmit(P); // Transmit the packet

// Based on the size of the packet dequeued, update the next service

// time for this queue.

update_service_time(Q[cl],P);

} 

Figure 3.20 Transmitting a Packet in CBQ

4.1.2. Evaluation

CBQ provides accurate allocations of bandwidth between classes. The bandwidth allo-

cation experiment discussed for FIFO, RED and FRED was repeated with CBQ. CBQ's

results are compared with those for the other algorithms in Figure 3.21. During the period

of the misbehaving UDP blast (15-70), the TCP throughput under CBQ drops off slightly,

but only to its allocated bandwidth (79% of the link - 960 KB/s). CBQ has high through-



97

put during the blast.  It does not have the severe degradation observed for FIFO, RED,

and it is comparable to FRED in throughput while being less variable.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Time

T
hr

ou
gh

pu
t

FIFO
RED
FRED
CBQ

Figure 3.21 Comparing Aggregate TCP Throughput (KB/s) over Time (seconds).

Packet scheduling is an attractive option because it offers very precise control over

network resource.  A flow or class of flows can be assigned a share of the outbound link

and be assured of receiving that throughput level.  However, this service comes with a

price.   First, the algorithmic complexity is significantly greater than in any of the queue

management mechanisms.  The scheduling algorithm must maintain a concept of virtual

time (or one of the equivalent alternatives) and compute deadlines for the next time each

queue must be serviced and then sort the queues by their next service time.  Second, the

algorithm must be configured to indicate the desired allocation of network bandwidth.

This may require manual configuration at any router using CBQ or it may be part of a res-

ervation protocol that would need to be deployed for use by end-users and/or network

administrators.  Third, CBQ is not widely used due to its complexity.  Strengths of CBQ

include that it can be configured locally in a single router with beneficial effects.  It is ef-



98

fective in its allocation between classes.  It is flexible in its design as the number of classes

and their composition is highly configurable.

5. Evaluation of Router Queue Management

Historically, most active queue management approaches have operated on the as-

sumption that most flows are responsive.  As such, one of their goals was to give better,

earlier feedback to responsive flows.  Although this early feedback did have some con-

straining effects, it generally had little effect on unresponsive flows.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Time

T
hr

ou
gh

pu
t

FIFO
RED
FRED
CBQ

Figure 3.22 Aggregate TCP Throughput (KB/s) vs. Time (seconds) under FIFO,
RED, FRED, and CBQ.

Figure 3.22 shows the throughput of TCP in the presence of aggressive UDP flows under

the different router queue management and scheduling algorithms. (The experimental in-

frastructure used is described in Appendix A.)  Note that in the case of the queue man-

agement algorithms, FIFO and RED, the TCP throughput collapses when the aggressive

flows are introduced (between time 15 and 70).  That is because the TCP flows respond to

the congestion by decreasing their load while the aggressive flows continue to transmit at



99

the same rate.  Since the TCP load is reduced, the aggressive flows are able to consume

the unused bandwidth.

Other queue management algorithms, like FRED were designed with unresponsive

flows in mind. As discussed in Section 3.3, FRED maintains per-flow statistics, constrains

all flows to a loosely equal share, and tightly constrains any misbehaving flows to a strictly

fair-share of the queue.  As a result, aggressive, unresponsive flows are constrained and

unlikely to dominate the link.  As shown in Figure 3.22, the throughput for TCP is supe-

rior in the case of FRED to the other queue management policies.

Finally, the figure shows the results with CBQ, a packet scheduling discipline.  Packet-

scheduling results are presented for comparison of the best possible approach.  Since CBQ

provides a guaranteed service it should give optimal performance for those classes that

operate within their allocations.  In this experiment, CBQ was configured to allocate 79%

of the link’s capacity to TCP.  Before the aggressive flows are introduced TCP is able to

consume more than that share, but its throughput reduces to its allocated level when ag-

gressive flows are present.  Further, because scheduling is fine grained, the throughput is

much less variable with CBQ than with the other approaches.

Recent AQM proposals do improve TCP performance in the presence of unresponsive

flows.  However, in addition to this we also seek to offer good performance for multime-

dia.  Therefore, multimedia performance must also be considered.  None of these active

queue management approaches consider multimedia or other unresponsive flows that have

minimum acceptable performance levels.   In the case of RED, there is no effort to distin-

guish between flows so multimedia is as likely to receive drops as any other traffic type.

Table 3.1 shows the multimedia drop-rate during a congested period and in the presence

of a combination of TCP and aggressive flows.  These results are from the experiments

shown in Figure 3.22.  Clearly, multimedia suffers a large number of drops under RED,

with a 30% drop-rate.  Moreover, FRED’s policy of restricting unresponsive flows results

in an even higher drop-rate for multimedia, almost 36%.  These drop-rates are unaccept-

able if the multimedia interaction is to have any value   [Talley97].    In contrast, the



100

packet scheduling discipline, CBQ, guarantees no drops as long as the class’s offered load

remains within its allocated bandwidth and the allocation is sufficient for the load.

Algorithm Drop Rate for
Multimedia

Latency Queue Size ThMax

FIFO 32.4% ~ 60 ms 60 n/a

RED 30.0%  ~ 33 ms 60 30

FRED 35.7% ~ 30 ms 60 30

CBQ 0.0% ~ 7 ms n/a n/a

Table 3.1 Average Packet Drop Rate and Latency for Multimedia Packets

Latency is also disappointing. FIFO allows the queue to remain full and hence latency

is high since the average latency is directly related to the queue size.  The 10 Mb/s capac-

ity of the outbound link results in a drain rate of approximately one 1,000 byte packet per

millisecond.  With average packet sizes of 1,000 bytes, this accounts for the 60 ms latency

for FIFO.  In the case of RED and FRED, the maximum threshold limits the average

queue occupancy and is the primary constraint on latency. A maximum threshold of 30

packets results in latency on the order of 30 ms in each case.  Finally, since CBQ sched-

ules packet transmissions, any class that is within its bandwidth allocation should be serv-

iced almost immediately.  Multimedia's load is within its bandwidth allocation so in this

case the overall latency is 7ms for multimedia.

Two other AQM proposals merit discussion. Floyd & Fall propose router-based

mechanisms to encourage end to end congestion control and are based on identifying and

constraining misbehaving flows [Floyd98].  Although no implementation of this proposal

was available to experiment with, it is clear that this approach would improve TCP per-

formance in the scenarios above.  However, it is equally clear that, like FRED, this ap-

proach would result in poor performance for multimedia flows because it would identify

the multimedia flows as unresponsive and severely constrain them.   On the other hand, in

RIO service profiles could allocate the desired amount of TCP bandwidth and the desired

amount of multimedia bandwidth [Clark97].  Once again, no implementation was available

for study, but it seems that RIO would provide good throughput performance for multi-



101

media and for TCP if properly configured.  However, with only one queue, latency could

grow quite high if there is a significant volume of out-of-profile traffic.  Although reducing

the threshold setting for out-of-profile traffic could help to address this problem, it would

be at the expense of decreasing the fraction of the link capacity available to out-of-profile

traffic.  (In Chapter IV the relationship between queue occupancy and link capacity will be

explained in more detail.)  The current proposals to address the tension between respon-

sive and unresponsive flows through router queue management do not provide support for

multimedia.

6. Summary

This chapter considered the evolution of router queue management.  Originally,

queues were used to service the outbound links of routers in order to buffer bursty packet

arrivals.  When these queues filled, arriving packets were discarded and responsive end-

system protocols inferred the presence of congestion from the resulting packet loss.  With

simple drop-tail semantics, designers had to balance the need to have sufficient buffering

to accommodate bursts with the need to limit the size of these buffers to minimize latency

and provide early feedback during periods of persistent congestion.   Techniques such as

early random drop explored the idea of providing some feedback before the queue over-

flowed by randomly dropping some arriving packets when the queue size exceeded a fixed

threshold.  Alternatively, other researchers considered techniques such as DECbit and

ECN which provided explicit notification of congestion by marking packets during periods

of congestion.  Deployment of these packet marking algorithms has been limited because

they require changes to the end-systems protocol stacks to be effective.

Meanwhile, research has continued in ways to manage congestion by altering the

packet dropping policies in the routers.  These techniques are referred to as Active Queue

Management (AQM).  Random Early Detection (RED) probabilistically drops packets

based on the average queue occupancy.  Monitoring the average queue occupancy allows

RED to differentiate between persistent and transient congestion.  The probabilistic drop-

ping policy allows RED to distribute packet loss across all flows in proportion to their

load.  This helps to avoid the problems of lock-out and full queues which existed with



102

simple drop-tail semantics.  However, both RED and drop-tail are vulnerable to the effects

of high-bandwidth unresponsive flows. When responsive flows respond to packet loss by

reducing their load these unresponsive flows are able to consume most of the network

bandwidth because they maintain their load regardless of loss.  Flow-based Random Early

Detection (FRED) addresses this problem by maintaining per-flow statistics on queue oc-

cupancy and recent drop history.   Using these mechanisms FRED can identify and restrain

aggressive and unresponsive flows to insure that all flows get a loosely fair share of the

link's capacity.  However, it is not clear if FRED's concept of fairness through equal shares

is ideal given the heterogeneous performance demands and limits of different classes of

traffic.  It also has undersirable effects (drops) for multimedia.  In addition to the AQM

techniques, packet scheduling, the alternative technique for router queue management,

was also reviewed. Because packet scheduling can offer performance guarantees it serves

as a gold standard to compare with AQM techniques.

However, none of the router queue management approaches provide good perform-

ance for multimedia.   RED and FIFO treat multimedia like all other traffic, subjecting

multimedia to the same high drop-rates as TCP during periods of congestion.  FRED and

Floyd & Fall actively constrain unresponsive in order to improve TCP performance.  Con-

sequently, unresponsive traffic such as multimedia suffers poor performance when these

algorithms are used.

In the next chapter we present a new AQM algorithm, class based thresholds (CBT)

which protects responsive traffic from unresponsive traffic.  It also provides better per-

formance for multimedia by managing router queue occupancy to allocate bandwidth to

different classes of traffic.   Then, in Chapter 5 we will present an empirical evaluation of

CBT with respect to RED, FRED, FIFO, and CBQ.   RED is the current state of the art

for providing feedback to responsive flows based on aggregate queue behavior.  As such,

RED demonstrates the effectiveness of aggregate queue management.  In contrast, FRED

is the extreme in per-flow queue management.  Thus, FRED allows us to consider if allo-

cating each flow an equal share of the queue is sufficient for meeting our goal of protec-

tion for TCP and multimedia.   FIFO and CBQ serve, respectively, as the baseline and

gold standard for comparison.



103

  



IV. CLASS-BASED THRESHOLDS

1. Problem and Motivation

The Class-Based Thresholds mechanism provides a better-than-best-effort service for

multimedia while also isolating TCP and other responsive flows from the effects of unre-

sponsive flows.  The tension between responsive and unresponsive flows is a well-

recognized problem [Braden98].  However, most of the proposed solutions have taken a

very TCP-centric view.  The approaches are TCP-centric in the sense that, in addition to

protecting and isolating TCP from unresponsive flows, they have also sought to constrain

or punish unresponsive flows in an effort to encourage them to be more TCP-like.  We

take a multimedia-centric view.  Although the majority of the Internet’s traffic is TCP and,

as a good network citizen TCP flows should be protected, multimedia has legitimate rea-

sons not to use TCP as its transport mechanism.  Further, multimedia has very strict per-

formance requirements and the proposed constraints do not simply reduce the efficiency of

the flow.  They may render the interaction valueless.

Chapter II reviewed many application and transport level approaches that seek to

make multimedia flows more responsive.  Some focused specifically on providing TCP-

like response to congestion.  Others focused more heavily on temporal and spatial-scaling

techniques to adjust the quality of the media to match the performance of the network in a

controlled way.  All of these approaches show promise and research and deployment of

such techniques should continue.  However, even these techniques demand minimum lev-

els of network performance in order to be effective.  This is because applications using

these techniques have limits on acceptable latency and throughput.  Further, there already

exists a large number of multimedia applications deployed in the Internet that are not re-

sponsive.  These applications will not be replaced instantaneously so their presence must



105

be addressed.  For these reasons, we seek to insure that the network offers at least mini-

mal performance levels for multimedia.

Chapter III considered some of the network-based approaches to dealing with conges-

tion, specifically active queue management and packet scheduling.  Historically, active

queue management approaches have operated on the assumption that most flows are re-

sponsive.  One of their goals was to give better, earlier feedback to responsive flows.

While this early feedback did have some constraining effects, it generally had little effect

on unresponsive flows. As a result, tension still exists between responsive and unrespon-

sive flows.  To address this problem, subsequent proposals such as FRED, RIO, and the

work by Floyd & Fall have worked on identification and/or constraint of unresponsive

traffic.

However, because active queue management generally focuses on effective notifica-

tion of congestion, fairness between flows, or constraining or punishing unresponsive

flows, these algorithms lead to poor performance for multimedia flows.  We approach the

problem of network congestion and the tension between responsive and unresponsive

flows from another perspective, focusing on support for multimedia.  The goal is to pro-

vide better-than-best-effort performance for multimedia that also isolate TCP from effects

of multimedia flows and isolates both from the effects of other traffic.  We propose a new

active queue management policy, Class-Based Thresholds (CBT), which meets these

goals.  This chapter begins by explaining the goals of the algorithm and the general ap-

proach to achieve these goals.  Next, a pseudo-code description of the algorithm is re-

viewed.  Next we explain how to configure CBT, including the equations that explain the

relationship between the desired bandwidth and latency and the actual threshold settings.

To further understand the algorithm, equations are presented that predict its behavior un-

der different network loads.  Specifically these equations explain how classes borrow

bandwidth and how latency changes.  Finally, experimental results are presented that show

the control of different performance metrics that CBT affords.



106

2. Goals

CBT offers an alternative approach to addressing the tension between responsive and

unresponsive flows in today’s Internet.  General Internet traffic is made up of different

types of traffic with different responses to congestion and different performance require-

ments.  To provide each class acceptable performance while limiting the effects between

classes, CBT differentiates between packets based on which configurable traffic class the

packet belongs to.  The algorithm then attempts to isolate the performance of one class

from the effects of other classes.  CBT is an active queue management technique that

manages the average queue-induced latency in a network router and allocates bandwidth

to each class. Moreover, the approach has less algorithmic and computational complexity

than packet scheduling.  To do this, CBT uses limits on average queue occupancy to con-

trol the proportions of the outbound link’s capacity available to each class of traffic.  La-

tency is also managed with this technique.  Further, CBT’s design leads to predictable,

controllable behavior when some classes do not use their full resource allocation.

2.1. Traffic Types and Isolation

One of CBT’s major goals is to provide isolation between three major classes of traf-

fic: TCP, multimedia, and everything else (other).  TCP should be isolated from any nega-

tive effects of unresponsive traffic flows, either multimedia or other.  Further, multimedia

should also be protected from the effects of both TCP and other traffic so that it can re-

ceive a level of network service sufficient for realizing the minimum requirements of appli-

cations generating the traffic.   Finally, though there is no intent to give other traffic pref-

erential treatment, other traffic should be allowed to make progress, though at a controlla-

ble and policed service level.  A classifier identifies each packet as belonging to one of

these three classes.  We begin here by describing each class and the intent of isolating

each.

2.1.1. TCP

The TCP traffic class can be identified very easily by the protocol field in the packet

header.  All packets with a protocol field set for TCP are assumed to belong to true TCP

connections that properly implement the TCP congestion control algorithm.  The issue of



107

dealing with misbehaving TCP implementations and non-TCP protocols with TCP-like

congestion response is ignored in this work.  However, since queue management is de-

tached from the classification mechanism, it would be reasonable to extend the classifica-

tion mechanism to use more sophisticated techniques, such as drop-history, to identify

TCP-like flows [Floyd98].  In the experiments performed in this dissertation, the TCP

flows present were proper implementations of the protocol.  Since TCP flows are respon-

sive, if they are allocated a share of the link’s capacity and isolated from other classes the

individual flows should be able to arrive at equilibrium between their generated load and

the allocated share of the link.

2.1.2. Multimedia

The definition of what constitutes multimedia is detached from the definition of the

CBT mechanism. Multimedia is not defined in terms of particular applications or media

encodings.  Multimedia packets to be self-identified.  While misrepresentation could be a

serious problem and allow other flows to steal bandwidth from multimedia, the issue is

beyond the scope of this work.  However, there is a substantial body of policing and clas-

sification work [Waldvogel97, Floyd98].  However, this work assumes the presence of

properly identified multimedia flows and focuses on the effectiveness of the algorithm in

that situation.  In the current implementation, packets are simply classified by their IP ad-

dress-tuple, based on well-known ports associated with multimedia.

2.1.3. Other

Other traffic is simply all traffic that does not match the criteria for the TCP or multi-

media classes above. By isolating other traffic into its own class and limiting the band-

width allocated to this class, these unresponsive and possibly aggressive flows are left to

compete with one another for a controllable share of link bandwidth.  Although, this is not

the focus of this work, this competitive isolation may motivate application designers to

design their applications to behave in a TCP-like way.

2.2. Predictable Performance for Traffic Classes

Once classes of traffic are isolated from one another, the next step is to control the

performance each receives.  That means controlling the way they use network resources.



108

One of the goals of this work is to explore how effectively network resources can be man-

aged using a lightweight approach like active queue management instead of a more com-

plex approach like packet scheduling.  These resources include the capacity of the out-

bound link and the buffering capacity of the router. CBT allows shares of the link’s capac-

ity to be allocated to each class, resulting in a loose guarantee of average throughput for

the class.  CBT also manages the average length of the queue associated with the out-

bound link in order to manage the queue-induced latency.

2.2.1. Bandwidth Allocation

Once CBT classifies packets by their traffic type, it needs to manage the share of the

outbound link’s capacity that each class receives.  The bandwidth allocations should insure

that a class like TCP, representing the majority of the network traffic, receives the major-

ity of the outbound link’s capacity during a period of congestion.  These bandwidth allo-

cations are not strict guarantees but take the form, “class X should, on average, have ac-

cess to at least B Kb/s”.  Moreover, this specification of “at least B Kb/s” refers to the de-

sire to maintain a resource allocation scheme that approximates a weighted max-min fair

allocation [Keshav97].  This means that the class with the minimal fractional overrun of its

allocation will have its overrun met (i.e., max-ed out) before any consumers with larger

fractional overruns have theirs met.  When one class is not using its full allocation of

bandwidth, other classes should be allowed to use that class’s unused bandwidth in pro-

portion to their initial bandwidth allocations.   The actual mechanism for bandwidth allo-

cation using active queue management and max-min fair sharing are discussed in Section

3.1.2 below.

2.2.2. Manage latency

CBT seeks to minimize queue-induced latency.  Queue-induced latency is a direct

function of the number of packets in the queue when a packet arrives.  The packet will be

delayed until all of the packets ahead of it in the queue are sent.  Therefore, to minimize

the average queue-induced latency the algorithm must minimize the average queue size.

In CBT one can specify the desired worst-case average latency as an upper bound on the

average queue-induced latency that might be incurred by a packet transiting a CBT router.



109

Unlike bandwidth allocations which are per class, the worst-case latency applies across all

classes.  Section 4.1 provides a set of equations that convert latency and bandwidth re-

quirements to thresholds on queue occupancy.

There is also a small component of latency based on the amount of time it takes a

router to process a packet, aside from queueing delay.  This is the time required to exam-

ine the packet’s headers for routing and classification purposes. The algorithm's design

minimizes processing overhead by limiting the algorithmic complexity and the amount of

state maintained.

2.2.3. Resource Allocation via Queue Management

In addition to the goals above, we also pursued this research to determine the

strengths and limitations of using active queue management as a mechanism for providing

resource management.  As we discuss in Section 3.1.2, queue occupancy is managed in

order to exercise proportional control over the bandwidth available to each class of traffic.

Further, this same mechanism can also be used to control the queue-induced latency.  In

addition to confirming the algorithms ability to isolate and protect the different classes of

traffic, we also explore the accuracy and predictability of this general resource manage-

ment approach.

2.3. Minimize Complexity

CBT's bandwidth allocation mechanism is less complex than packet scheduling ap-

proaches.  Packet scheduling approaches must maintain a concept of virtual time and the

next expected service time for each queue.  On each packet arrival and departure, this

clock must be updated and the expected service times recomputed for each class.  When a

packet can be transmitted, the expected service times must be sorted to determine which

queue to service.   In contrast, when a packet arrives CBT only updates the average queue

occupancy for a single class (that of the arriving packet) and compares that average to the

threshold for that class.  When a packet can be transmitted, CBT simply transmits the

packet at the head of the single queue.



110

3. The Algorithm

First, the general design of the CBT algorithm is discussed.  Then the specifics of the

CBT algorithm are considered in more detail by examining pseudo-code.

3.1. Design

CBT offers isolation and protection between different classes of traffic.  A high-level

description of the algorithm is found in Figure 4.1.  To provide isolation and protection,

CBT classifies each arriving packet into one of a small number of classes and makes the

drop decision based on statistics and parameters unique to that class.   The statistics and

drop tests for each class are like those of RED.   The average queue size for the class,

q_avgcl, is compared to the thresholds for that class.  By tuning selected parameters for a

given class (e.g., maxp,cl, and the relationship between ThMax,cl and ThMin,cl.) one can fine-

tune the amount of feedback that class receives.   Moreover, by adjusting the ratios be-

tween the maximum thresholds for each class, the administrator can control the relative

bandwidth allocations for each class of traffic.

for each arriving packet P {

cl = classify(P);

q_avg cl  = compute_avg(cl); // update the average for this class

if ( Th Max,cl  > q_avg cl  ) {

drop(P);  // Forced drop mode

} else if ( q_avg cl  > Th Min,cl  ) { // probabilistic drop mode

 if ( drop_early(cl) )

drop(P);

} else

enqueue(P,cl);

} // End for each arriving

Figure 4.1 High-level Pseudo-code for CBT

3.1.1. Classification

The first step in processing an arriving packet in a CBT router is classification.  The

algorithm does not specify a classification method.  Instead we refer the reader to the dif-

ferentiated-services concept of tagged flows [Clark97] and other work in packet classifi-

cation [Waldvogel97].  The algorithm simply assumes that all arriving packets are classi-



111

fied into one of the available classes.  The only scenarios considered are those involving

only three classes, TCP, multimedia, and other, as discussed above.  However, the design

of the CBT algorithm is general and can have any number of classes.  Of course, increas-

ing the number of classes would impact the choice of classification method and increase

the amount of state that must be maintained.  However, the state would be proportional to

the number of classes.

3.1.2. Managing Queue Occupancy

One of the keys to the approach in CBT is the observation that the ratio of bytes oc-

cupied by each class in the queue is also the ratio of bytes used by each class on the out-

bound link.  Therefore, if the share of the queue occupied by each class is controlled so is

the share of the link used by each class.   The threshold and averaging mechanisms from

RED manage each class’s queue occupancy.

The CBT algorithm tracks the queue occupancy for each class as well as the overall

queue occupancy.  Whenever a packet associated with a given class arrives, the class’s

average queue occupancy is updated.  That average is then compared to the threshold(s)

for the class and the drop decision is made as in RED.  Using a RED style weighted aver-

age mechanism allows for burstiness in each traffic class while assuring that, on average,

each class’s average queue occupancy does not exceed its allocated share of the queue or

the link.  These allocations and their relations with the threshold settings are discussed

more formally in Section 4.1.

One fortuitous side-effect of relying on ratios of queue occupancy to control the ratios

of link capacity for each class is that another feature, the borrowing of unused capacity,

falls out naturally. Borrowing refers to the idea of classes exceeding their maximum band-

width allocation being allowed to borrow the unused capacity of classes that are not using

their allocated share. Further, the borrowing is max-min fair.  Max-min fair is the idea that

classes are able to borrow excess capacity in relation to their shares.  For example, assume

100Kb/s of link capacity is allocated to class A, 200 KB/s of link capacity to class B, and

there is 150 KB/s of excess capacity because of under-utilization by other classes.  The

ratio between class A and class B is 1:2.  As a result, if A and B need more bandwidth and



112

are the only classes that do, class A would be able to borrow 50 KB/s from the unused

150 KB/s pool and class B would be able to borrow 100 KB/s.  This would result in re-

spective throughputs of 150 KB/s and 300 KB/s, maintaining the relative shares between

the classes that are operating at capacity.  This borrowing is explained more formally in

Section 5.2.1.

While the ratios between the classes’ thresholds control the shares of the link’s capac-

ity that they receive, it is the sum of these thresholds that controls the queue-induced la-

tency.  As each class is limited, on average, to have a queue occupancy of no more than

their maximum threshold, so too is the aggregate queue occupancy limited on average to

no more than the sum of the maximum thresholds.  Since the queue occupancy when a

packet arrives determines its queue-induced latency, then the sum of the maximum thresh-

olds determines the maximum average queue-induced latency that might be incurred by an

arriving packet.  Using the set of equations in 4.1, one can adjust both the ratios between

the class thresholds (to control their bandwidth allocation) and the sum of the thresholds

(to control the maximum average latency).

3.1.3. Different Drop Policies for Different Types of Traffic

In addition to isolating and provisioning for each class, the thresholds and drop poli-

cies also give feedback to responsive flows.  The drop policy can be tuned on a per class

basis, depending upon the degree of responsiveness expected for a particular class.   In the

case of the TCP class, a full RED drop policy is applied.  The algorithm applies probabil-

istic drops when the average number of TCP packets in the queue is greater than the

minimum threshold, but less than the maximum threshold.  In the other extreme, for other

or multimedia the drop-policy is deterministic.  By setting ThMax equal to ThMin for those

classes one can effectively deactivate the probabilistic, early drop, component of the drop

policy.    As a result, depending on the average queue size, either all arriving packets are

dropped, or all arriving packets are enqueued.  This can be useful for an unresponsive

class where the concern is constraint, not feedback.  The generality of the drop policy is

discussed in greater detail in Section 6.



113

3.2. Algorithm Description

To better understand the mechanics of the CBT algorithm and how it differs from its

counterpart, RED, consider a pseudo-code description.  Beginning with the relevant dec-

larations and definitions, the analysis proceeds to examine the logic used to decide when

to drop a packet.  Then the probabilistic drop test is considered. Finally, the way that the

average is computed is presented.

3.2.1. Declarations and Definitions

The declarations and definitions for CBT are shown in Figure 4.2. CBT maintains state

for every class.  These per-class variables and constants are indexed by the class index, cl.

In addition to the standard constants that only occur once (notably the limit on queue oc-

cupancy, q_limit) there are also many per-class constants.  Each class has its own weight

(for computing the weighted average), maximum drop probability, maximum and mini-

mum thresholds, and drain rate (wcl, maxp,cl, ThMax,cl, ThMin,cl, and drain_ratecl, respec-

tively).  Drain rate refers to the rate at which packets from this class can be expected to

drain from the queue and is a function of that class's bandwidth allocation. This expected

drain-rate is a function of the expected average packet size and the speed of the outbound

link.  The drain rate is notable because it is a factor in the computation of the average

queue occupancy.  The significance of the drain rate and the weights are discussed in more

detail in Section 3.2.5.   The procedure for selecting the threshold values is discussed for-

mally in Section 4.1.   In addition to these constants, there are also many per-class vari-

ables, including the instantaneous and average queue occupancy (q_lencl, q_avgcl), as well

as several important counters and flags.  The algorithm must track the number of packets

for a given class that have arrived since the last drop, countcl.  It must also note if the class

is idle, idlecl, and record the time, lastcl, that the idle state was entered.

There are also a number of general purpose functions that the algorithm relies on.  The

algorithm needs to be able to classify, enqueue, and dequeue packets.  In addition to

processing the packets, the enqueue and dequeue operations also update the state vari-

ables associated with the packet’s class.   Finally, the algorithm must be able to get the

current time, now, and sample a random number, random.  In addition to these general



114

functions, there are two functions specific to this algorithm, drop_early and compute_avg,

described below.



115

Constants:

int q_limit; // Limit on maximum queue occupancy

Per-class Constants:

// There is an instance of these values for each class, cl

// Classes include the defined classes (e.g. TCP, Other, MM)

// plus “aggregate”

float w cl ; // Weight for the running avg

float max p,cl ; // Maximum drop probability for RED

// For most classes Th Max == Th Min  to deactivate probabilistic

// drops for non-responsive flows.

float Th Max,cl ; // Max threshold

float Th Min,cl ; // Min threshold

float drain_rate cl ; // The drain-rate for the class

Global Variables:

Class cl; // Class index

enum drop_type {NO_DROP, EARLY_DROP, FORCED_DROP}

Per-class Global Variables:

// There is an instance of these values for each class, cl

// Classes include the defined classes (e.g. TCP, Other, MM)

// plus “aggregate”

float q_len cl  = 0; // Current queue occupancy by class cl

float q_avg cl  = 0; // Average queue occupancy by class cl

int count cl  = -1; // Num packets that have arrived since last drop

bool in_early_drop cl ; // Indicates transition into early drop mode

bool idle cl ; // Indicates if class has no packets enqueued

time last cl ; // The time when the class went idle

General Functions:

Class classify(P) // returns the class of packet P

void enqueue(P,cl); // Enqueue P and update q_len cl , q_len

Packet dequeue(); // Dequeue P and update q_len cl , q_len

void send(P); // Transmit P

void drop(P); // Discard P

Time now(); // Return current time

float random(); // Return random between 0 and 1

Defined functions:

Bool drop_early(cl); // Should we do an early drop

void compute_avg(cl) // update q_avg for class cl.

Figure 4.2 Definitions and Declarations for CBT



116

for each arriving packet P {

cl = classify(P);

// count the number of packets since the most recent drop

count cl ++;

compute_avg(cl); // update the average for this class

drop_type = NO_DROP;  // Assume we won’t drop this

// If we’ve exceeded the queue’s capacity

if ( q_len aggregate  >= q_limit  ) {

drop_type = FORCED_DROP;

} else if ( q_len cl  > 1 ) && (q_avg cl  > Th Min,cl ) ) {

// Any class is allowed to have 1 packet enqueued.

if ( q_avg cl  > Th Max,cl ) {

// forced drop mode

drop_type = FORCED_DROP;

} else if ( not in_early_drop cl  ) {

// first time exceeding Th Min,cl

// take note (update count & in_early_drop) but don’t drop

count cl = 1; // initalize count as we enter early mode

in_early_drop cl = true ;

} else { // Not the first time exceeding Th Min,Cl

// probabilistic drop mode

// note – we won’t reach this state with mm and other

// as we always set Th Max == Th Min  for those classes.

if ( drop_early(cl) ) {

drop_type = EARLY_DROP;

}

}

} else {

in_early_drop cl  = false ; // avg below Th Min .

}

if ( drop_type == NO_DROP ) {

enqueue(P,cl);

} else {

drop(P);

count cl  = 0; //  packet dropped – reinitialize count

}

} // End for each arriving

Figure 4.3 Algorithm for Packet Arrivals in CBT Routers



117

3.2.2. Drop Modes

When a packet arrives at the router, the algorithm must examine the current conditions

and decide whether to enqueue or drop the packet.  The pseudo-code for this decision

process can be found in Figure 4.3.  First, the packet is classified and the class index is

returned.  Next, the countcl of packets of this class that have arrived since the last drop for

this class is incremented.  Then the current average is computed for the class.  The initial

assumption is that the arriving packet will not be dropped so the state variable is set ap-

propriately.  Then the actual drop tests begin.

If the queue is full, the packet is dropped.  In a well-deployed CBT router, this condi-

tion should only happen during periods of sudden and extreme overload.  However, if the

queue is not full, every class is allowed to have one packet in the queue at all times, to

avoid starvation.  So, if the class already has a packet in the queue and the average queue

size, q_avgcl,  for the class exceeds its minimum threshold, ThMin,cl , one of the drop modes

takes effect.  If the average for the class is greater than the maximum threshold, ThMax,cl,

then the packet must be deterministically dropped.  This is a forced drop.  Otherwise, if

the average is between the minimum and maximum thresholds, the algorithm is executed

for a probabilistic drop, drop_early.  The only exception comes during the transition from

the no-drop mode (q_avgcl  < ThMin,cl ).  In that instance, the arriving packet is enqueued,

counters (countcl) are initialized and flags (in_early_dropcl) are set to record that the algo-

rithm is in one of the drop modes.  The decision not to subject that packet to the drop test

is arbitrary.  The alternative to being in the forced or early drop modes (i.e., ThMin,cl >

q_avgcl) is to be in no-drop mode.  The only action for no-drop mode is resetting the drop

mode flag, in_early_dropcl.   The final operation is the actual enqueue or dequeue of the

packet based on the result of the drop tests.

3.2.3. Departing Packets

While the drop decision occurs when a packet arrives, there is some simple record

keeping that also occurs when the packet departs the queue.  Figure 4.4 shows the algo-

rithm for packet departures.  First a packet is removed from the head of the queue and the

class of the packet must be determined.  While, the packet classification function is called



118

again for simplicity, optimizations do exist to avoid repeating the packet-identification.

The packet is sent to the outbound interface device immediately and then the algorithm

performs some record keeping.  Since the dequeue operation updates the count of packets

of this class in the queue (q_lencl) an examination of that value reveals if the class is idle.

A class is idle if there are no packets of that class in the queue.  If the class was not idle

before, then the idle flag, idlecl, is set and the current time is recorded.  This timestamp,

lastcl,  is important as it is the time the last packet was sent before the idle period began.

The value and the flag will be used in the calculation of average queue occupancy.  Of

course, if the class is not idle, the flag is set to false.

for each departing packet {

P = dequeue(); // dequeue and send the packet

cl = classify(P);

send(P);

if ( q_len cl  == 0 ) { // If the class is idle

if ( not idle cl  ) {

idle cl  = true;

last cl  = now(); // record time class became idle

}

} else

idle cl  = false;

} // End for each departing

Figure 4.4 Algorithm for Packet Departures in CBT Routers

// Note this routine is never called if Th Max equals Th Min .

drop_early(cl) {

local float p a, pb;

// first approximate drop probability linearly based on q_avg

// relative to Th Max and Th Min

pb = maxp,cl  * ( q_avg cl  – Th Min,cl  )/( Th Max,cl  – Th Min,Cl  );

// Then adjust the probability based on the number of packets

// that have arrived since the last drop.

pa = p b/(1 – count * p b );

if ( random() < p a ) return true;

return false;

} // End drop_early

Figure 4.5 Algorithm for Probabilistic Drops in CBT Routers



119

3.2.4. Early Drop Test

The probabilistic test for early drops, shown in Figure 4.5, is logically exactly the same

as the early drop test for RED, shown in Figure 3.9.  The key difference is that the metrics

and parameters are calculated based on the values for the current packet's class.  The pri-

mary probability, pb, is a linear interpolation between zero and the maximum drop prob-

ability, maxp,cl, based on the average queue occupancy’s, q_avgcl’s, relative position be-

tween the thresholds, ThMax,cl and ThMin,cl.   The primary probability is then adjusted based

on the number of packets that have arrived for this class since the last packet drop, countcl,

to determine the final drop probability, pa.   Finally, that probability is compared to a ran-

dom number to decide whether or not to drop the arriving packet.

compute_avg(cl) {

local time delta_time;

local int n;

// if the queue is still occupied take one sample

if ( q_len cl  > 0 ) {

q_avg cl  = ( 1 – w cl  ) * q_avg cl  + w cl  * q_len cl ;

} else { // if the queue was empty we have to adjust the sampling

idle cl  = false;

// if the queue is empty, calculate how long the queue has been idle

delta_time = now() – last cl ;

// n packets could have been dequeued during the interval

// based on drain-rate

n = delta_time * drain_rate cl  – 1;

// treat is as if n samples were taken with a qlen of 0

q_avg cl  = ( 1 – w cl  )^n * q_avg cl ;

}

} // End compute_avg

Figure 4.6 Algorithm for Computing the Average in CBT Routers

3.2.5. Computing the Average

The computation of the average, shown in Figure 4.6, like the early drop test, is logi-

cally the same as in RED (Figure 3.7). The average calculation is done in one of two ways.

If the class is currently active (i.e., q_lencl > zero) then the current queue occupancy is

sampled and the factored into an updated average, q_avgcl,  according to the weight factor

for the class, wcl.  However, if the class has been idle ( q_lencl is zero) the algorithm must



120

approximate the number of queue length samples for that class that would have typically

been taken during the idle interval if the class had remained active, but in no-drop mode.

Before beginning the computation, the algorithm records the transition from the idle state

to the active state by setting the flag, idlecl, to false.  Then it calculates the duration of the

idle interval, delta_time, by taking the difference between the current time, now(), and the

time the idle interval began for the class, lastcl.  Since the class was idle, all of the queue

length samples during the idle interval would have been zero values.   To determine how

many zero samples would have occurred, the drain rate of the class, drain_ratecl, is multi-

plied by the idle interval.  Note that drain rate is determined by the class's bandwidth allo-

cation and packet size so this sampling rate is the same as that used when the class is

maintaining load equal to its bandwidth allocation.  This value, n, indicates the number of

packets that could have been dequeued in the idle interval.  If packets had been arriving in

no-drop mode, every arriving packet would have been enqueued and subsequently de-

queued so the number of dequeue operations would have equaled the number of enqueue

operations, and thus the arrival rate.  Thus, the number of queue length samples that

should have been taken is the number of packets that could have been dequeued during the

idle interval.  Finally, the new average is computed based on n samples of queue occu-

pancy of zero.

Note that drain rate of the current class is used to compute the average queue size, not

the drain rate of the queue.  The drain rate of the queue is simply the capacity of the out-

bound link expressed in units of an average sized packet.  However, since the concern is

with the number of packets for a given class that may have been successfully enqueued

over the interval, the drain-rate for the class is used.  Although all packets share the same

queue, the effective drain rate varies from class to class.  That drain rate is a function of

the class’s average share of the outbound link’s capacity.  The value is computed at the

same time as the threshold settings and specified as one of the configuration parameters.

The CBT algorithm is straight-forward, essentially a multi-dimensional RED.  It is the

configuration and use of CBT parameters that makes it an effective resource management

mechanism.



121

4. Configuring CBT

The key to obtaining good performance from CBT lies in accurately setting the

threshold values for each class.  These threshold settings vary with the expected traffic

load.  To determine the correct threshold settings one must consider the amount of band-

width to allocate for each class.  Naively, one may assume that setting the ratio of the

thresholds between the classes equal to the desired ratio of their bandwidths would give

the desired result. Unfortunately, the thresholds are allocated in terms of packets and the

classes may have widely varying average packet sizes.  For example, Table 4.1 shows the

packet sizes and maximum load generated for each class of traffic used in these experi-

ments.  For example, the BULK traffic has an average packet size of 1, 499 bytes, while

Proshare has an average packet size of 728 bytes. (We must also include the packet head-

ers in the total packet size.  In these experiments the TCP headers are 60 bytes and the

UDP headers are 28 bytes.)  With the packet sizes of BULK and Proshare, setting a 1:1

ratio between the thresholds would result in a 2:1 ratio in bandwidth on the outbound link.

Traffic Type Packet Size
BULK 1439 + 60 = 1499
HTTP 1062 + 60 = 1122

UDP Blast 1047 + 28 = 1075
Proshare 700 + 28 = 728
MPEG 811 + 28 = 839

Table 4.1 Packet Sizes and Desired Bandwidth by Traffic Type

So, to allocate bandwidth one must consider the ratio in terms of the number of bytes

represented by the threshold settings between the classes.  Determining the correct thresh-

old settings for a given traffic mix requires using a set of formulas based on the bandwidth

allocations, the average packet size for each class, the capacity of the outbound link, and

the desired total latency.



122

4.1. Equations for Bandwidth Allocation

Name Symbol Units
Outbound Link Capacity Coutbound KB/s
Number of Classes N classes
Queue induced latency L milliseconds
Threshold for class i Thi packets
Bandwidth allocation for class i Bi KB/s
Average packet size for class i Pi KB

Table 4.2 Variables and Constants for Setting CBT Thresholds

Table 4.2 shows the symbols corresponding to the parameters used to calculate the

proper threshold settings.  Given the constants and configuration inputs the threshold for a

given class can be defined with with equation 4.1.

j

j
j P

LB
Th = (4.1)

The threshold for a given class, j, is simply a function of the desired bandwidth alloca-

tion, Bj in bytes per second, the average packet size for the class, Pj in bytes, and the ex-

pected average worst-case latency, L.   Expected average worst-case latency refers to the

acceptable queue-induced latency on the CBT router.  It specifies an upper limit on the

average latency that is acceptable. Note that L is the same for all classes since all packets

share the same queue.  There may be times where the latency exceeds this bound.  For ex-

ample, if a large burst of traffic arrives when the average is small the queue occupancy,

and thus the queue-induced latency, can grow quite large before the average activates the

drop policy.  But on average latency should never exceed the specified value.  This equa-

tion also assumes that the sum of the bandwidths for all classes sums to the capacity of the

link.  The rest of this section explains the derivation of this equation.

The expected average worst-case latency can be defined as shown in Equation 4.2.

This expression represents the sum of the worst-case average number of bytes enqueued

for each class divided by the speed of the outbound link.  Any packet placed in the out-

bound queue should, on average, spend no longer in the queue than the time it takes for

the queue to drain.  In the worst case, all classes are maintaining an average queue occu-

pancy equal to their threshold value.  (This analysis measures occupancy in packets.



123

However, it could be measured in bytes.)  The amount of time it takes for the queue to

drain is L.

outbound

N

i
ii

C
ThPL

1

1






= ∑

=
(4.2)

The bandwidth allocated for each class can be expressed as shown in Equation 4.3.

Each class’s minimum average bandwidth during congestion is a share of the outbound

link equal to its share of the total bytes enqueued.  This assumes that since a period of

congestion is being considered, the queue always contains at least one packet (i.e., the link

is fully utilized).

( )
outboundN

j
jj

ii
i C

ThP

ThP
B

∑
=

=

1

(4.3)

Equation 4.3 is based on the assumption that the sum of all of the bandwidth alloca-

tions should equal the capacity of the link, as shown in Equation 4.4.  It is this assumption

that allows us to equate shares of the queue to shares of the outbound link capacity.

∑
=

⇔
N

i
ioutbound BC

1

(4.4)

Given the desired bandwidth allocations and average packet sizes for two classes on

the outbound link,one can determine the ratio between the threshold settings.  This is the

key to using allocation of queue space to manage allocation of bandwidth on the outbound

link.  The outbound queue can be thought of as an extension of the outbound link, with

the ratios of bytes in the queue matching the ratios of bytes on the link.  The relationship

between the thresholds for two classes can be expressed as shown in Equation 4.5.  The

ratio between the bandwidth allocated to each class is also the ratio between the maximum

average number of bytes that can be enqueued.

jj

ii

j

i

ThP

ThP

B

B
=

j

i

ij

ji

Th

Th

PB

PB
= (4.5)



124

Starting with the second half of this expression, the threshold requirement for a given

class (Thi) in the queue can be expressed in terms of the threshold for another class (Thj)

as shown in Equation 4.6.

ij

jji
i PB

ThPB
Th = (4.6)

Substituting 4.6 into 4.2, the latency in terms of the threshold of a single class, j, is

shown in Equation 4.7.

outbound

N

ji
jj

j

jji

C
ThP

B

ThPB
L

1










+= ∑

≠
(4.7)

Using this equation, Thj's value can be derived as shown in Equation 4.8 and then, us-

ing the relationship from Equation 4.6, the other threshold values can be derived.

outbound

jj

N

i j

i

outbound

N

i j

jji

outbound

N

ji
jj

j

jji

C

ThP
B

B

L

CB

ThPB
L

C
ThP

B

ThPB
L












=











=











+=

∑

∑

∑

=

=

≠

1

1

1

1











⋅=

∑
=

N

i j

i
j

outbound
j

B

B
P

CL
Th

1

(4.8)

Since the bandwidth of all of the classes sums to the total outbound link capacity

(Equation 4.4) Equation 4.8 can be simplified to that shown in Equation 4.9.  This allows

the threshold for a given class to be expressed in terms independent of the other classes.

j

j

outboundj

outboundj

N

i
i

j

j

outbound
j P

LB

CP

CLB

B
B

P
CL

Th =
⋅

=⋅=
∑

=1

(4.9)

This value, Thj, is used as the maximum threshold for a given class.  For unresponsive

classes ThMax should be set equal to ThMin and used to constrain those classes.  For respon-

sive flows, like TCP, ThMin should generally be set according to the rules of thumb used

for RED.  The intention of the minimum threshold is to allow for some small amount of



125

buffering without triggering the packet dropping mechanism, while still dropping some

packets early to give feedback before congestion becomes severe.  The authors of RED

recommend a minimum threshold setting of 5 packets and we accept their recommenda-

tion.  Determining the correct threshold settings was the emphasis of the selection of op-

timal parameters.  Those experiments conducted to determine those settings are found in

Appendix B.

4.2. Setting the Other CBT Parameters

Thresholds have the most obvious effect on the isolation and allocation in CBT.

However, other parameters perform as their RED counter-parts, allowing one to fine-tune

the behavior ofthe algorithm.  Each class has a weighting value and a maximum drop

probability.  And, of course the queue itself is of finite size.  We discuss each of these pa-

rameters below and recommend default settings for each.

4.2.1. Weights for Computing Average Queue Occupancy

As with RED, weights control how sensitive each class is to bursts.  For example, with

multimedia the algorithm must tolerate the arrival of large data units (e.g., I Frames) that

are fragmented over many packets and arrive nearly simultaneously without triggering the

drop mechanism.  However, an aggressive flow should be strictly constrained to avoid it

stealing more than its fair share by sending large bursts. Heuristics determine the weight

values for the different classes.  In addition to desired sensitivity to bursts, the relationship

between threshold size and the relative weighting are also considered.  If a class has a

small threshold value, each sample must be heavily weighted to avoid requiring extreme

over-runs to trigger the drop mechanism.  Taking this approach helps to avoid oscillations

in queue occupancy when the drop mechanism allows a large number of packets to be en-

queued and then forces the class to remain nearly idle for a lengthy period while the queue

drains to have only one packet enqueued. While there is room for refinement and formal-

ization in this area, the focus here is on accurately selecting the threshold settings.

4.2.2. Maximum Drop Probability

The guidelines for setting the drop probability in CBT are the same as those for RED.

For many classes, the thresholds are set to be equal, thereby eliminating the probabilistic



126

drop mode, the maximum drop probability does not come into play.  However for classes

where it does come into play, the current recommendations for RED are followed and a

value on the order of 0.1 [Floyd97a] used.  This value is selected to result in a small num-

ber of drops when the average queue size is slightly higher than the minimum thresholds.

The recommended setting of 0.1 is used throughout.

4.2.3. Maximum Queue Size

The sum of the thresholds defines the maximum average queue occupancy while the

maximum queue size, q_limit, sets the limit on the maximum instantaneous queue size.

There is an upper limit on the queue occupancy that can be reached without activating the

forced drop mode (due to the average queue occupancy exceeding the maximum thresh-

old) and one can calculate that value for a given set of thresholds and weights.  However,

in these experiments the maximum queue size is simply set to 240.  This size is sufficient

to accommodate bursts that wouldn't otherwise increase the average beyond the maximum

threshold.

5. Demonstrating the Effectiveness of CBT

To demonstrate CBT’s capability to control bandwidth allocations and control latency,

we present empirical results from the use of CBT in a controlled environment.  We con-

ducted experiments to determine how the bandwidth allocations and latency settings com-

pare to the observed values in a laboratory setting.  These experiments were conducted in

the experimental configuration discussed in Appendix A.  A full comparison of function

and performance of CBT with other AQM schemes is presented in Chapter V.

Consider CBT's behavior in two situations.  In the first case each traffic class generates

a load sufficient to fully consume its allocated bandwidth.  In that case, the throughput of

each class should correspond to that class's bandwidth allocation.  Similarly the measured

end-to-end latency should closely follow the desired latency setting.  The second case is

subtler and highlights another facet of CBT, controllable re-allocation of unused band-

width.  The second case is one where some classes do not use all of their bandwidth allo-

cation.  To understand CBT's behavior, equations are presented that explain how band-

width will be reallocated between the other classes based on the initial allocations and the



127

loads generated by the classes of traffic.  Additional equations explain how the average

latency will be effected by the traffic loads.  These experiments are then verified with ex-

perimental results.

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

LoadTCP

LoadMM

Loadother

Figure 4.7 Traffic Loads (KB/s) over Time (seconds)

To illustrate CBT's behavior, three traffic classes are used: TCP, multimedia, and other

passing through a router servicing a bottleneck link. In this experiment the router has an

inbound link with a capacity of 100 Mb/s.  However, the outbound link's capacity is only

10 Mb/s.   The loads for each of these classes are show in Figure 4.7. These loads are

measured on the inbound link of the router servicing the bottleneck link.  The solid lines

indicate the load generated by each class of traffic on the router's inbound link.  In all of

the plots in this section each data point represents the average value of the metric over a 1

second interval. The TCP load (LoadTCP) consists of bulk transfers of data capable of gen-

erating a load in excess of 1,600 KB/s.   Note that LoadTCP does decrease in response to

the introduction of other traffic types because of downstream congestion that is caused by

other traffic and TCP's responsive nature.   However, the TCP load is still sufficient to ex-

ceed the bandwidth allocations and demonstrate CBT's effectiveness.  The multimedia



128

traffic consists of 8 MPEG streams capable of generating an average load (LoadMM) of

340 KB/s.  In order to illustrate how CBT manages changes in traffic load, the load

(Loadother) generated for the class other ranged linearly from 0 to 800 KB/s and back down

to 0 KB/s.   The classes were allocated bandwidth as show in Table 4.3. This table also

shows the threshold in packets for each class.  Note that these allocations were selected

for their illustrative value, not to insure good performance for multimedia or TCP. The

thresholds for each class are computed using equation 4.1, a desired latency of 100ms, and

the average packet sizes for each class as shown.

Load

(KB/s)

Bandwidth

Allocation (KB/s)

Packet Size

(KB)

Threshold

(Packets)

TCP (BULK) > 1600 575 1507 39.07

Multimedia(MPEG) 340 150 807 19.04

Other 0-800 500 1075 47.63

Table 4.3 Loads and Allocations for CBT with Latency of 100ms

Figure 4.8 adds the bandwidth allocations (horizontal dashed lines) from Table 4.3 to

the graph of each class's generated load.  Note that vertical dashed lines at times 176 and

304 indicate an interval wherein all classes's loads exceed their bandwidth allocation.  The

load for TCP and multimedia always exceed their respective allocations; however the traf-

fic class other only exceeds the allocation between time 176 and 304.  Table 4.4 lists the

times of key events in this experiment.



129

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

All Loads Exceed Allocation

LoadTCP

LoadMM

Loadother

BTCP

BOther

BMM

Figure 4.8 Traffic Loads and Bandwidth Allocations (KB/s) over Time (seconds)

Time Event

0 Begin recording, TCP present.

42 MPEG traffic starts.

90 Other traffic starts.

176 LoadOther exceeds Bother

304 LoadOther drops below Bother

390 Other traffic stops.

515 MPEG traffic stops.

607 Trace ends.

Table 4.4 Timestamps for Key Events



130

5.1. CBT Behavior When All Classes Consume Their Bandwidth Allocation

We first focus on the period when the loads for all classes exceed the bandwidth allo-

cations for those classes. That is the period from time 176 to 304.  Figure 4.9 zooms in on

this interval.  The figure shows the inbound load and bandwidth allocations for each class.

In this scenario, CBT should constrain all classes to their allocated bandwidth while man-

aging the total queue occupancy to keep the queue-induced latency to the desired value.

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

1 75 1 95 2 15 2 35 2 55 2 75 2 95

All Loads Exceed Allocation

LoadTCP

LoadMM

Loadother BTCP

BOther

BMM

Figure 4.9 Traffic Loads (KB/s) over Time (seconds) with All Loads Exceeding Allo-
cation

5.1.1. Throughput

Figure 4.10 compares the throughput for each traffic class, plotted as individual points,

to the bandwidth allocation (Bclass), plotted as a dashed line.  In all cases the throughput

corresponds to the desired bandwidth allocation.  However, note that at times the

throughput for a class may exceed the intended allocation.  This is because allocation in

CBT is a coarse grained mechanism and hence the constraints that CBT offers are not pre-



131

cise.  Moreover, these slight fluctuations may be due to borrowing as some class's load

briefly drops below its allocations.

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

1 75 1 95 2 15 2 35 2 55 2 75 2 95

ThroughputTCP

ThroughputOther ThroughputMM

All Loads Exceed Allocation

Figure 4.10 Throughput (KB/s) over Time (seconds) for each Traffic Class

5.1.2. Latency

CBT manages latency by adjusting the thresholds to constrain the maximum average

queue occupancy.  Limiting the average queue occupancy also limits the queue-induced

latency. CBT's effectiveness at managing latency when the loads for all classes exceed

their bandwidth allocations can be demonstrated in two ways.  First, consider the latency

during the experiment above.  Figure 4.12 shows the latency setting (Lintended) of 100 milli-

seconds as a dashed line.  The latency values observed are shown as individual data points.

If CBT is effective at managing latency all of the data points should be below the dashed

line.  However, the average latency slightly exceeds the intended latency for most data

points.  This difference can be accounted for by reviewing the experimental technique.

While the intended latency is a setting for the queue-induced latency, the intend latency



132

shown here is end-to-end latency because latency was monitored at the end-systems.

Forwarding, propagation, and end-system delays all contribute to the ~5-10 ms error

shown.  Further, since allocation in CBT is a coarse grained mechanism it is not expected

to offer a precise limit on latency.  Rather, it should limit latency to approximately the de-

sired value.  Thus, this data does indicate that CBT is effective in managing latency.

0

20

40

60

80

100

120

185 205 225 245 265 285

LObserved
LIntended

Figure 4.12  Intended and Observed Multimedia Latency (ms) vs. Time (seconds)

While Figure 4.12 shows that CBT is effective in constraining the latency for one ex-

periment, we also want to demonstrate CBT's effectiveness a second way, as we range the

desired latency value.  To do this, multiple experiments were conducted, each with a dif-

ferent desired latency setting.  The latency for each packet of a multimedia stream was re-

corded and the average latency observed during the entire measurement period was com-

puted. Table 4.5 shows the intended CBT latency vs. the latency actually observed.  The

data shown here was collected during the blast measurement period using a traffic mix of

BULK-MPEG.  (See Appendix A for an explanation of the details of this experimental

setup.)  Throughout the blast measurement period the aggregate load exceeds the capacity

of the outbound link so congestion is persistent and latency is directly related to the queue



133

occupancy in the router.  In this experiment all traffic types fully utilize their allocated ca-

pacity.  If CBT performs as expected the observed average latency should be less than or

equal to the intended latency setting.  Again, the observed latency exceeds the intended

value because the latency measured was end-to-end latency which includes propagation

and end-system delays and accounts for the approximately 5 ms differences observed.

Latency
Intended Observed

20 23
40 44
60 64
80 85
100 103

Table 4.5 CBT Intended Latency vs. Observed Latency (ms)

CBT is effective at managing bandwidth allocation and latency when when the load for

each class exceeds that class's bandwidth allocation.  Moreover, in this scenario it is easy

to understand the relationship between CBT's parameters and the resulting performance

for the different traffic classes.   However, the behavior when some class fails to fully util-

ize its bandwidth allocation is more complex.  This scenario is discussed below.

5.2. CBT Behavior When Overprovisioned

While CBT’s bandwidth allocation is straight-forward, it is important to realize that

the actual relationships being defined are not strict limits on bandwidth, but rather ratios

between the classes.  When all classes are using their full allocations they are limited to the

specified bandwidth allocation.  But these ratios apply even when each class's offered load

does not correspond to its allocated bandwidth.  For example, if some class is idle, the un-

used link capacity allocated to that class is available to the other classes in proportion to

their bandwidth allocations.   This borrowing is max-min fair and is explained formally

below.  Moreover, when some class is not fully utilizing its bandwidth allocation it will not

maintain a queue occupancy equal to its threshold setting so the queue-induced latency

will be less than the maximum setting. Recall that the thresholds represent upper bounds

on the average queue occupancy for a class and that the ratios between the average queue

occupancies for the classes is also the ratio between the throughput for the classes.   Con-



134

sider an example. Suppose some class, i, has average queue occupancy of 1000 bytes

while some other class, j, has average queue occupancy of 2000 bytes.  Then over the in-

terval it takes the average queue to drain, class i will transmit 1000 bytes to 2000 bytes for

class j.  Class j's throughput is twice that of class i, in ratio to the queue occupancy.  This

ratio is independent of the queue occupancy by any other classes.  Assume only three

classes share the queue and this third class, k, has 7000 bytes in the queue.  Then over the

interval necessary to transmit 10,000 bytes, class i, j, and k will respectively receive 10%,

20%, and 70% of the link's capacity.  Now consider the case in which class k generates no

load and thus has no packets enqueued. Classes i and j are still constrained to their aver-

age queue occupancies so they have 1000 and 2000 bytes enqueue on average.  However,

because class k is not present, the average aggregate queue occupancy is only 3000 bytes.

However, during the interval necessary to transmit 3000 bytes, class i will transmit 1000

bytes to the 2000 bytes for class j.  The ratio between the classes maintain their full queue

occupancy remains the same.  However, the shares of the link capacity increase.  Class i

represents 1000 of the 3000 bytes transmitted, 33%, while class j represents 2000 of the

3000 bytes, 66%.  Although the average queue occupancy for each class does not change,

the resulting throughput increases for each.

We present equations below that explain how bandwidth is reallocated when one or

more classes do not use their allocated bandwidth.  It is important to realize that the real-

locations described below are conceptual, simply to elucidate the type of borrowing that

occurs.  There is no explicit mechanism for borrowing; it is simply a side effect of the

queue management. The actual algorithm only enforces the limits on queue occupancy for

each class. This section simply offers insight into the resulting behavior.

5.2.1. Equations for Predicting Reallocation of Bandwidth

One may consider the resource allocation in terms of shares for each class.   The share,

si , assigned to given class, i, is defined as the fraction of the link capacity (C) allocated to

that class (Bi) or as the fraction of the queue's maximum occupancy allocated to that class.

Both are shown in Equation 4.10.



135

( )∑
=

==
N

j
jj

ii

outbound

i
i

ThP

ThP

C

B
s

1

(4.10)

Since each class's share is its bandwidth allocation as a fraction of the outbound link's

capacity it is straight-forward to show that the shares sum to one, as shown in equation

4.11 using equation 4.4.

1
11

=== ∑∑
== outbound

outbound
N

i outbound

i
N

i
i

C

C

C

B
s (4.11)

0

200

400

600

800

1000

1200

1400

1600

1800

0 100 200 300 400 500

Bother

Loadother

Eother= Bother-Loadother

Figure 4.16 Relation Between Bother, Loadother, and Eother (KB/s) over Time (seconds)
for Multimedia

To illustrate the borrowing in CBT, first consider Figure 4.16.  This figure shows the

load (Lother) and bandwidth allocation (Bother) for the class other during the experiment.  It

also shows the excess capacity (Eother) that is unused by class other.  The excess is indi-

cated by the cross-hatched region.  The excess at any given time is the difference between

the bandwidth allocation and the actual load at that instant.  This excess link capacity may

be borrowed by the other classes. The reallocated bandwidth for a class, i, is referred to as

B′i.



136

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

EMM= BMM-LoadMM

B′TCP

B′MM

Figure 4.17 B′  (KB/s) over Time (seconds)

Figure 4.17 illustrates the borrowing that takes place in CBT.  This figure presents the

bandwidth allocations (horizontal short dashed lines) and bandwidth reallocations (long

dashed lines) for each class.  It also shows the load for the class other as a solid line.  To

simplify the figure the loads for TCP and multimedia are not shown.  However, those

loads exceed both B and B′ for both classes from time 42 to 515.  Recall from Figure 4.7

or Table 4.4 that during the periods from time 0 to time 42 and 515 to 607 only TCP traf-

fic is present in the experiment.  During these periods the allocations of both multimedia

and other go unused.  Since the queue is serviced in FIFO fashion and TCP is the only

class with packets enqueued, TCP is able to consume this excess capacity.  This excess

(Emm + Eother) is effectively reallocated to the classes that have sufficient load to use this

excess.  Only TCP has load greater than its allocation during the period (0,42). So B′TCP is

equal to BTCP + Emm + Eother.  However, once multimedia begins generating load at time 42,

both TCP and multimedia exceed their allocations and borrow from Eother in proportion to

their original allocations.  At time 90, the load for other increases so the borrowing by

TCP and multimedia decrease correspondingly until at time 176, Loadother exceeds Bother.



137

At that point all classes have loads greater than their bandwidth allocations so borrowing

ceases until Loadother drops below Bother at time 304.  In this under-provisioned case, no

borrowing is possible so B′ is equal to B for all classes.

Whenever some class is over-provisioned, B′ diverges from B for those classes where

Load is not equal to B.  B′ may be greater than, less than, or equal to B.  As previously

noted, B′ may exceed B as in the case of TCP and multimedia.  Notice that in the case of

other B′other is less than Bother.  The reallocation for other is reduced to the actual load.

The difference (shown in cross-hatch) between the original allocation, Bmm, and the recal-

culated allocation, B′mm, is available for the other classes to borrow.  The excess, Ei, for a

given class is the difference between the allocation and the load as shown in Equation

4.12.

( )0,max iii LoadBE −= (4.12)

The sum of the excess across all of the classes is divided among the other under-

provisioned classes according to their shares as calculated with Equation 4.10.  The recal-

culated allocation (B′) is simply the original allocation (B) plus the appropriate share of the

over-provisioned classes’ excess.

Now let us consider the equations used to compute these reallocations.  Because of

the iterative nature of this calculation the notation is amended to include an indication of

the current iteration.  For example, B′j,k is the k-th iteration of B′ for class j.  So B′j,0 is Bj.

When only one class, i, has excess B′j,1, is defined in Equation 4.13.

( )( )ii
i

j
jj LoadB

s

s
BB −

−
+=′

11, (4.13)

When more than one class’s load is less than its allocated bandwidth, all of the unused

provisioned bandwidth can be expressed by the term shown in Equation 4.14.  It is simply

the sum of the difference between the provisioning and the actual load across all of the

classes that are not fully using their allocation.

( )∑
>∃

−=
ii LoadBi

iikall LoadBE
,

, (4.14)



138

Each class that is exceeding its provisioned bandwidth will be able to borrow capacity

from the unused provisioned bandwidth based on its share in ratio to the shares of the

other classes that are exceeding their allocation.  This ratio, for class j, is expressed by the

term shown in Equation 4.15.

∑
<∃ ii LoadBi

i

j

s

s

,

(4.15)

More generally, the first iteration of the expected bandwidth B′j,1 for a given class, in-

cluding borrowing from classes that aren’t using their full allocation, can be expressed as

shown in Equation 4.16.

( )∑∑ >∃
<∃

−+=′
ii

ii

LoadBi
ii

LoadBi
i

j
jj LoadB

s

s
BB

,
,

1, (4.16)

While Equation 4.16 expresses the bandwidth available to each class it is possible that

after reallocation, for a given class l, B′l,k > Loadl.  As a result, that difference may, once

again be divided among the classes where Bj,k<Loadj.  So, ultimately, the approach is it-

erative until B′j,k is less than or equal to Loadj for all classes.  Equation 4.17 illustrates the

iterative solution.

( )















−′+′=′ ∑∑ >′∃

−

<′∃

−
−

−

iki

iki

LoadBi
iki

LoadBi
i

j
kjjkj LoadB

s

s
BLoadB

1,

1,

,
1,

,

1,, ,min (4.17)

We refer to the final converged bandwidth allocation with the short-hand B′j.  B′j is the

n-th iteration, B′j,n where n is defined as shown in Equation 4.18.  That is, the final itera-

tion is the one where for every class, j, the n-th reallocation of bandwidth is less than or

equal to the load for that class.

jnj LoadBjn ≤′∀ ,, (4.18)

Recall that this iteration is only necessary to predict and understand how the band-

width is allocated between the classes when classes are overprovisioned.  As explained

above, the actual queueing mechanism does none of these calculations; it simply compares

a class's average queue occupancy to the threshold for that class.



139

Finally, note that this calculation converges within N iterations, where N is the number

of classes. It will never be necessary to iterate more than the number of classes. In order to

continue iterating some class must be underprovisioned and some other class must be

newly overprovisioned.   A class can only be newly overprovisioned once because once a

class is overprovisioned its reallocation is adjusted to match the actual load for that class

and the computation never changes the reallocation for a class that is exactly provisioned.

Thus, there can only be N separate instances of a newly overprovisioned class, where N is

the number of classes.  In the worst case, each of these new overprovisionings occurs on a

different iteration, requiring N iterations.

Consider an exampleof determining the value of B′ through this iterative process. It is

possible that when the excess from the initially over-provisioned class(es) is reallocated

among the other classes one or more of the borrowing classes will have a reallocation

greater than that class's load.  As a result, this new excess will have to be divided among

the other classes that are still under-provisioned.  Table 4.6 shows some starting band-

width allocations for TCP, multimedia, and other traffic classes along with the loads gen-

erated by those traffic classes for the purposes of this example.

B (KB/s) Load (KB/s)

TCP MM Other TCP MM Other

935 140 150 700 160 1000

Table 4.6 Sample Bandwidth Allocations and Loads for CBT with link capacity of 10
Mb/s.

Table 4.7 shows the resulting excess and resulting reallocations of that excess band-

width as analysis iterates to predict the reallocation of excess bandwidth.  In the first it-

eration, no bandwidth has been reallocated so the B′ is equal to B for all classes.  Since

TCP's load is only 700 KB/s, this leaves an excess (E) of 235 KB/s.   The other two

classes have no excess allocation and both have their load greater than their allocation so

TCP's excess is distributed between the multimedia and other in proportion to their initial

allocations.  In addition, TCP's reallocation is adjusted to match its actual load.  As a re-

sult, in iteration 1, TCP is allocated 700 KB/s, multimedia is allocated 253 KB/s, and



140

other is allocated 272 KB/s.  Now multimedia's reallocation exceeds its actual load, leav-

ing an excess of 93 KB/s.  Since other is the only class which is still underprovisioned, all

of the excess is reallocated to that class in iteration 2, leaving us with final reallocations of

B′tcp of 700 KB/s, B′mm of 160 KB/s, and B′other of 365 KB/s.  The iterations cease here be-

cause no class has excess available to reallocate.

B′ (KB/s) E (KB/s)Iteration
TCP MM Other TCP MM Other

0 935 140 150 235 0 0
1 700 253 272 0 93 0
2 700 160 365 0 0 0

Table 4.7 Sample Iterative Reallocations and Excesses for CBT

This calculation of B′ points out an important aspect of CBT, predictability.  The al-

gorithm not only controls the allocation of the bandwidth when all classes are running at

capacity, its behavior can also be predicted when some classes are generating loads less

than their allocated capacity.  This borrowing and predictability apply over time scales on

order of 10ths of seconds (e.g. the amount of time it takes the average queue occupancy

to change).  If there is little variation in the loads generated by the classes, the borrowing

and predictability can extend to larger time scales.

This predictability is an added bonus in this scheme.  The same predictability applies to

the latency calculation.

5.2.2. Predictability of Throughput Reallocation

To confirm the accuracy of the equations for reallocation of bandwidth, B′TCP, B′MM,

and B′other were computed for the experimental bandwidth allocations and observed loads.

These computed values were then compared to the actual throughput observed for each

class.  Recall the loads and bandwidth allocations in this illustrative experiment, shown in

Figure 4.18.



141

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

All Loads Exceed Allocation

LoadTCP

LoadMM

Loadother

BTCP

BOther

BMM

Figure 4.18 Loads and Bandwidth Allocations (KB/s) over Time

The bandwidth allocations remain constant throughout the experiment.  The LoadTCP

exceeds BTCP and B′TCP throughout the experiment.  The reallocations to each class change

when the loads generated by the classes change in significant ways.  These changes occur

at the times shown in Table 4.8.



142

Start Stop Event Emm Eother B′TCP B′MM B′other

0 42 TCP only 150 500 1225 0 0

42 90 MM and TCP 0 500 972 253 0

90 176 Other traffic increasing 0 500
 to
0

972
 to
575

253
to

150

0

176 304 LoadOther exceeds Bother 0 0 575 150 500

304 390 Other traffic decreasing 0 0
to

500

575
to

972

150
to

253

0

390 515 MM and TCP 0 500 972 253 0

515 607 TCP only 150 500 1225 0 0

Table 4.8 Times for Changes in Generated Load

From time 0 to 42 and 515 to 607 TCP is the only traffic type present.  As a result

TCP is able to borrow all of the excess capacity (650KB/s) to combine with TCP's initial

allocation of 575 leaving it with a reallocation, B′TCP, of 1225 KB/s.  Conversely, multi-

media and other are reallocated to match their load of zero.  When both multimedia and

TCP are present (42,515) they share Eother in proportion to their initial bandwidth alloca-

tions.  Multimedia gets 21% of the excess and TCP gets 79%.  When the traffic class

other is idle (time 42-90 and 390-515) multimedia combines 102 KB/s to its original allo-

cation of 150 KB/s for B′MM of 253 KB/s.  TCP's reallocation is 972 KB/s.  At time 90

other begins to generate traffic, linearly increasing the generated load from 0 KB/s at time

90 to 500 KB/s at time 176.  We focus on this point because this is the point at which

Loadother exceeds Bother and the total excess capacity is 0 KB/s.  At that point the reallo-

cated values for all classes exactly match their initial allocations.  Since Loadother increases

linearly from time 90 to time 176 the reallocations, B′TCP and B′MM, will have a corre-

sponding linear decrease over the same period.  The traffic generator for class other con-

tinues to increase its load up to 800 KB/s at time 240.  The behavior after time 240 is

symmetric with the period before 240 so we do not address those time periods here.



143

Using the values of B′ calculated for these key times, the expected throughput for each

traffic class during the experiment can be plotted as shown in Figure 4.19.  The expected

throughput should match the expected reallocations, B′TCP, B′MM, and B′other.

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

All Loads Exceed Allocation

B′TCP

B′Other

B′MM

Figure 4.19 Expected Throughput (KB/s) over Time (seconds)

Figure 4.20 shows the actual observed throughput plotted as individual data points

compared to the expected throughput (B′  plotted as long dashed lines) for each traffic

class.  Each data point represents the average throughput for a one second interval.

Clearly, B′ is an accurate predictor of the throughput each class receives as the traffic load

changes.



144

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

All Loads Exceed Allocation

ThroughputTCP

ThroughputOther

ThroughputMM

Figure 4.20 Throughput and Expected Throughput (KB/s) over Time (seconds).

Moreover, the ratios of bandwidth allocation are maintained between classes.  Con-

sider TCP and multimedia.  Figure 4.21 shows the throughput for those two classes of

traffic alone. Since multimedia was allocated 150 KB/s and TCP was allocated 575 KB/s

initially, the ratio of throughput for these two classes is expected to remain the same, at

150:575, throughout. If the ratio is maintained, then multimedia's throughput should be

21% of the combined TCP and multimedia throughput as long as both classes are gener-

ating sufficient load to consume their allocations.



145

0

2 00

4 00

6 00

8 00

1 00 0

1 20 0

1 40 0

1 60 0

1 80 0

0 1 00 2 00 3 00 4 00 5 00

All Loads Exceed Allocation

ThroughputTCP

ThroughputMM

Figure 4.21 Throughput (KB/s) for TCP and Multimedia over Time

Figure 4.22 shows the multimedia throughput as a percentage of the combined multi-

media and TCP throughput.  The figure clearly shows that multimedia does average 21%

for the entire time it is active.  Note that this figure covers the period with no other traffic,

other changing linearly, and when all classes have load greater than their allocation.  The

ratio is maintained throughout.



146

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

21%
Multimedia 

Figure 4.22 Multimedia Throughput as a Percentage of Aggregate Multimedia and TCP
Throughput over Time (seconds)

5.2.3. Equations for Predicting Latency

When one or more classes are overprovisioned, the latency caused by queueing delays

will decrease.  That is because the average queue occupancy for the overprovisioned

classes will decrease below ThMax for that class while other classes will obey the limits on

their occupancy, resulting in a shorter total queue, and, as a result, less latency resulting

from queueing delay.  Recall that even though classes can exceed their initial bandwidth

allocation by effectively borrowing link bandwidth from the classes that are overprovi-

sioned they do not actually borrow queue capacity.  Rather, since other classes are not

maintaining a queue occupancy equal to their initial threshold settings, those classes that

do maintain a queue occupancy equal to their threshold settings represent a larger fraction

of the total queue occupancy.  As a result, those classes receive a larger fraction of the

capacity of the outbound link.  Since the average queue occupancy for some classes is

lower than the allocated maximum, the aggregate queue occupancy will also be below the

allocated maximum, resulting in lower average latency.



147

To better understand this decrease in latency, recall that thresholds for each class place

an upper limit on the queue occupancy, and as a result, the queueing delays induced by

that class. This is an upper bound on the average occupancy is shown in Equation 4.19.

On average, the queue occupancy for a class is constrained to less than or equal to the

threshold for that class.

ii avgqTh _≥ (4.19)

From that statement it is straightforward to arrive at the relation shown in Equation

4.20.  The sum of the thresholds is always greater than or equal to the average queue oc-

cupancy.

∑ ∑
= =

≥
N

i

N

i
ii avgqTh

0 0

_ (4.20)

Now, consider that the classes that are overprovisioned will not reach their threshold

so their queue occupancy is strictly less than their threshold.  This is expressed in Equation

4.21.  Note that the load is compared to the reallocated bandwidth, B′, not the initial allo-

cation, B.  If other classes are overprovisioned a given class may be able to exceed its

original bandwidth allocation without reaching its threshold.

iiii avgqThLoadB _>⇒>′ (4.21)

If this difference between the actual average queue occupancy and the threshold value

is expressed with a delta as shown in Equation 4.22 the decrease in latency due to class i

can be expressed as L∆,i as shown in Equation 4.23.

iii avgqTh _−=∆ (4.22)

outbound

ii
i

C

P
L

∆
=∆, (4.23)

The expected latency, L′, given initial threshold values and the actual average queue

occupancy for each class can be expressed as shown in Equation 4.24.

outbound

N

i
ii

C

P
LL

∑
=

∆
−=′ 0 (4.24)

While this is a very straight forward way to think about the average queue occupancy

and its effect on latency, it is not a useful way to calculate the expected latency because it



148

is not easy to acquire information about average queue occupancy for each class.  How-

ever the equations from Section 4.1 can be extended to derive an expression of expected

latency based on expected bandwidth.

First, recall the equation to express a class’s threshold in terms of the desired band-

width and desired latency.  This is shown in Equation 4.25.

i

i
i

P

LB
Th = (4.25)

We can reorganize that equation to express the desired latency in terms of the band-

width, threshold and packet size as shown in Equation 4.26.  This equation is basically an

expression of how long it takes a given number of bytes (ThiPi) to drain with a given

drain-rate (1/Bi).

∑
=

==
N

i

ii

i

ii

C

PTh

B

PTh
L

1

(4.26)

In Section 4.1 equations were derived to express the revised bandwidth allocations, B′,

when some classes are overprovisioned.  Since the classes that are underprovisioned,

those where Loadi>Bi′, still maintain an average queue occupancy of Thi, a modified form

of Equation 4.26, shown in Equation 4.27, can be used to express the expected latency,

L′.  For each class where the load is greater than the reallocated bandwidth the expected

latency can be expressed as the amount of time it takes the class to drain its average queue

occupancy at its expected average bandwidth reallocation.  Also, the expected latency, L′,

is equal across all classes so once derived for a given class that is underprovisioned, it is

derived for all classes, including those that are overprovisioned.

i

ii
iii

B

PTh
LBLoadi

′
=′′>∃ ,

iLL i ∀′=′ , (4.27)

Finally, note that if no class is underprovisioned after the bandwidth reallocations then

the link is underutilized and no queue will be expected to form, resulting in an average

queueing latency of approximately zero.



149

5.2.4. Predictability of Latency

Once again, the illustrative experiment is used to demonstrate how accurately the

performance of the CBT algorithm can be predicted.  Table 4.9 reviews the key events in

the experiment and the L′ values for each.  L′ was calculated using equation 4.27 and the

value of ThMM, PMM, and B′MM shown.

ThMM=19.04 PMM=807 L=100 ms

Start Stop Event B′MM L′

42 90 MM and TCP 253 61

90 176 Other traffic increasing 253 to 150 61 to 100

176 304 LoadOther exceeds Bother 150 100

304 390 Other traffic decreasing 150 to 253 100 to 61

390 515 MM and TCP 253 61

Table 4.9 Calculating L′ Values for the Illustrative Experiment

We measure latency by instrumenting the multimedia traffic generators on the end-

systems to record the time each packet is sent and received. (See Appendix A for a discus-

sion of how to insure the clocks are synchronized on sender and receiver.)  Since the mul-

timedia traffic is not active during the period (0,42) or (515,607) latency can't be meas-

ured during that period so latency is reported and L′ calculated only during the period

(42,515).  The loads and, consequently, the expected latency are constant during three

time periods: (42, 90), (176, 304), and (304, 390).  Given that the Loadother is changing

linearly during the periods (90,176) and (304,390), B′MM and, consequently, L′ must be

changing linearly as well, so a line can be plotted between the L′ values at either end of the



150

periods with constant latency.

0

20

40

60

80

100

120

0 100 200 300 400 500

All Loads Exceed Allocation

L

Lobserved

L′

Figure 4.24 Observed Latency Compared to Predicted Latency (ms) over Time (sec-
onds)

We compare L′ to the observed latency (Lobserved) in Figure 4.24.   Each data point repre-

sents the average observed latency value for a one-second interval.  The long dashed line

represents L′.  The short dashed line represents the initial latency setting, L.  The predicted

latency matches the observed latency quite well.  Once again, end-to-end latency is being

compared to predicted queueing latency, the observed latency is slightly higher than the

predicted values.  Forwarding at the other router, propagation, and end-system delays ac-

count for this discrepancy.  Further, recall that CBT does not promise a strict limit on the

latency, but rather a limit on average latency over coarse time scales.

5.3. Summary

CBT effectively divides the link's capacity between the traffic classes in proportion to

their initial bandwidth allocations.  Moreover, we present equations that can predict the



151

throughput and latency for each class under varying traffic conditions.  Empirical evalua-

tion confirms the accuracy of these equations.

6. The Generality of CBT

Although this work focuses on a specific approach to using the general mechanism of

CBT to address the heterogeneity presented by the presence of TCP, multimedia, and

other traffic in today’s Internet, CBT is a very general mechanism. Throughout most of

this work, CBT is configured to only have three classes.  Two of those classes have de-

terministic drops acting primarily as a constraint mechanism while the TCP class continues

to be subject to probabilistic drops in a RED like fashion for feedback.  However, the

CBT mechanism is general and the number of classes it could accommodate is a factor of

memory and the classification mechanism.  The algorithm itself is not limited.  Further, the

drop policy applied to each class is flexible, allowing for anything from an entirely prob-

abilistic policy based on the average queue length to a deterministic drop decision based

on instantaneous queue length (essentially FIFO).  These changes in policy can be affected

simply by changing the input parameters.  Although the exploration of this flexibility is left

for future work some observations are presented below.

6.1.1. Number of classes

As stated above, the number of classes supported by CBT has no algorithmic limit.

One could deploy CBT with only one class, all, and apply a wide choice of drop policies,

selected by changing parameter settings as discussed below.  One could also allocate many

classes and use CBT to provide bandwidth allocation at a finer granularity.

6.1.2. Sensitivity

By setting the weight factor for a given class to a very small value the average can be

extremely desensitized to any short-term effects.  In contrast, the weight can also be set to

one and then drop decisions can be made in response to instantaneous queue size.  At that

point the maximum threshold also becomes a hard upper limit on the number of packets

enqueued for a given class.



152

6.1.3. Modes

Any of the three RED modes can be eliminated for a class by setting the threshold val-

ues.  Setting ThMin to zero eliminates the no-drop mode, always giving some feedback.

Setting ThMin equal to ThMax eliminates the probabilistic drop mode, using the thresholds

only as a source of constraint.  And setting ThMax equal to the maximum queue size elimi-

nates forced drops due to the average growing too large.  However, forced drops will still

occur on queue overflow.

6.1.4. Examples

Using these settings one could implement any of RED, FIFO, or a version of Early

Random Detect.  To implement any of these, first the number of classes would be set to

one.  FIFO would simply require a weight factor of one and setting the thresholds equal to

the queue length.  Early Random Detect simply requires a weight of one, the maximum

threshold equal to the queue length, and the minimum equal to the desired threshold.

However, in the current implementation, this would not precisely be Early Random Detect

as the drop probability would change as a factor of queue size and the number of packets

to arrive since the previous drop.  RED, of course, simply requires setting the number of

classes to one and setting the thresholds, weight and maxp to desired values.

7. Summary

We propose a new active queue management mechanism, class-based thresholds

(CBT), for use in Internet routers to both isolate classes of traffic, allocate bandwidth, and

manage latency.  We have explained the design of the algorithm and present equations for

configuring CBT based on desired latency and bandwidth allocations.  We have also dem-

onstrated the algorithm’s response to changes in traffic loads is predictable.  The accuracy

of the equations for predicting performance was confirmed empirically.  In the next

Chapter, we compare the performance of CBT to other active queue management policies

to empirically evaluate how well it meets its design goals.



 V. EMPIRICAL EVALUATION

In this chapter, CBT's effectiveness is empirically demonstrated by comparing its per-

formance to other algorithms.  Specifically, CBT is compared to the active queue man-

agement algorithms: FIFO, RED, and FRED.  Additionally, it is also compared to a packet

scheduling mechanism, class-based queues (CBQ).  Each algorithm was evaluated as it

managed the queue servicing a bottleneck link in a laboratory network.  Each algorithm

was evaluated under a set of varying traffic scenarios featuring different combinations of

TCP, multimedia, and other traffic.  Multimedia performance and network throughput

were measured using a combination of end-system instrumentation and network monitor-

ing.   The resulting metrics were compared for each algorithm and each traffic scenario.

This chapter is organized as follows.  First, the methodology used in conducting these

experiments is explained.  This includes a description of the network topology, the traffic

mixes used, and the measurement periods of interest.  Next, the specific metrics gathered

are described and their importance explained.  The configuration of each algorithm in

these experiments is defined and the steps taken to determine the optimal configurations

for each algorithm are discussed.  Following that, the performance of each algorithm is

considered.  Each algorithm's performance is evaluated during a set of well-defined meas-

urement periods.  Finally, conclusions are drawn about the strengths and weaknesses of

each algorithm.

1. Methodology

To compare these queue management algorithms, each was empirically evaluated with

a variety of traffic mixes.  All experiments were run in a private laboratory network using

end-systems for traffic generation and a FreeBSD router running each algorithm.  Simula-

tion and production networks were also considered as possible approaches to evaluating

these algorithms; however, the use of production networks was quickly eliminated from



154

consideration at this stage of evaluation because of concerns about reproducibility, control

of the traffic conditions, and impact on production traffic.  Evaluating CBT in a produc-

tion network is a logical future step but is beyond the scope of this work.  In contrast,

simulation offered the control and reproducibility that were not available in a production

network.   Moreover, simulation requires minimal infrastructure, is easily configurable,

and has no impact on production traffic.  However, simulation may not include all poten-

tial factors that effect performance.  Because the infrastructure for conducting these ex-

periments in a private network was already available, these experiments were conducted in

that framework.  The details of the network configuration, as well as more discussion of

the choice of experimental frameworks, can be found in Appendix A.  A high level de-

scription of network configuration and methodology is provided here.

1.1. Network Configuration

The experimental network consists of two 100 Mbps switched LANs connected by a

full-duplex, 10 Mbps link which simulates an Internetwork as shown in Figure 5.1.  Each

LAN is populated with seven host systems used to generate and receive traffic to and from

the end-systems on the other LAN. The router is a FreeBSD system with software imple-

mentations of each of the algorithms.  The implementations are done within the ALTQ

framework [Cho98], an extension to the basic FreeBSD IP forwarding mechanism. Artifi-

cial delays between each pair of end-systems are used to simulate a wide range of round-

trip times between source-receiver pairs and thus ensure synchronization effects are

avoided.  Each network is monitored to allow collection of packet traces that will be ana-

lyzed off-line to assess performance.  The end-systems on the left-hand side of Figure 5.1

act as traffic sources, generating traffic in response to requests from the client end-systems

on right-hand side.  For example, in several experiments we generate simulated web traffic

with one end acting as the browsers and the other as servers.  While the clients' requests

are relatively low bandwidth, the sources on the left-hand side generate sufficient load to

overload the 10 Mbps capacity of the simulated Internet, creating overload at the WAN

interface on router labeled "bottleneck" in Figure 5.1.



155

Bottleneck

100 Mbps 100 Mbps

TCP, multimedia,
UDP blastSimulated

Internetwork
 

10 Mbps

TCP, multimedia,
UDP blast

ClientsServers

Figure 5.1 Experimental Network Configuration

1.2. Traffic Mixes

The network traffic in these experiments falls into one of three categories: TCP, mul-

timedia, or other (an aggressive, unresponsive source referred to as a UDP Blast). In all

cases the traffic generators were used to generate hundreds or thousands of flows repre-

senting many end-systems.  Each experiment includes one type of traffic from each of

these three categories.  Each category and the types of traffic that category represents is

described briefly here.  Details regarding each traffic category can be found in Appendix

A.

In the experiments, TCP was made the most prevalent traffic category because it rep-

resents 95% of the traffic in the Internet. TCP traffic is generated using models of applica-

tion-level behavior.   (The alternative would be to simply replay packet level traces of TCP

traffic; however, these packet-level traces would be inadequate because TCP sources ad-

just the loads they send in response to network performance, hence packet rates could

change under different conditions.) TCP traffic is generated using traffic generators that

simulate the application level behavior of two of the most common TCP-based applica-

tions, world-wide-web traffic, and bulk transfer of data like FTP.  In each experiment a

subset of the end-systems generate either HTTP or BULK traffic. For HTTP traffic each

source simulates multiple HTTP servers responding to requests from the simulated clients

systems.  The client end-systems modeled, in aggregate, 3,000 HTTP clients (browsers)

capable of generating a load of 1.1 MB/s [Christiansen00].  The pattern of requests from

the clients and behavior of the servers was based on the HTTP application model devel-

oped by Mah [Mah97].  The individual HTTP flows were typically short-lived and transfer

few bytes.  In contrast, the flows in the BULK traffic model were long-lived and transfer a



156

large number of bytes.  For BULK traffic, the simulated FTP clients establish 360 connec-

tions distributed evenly among the simulated FTP servers.  Each of these connections lasts

for the duration of the experiment.  In aggregate the BULK sources are capable of ex-

ceeding a load of 1.5 MB/s, well in excess of the 1.2 MB/s capacity of the bottleneck link.

As with TCP, two types of multimedia traffic were evaluated in these experiments:

MPEG, the common video compression standard, and Proshare, a proprietary video

conferencing product from Intel.  Each experiment included one of these types of multi-

media traffic.  The MPEG streams used in these experiments generate 30 frames per sec-

ond of video using inter-frame encoding with a group of pictures (GOP) of IBBPBB.  The

streams are playing the movie, "Crocodile Dundee".  The size of the different frames is

highly variable between 200 byte B-frames that fit in a single packet and 7,000 byte I-

frames that span 5 Ethernet-sized packets.  In contrast, the Proshare stream generates 15

frames per second of video and 10 frames per second of audio and uses no inter-frame en-

coding.   The variation in frame size for Proshare is much smaller than that of MPEG with

each audio frame fitting in one packet and most video frames spanning 2 packets.  In both

cases, the multimedia streams use UDP as their transport level protocol and are unrespon-

sive at the application-level.  Consequently, replaying packet-level or frame-level traces is

an effective way to model these traffic types since the packet rate does not change in re-

sponse to network conditions.

Because the performance of individual multimedia flows will be a factor in comparing

the algorithms, it is important to note the characteristics of these flows.  The multimedia

flows are generated using separate processes for each client-server pair.  A single MPEG

flow generates a load of 40-50 KB/s.  In these experiments four MPEG flows are estab-

lished to generate an aggregate load of 160-200 KB/s.  A single Proshare flow generates a

lighter per-flow load of ~27 KB/s.  In these experiments six Proshare flows are established

to generate an aggregate load of ~160 KB/s.  The intention is generate a multimedia load

that is a noticeable fraction (13-16%) of the link's capacity.

The third and final category of traffic in these experiments is high-bandwidth, unre-

sponsive traffic.  This traffic is referred to as other or, in these experiments, as a UDP



157

blast.  It is generated as a single, high bandwidth flow using UDP.  The UDP blast gener-

ates a constant load of 10 Mbps that is capable of consuming all of the capacity of the

bottleneck link.

This section sketches out the general traffic patterns and measurements in broad

strokes.  Details of the traffic mixes and issues involved in generating the traffic can be

found in Appendix A.  Figure 5.2 shows an example of the traffic mix and loads present on

left-hand side of the bottleneck router in Figure 5.1.  Each line shows the load generated

by each class in isolation.  These baseline measurements for each class were gathered in-

dependently to demonstrate the capabilities of each class.  The timestamps were merely

translated to allow for presentation in a single figure.  In this example the TCP traffic is

BULK and the multimedia traffic is MPEG.  The traffic mixes are named based on their

TCP and multimedia type.  So, this combination is "BULK+MPEG". For all of these ex-

periments, traffic was generated according to the same basic script. First, the TCP traffic

generators are started.  After allowing some time for the generators to stabilize (before

time 0) we begin monitoring the traffic.  After approximately 30 seconds, the multimedia

traffic generator begins and runs for 180 seconds.  At time 90 seconds, the UDP blast

traffic starts and runs for 60 seconds.  Overlapping these three traffic types in this way

gives two key measurement periods to study: the multimedia measurement period and the

blast measurement period.  The multimedia measurement period covers an interval when

only TCP and multimedia traffic are present, presenting performance during a period of

moderate overload.  The blast measurement period covers an interval when TCP, multi-

media, and the UDP blast are present, presenting performance in the presence of a high-

bandwidth unresponsive flow.



158

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (K
B

/s
)

MPEG load

Link Capacity

Blast Load

BULK Load

Multimedia 
Measurement Period

Blast
Measurement Period

Figure 5.2 Sample Traffic Mix and Measurement Periods.

1.3. Metrics

To compare these algorithms, the network performance is compared during both

measurement periods using a variety of metrics across the different traffic mixes.  The de-

tails of the metrics and our methodology for collecting these metrics are detailed in Ap-

pendix A and summarized here.

The throughput on the bottleneck link is considered for all traffic categories. Through-

put is measured by collecting a packet trace on the bottleneck link and reporting the aver-

age aggregate throughput for each class of traffic at one-second intervals.  In the case of

TCP, a slightly refined measure of throughput is used.  This metric, goodput, does not

consider packets that are redundant (i.e. retransmissions). An effective queue management

algorithm should allow TCP to have goodput that is a large fraction of the link's capacity,

allow multimedia to receive sufficient throughput to match its load, and constrain other

traffic to a consistent, small share of the link's capacity.  Throughput gives a quantitative

measure of performance.  For data transfers using TCP, goodput is an effective indication



159

of the quality of network service.  However, for interactive multimedia it is difficult to

evaluate the quality at the end-systems using that metric alone.  Latency, loss, and frame-

rate are more effective indications of the quality of multimedia interactions so the algo-

rithms are also evaluated based on those metrics.  The multimedia data reported is data for

one representative flow.  (All flows were found to have essentially the same results.)  La-

tency and frame-rate are measured using instrumented traffic generators on the end-

systems. A time-stamp in each packet is used to calculate the end-to-end latency of each

packet.  (The problem of synchronized clocks is avoided by using static routing to allow a

single host to act as both the sender and receiver.)  For MPEG traffic, the generators re-

port the latency averaged over one second intervals.  The Proshare generators report la-

tency packet by packet.  This variation in measurements is arbitrary, and a consequence of

the traffic generators available.  However, although both provide the same general data,

packet by packet latency data shows the variability (or lack thereof) for latency while per-

frame measurements don't highlight this variability.  To maximize interactivity and mini-

mize any end-system buffering needed to smooth jitter, latency should be as small as pos-

sible.  Particularly, note that the values reported here are latency for packets crossing a 3-

hop network with one congested link.  While all of the values reported are less than or

equal to the 250ms threshold of perceptible latency it is important to minimize latency as

most connections cross ~16 hops and queueing delays at routers are cumulative

[Paxson96].

For the Proshare traffic generators, loss-rate is a key indicator of the fidelity of the in-

teraction.  A single Proshare traffic generator on average generates 36 packets/second

with 10 of those packets containing independent audio frames.   The video stream gener-

ates 15 frames/second of variable size, independent video frames fragmented, on average,

into 26 packets.  However, because the Proshare traffic is generated based on a packet

trace with no media specific information, the generator is not able to report information on

frame-rate for Proshare.  Instead, the quality of the media stream must be inferred from a

secondary metric, loss-rate.  The loss-rate is reported as the number of packets that fail to

reach the receiver for a representative Proshare stream.



160

In contrast, the MPEG generator reports frame-rate data.   This is a superior measure

of multimedia performance. Loss-rate adds little information; however, it is interesting to

observe that the relationship between loss-rate and frame-rate as it is not always linear.

For example, an AQM algorithm may be biased against large frames that span many pack-

ets because the drop mechanism is overly sensitive to the resulting burst of packets associ-

ated with that frame.  Because I-frames are the largest frames in MPEG and entire GOPs

depend on I-frames for decoding, a low loss-rate could lead to a terrible playable frame-

rate if one packet per I-frame were dropped.  This emphasizes the need to examine both

actual and playable frame-rate for media streams that have interframe encodings.

The MPEG traffic generators generate frames at a rate of 30 frames per second and

report the actual frame-rate and the playable frame-rate at the receiver.  The actual frame-

rate is based on the number of frames that arrive intact at the receiver, regardless of de-

coding concerns.  The playable frame-rate is based on the number of packets that could

be successfully decoded given the inter-frame encoding semantics. Playable frame-rate is

the more important metric as it indicates the actual quality of the media stream.  However,

both are reported to point out the relationship between actual and playable frame-rate for

different algorithms.   Using these metrics, the performance is compared for each queue

management algorithm with each traffic mix.

1.4. Configuration of Queue Management Algorithms

To be sure the queue management algorithms are compared fairly, each algorithm was

evaluated to determine its optimal parameter settings in the experimental environment.

The extensive process used to determine these parameters is detailed in Appendix B.   The

process and results are summarized below. The optimal parameter settings refer to those

settings that offer the best performance based on the goals of the algorithm.  For example,

for RED the primary criterion is TCP performance as measured both by TCP goodput and

the number of retransmissions.  A secondary metric is latency as it is an effective indica-

tion of the average queue size in these experiments and maintaining a small average queue

size is one of the other goals of RED.  This is balanced by the third goal of RED, good

link utilization.  Maintaining good link utilization means buffering some packets so that



161

there are packets to forward during brief intervals when no packets are arriving.   In con-

trast, FRED was evaluated primarily on how fairly it constrains individual flows to 1-nth of

the link's capacity.  In contrast, providing low latency and low loss for multimedia was not

a goal of either algorithm so for the purpose of determining parameter settings, neither of

those algorithms was evaluated for multimedia performance.  However, supporting multi-

media effectively is a goal of CBT and CBQ so multimedia performance was a concern in

the selection of the optimal parameter settings for those algorithms.

Table 5.1 shows the optimal parameter settings that were selected for each algorithm.

In the case of the FIFO, drop-tail algorithm there was only one parameter to consider, the

queue length, maxq.    Different values of maxq were evaluated.  Most values offered the

same TCP performance but queue lengths of less than 60 resulted in a small decrease in

TCP goodput.  Since queue-induced latency increased as maxq increased, a queue length

of 60 packets was selected because it was the smallest value that offered good TCP good-

put.  That setting is also the default queue length in the FreeBSD implementation.

Algorithm maxq w maxp ThMin ThMax minq

FIFO 60 n/a n/a n/a n/a n/a

RED 240 1/256 1/10 5 40 n/a

FRED 240 1/256 1/10 5 60 2

Table 5.1 Optimal Parameter Settings for FIFO, RED, and FRED Across all Traffic
Mixes

In the case of FIFO, the queue length was chosen independent of the traffic mix. This

decision was based on the fact that the buffer in the FIFO algorithm is merely intended to

offer some reasonable capacity to accommodate burstiness.  In the case of RED and

FRED, the optimal parameter settings were selected by evaluating performance with an

HTTP-Proshare traffic mix and then confirmed by examining a smaller set of parameter

combinations for BULK-Proshare.  Different multimedia types were not evaluated because

multimedia performance is not a concern in the design of either of those algorithms.



162

RED and FRED offered a wider range of parameters to consider.  To limit the com-

plexity of choosing optimal parameters, the designers' recommended value was used for

the weighting factor w, the maximum drop probability maxp, and, in the case of FRED, the

minimum per-flow queue occupancy minq.  The maximum queue size, maxq, was also

fixed at 240 packets as the actual queue size has little effect compared to the threshold

settings.  The threshold values were the focus of the exploration of the parameter space

for RED and FRED.   For RED the value of ThMax was the dominant factor for the net-

work performance.  ThMax values that were too small resulted in poor efficiency as many

of the arriving TCP packets were dropped.  Setting ThMax to values of 40 packets or more

offered the same efficiency, with 95% of the TCP data reaching the router being for-

warded (i.e. a loss rate of 5%).   However, ThMax also limited the maximum average queue

occupancy.  Since RED's design goal was to minimize average queue occupancy this ar-

gued for a small value of ThMax.  This led to selecting the smallest value of ThMax that of-

fered good TCP efficiency.  That value was 40 packets.    The value of ThMin had no effect

on the metrics we examined so we used the recommended setting for ThMin of 5.

Performance analysis of FRED was more complex.  The ratio between ThMax and

ThMin was important at it placed a limit on the fraction of the queue that a given flow

could occupy.  Since one goal is to constrain the UDP blast this argued for a large ratio

between ThMax and ThMin to constrain each flow to a small share of the queue during peri-

ods of overload.  However, queue-induced latency increases as ThMax increases so that

argues for minimizing ThMax.  Moreover, extremely small values of ThMin over constrain

individual flows, including TCP.  As a result, the optimal parameters selected were a ThMax

of 60 and a ThMin of 5.   These values were chosen initially based on TCP performance

with HTTP traffic.  When the TCP type was changed to BULK the combination of a large

number of active flows and BULK's higher load combined to force the queue into a state

of consistent overload.  Because in FRED each flow is allowed to have two packets en-

queued regardless of average queue size, FRED's primary drop mechanisms are circum-

vented and only the queue size limits queue occupancy.  Consequently, changing the

threshold settings had no effect on performance.   Since the threshold values had no effect,

the optimal settings derived from the HTTP traffic are also used for BULK.



163

The selection of optimal parameters for CBT was a slightly different process since the

algorithm can be configured to offer desired bandwidth allocations and a limit on queue-

induced latency.   Rather than probing a large parameter space, this process simply sought

to confirm the calculated optimal parameter settings.   First, as with the previous algo-

rithms, fixed values were used for maxp, maxq, and the weights associated with each class

of traffic.  When determining the optimal parameter settings for these experiments the de-

sired latency setting was 100ms.  For bandwidth allocations, the class other was con-

strained to 150 KB/s.  This was an arbitrary value selected to be a small fraction of the

link's capacity.  Multimedia was allocated bandwidth based on the average expected load

for the multimedia traffic type and TCP was allocated all of the remaining capacity of the

bottleneck link.  Using the equations from Chapter IV to compute threshold settings based

on desired bandwidth allocations and latency values, one should be able to compute the

optimal parameter settings.  However, to confirm these settings, a range of settings that

offered multimedia slightly more and slightly less than the expected multimedia load were

also considered.  TCP's bandwidth allocations were adjusted correspondingly to match the

remaining link capacity.   These parameter settings were evaluated based on how well they

isolated TCP from non-TCP traffic (TCP goodput), how well other was constrained

(other throughput), and how well multimedia performed (frame-rate, loss, and latency).

Upon analysis, the actual optimal allocations were found to be slightly higher than origi-

nally thought.  Multimedia's loss rate was too high.   This was because the load generated

by the multimedia traffic types did vary slightly, with brief periods of slightly higher load

and the initial allocations, based on the long-term average load for the class, were inade-

quate to accommodate that variation.   To ensure good performance, bandwidth alloca-

tions should be based on maximum short-term average generated loads, not long-term av-

erages.  The optimal parameter settings for CBT are shown in Table 5.2.  Note that

threshold settings are non-integer.  The average itself is non-integer and allocating frac-

tional shares of the queue allows for more precise control of the bandwidth allocation.



164

Weight ThMax KB/s
Traffic Mix

other Mm TCP other Mm TCP Bother Bmm BTCP

HTTP-MPEG 1/4 1/16 1/256 14.28 22.45 85.58 150 195 880

BULK-MPEG 1/4 1/16 1/256 14.29 26.06 59.11 150 205 870

HTTP-Proshare 1/4 1/16 1/256 14.28 22.19 88.35 150 160 915

BULK-Proshare 1/4 1/16 1/256 14.29 25.69 61.74 150 190 885

maxp = 1/10, maxq = 240

Table 5.2 Optimal Parameter Settings for CBT with 100 ms of Latency

The optimal CBT parameter settings were based on a router configuration that has a

queue-induced latency of 100 ms. However, one goal of these resource management

strategies is to minimize latency.  The bandwidth allocations established previously were

used to recompute new thresholds for those allocations with a latency setting of 30 ms.  It

is possible that changing the latency setting makes these bandwidth allocations sub-optimal

for CBT.  (For example, the new threshold settings could be small enough to limit the ca-

pacity to accommodate bursts.)  However, using sub-optimal parameter settings for CBT

would only make the other algorithms look better in comparison.  Table 5.3 shows the

recalculated threshold settings with a latency value of 30 ms.

Weight ThMax KB/s
Traffic Mix

Mm other TCP other Mm TCP Bother Bmm BTCP

HTTP-MPEG 1/16 1/4 1/256 4.28 6.74 25.67 150 195 880

BULK-MPEG 1/16 1/4 1/256 4.29 7.81 17.73 150 205 870

HTTP-Proshare 1/16 1/4 1/256 4.29 6.66 26.50 150 160 915

BULK-Proshare 1/16 1/4 1/256 4.29 7.71 18.52 150 190 885

maxp = 1/10, maxq = 240

Table 5.3 Optimal Parameter Settings for CBT with 30 ms of Latency



165

Finally, AQM techniques must be evaluated in comparison to a packet scheduling

mechanism, CBQ.   The approach for selecting the optimal parameter settings for CBQ is

similar to that used for CBT.  CBQ uses parameters that specify the percentage of the

outbound link to allocate to each traffic class.  These percentages can map directly to

bandwidth allocations so the experiments to determine the optimal parameters were simply

confirming or making small adjustments to the expected optimal values.   As with CBT,

CBQ was evaluated by considering throughput for TCP and other as well as multimedia

performance.   As with CBT, the actual optimal bandwidth allocations for multimedia

were slightly higher than those calculated because of short term variations in the multime-

dia load.  The optimal percentages appear in Table 5.4.  All cases seek to constrain Bother

to approximately 150 KB/s as was done in CBT.  However, the implementation of CBQ

only allows integer percentages as allocations so the value of 12% was used to allocate

147 KB/s to other traffic and allocate sufficient bandwidth to multimedia to minimize loss

and maximize frame-rate.

KB/s
Traffic Mix MM % Other % TCP %

Bmm Bother BTCP

HTTP-MPEG 16% 12% 72% 196 147 882

BULK-MPEG 16% 12% 72% 196 147 882

HTTP-Proshare 13% 12% 75% 159 147 919

BULK-Proshare 14% 12% 74% 172 147 907

Table 5.4 Optimal Parameter Settings for CBQ

Note that optimal parameter settings were calculated for each traffic mix for both CBT

and CBQ.  Even though the main parameter was the multimedia allocation (Bmm), different

parameters were selected depending on the TCP traffic type used.  This is because HTTP

and BULK differ in their aggressiveness and their load.  BULK generates a very high-

bandwidth load.  As a result, there is seldom any excess capacity that multimedia may be

able to borrow.  As a result capacity must be strictly allocated to meet multimedia's needs.

In contrast, HTTP is less aggressive and slightly lower bandwidth, usually operating with a



166

load slightly less than the allocated bandwidth.  As a result, the multimedia traffic is able to

borrow excess capacity when HTTP is the TCP traffic type.  Thus, the bandwidth alloca-

tions for multimedia in those scenarios can be smaller.

2. Comparing Algorithms

CBT's performance is compared empirically to that of FIFO, RED, FRED, and CBQ.

Each algorithm is first evaluated during the period with a high bandwidth unresponsive

flow, the blast measurement period, as that is the scenario that this work seeks to address.   

The algorithms are next evaluated during the multimedia measurement period, a period of

moderate congestion.

Each algorithm was tested with its optimal parameters over five independent runs.

The results of each run were examined to be sure the behavior was consistent between

runs.  Then one representative run for each algorithm was selected for presentation here.

The algorithms are compared by examining the performance of individual metrics over

time.  Although each of the algorithms was tested independently, for ease of comparison

they are presented in the same graphs below with time values translated to synchronize the

beginning of the measurement periods.  For each metric the performance with an

HTTP+Proshare traffic mix is closely examined.  Then, unless the conclusions vary signifi-

cantly, the results with the other three traffic mixes are only briefly summarized.

2.1. Blast Measurement Period

During the blast measurement period all three traffic categories are active with the

UDP blast generating an unresponsive load sufficient to consume all of the link's capacity.

This is the scenario that highlights the tension between responsive and unresponsive flows.

CBT should offer TCP and multimedia performance that is better than FIFO and RED.

CBT and FRED should offer comparable TCP throughput and effectively constrain other.

However, CBT should offer better performance than FRED for multimedia since the mul-

timedia flows need slightly more than a fair share of the link's capacity in order to maintain

fidelity.  Finally, CBT's performance should approach the performance of the packet

scheduling algorithm, CBQ.



167

2.1.1. TCP Goodput

The first metric to consider is TCP goodput.  The goodput for each algorithm during

the blast measurement period with HTTP+Proshare is shown in Figure 5.3. This plot

shows the TCP goodput averaged over 1 second intervals versus time for each algorithm.

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.3 TCP Goodput Averaged Over 1 Second Intervals During the Blast Meas-
urement Period for HTTP+Proshare

When both multimedia and the UDP blast are contending for resources along with

TCP, FIFO and RED do little to isolate TCP from the effects of unresponsive flows.

Goodput with RED is between 200 and 400 KB/s (out of a possible 1,100 KB/s) and

FIFO is worse at ~100 KB/s.  Under FIFO and RED, packets from all flows are dropped

during the overload and the TCP flows respond by reducing their load, allowing the unre-

sponsive traffic to dominate the link.  In contrast, with FRED the TCP traffic gets much

better goodput (~900 KB/s).  Because there are many TCP flows and a small number of

multimedia and other flows, FRED's per-flow fair sharing constrains the multimedia and

other flows to a small fraction of the link's capacity leaving TCP with high goodput.  Fi-



168

nally, CBT and CBQ's allocations on a class by class basis prove effective.   TCP has

goodput of ~750 KB/s with CBT and ~850 KB/s with CBQ.

Note that fluctuations in goodput shown in Figure 5.3 are explained by fluctuations in

the load offered by the traffic generators.  For example, the offered TCP loads with

HTTP+Proshare during these periods are shown in Figure 5.4.  The varying loads are a

result of a combination of factors.  TCP's responsiveness to the packet loss accounts for

some variation as does the randomness in the sequence of client requests and server re-

sponses produced by the traffic generators.

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.4 TCP Load Averaged over 1 Second Intervals for HTTP+Proshare During
the Blast Measurement Period

The performance with other traffic mixes is similar to that with HTTP+Proshare

Figure 5.5 shows the TCP goodput for each traffic mix.  Note that the goodput of BULK

TCP (Figure 5.5b, d) is slightly higher than that with HTTP (Figure 5.5a,c).  Because the

BULK flows are long-lived, higher bandwidth, and more numerous those TCP flows are

capable of consuming more bandwidth when it is available.  Moreover, goodput for

BULK traffic is much higher with FRED because there are typically more active TCP



169

flows with the BULK traffic than with HTTP.  As a result, TCP represents a larger frac-

tion of the flows sharing the router's queue and thus the link's capacity.  Also note that for

CBT and CBQ, TCP goodput with MPEG (Figure 5.5c,d) is slightly lower than the re-

spective cases with Proshare (Figure 5.5a,b).  This is due to the higher multimedia alloca-

tions for MPEG and consequently lower TCP allocations in those experiments.  FRED,

CBT, and CBQ are much more effective than the other algorithms in isolating TCP from

the effects of unresponsive flows.

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

a) HTTP+Proshare b) BULK+Proshare

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.5 TCP Goodput for All Traffic Mixes During the Blast Measurement Period

2.1.2. Throughput for Other Traffic

The effectiveness of the algorithms in isolating TCP is directly related to how the algo-

rithms constrain high-bandwidth unresponsive flows.  If unresponsive flows are con-

strained TCP will not suffer loss due to queue overflow triggered by unresponsive traffic.



170

In these experiments, the throughput of the traffic class other reflects how effectively un-

responsive traffic is constrained.  Figure 5.6 shows the throughput for class other during

the blast measurement period for HTTP+Proshare.  The throughput for other is essentially

the complement of the TCP goodput in Figure 5.5.  FRED, CBT, and CBQ effectively

constrain other to a small fraction of the link's capacity while RED and FIFO allow other

to dominate the link.   Since other is represented by a single high-bandwidth flow, FRED

constrains the class other to approximately 1/nth of the link capacity, where n is the num-

ber of active flows.

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.6 Throughput for Other Traffic Averaged Over 1 Second Intervals with
HTTP+Proshare During the Blast Measurement Period

FRED constrains other most severely; however, CBQ constrains other more accu-

rately.  That is, the bandwidth allocation for other, Bother, was 150 KB/s and under CBQ

its throughput is in that range.  CBT allows other to exceed this allocation more frequently

than CBQ.  This can be attributed to several factors: the weighted running average queue

occupancy calculation of CBT, CBT's reliance on accurate information on average packet

sizes, differences in the mechanics of borrowing for CBT versus CBQ, and the use of early



171

drop mode when dropping packets for TCP in CBT.  Consider each.  First, CBT's

weighted running average is less precise than CBQ's scheduling as a mechanism for allo-

cating bandwidth. Moreover, in CBT the classes may be sampled at different rates.  For

example, if one TCP packet arrives over an interval while 60 packets drain but 50 other

packets arrive in the same interval, other's average will reflect recent queue occupancy

while TCP's average will still be highly influenced by the TCP occupancy at the beginning

of the interval.   As a result, there may be a subsequent interval when the queue occupancy

of TCP or multimedia decreases because that class's average (highly influenced by out of

date data) dictates that all arriving packets should be dropped.   If other maintains its

queue occupancy constant during this interval, other will have a larger fraction of the

packets in the queue and thus a larger fraction of the outbound link.  Moreover, because

the implementation of CBT used here relies on average packet size values when calculat-

ing the threshold values, variation in packet size can result in variation in the resulting

queue allocation.  Consider an example.  If TCP, multimedia, and other each have thresh-

olds of 10 packets with expected average packet size of 500 bytes then each class would

on average have 5,000 bytes enqueued.  Consequently, each would receive one-third of

the link's capacity.   However, if multimedia actually generated packets of size 1,000 bytes

over some interval, then multimedia would have 10,000 bytes enqueued compared to

5,000 for each of the other classes.  Consequently, multimedia would receive half of the

link's capacity.   Note that this reliance on average packet sizes is an implementation limi-

tation.  The algorithm can be easily modified to track the number of bytes consumed in the

queue instead of packets.  Further, CBQ allows for the specification of a hierarchy of bor-

rowing while CBT simply allows all classes to borrow in proportion to their shares.  In

these experiments CBQ is configured to allow TCP and multimedia to borrow each other's

excess first and, only if excess remains can other borrow from that excess.  As a result,

other is more tightly constrained.

Finally, CBT uses an early drop policy to manage the queue occupancy by TCP.  As a

result, TCP packets are dropped before TCP reaches its maximum threshold. The result is

that TCP typically maintains average queue occupancy that is less than the maximum

threshold.  This gives TCP a smaller share of the queue than it was allocated and, thus, a



172

smaller share of the link's capacity.  Other is able to claim this unused capacity and exceed

its initial bandwidth allocation.  However, although CBT's constraint of other is imprecise,

it is still effective in constraining that traffic type.

Further, HTTP is more sensitive to congestion than BULK, allowing more opportuni-

ties for the remaining traffic classes to borrow its unused capacity.  This sensitivity is due

to the fact that most HTTP connections are short-lived.  Because the HTTP flows are

short-lived they rarely make it out of slow-start mode.  Because of this the flows typically

operate with a very small congestion window and many of the drops are only detected due

to time-out.  As a result, the flows sit idle much of the time, leading to a lower average

load during periods of congestion than what would typically be seen with longer-lived

flows, such as BULK.  The data confirms this.  Figure 5.7 shows the throughput for class

other for all of the traffic mixes.  Note that other is more tightly constrained with CBT

when the TCP traffic type is BULK.  Moreover, throughput with CBQ is almost exactly

150 KB/s.  This is because BULK maintains sufficient load to prevent other from bor-

rowing its unused capacity.  Similarly, FRED also constrains other much more tightly with

the BULK traffic mix.  Because there are many more active TCP flows with BULK, the

fraction of capacity received by each flow is much smaller, thus the single flow of class

other is more tightly constrained.



173

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

a) HTTP+Proshare b) BULK+Proshare

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.7 Throughput for Other Traffic Averaged over 1 Second Intervals with
HTTP+Proshare During the Blast Measurement Period

However, in all cases, the relative performance of the algorithms is consistent.  FIFO

and RED fail to constrain other, FRED constrains other to a very low throughput,  CBT

constrains other, though not always to its precise allocation, and CBQ constrains other

very effectively to the 150 KB/s allocated to it.

2.1.3. Multimedia

To effectively support TCP and multimedia an algorithm should isolate not only TCP

from the effects of aggressive unresponsive traffic, but should also isolate multimedia from

the effects of aggressive unresponsive traffic as well.  Multimedia's performance can be

evaluated by considering throughput, latency, loss, and frame-rate.  First, consider

throughput.  To evaluate throughput one must consider it relative to the offered load.



174

Figure 5.8 shows the offered aggregate Proshare load on the router's inbound link during

the experiments with HTTP+Proshare.   As expected given the scripting and traffic gen-

eration the multimedia load is very similar for each experiment, ranging from ~140 KB/s

to ~180 KB/s over the duration of each experiment.  However, note that the load varies

between these two extremes.  Consequently, there should be corresponding variation in

the throughput.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.8 Multimedia Offered Load Averaged Over 1 second Intervals for
HTTP+Proshare During the Blast Measurement Period

Comparing the offered loads above to the multimedia throughput on the bottleneck

link, as shown in Figure 5.9, provides a starting point for evaluating how effectively each

algorithm supports multimedia. Precisely how effective the algorithms are will be more

apparent when packet loss and frame-rate are considered below.  The multimedia

throughput is highest for CBT and CBQ (140-180 KB/s).  The throughput is nearly equal

to the offered load. Classification and bandwidth allocation effectively isolate the multime-

dia traffic from the effects of the unresponsive flows.  Proshare's throughput is nearly

equal to the offered load with FRED for the HTTP+Proshare traffic mix.   In contrast,



175

multimedia throughput is between 80-120 KB/s for FIFO and RED, well below the of-

fered load.  Once again, this is because during periods of overload FIFO and RED drop

many packets from all flows.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.9 Multimedia Throughput Averaged over 1 Second Intervals for
HTTP+Proshare During the Blast Measurement Period

Figure 5.10 shows the multimedia throughput for all workload mixes.  Multimedia

performance with other traffic mixes is consistent with that observed for HTTP+Proshare

for all algorithms except FRED.  CBT and CBQ offer throughput approximately equal to

the offered load while FIFO and RED result in significantly lower throughput.

Multimedia performance with FRED varies as a function of workload mix.  Although

Proshare's throughput is nearly equal to the offered load for HTTP+Proshare (Figure

5.10a), thoughput reduces by two-thirds when the traffic mix is BULK+Proshare (Figure

5.10b).  The increase in the number of active flows with BULK accounts for this variation

because the share of the queue buffers, and thus the link capacity, allocated to each flow

decreases as the number of flows increases.  Since the number of multimedia flows re-

mains constant the aggregate share of the queue allocated to multimedia decreases.  A



176

similar effect occurs for MPEG (Figure 5.10c,d).  However, because MPEG's offered load

(both per-flow and aggregate) is higher than Proshare's, the effects of FRED's per-flow

constraint are noticeable even with HTTP as the TCP traffic type.  Moreover, because

FRED's per-flow drop decisions are based on instantaneous queue occupancy, FRED is

biased against flows that are bursty, dropping packets from those flows even when the av-

erage offered load is less than 1/nth of the link (where n is the number of active flows).

Since MPEG's I-frames span as many as five packets on average, they are likely to trigger

this biased behavior of FRED.  The effect of this behavior on playable frame-rate can be

severe and is discussed in the section on frame-rate, below.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

a) HTTP+Proshare b) BULK+Proshare

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.10 Multimedia Throughput Averaged Over 1 Second Intervals During the
Blast Measurement Period.

In summary, CBT and CBQ offer the best multimedia throughput in all cases.  The

throughput for the cases with MPEG (Figure 5.10c,d) is higher because MPEG offers a



177

higher average load than Proshare.  FRED offers reasonable throughput for

HTTP+Proshare but this is the accidental result of a combination of factors as discussed

above.  For the other three traffic combinations FRED's multimedia throughput is signifi-

cantly lower than with CBT and CBQ.  Finally, RED and FIFO offer lower throughput in

all four cases.

Although multimedia throughput is an effective initial measure of the effectiveness of

the algorithms, to fully evaluate the algorithms one must consider latency, loss-rate, and

the resulting frame-rate.  Those metrics are presented below.

Latency

Latency must be limited to maximize interactivity and limit the amount of end-system

buffering necessary for jitter management.  Figure 5.11 shows the end-to-end latency for

the HTTP+Proshare traffic mix during the blast measurement period. These latency values

include the effect of propagation delay and end-system queueing.  (However those factors

are minimal, on the order of 5 milliseconds.)  As a result, the differences in these values

directly reflect differences in queue-induced delays at the bottleneck router. Note that in

the plots with Proshare as the multimedia traffic type, the latency values are reported on a

packet by packet basis, instead of averaging over 1 second intervals.  This illustrates the

variability between instantaneous latency values which leads to jitter.  It also points out the

relation between consecutive latency values.  During periods of overload consecutive

packets will have nearly the same queue-induced latency because the latency is a result of

the queue size when the packet arrives and the queue occupancy changes slowly.  Queue

occupancy changes only when packets arrive and depart.

With FIFO, multimedia has a delay of just under 60 ms.  This is a direct result of the

maximum queue occupancy used for FIFO, 60 packets.  The average size of packets in

these experiments was approximately 1000 bytes and each required about 1 ms to be

transmitted on the 10 Mb/s bottleneck link.   With FIFO's queue constantly full due to the

overload, the queue-induced latency approaches 60ms.  Similarly, RED's maximum

threshold of 40 packets constrains the average queue occupancy, leading to the 35-40 ms

of latency observed.  For the HTTP+Proshare mix the maximum threshold value of 60



178

packets also constrains the queue occupancy when using FRED.   Note that for both RED

and FRED it takes less than 1 ms to process the average sized packet, so the latency is

slightly less than 1ms/packet enqueued.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

FIFO FRED

RED

CBT

CBQ

Figure 5.11 End-to-End Multimedia Latency During the Blast Measurement Period for
HTTP+Proshare

With CBT, the latency is determined by the aggregate average queue occupancy for all

classes which is limited by the aggregate maximum threshold settings for the classes.

Moreover, those values are calculated based on the desired maximum average latency.  In

these experiments that value was 30 ms and thus the latency averages near 30 ms.  In

contrast, CBQ's latency is usually quite low, around 10ms.  This is because each class of

traffic has its own queue.  If a CBQ class is operating with a load less than its bandwidth

allocation, queue occupancy for that class will remain near zero and arriving packets will

be forwarded almost immediately.  In this experiment, that is precisely what happens for

CBQ up until time 32 when latency jumps to 20-50ms.  At this point a queue forms be-

cause the load generated by multimedia exceeds the bandwidth allocation.  Recall from

Figure 5.8 that at time 32 the offered load for multimedia increases.  In fact, it exceeds the



179

149 KB/s allocated to multimedia by CBQ, causing a queue to form.  Although CBQ has

sufficient queue capacity to avoid dropping any of the multimedia packets, this brief varia-

tion does result in the increased queueing delay as shown.  This phenomenon is also evi-

dent for CBQ with BULK+MPEG during the interval (10,15) as shown below.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

FIFO FRED

RED

CBT

CBQ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

CBQCBTRED

FRED

FIFO

a) HTTP+Proshare b) BULK+Proshare

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.12 End-to-End Multimedia Latency Averaged Over 1 Second Intervals Dur-
ing the Blast Measurement Period

Figure 5.12 shows the latency values for all traffic mixes.  Note that for the HTTP

(Figure 5.12a,c) and BULK (Figure 5.12b,d) traffic mixes the latency values are reported

on different time scales.  Although the results are consistent with those observed for

HTTP+Proshare for most of the algorithms, FRED's behavior changes significantly.  Al-

though FRED's thresholds are constant at (60,5) across all four traffic mixes, the latency

increases dramatically when the TCP traffic type is BULK instead of HTTP.  This occurs

because there are many more active flows with BULK.  Since FRED allows any flow to



180

have two packets enqueued regardless of the average queue length, when there are a large

number of active flows the occupancy is constrained only by the size of the queue.  In this

case the queue size is 240 packets. When BULK is the TCP traffic type, the average

packet size is slightly larger than 1000 bytes and requires slightly more than 1 ms to proc-

ess.  This leads to a queue-induced latency of approximately 260 ms. As a result, the la-

tency at this router alone exceeds the perception threshold which is a significant drawback

for the FRED algorithm.

Also, notice that CBQ latency briefly grows quite large up to time 15 for

BULK+MPEG (Figure 5.12d).  This occurs because multimedia load in excess of CBQ's

bandwidth allocation causes a queue to build for the multimedia class.  To understand this

behavior, consider the offered load for multimedia in this experiment.  Figure 5.13 shows

multimedia's offered average load during the blast measurement period as stars.  The

dashed line indicates the bandwidth allocation for multimedia (Bmm) of 196 KB/s.  Clearly,

the load slightly exceeds the allocation during the period from time 5 to time 16.   As a

result, a queue builds for the multimedia class and the packets incur significant queue-

induced latency as shown in Figure 5.12 (Figure 5.13d).  This also occurs in the

HTTP+MPEG case (Figure 5.13c) but the effect is not as severe because HTTP does not

use all of it allocated capacity so multimedia can borrow from TCP to address this slight

overload.



181

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s CBQ

Bmm

Figure 5.13 Multimedia Load Averaged Over 1 Second Intervals for BULK-MPEG
for CBQ During the Blast Measurement Period

In summary, CBQ offers the lowest latency, though it is subject to variation if the of-

fered load for multimedia exceeds the allocation.  Latency with FRED can be unpredict-

able.  Although the maximum threshold limits the queue occupancy when there are mod-

erate numbers of active flows, when the number of active flows approaches the queue size

the queue-induced latency is limited only by the queue size.  Moreover, even in the best

case, FRED's optimal parameter settings offer latency on order of 50ms, second highest of

all of the algorithms.  Similarly, RED and FIFO offer poor latency performance relative to

the other algorithms.  The latency value can be managed for these algorithms by changing

the queue size or ThMax, respectively, but when optimal parameters were selected it was

noted that decreasing these values limited the capacity to accommodate bursty arrivals and

decreased TCP efficiency.  In contrast, CBT is able to consistently constrain queue occu-

pancy and limit queue-induced latency to a desired value, in this case 30ms.



182

Loss and Frame-rate

The final metrics considered for multimedia were loss-rate and frame-rate.  The loss-

rate for multimedia affects the playable frame-rate but the relationship is not necessarily

linear.  Issues such as interframe encoding and marshalling of frames into many packets

mean that loss of one packet may translate to the loss of many frames.  Further, some

queue management algorithms may be biased against bursty arrivals, causing packet losses

to be concentrated in large frames spanning multiple packets because those packets are

generated simultaneously and hence may arrive at the router nearly simultaneously.    First

we consider the loss rate under all traffic mixes and then the corresponding frame-rates

(for MPEG).

Multimedia Loss-rate (Packets/Second)
Traffic Mix

FIFO RED FRED CBT CBQ

HTTP+Proshare 14.8 11.9 2.2 1.2 0

HTTP+MPEG 19.0 13.7 9.2 2.6 0

BULK+Proshare 15.7 13.0 27.7 1.1 0

BULK+MPEG 24.1 14.7 33.1 4.5 0

Table 5.5 Loss Rates for Multimedia During the Blast Measurement Period

The loss-rates in packets/second are shown in Table 5.5.  This metric is useful when

comparing algorithms for a single media type.  Clearly CBQ's loss-rate of zero across all

traffic mixes is superior.  Likewise, CBT offers the second lowest loss-rate for all mixes,

five to ten times better than the other algorithms in all but one case.  The only exception is

FRED's loss-rate for HTTP+Proshare which is only slightly higher than CBT's.  However,

FRED's loss-rate for HTTP+MPEG is higher and for the BULK traffic mixes FRED offers

the highest loss-rate of all.  The reasons for this behavior were addressed in the section on

multimedia throughput above.  Finally, the loss-rates for FIFO and RED are uniformly

high with FIFO's consistently slightly higher than RED.



183

To better understand the effect of these loss-rates, it is helpful to consider the resulting

frame-rates.  Consider frame rate with HTTP+MPEG.  (Only the MPEG traffic generators

offer frame-rate information so using HTTP+Proshare here isn't possible.)   The actual

frame-rates (i.e., the number of frames successfully received independent of decoding con-

cerns) for MPEG are shown in Figure 5.14.  The MPEG sender is transmitting 30 frames

per second.  CBQ is able to deliver at that rate while CBT maintains a frame-rate near 28

frames per second with some variation. As expected from the drop-rates, FRED offers a

degraded frame-rate of 20-25 frames per second while FIFO and RED offer poorer frame-

rate performance.  RED drops the actual frame-rate below 20 frames per second while

FIFO averages around 15 with a good deal of variability.

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

Figure 5.14 Actual Frame-Rate Averaged Over 1 Second Intervals for HTTP+MPEG
During the Blast Measurement Period

Figure 5.15 also shows the actual frame-rate information for BULK+MPEG (Figure

5.15b) as well as HTTP+MPEG (Figure 5.15a).  The MPEG frame-rate with BULK traf-

fic is slightly poorer in all cases.  This is to be expected as we have previously seen that

BULK flows consume more of the bandwidth than HTTP.  In the case of RED and FIFO



184

this means that the drop-rate must be even higher and so the drop-rate for MPEG in-

creases and the actual frame-rate decreases.  As expected, the effect of the BULK traffic is

most severe with FRED as the frame-rate degrades to approximately 5 frames per second.

In the case of CBT, the fact that BULK is more consistent in its consumption of allocated

bandwidth means there is little excess capacity for multimedia to borrow when it briefly

exceeds its threshold so MPEG's frame rate is slightly lower in those instances.  In con-

trast CBQ has sufficient buffer space to queue excess packets when multimedia does ex-

ceed its threshold so no packets are dropped.  Although the actual frame-rate is an indica-

tion of network performance it does not give a strong indication of the quality of the me-

dia stream.  To do that, one must consider the playable frame-rate.

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

a) HTTP+MPEG b) BULK+MPEG

Figure 5.15 Actual Frame-Rate Averaged Over 1 Second Intervals for MPEG During
the Blast Measurement Period

Recall that the playable frame rate is the number of packets that can be successfully

decoded for playback.  For a media encoding that has interframe dependencies, such as

MPEG, the playable frame-rate can vary significantly from the actual frame-rate.  For ex-

ample, if an I frame is lost the entire GOP cannot be decoded.  In these examples the GOP

is IBBPBB so loss of an I frame results in the effective loss of 6 frames because they can-

not be decoded.  Figure 5.16 shows the playable frame-rate for HTTP+MPEG.  Only

CBQ has a playable frame rate approaching the actual frame rate.  However, the relative

performance of the algorithms remains consistent with the exception of FRED.  With CBT

the stream maintains a frame rate of 20 frames per second or better 80% of the time.



185

However, RED degrades to approximately 5 frames per second and FIFO's performance is

even worse, as almost no frames can be decoded for playback.  Although FRED had an

actual frame-rate between 20-25 frames per second the playable frame-rate varies between

0 and 25 frames per second.  As previously discussed, FRED's use of instantaneous queue

occupancy for per-flow drop decisions introduces a bias against bursty arrivals.  In this

case the larger I-frames span as many as 7 packets which arrive nearly simultaneously at

the router, triggering this bias.  Consequently, the subsequent frames of the GOP cannot

be decoded.  The results for BULK+MPEG (Figure 5.17b) are consistent with those seen

for HTTP+MPEG.

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

Figure 5.16 Playable Frame-Rate Averaged Over 1 Second Intervals for
HTTP+MPEG During the Blast Measurement Period



186

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

a) HTTP+MPEG b) BULK+MPEG

Figure 5.17 Playable Frame-Rate Averaged Over 1 Second Intervals During the Blast
Measurement Period

Examining frame rate and loss-rate emphasizes the fact that quality of a multimedia

stream does not degrade continuously.  In a file transfer, increased drops increase the time

necessary to transfer an object from sender to receiver but the object is still useful when it

arrives.  In contrast a drop rate of 20% can lead to a playable frame-rate near zero making

the media stream useless.

2.1.4. Summary of Blast Measurement Period

These experiments confirmed the vulnerability of FIFO and RED to aggressive, unre-

sponsive flows.  TCP goodput was low, other dominated the link's capacity, and multime-

dia throughput and thus loss-rate and frame-rate were poor.  Although queue-induced la-

tency was tolerable at 60 and 40 ms, it mattered little because the high loss-rate severely

degraded the multimedia streams.

In contrast, FRED offers good TCP performance and effectively constrains other but

the mechanism used to constrain other also over constrains multimedia.  In three out of

the four traffic mixes examined this results in high loss for multimedia.  Moreover, FRED's

use of per-flow instantaneous queue occupancy in the drop decision leads to a bias against

bursty packet arrivals.  Consequently, MPEG's large I-frames are very likely to be subject

to loss and, consequently, has a poor playable frame-rate even when the loss-rate is low.

Further, when the number of active flows approaches the size of the queue, FRED's per-



187

formance equates to that of FIFO, leading to a high drop-rate and high queue-induced la-

tency.

CBQ offers the best performance.   The bandwidth allocations accurately indicate the

throughput each class of traffic actually receives.  When properly configured TCP good-

put is high, other is effectively constrained, and there is no multimedia loss and a very high

frame-rate.   However, during periods of brief overload the queue-induced latency can

vary significantly.

CBT also offers good performance though the bandwidth allocations less precisely

control the resulting throughput.  When properly configured, TCP goodput is high, other

is effectively constrained, and multimedia loss is low, resulting in a high frame-rate.

Moreover, queue-induced latency is predictable and configurable.

The measurements during the blast measurement period demonstrate the CBT meets

its design goals, isolating TCP and multimedia from each other and from the effects of ag-

gressive, unresponsive flows.  Moreover, CBT performs better than the other AQM algo-

rithms examined and the performance is comparable to that of the packet scheduling

mechanism, CBQ.

2.2. Multimedia Measurement Period

The second measurement period considered is the multimedia measurement period.

The multimedia measurement period is a period when only TCP and multimedia traffic are

present.  There is no other traffic. The goal in this section is to simply demonstrate that

CBT has no ill effects on TCP or multimedia and that CBT offers performance that is

comparable or superior to the other AQM algorithms.  Most of the queue management

algorithms handle this scenario reasonably although there are some slight variations in

performance.   However, FRED does demonstrate the same pathological behaviors with

BULK during the multimedia measurement period as it did during the blast measurement

period. To evaluate the algorithms during the multimedia measurement period, the analysis

parallels that from the blast measurement period.



188

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.18 TCP Goodput Averaged Over 1 Second Intervals During the Multimedia
Measurement Period for HTTP+Proshare

2.2.1. TCP Goodput

Without aggressive, unresponsive traffic present, TCP and multimedia should be able

to share the link with TCP getting most of the link's capacity.  The TCP goodput meas-

urements shown in Figure 5.18 confirm this.   (The low goodput reading for CBQ at time

30 seconds is an artifact due to the measurement technique.)   For HTTP+Proshare, the

TCP goodput is approximately 1,000 KB/s for all of the algorithms with each algorithm

showing occasional fluctuations due to variation in load.



189

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

a) HTTP+Proshare b) BULK+Proshare

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.19 TCP Goodput Averaged Over 1 Second Intervals During the Multimedia
Measurement Period for All Algorithms

The goodput values for the other traffic mixes (Figure 5.19) are comparable.  How-

ever, the goodput is slightly higher for the traffic mixes featuring BULK than the mixes

featuring HTTP because BULK maintains a consistently higher load.  The goodput is es-

pecially high for BULK with FRED because the large number of BULK flows relative to

multimedia flows leads to TCP receiving a larger fraction of the link capacity.  Otherwise,

the performance for a given traffic mix is nearly identical across all of the algorithms.

2.2.2. Multimedia

For multimedia performance, first consider the throughput under each queue manage-

ment algorithm as a coarse measure of performance.  Next, metrics more specific to mul-

timedia, such as latency, and frame-rate are considered.



190

Throughput

Figure 5.20 shows the multimedia throughput during the multimedia measurement pe-

riod for HTTP+Proshare.  As expected, during periods of light congestion without aggres-

sive traffic, the choice of algorithm has little impact on multimedia throughput.  The dips

between time 20 and 30 are due to unavoidable flaws in the measurement technique that

lead to some samples being lost.  The throughput is consistent across all algorithms.

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

Figure 5.20 Multimedia Throughput Averaged Over 1 Second Intervals During the Mul-
timedia Measurement Period for HTTP+Proshare



191

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

a) HTTP+Proshare b) BULK+Proshare

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25 30 35 40

Time (seconds)

K
B

/s

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.21 Multimedia Throughput Averaged Over 1 Second Intervals During the
Multimedia Measurement Period

However, it is interesting to observe how the performance changes when the TCP

traffic is BULK instead of HTTP.  Recall that the BULK traffic generators offer a more

consistent and higher load than the HTTP traffic generators.  As a result, the network is in

a more persistent state of overload with the BULK traffic mixes even without the UDP

blast.   When the network is overloaded, the differences in the multimedia performance

under the queue management algorithms are more apparent.  Figure 5.21 shows the mul-

timedia throughput for all traffic mixes.  While the HTTP traffic mixes (Figure 5.21a,c)

offer comparable performance across all of the algorithms, the BULK mixes (Figure

5.21b, d) highlight the value of the bandwidth allocation offered by CBQ and CBT.   For

example, the multimedia throughput for CBT and CBQ with BULK+Proshare (Figure

5.21b) is consistent with the throughput observed for HTTP+Proshare (Figure 5.21a).



192

However, the throughput drops slightly for RED and FIFO.  Moreover, as observed dur-

ing the blast measurement period in Section 2.1.3, FRED's fair sharing severely constrains

multimedia due to the large number of active BULK flows.

Latency

As noted for the blast measurement period, the end-to-end latency reported is primar-

ily a function of the queue-induced latency for each algorithm.  For the HTTP+Proshare

mix (Figure 5.22), the latency is relatively low for all of the algorithms because the con-

gestion is not persistent enough to test the limits of queue occupancy for each algorithm.

FIFO does have high latency (40 ms) up until time 25 but then a brief decrease in the TCP

load allows the queue to drain slightly so when the slight overload resumes the latency

stays around 20-30 ms. CBT, RED, and FRED operate below their maximum occupancy

throughout, resulting in latency ranging from 10 to 40 ms.  As always, CBQ's separate

queues for multimedia packets allows them to pass through the router quickly, incurring

little latency.  These latency values are all tolerable.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

CBQ

FIFO

FRED

RED

CBT

Figure 5.22 End-to-End Multimedia Latency During the Multimedia Measurement Pe-
riod for HTTP+Proshare



193

However, the latency values are more interesting when the TCP traffic component is

BULK.  Figure 5.23 shows the latency for all of the traffic mixes.  Note that because the

results vary the BULK and HTTP mixes are presented on different scales.  The latency for

HTTP+MPEG (Figure 5.23c) is comparable to that observed for HTTP+Proshare (Figure

5.23a), but the values for BULK+Proshare (Figure 5.23b) and BULK+MPEG (Figure

5.23d) are quite different. These differences are due to the fact that the BULK traffic

causes a more persistent state of overload.  As a result, when BULK traffic is present

queue occupancy is limited only by queue size or threshold settings.  FRED offers the

worst performance as the large number of flows present in the BULK mixes lead to queue

occupancy constrained only by the maximum queue size.   The queue size of 240 com-

bines with BULK's large packet size to produce a queue-induced latency of 260 ms.  In

contrast, the second worst case is FIFO.  FIFO's queue size of 60 packets leads to a la-

tency of only approximately 65 ms.  RED's average queue-induced latency is constrained

only by the limit on average queue occupancy,  ThMax, set at 40 packets.  In contrast,

CBT's latency is slightly lower than the configured 30ms of latency.  This is because the

class other is not using its allocated queue capacity.  As a result, the average aggregate

queue occupancy is lower than intended, leading to lower queue-induced latency.  In this

case, the effect is small as the threshold for other is only 4.3 packets.  This corresponds to

approximately 4 ms of latency.   In contrast, CBQ's behavior does not change as multime-

dia is able to traverse the router quickly in all cases as a result of separate queues for each

class.  Once again, CBT offers better performance than any of the other AQM algorithms.



194

0.00

0.01

0.02

0.03

0.04

0.05

0.06

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

CBQ

FIFO

FRED

RED

CBT

0.00

0.05

0.10

0.15

0.20

0.25

0.30

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

FIFO

RED

CBT CBT

FRED

a) HTTP+Proshare b) BULK+Proshare

0

0.01

0.02

0.03

0.04

0.05

0.06

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

5 10 15 20 25 30 35 40

Time (seconds)

S
ec

on
ds

FIFO

RED

FRED

CBT

CBQ

c) HTTP+MPEG d) BULK+MPEG

Figure 5.23 Multimedia Latency During the Multimedia Measurement Period

(Note: BULK and HTTP are on different time scales.)

Loss and Frame-Rate

Finally, we consider the quality of the multimedia streams, first by considering the

loss-rate and then examining the resulting frame-rates.  Although there is an inverse rela-

tionship between loss-rate and frame-rate, as noted during the blast measurement period,

that relationship is not strictly linear due to interframe encodings and biases in some algo-

rithms.  First, consider the loss-rate.  Table 5.7 shows the loss-rates for each algorithm

across all traffic mixes.  The loss-rates are lower in all cases than the corresponding values

during the blast measurement period.  This is expected since TCP and multimedia are not

competing for bandwidth with other traffic. However, for the AQM algorithms the loss-



195

rate for traffic mixes using BULK is significantly higher than the loss-rate for traffic mixes

that use HTTP.  This is because the BULK traffic generates sufficient load to maintain a

state of persistent congestion.  Since RED and FIFO drop packets from all flows equally

during periods of congestion, queues build and packets are discarded. And  FRED again

offers a higher drop-rate for multimedia as it constrains the multimedia flows to a fair

share.  With many flows FRED's fair share is much less than multimedia's offered load.  In

contrast, CBQ's and CBT's allocations result in a low loss-rate for multimedia.

Multimedia Loss-rate (Packets/second)
Traffic Mix

FIFO RED FRED CBT CBQ

HTTP+Proshare .5 .9 .96 .7 0

HTTP+MPEG 1.4 .9 1.11 .62 0

BULK+Proshare 6.9 8.8 27.6 .91 0

BULK+MPEG 8.2 10.2 32.8 1.1 0

Table 5.7 Loss-Rates for All Algorithms during the Multimedia Measurement Period

These loss-rates have a clear impact on frame-rate.  Given the observed loss-rates one

expects to realize a high actual frame-rate for all queue management algorithms for the

traffic mixes featuring HTTP.  However, one expects more variation in frame-rate for the

mixes featuring BULK since the loss-rate was high in those cases.  The data supports this

conclusion.  Figure 5.25 shows the frame-rates for MPEG with HTTP (Figure 5.25a) and

with BULK (Figure 5.25b).  (Recall that the Proshare traffic generator was not instru-

mented to provide frame-rate data so only MPEG is considered.)  When HTTP is the TCP

type, all queue management algorithms lead to an actual frame-rate on the order of 30

frames per second.  However, in the BULK case, CBT and CBQ's bandwidth allocation

leads to frame-rates of 30 frames per second but the losses associated with RED and FIFO

lead to frame-rates of 20-25 frames per second.  Moreover, FRED's fair shares severely

constrain the frame-rate, limiting MPEG to approximately 5 frames per second.



196

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

a) HTTP+MPEG b) BULK+MPEG

Figure 5.25 Actual Frame-Rate Averaged Over 1 Second Intervals During the Multi-
media Measurement Period

However, the actual frame-rate is merely a first approximation of the quality of the

media stream.  Since MPEG uses interframe encoding, a relatively high actual frame-rate

can still lead to a low playable frame rate if the lost frames are the I-frames.  Figure 5.26

illustrates this point.  CBQ still maintains a frame-rate of approximately 30 frames per

second and CBT is nearly that, with occasional dips (probably due to lost I-frames.)

However, RED and FIFO degrade the frame-rate closer to 25 frames per second.  FRED

leads to more variation in the frame-rate due to its bias against the large I-frames.



197

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

Figure 5.26 Playable Frame-Rate for HTTP+MPEG

The effect is even more extreme when BULK is present.  Figure 5.27 shows MPEG's

playable frame-rate for both HTTP (Figure 5.27a) and BULK (Figure 5.27b).  Consider

the BULK case.  Once again, the bandwidth allocations offered by CBQ and CBT are ef-

fective and allow MPEG to maintain a higher frame-rate than with the other algorithms.

CBQ' s frame-rate is consistently on the order of 30 frames per second while CBT aver-

ages 25 frames per second.   However, the playable frame-rate with RED and FIFO de-

grades to on the order of 10 frames per second.   Again, FRED offers the worst perform-

ance as the frame-rate drops to zero.



198

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40

Time (seconds)

F
ra

m
es

/S
ec

on
d

FIFO

RED

FRED

CBT

CBQ

a) HTTP+MPEG b) BULK+MPEG

Figure 5.27 Playable Frame-Rate During the Multimedia Measurement Period

2.2.3. Summary of Results for Multimedia Measurement Period

The measurements during the multimedia measurement period present two different

scenarios.  First, the measurements using HTTP as the TCP traffic type point out that all

of the queue management algorithms are generally comparable during periods of low or

transient congestion.  TCP throughput, multimedia throughput, and loss-rates differ little

between algorithms.  However, since there is some congestion a queue does form and the

latency does vary depending on the algorithm used.  In that scenario, CBQ offers the

minimal latency while CBT also offers predictable queue-induced latency.   FIFO, RED,

and FRED do constrain the latency as a function of their parameter settings as well but

these parameter settings are selected to maximize metrics like TCP efficiency and that

leads to higher queue-induced latency in these experiments.

The second scenario to consider is when BULK is the TCP traffic type. BULK flows

are long lived and the oscillations of TCP allow the BULK traffic to maintain a higher

level of congestion.  Consequently, those experiments demonstrate the interaction between

multimedia and TCP during periods of persistent congestion that are not caused by high

bandwidth unresponsive flows.  In this scenario, CBQ and CBT continued to perform

well, with both mechanisms isolating multimedia from the effects of the high bandwidth

TCP flows.  All of the algorithms offer high TCP goodput with BULK.  FRED's goodput

is particularly high since the BULK flows represent almost all of the active flows.   How-

ever, this leads to poor performance for multimedia throughput with FRED as each of



199

those flows is constrained to a fair share that is less than the intended load for those mul-

timedia flows.  In contrast, the other algorithms are more comparable for multimedia

throughput, although CBT or CBQ bandwidth allocation offers superior performance.

Further, the latency measures underscore FRED's poor performance when the number of

flows is large.  FRED's multimedia latency is nearly four times that observed for any other

algorithm.  Loss-rate and frame-rates also make it very apparent that RED and FIFO fail

to protect these relatively low bandwidth multimedia flows from the effects of high band-

width TCP while FRED's per-flow fairness constraints and its bias against bursty arrivals

directly limit the multimedia quality.  However, CBT, like CBQ, offers low loss, low la-

tency, and high frame-rates while maintaining high TCP goodput.  CBT meets its design

goal of providing better performance for multimedia without having negative impact on

TCP.

3. Summary

To evaluate the queue management algorithms, the algorithms were empirically evalu-

ated in a laboratory network using multiple mixes of TCP, multimedia, and other traffic.

Each traffic type was instrumented and the algorithms were evaluated based on a variety

of metrics including throughput for each traffic type as well as multimedia latency, loss,

and frame-rate.  Class-based thresholds (CBT) addresses the tension between responsive

and unresponsive flows in the Internet by isolating TCP from the effects of aggressive un-

responsive traffic while also offering improved performance for multimedia.  CBT limits

queue-induced latency and allocates sufficient bandwidth to multimedia traffic to insure

that the applications maintain acceptable frame-rates.  Moreover, CBT offers performance

superior to that of the FIFO, RED, and FRED queue management mechanisms.   Specifi-

cally, FIFO and RED are unable to constrain unresponsive flows effectively allowing unre-

sponsive flows to dominate the link as responsive flows reduce their load in response to

packet drops.  FRED constrains aggressive unresponsive flows but presents other prob-

lems for multimedia.  FRED's most effective parameter settings for TCP performance can

result in high queue-induced latency.  Further, when each flow receives a fair share of the

queue, the resulting per-flow throughput can be insufficient to maintain the desired frame-

rate for multimedia streams.   Finally, CBT compares favorably to a representative packet



200

scheduling mechanism, Class-Based Queueing (CBQ) and demonstrates that bandwidth

can be allocated effectively using queue management.



VI. SUMMARY AND CONCLUSION

A fundamental tension exists between responsive and unresponsive flows in the Inter-

net today.  Responsive flows respond to congestion by reducing the load they generate.

The cooperative behavior of many responsive flows alleviates congestion by reducing the

aggregate load to less than the capacity of the congested link.  In contrast, unresponsive

flows ignore congestion and maintain their load.  Consequently, when both types of flows

share a congested link, responsive flows suffer because of their responsive behavior.  Un-

responsive flows maintain their load and are able to use a disproportionately large fraction

of the link's capacity.  Most of the traffic in the current Internet is responsive because it

uses a responsive transport protocol, TCP.  Most applications use TCP because it offers a

reliable ordered byte stream.  However, many classes of applications, such as interactive

multimedia, have no compelling reason to use TCP as their transport protocol because re-

liability isn't a primary concern.  Moreover, the mechanisms used to provide reliable deliv-

ery have a negative impact on performance, making TCP undesirable for those applica-

tions.  Responsiveness should be encouraged but applications that are not well suited to

TCP should also be supported.  This dissertation addresses the problem of supporting and

encouraging responsive behavior while still providing reasonable performance for applica-

tions like multimedia that aren't well suited to TCP.

Current approaches to this problem span many layers of the network stack.  At the ap-

plication layer, work has focused on allowing the application to respond to congestion by

using temporal and spatial scaling adaptations to adjust the bit-rate or packet-rate

[Delgrossi93],[Hof93],[Talley97]. At the transport layer, new transport protocols have

been proposed.  These protocols are responsive but unreliable and, thus, do not carry the

overhead associated with providing reliability [Cen98], [Sisalem98].  However, all of these

approaches require changing or rewriting existing applications.  They do nothing to ad-



202

dress the applications that are already deployed and in use.  Supporting these existing ap-

plications requires a network-centric approach.  Moreover, making applications respon-

sive would leave them vulnerable to the effects of other unresponsive flows. Limiting the

effects of other unresponsive traffic can only be accomplished with a network-centric ap-

proach.  Most of the current work at this level has focused on packet scheduling.  Another

approach is  active queue management (AQM) techniques that adjust the way in which a

router manages the queue of packets that builds during periods of congestion.  Most

AQM approaches focus on providing better support for responsive flows.  Specifically,

they identify and aggressively constrain unresponsive flows through packet drops with the

intention of encouraging application and protocol designers to use responsive techniques

[Floyd98], [Braden98].  This leads to poor performance for unresponsive flows, including

interactive multimedia.

The goal of this dissertation is to demonstrate that AQM techniques can be used to

isolate TCP and multimedia traffic both from one another and from the effects of other

unresponsive traffic.  Specifically, classifying traffic by type (TCP, multimedia, other) and

setting proper per-class thresholds on the packet drop decision can result in limiting the

queue induced latency and provisioning of link bandwidth similar to the use of weights

with a scheduling mechanism, but without the complexity of implementing a scheduler.

This work makes four contributions toward this goal:

1. We designed and implemented a novel AQM algorithm called Class-Based

Threshold (CBT) to address the tension between responsive and unresponsive

flows by offering bandwidth allocation via buffer allocation.

2. We have shown that CBT can be tuned to offer prescribed levels of performance

for each traffic class.  We presented analysis that predicts network performance

when using CBT based on initial configuration parameters, explained how this

analysis can be used to derive optimal parameter settings given desired network

performance, and empirically demonstrated the accuracy of this analysis.

3. We have presented data that contributed to our understanding of how existing

AQM schemes work.  We examined the empirical behavior of many current AQM



203

algorithms as well as one packet scheduling algorithm across a wide range of pa-

rameter settings and traffic mixes, articulated relationships between parameters and

performance metrics, and evaluated the results to determine optimal parameter

settings for each algorithm and traffic mix.

4. We empirically demonstrated that CBT effectively isolates TCP while providing

better-than-best-effort service for multimedia.  We compared CBT's performance

to the optimal performance for each of the other algorithms.  We showed CBT

provided better protection for TCP than RED and FIFO and better multimedia

performance than RED, FIFO, and FRED.

The rest of this chapter discusses each of these contributions and then presents some pos-

sibilities for future work in this area.

1. Class-Based Thresholds

Class-based thresholds is a novel algorithm for active queue management which effec-

tively isolates classes of flows and limits queue-induced latency.  Limiting the average

queue occupancy controls queue induced latency.   Classes of traffic are isolated from one

another by classifying packets as they arrive and managing each class's queue occupancy

independently.  Since all classes share a single FIFO queue, each class's share of the queue

equates to its share of the capacity of the outbound link.

  Although the support for classes of traffic is general, the implementation demon-

strated here is configured for three classes of traffic, TCP, multimedia, and other. The av-

erage queue occupancy for each class is managed by applying the RED algorithm to each

class [Floyd93].  The maximum threshold value for each class equates to a loose upper

limit on that class's average queue occupancy. Consequently, the ratio between the maxi-

mum thresholds for each class corresponds to the ratio between maximum average queue

occupancy for each class.  As a result, when all classes are active and maintaining their

maximum queue occupancy the ratio between these thresholds is also the ratio between

the bandwidth each class is able to consume on the congested link.



204

Using queue management to allocate bandwidth to each class of traffic isolates the

classes from one another.  For example, if other exceeds its queue allocation then packets

from class other will be discarded.  However, as long as TCP and multimedia are within

their allocations, they will suffer no drops and receive their allocated share of the out-

bound link. Moreover, the aggregate of the classes' thresholds divided by the capacity of

the outbound link equates to the queue-induced latency so the threshold settings determine

an upper limit on the average latency.

2. Analyzing CBT

CBT offers predictable performance.  The performance of different classes of traffic

interacting with CBT can be computed using equations derived here.   Performance de-

pends on each class's threshold on queue occupancy, link capacity, average packet sizes,

and load generated by each class.  The most straightforward case is the worst case analy-

sis.  Assume that each class is generating load sufficient to maintain average queue occu-

pancy equal to that class's threshold (i.e., load exceeds bandwidth allocation during a pe-

riod of congestion).  In that case the expected queue-induced latency is the sum of the

products of each class's average packet size and threshold divided by the link capacity as

shown in equation 6.1.

C

PTh
L

n

i
ii∑

= (6.1)

Similarly, each class's throughput is a fraction of the link capacity equal to the product

of that class's threshold and average packet size divided by the product of each class's

threshold and average packet size summed across all classes as shown in equation 6.2.

C
PTh

PTh
B

n

i
ii

jj
j

∑
= (6.2)

These equations may be inverted to derive optimal threshold settings based on desired

bandwidth allocations and limits on latency.



205

Moreover, CBT's performance can also be predicted when some classes are using less

than their allocated bandwidth.  Queue induced latency decreases when some class is not

using its full queue allocation.  Using the analysis presented in this dissertation, one can

determine the expected latency when classes of traffic are operating with loads below their

bandwidth allocation.  Moreover, this analysis explains the limits on how much each class

can increase their throughput when there is excess capacity available.   Essentially, classes

borrow the unused capacity of other classes.  This borrowing is shown to be implicit in the

design of the algorithm. The limits on average queue occupancy do not change.  Rather,

borrowing is the result of other classes having an increased share of the reduced queue

occupancy when some classes do not use their full allocation.  Classes with loads greater

than their allocation essentially can borrow unused capacity in proportion to their initial

allocations.

Using the analysis developed here, one may compute the latency and the throughput

for each class as a function of each class's load and the initial parameter settings for CBT.

The accuracy of this analysis was confirmed empirically by ranging the parameter settings

and traffic mixes and comparing the resulting performance to that predicted using the de-

rived functions.

3. Empirical Analysis of Algorithms

Four queue management algorithms, FIFO, RED, FRED, and CBT were empirically

evaluated to determine optimal parameter settings across different traffic mixes.  A packet

scheduling algorithm, class based queueing (CBQ), was also evaluated as a baseline to

compare with the AQM techniques.  Each algorithm was evaluated based on the initial

design goals of that algorithm. A range of queue sizes was considered for FIFO with TCP

goodput, link utilization, and queue-induced latency as key metrics.  The primary result

found was a linear relationship between queue size and queue-induced latency.  However,

goodput and efficiency did decline for very small queue sizes.  Consequently a moderate

queue size (60 packets) was selected for FIFO.

RED was evaluated using many of the same metrics as FIFO as the values of the

maximum and minimum threshold values were varied.  Many relationships were con-



206

firmed.   First, queue-induced latency was linearly related to the maximum threshold size

because the maximum threshold places an upper limit on average queue occupancy.  TCP

goodput and efficiency were also related to the maximum threshold value, with particu-

larly poor performance for threshold settings less than 40 packets.  Since efficiency and

goodput should be maximized while latency should be minimized, a maximum threshold of

40 packets was indicated.  In contrast, there was no apparent relationship between the

minimum threshold setting and any of the metrics.  Consequently, the original recommen-

dation of the RED designers, a minimum threshold of 5, was used.

Like RED, FRED was evaluated as the values of the maximum and minimum threshold

values were varied.  FRED was evaluated using most of the same metrics as RED and

FIFO but a greater emphasis was placed on FRED's ability to constrain aggressive, unre-

sponsive flows (i.e., other).  The relationships between the threshold values and their re-

sulting effects were complex.  Although the maximum threshold limited the average

queue-induced latency during periods with moderate numbers of active flows, it had no

effect when the number of active flows approached the maximum threshold.  Since every

flow was allowed to enqueue two packets, the probabilistic and forced-drop mechanisms

were short circuited and only the actual queue size limited occupancy.   Although the

queue induced latency was not limited with many flows, performance with a smaller num-

ber of flows argued for the use of a small maximum threshold to limit average queue in-

duced latency in that case.  Additionally, the ratio between the maximum and minimum

thresholds was found to be important.  This ratio determined the fraction of the queue

each flow might receive.  To minimize the throughput of a misbehaving flow the ratio

should be large.  However, this conflicts with the desire to minimize latency by using a

small value for the maximum threshold.   Moreover, extremely small values of the mini-

mum threshold over-constrain individual flows, including TCP, leading to poor efficiency.

Consequently, threshold values were selected to balance these concerns, using a maximum

threshold of 60 packets to limit queue induced latency and a minimum threshold of 5 to

allow mildly bursty flows to operate without drops during periods of moderate congestion

while still limiting each flow to a small share of the queue.



207

The evaluation of CBT and CBQ was more straightforward because the relationship

between the parameters for those algorithms and the resulting performance is more clearly

defined.  Consequently, the expected optimal parameter settings were calculated with the

goal of constraining other traffic to a small fraction of the link, assuring multimedia had

sufficient allocation for high fidelity media, and allocating the remaining (substantial) frac-

tion of the bandwidth to TCP.   The resulting settings for each algorithm were evaluated

relative to other settings that varied the allocations for multimedia and TCP.   This analysis

led to the observation that using long term average throughput as an estimate of the nec-

essary bandwidth allocation was insufficient.   There were periods of loss for multimedia

for both algorithms when using the expected optimal parameters.   Because of this, the

parameters had to be tuned to base multimedia's allocation on the maximum short-term

average load generated by multimedia.  With that adjustment, both algorithms were con-

figured to offer low latency, low loss and high fidelity for multimedia, and good through-

put and efficiency for TCP.

4. Empirical Comparison of Algorithms

Finally, CBT was compared to FIFO, RED, and FRED as well as a packet scheduling

policy (CBQ) to empirically demonstrate CBT's effectiveness addressing the tension be-

tween responsive and unresponsive flows.  Using a private laboratory network and traffic

generators the algorithms were compared with a variety of traffic mixes and metrics.  Two

key measurement periods were identified.  During the blast measurement period the algo-

rithms operated in the presence of high bandwidth TCP and multimedia traffic combined

with aggressive, unresponsive traffic.  During the multimedia measurement period the al-

gorithms operated in the presence of only the TCP and multimedia traffic.  The hypothesis

was that when compared to other AQM algorithms during the blast measurement period,

CBT would offer clearly superior performance as determined by a combination of metrics

for the TCP, multimedia, and other traffic. CBT  should also offer performance at least as

good as the other AQM techniques during the multimedia measurement period.  Further,

CBT was expected to compare favorably with the performance of the packet scheduling

approach, CBQ.   All these hypotheses were confirmed.



208

4.1. Blast Measurement Period

Results from the blast measurement period confirmed the vulnerability of FIFO and

RED to aggressive, unresponsive flows.  TCP goodput was low, other dominated the

link's capacity, and multimedia throughput and thus loss-rate and playable frame-rate were

poor.  Although queue-induced latency was tolerable at 60 and 40 ms, it mattered little

because the high loss-rate severely degraded the multimedia streams.

In contrast, FRED offers good TCP performance and effectively constrained other but

the mechanism used to constrain other also overconstrained multimedia.  In three of the

four traffic mixes examined, the overconstraining resulted in high loss for multimedia.

Moreover, FRED's use of per-flow instantaneous queue occupancy in the drop decision

leads to a bias against bursty packet arrivals.  Consequently, MPEG's large I-frames are

very likely to be subject to loss and, consequently, result in a poor playable frame-rate

even when the loss-rate is low.  Further, when the number of active flows approaches the

size of the queue, FRED's performance equates to that of FIFO, leading to a high drop-

rate and high queue-induced latency.

In contrast, and as expected, CBQ offers the best performance.   The bandwidth allo-

cations accurately indicate the throughput each class of traffic actually receives.  When

properly configured, TCP goodput is high, other is effectively constrained, and there is no

multimedia loss which results in a very playable high frame-rate.   However, during peri-

ods of brief overload the queue-induced latency can vary significantly.

Finally, Class-based Thresholds also offers good performance although the bandwidth

allocations less precisely control the resulting throughput.  When properly configured,

TCP goodput is high, other is effectively constrained, and multimedia loss is low, resulting

in a high playable frame-rate.  Moreover, queue-induced latency is predictable and config-

urable.

Performance during the blast measurement period demonstrates that CBT meets its

design goals, isolating TCP and multimedia from each other and from the effects of ag-

gressive, unresponsive flows.  Moreover, CBT performs better than the other AQM algo-



209

rithms examined and the performance is comparable to that of CBQ, the packet scheduling

mechanism.

4.2. Multimedia Measurement Period

The experiments during the multimedia measurement period present two different sce-

narios.  First, the measurements using HTTP as the TCP traffic-type point out that all of

the algorithms are generally comparable during periods of low or transient congestion.

TCP throughput, multimedia throughput, and loss-rates differ little due to algorithm

choice.  However, since there is some congestion, a queue does form and the latency var-

ies depending on the algorithm used.  In that scenario, CBQ offers the minimal latency

while CBT also offers predictable queue-induced latency.   FIFO, RED, and FRED do

constrain the latency as a function of their parameter settings as well but their parameter

settings are selected to maximize metrics like TCP efficiency and that leads to higher

queue-induced latency in these experiments.

The second scenario to consider is when BULK is the TCP traffic type. BULK flows

are long lived and numerous so the oscillations of TCP allow the BULK traffic to maintain

a higher level of congestion.  Consequently, those experiments demonstrate the interaction

between multimedia and TCP during periods of persistent congestion which are not due to

high bandwidth unresponsive flows (i.e., other).  In this scenario, CBQ and CBT contin-

ued to perform well, with both mechanisms isolating multimedia from the effects of the

high bandwidth TCP flows.  All of the algorithms offer high TCP goodput for BULK traf-

fic.  FRED's goodput is particularly high since the BULK flows represent almost all of the

active flows.   However, this leads to poor performance for multimedia throughput with

FRED as each of those flows is constrained to a fair share that is less than the intended

load for those multimedia flows.  In contrast, the other algorithms are more comparable

for multimedia throughput, although CBT and CBQ's bandwidth allocation offers superior

performance.  Further, the latency measures underscore FRED's poor performance when

the number of flows is large.  FRED's multimedia latency is nearly four times that ob-

served for any other algorithm.  Loss-rate and frame-rates also make it very apparent that

RED and FIFO fail to protect these relatively low bandwidth multimedia flows from the



210

effects of high bandwidth TCP flows while FRED's per flow fairness constraints and its

bias against bursty arrivals directly limit the multimedia quality.  However, CBT, like

CBQ, offers low loss, low latency, and high frame-rates while maintaining high TCP

goodput.  CBT meets its design goal of providing better performance for multimedia

without having a negative impact on TCP.

4.3. Summary

These experiments empirically demonstrated that CBT effectively isolates TCP while

providing better-than-best-effort service for multimedia by comparing CBT's performance

to the optimal performance for each of the other algorithms.

5. Future Work

Although this work confirmed the thesis and made important contributions, there are

several opportunities for future work.  This section covers a few of the possible directions

to pursue for future work.

5.1. Limitations and Suggested Refinements

The analysis conducted as part of this dissertation identified some limitations of the

CBT algorithm.  In some cases there are straightforward refinements to the algorithm that

should address these issues.  For others, further study would be required to determine the

best approach to the problem.  Both types of limitations are presented below, along with

proposed solutions or approaches.

5.1.1. Imprecision in CBT

Although, CBT's bandwidth allocations, latency limits, and resulting performance can

be predicted at a coarse level, the predictions (and allocations) are imprecise.  This impre-

cision arises from several sources:

1. Reliance on accurate predictions of average packet sizes.

2. Disparities in the sampling rates for different classes.

3. Lack of guidelines for assigning weights for each class.



211

4. Assuming that all classes, particularly TCP, will be able to maintain average queue

occupancy equal to the maximum threshold.

Each of these sources of imprecision are addressed below.

Accurate Predictions of Average Packet Size

If actual average packet sizes vary from those used when calculating thresholds, the

actual performance may vary from the intended allocation.  Recall that threshold settings

are calculated as the product of the desired bandwidth allocation and latency divided by

the average packet size.  The product of the desired bandwidth and latency determines the

threshold on the number of bytes that the class should have in the queue.  Dividing by the

average packet size converts this limit from units of bytes to packets.  If the average

packet size for a given class is inaccurate, this can change the share of the queue and, thus,

the outbound link, allocated to that class.  Consider an example.  Suppose three classes

each have thresholds of 10 packets and an average packet size of 500 bytes is assumed for

all classes.  Further, assume all classes are capable of consuming the full capacity of the

outbound link.  If the average packet size predictions are accurate, each class can have

5,000 bytes enqueued on average, each occupying one third of the queue, and thus re-

ceiving throughput equal to one third of the capacity of the outbound link.  However, if

the average packet size of one class was actually 1,000 bytes that class could have 10,000

bytes enqueued to the 5,000 bytes of the other classes, allowing that class to use half of

the link's capacity.  Similarly, a class would receive less than its bandwidth allocation if the

average packet size were actually smaller than the original estimate.  The solution to this

problem would be simply to set thresholds in terms of the average bytes enqueued rather

than packets.

Prior AQM algorithms typically set thresholds in units of packets instead of bytes be-

cause it simplified management of the average.  Each packet arrival or departure resulted

in a simple increment or decrement.  Byte measurements require examining the packet

length.  In prior AQM algorithms, both approaches yield essentially the same results as

long as the average packet size has little variation [Floyd97b]. However, for CBT, where

different classes have different thresholds, errors in the estimated average packet size ef-



212

fectively change the thresholds on queue occupancy and, thus, the bandwidth allocations.

Fortunately, modifying the algorithm to use bytes instead of packets is straightforward.

Tracking the average number of bytes simply requires examining at an additional field (i.e.,

length) of the packet at enqueue and dequeue and, respectively, adding or subtracting that

packet's length to a byte count instead of simply incrementing or decrementing the packet

count. With this change, the threshold value can be computed as the simple product of the

bandwidth allocation and the desired latency.  This change eliminates the need to estimate

the average packet size and removes one source of imprecision.

Disparities in Sampling Rates

Disparities in sampling rates for each class may make the classes' averages incompara-

ble.  In CBT multiple averages are maintained.  The ratio between these averages deter-

mines the ratios between throughput for each class.  Since these averages are used to

make drop decisions and are intended to determine the ratio of queue occupancy between

the classes, it is important that they be comparable to one another.   That is, they should

represent the average behavior over the same interval of time, or at least an interval of the

same magnitude.  However, because CBT extended the averaging mechanism from RED,

this is not the case in the current implementation.  In CBT, like RED, each class's average

occupancy is sampled and updated whenever a packet of that class arrives.  Consequently

the sampling rates for each class differ as the arrival rates for each class differ.  Recall that

the averages are weighted moving averages.  Consider two classes, one with an arrival

rate of 5 packets per second and another with an arrival rate of 40 packets per second.

This means the class with the low rate of packet arrivals may still be strongly influenced by

the queue occupancy from 1 second ago.  In contrast, the class with the high packet arri-

val rate will give a sample from 1 second ago 35 orders of magnitude less weight.   (The

sample from 1 second ago will have been multiplied by (1-w) 35 times.)  This problem was

also identified by others and named "unsynchronized weighted-average updates"

[Chung00].   This leads to concerns that considering ratios between these averages has

little meaning with regard to the ratio of throughput for each class. The fact that the em-

pirical analysis yields results that correspond to computed values seems to indicate that, in



213

the long term, the effect is negligible.  However, it would be worthwhile to further con-

sider this issue and alternatives to more effectively synchronize these averages.

One alternative approach would be to maintain the multiple averages and update the

average for each class whenever a packet arrives for any class.  The strength of this ap-

proach is that the averages all represent the same period.   However, taking multiple sam-

ples of a queue size that isn't changing (because another class is having rapid packet arri-

vals) may allow recent behavior to unfairly influence a class's average. For example, con-

sider a situation where the multimedia class was idle for a long time, then a burst of 3

multimedia packets arrived to a large queue.  Assume those packets were successfully en-

queued (due to a small average queue occupancy) and were followed by a burst of 100

other packets that were all dropped during the time it takes the 3 multimedia packets to

traverse the queue.  If we sampled all classes on every packet arrival, the average for mul-

timedia with typical weights would probably reach 3 just because of that one burst, possi-

bly leading to drops of subsequent multimedia packets that arrive.  This behavior is also

undesirable.   Resolving this issue will require further study.

Guidelines for Assigning Weights

Guidelines for determining the weighting factors for each class are needed.  The

weighting factor used to factor each new sample into the average helps determine each

class's sensitivity to short term behaviors.   In the current implementation, different

weighting factors are used for each class.  Other's weighting factor is high, with each new

sampling contributing 25% to the new average.  In contrast, the weighting factor for TCP

is low, 0.4%.  The intent was to strictly constrain other while allowing TCP to have more

variable behavior.  However, this may also make the averages incomparable.  Further

analysis of the effects of these weighting factors is in order.

Assuming Classes' Averages Match the Maximum Threshold

When classes don't maintain average queue occupancy equal to the maximum thresh-

old they don't receive their fair share of link bandwidth.  This is a particularly a problem

for responsive flows as they often find a stable operating point that maintains average

queue occupancy less than the maximum threshold.  In the empirical analysis, TCP traffic,



214

especially HTTP, frequently failed to achieve throughput equal to the intended bandwidth

allocation.  This was because RED's probabilistic drop mode interacts with the respon-

siveness of TCP.  These two mechanisms lead to the aggregate TCP load converging to an

operating point that maintains an average queue occupancy in the range of the probabilis-

tic drop mode but less than the maximum threshold.   Since TCP doesn't use its full share

of the queue (i.e., the maximum threshold), it doesn't receive its full share of the link ca-

pacity either.

There are several approaches to address this problem.  One approach would be to ac-

curately articulate the relationship between the threshold settings and the resulting average

queue occupancy for TCP.  However, experience indicates the average queue occupancy

is also determined by the traffic type.  While average occupancy with HTTP was below

the maximum threshold, maximum occupancy was maintained with BULK.  Consequently,

a better approach might be to dynamically adjust the thresholds for other and multimedia

relative to the average TCP occupancy.  Of course, such a mechanism would have to be

able to recognize situations where TCP is simply using less than the intended bandwidth

allocation and not adjust the other thresholds in that case.  However, this approach may

lead to more accurate bandwidth allocations for TCP.

5.1.2. Accurately Predicting Bandwidth Needs

Bandwidth allocations with CBT are only effective if the needs of the traffic classes

can be predicted accurately.  This problem is not unique to CBT.  It is a problem for all

resource allocation schemes (e.g., CBT and CBQ).  In this work, when the optimal pa-

rameter settings were being selected, it became apparent that using the expected average

load to predict the necessary bandwidth allocation was insufficient.  Brief loads in excess

of the average resulted in poor latency or increased drops for multimedia.  The simplest

solution in the context of the work presented here was to determine the peak load for each

class and allocate accordingly.   In a more complete framework, policing and shaping

agents may be responsible for managing classes of flows to assure they conform to the ne-

gotiated bandwidth allocations.  Another alternative may be to dynamically update the

threshold settings based on current traffic patterns [Chung00].  However, this approach

needs further refinement if minimum levels of service are to be assured.



215

5.2. Further Analysis

In addition to considering changes to the algorithm there are also opportunities for

further analysis of both the CBT algorithm (current or modified) and the other algorithms

considered in this dissertation.  Although the complexity and overhead of the algorithms

are considered briefly in this work, it would be worthwhile to more thoroughly analyze the

complexity and overhead associated with each algorithm and the impact of that overhead

on traffic performance.  Additionally, it would be interesting to consider the behavior of

each algorithm under more realistic network conditions, both more complex test net-

works, actually deploying algorithms in a production environment, and considering other

traffic patterns that may point out strengths and weaknesses of the algorithms.  In this

section we briefly consider each of these areas of analysis.

5.2.1. Complexity and Overhead

Minimizing packet processing overhead is a serious concern for router manufacturers.

If packet-processing overhead becomes the dominant factor in the time required to for-

ward packets it is possible that the router will not be able to forward packets fast enough

to maintain full link utilization.  Computing the average(s) for RED, classifying flows for

FRED, examining additional packet fields for CBT, or maintaining a schedule for CBQ all

increase the overhead associated with processing each packet.  In addition to analyzing the

theoretical complexity of each algorithm, it would be enlightening to instrument the algo-

rithms to record the number of cycles required for different subroutines of each algorithm

to quantify the effect each subroutine has on packet processing and end-system perform-

ance.   Once instrumented, the algorithms could be tested with both representative loads

and loads designed specifically to test the limits of the algorithms.  For example, generat-

ing high-bandwidth traffic with minimum size data payloads would emphasize the effect of

the packet-processing overhead.  Similarly, generating a very large number of simultane-

ous flows would test the limits of flow classification for FRED.

Additionally, it is important to limit the amount of state that must be maintained be-

cause cache memory is expensive.  Moreover, as memory requirements grow, the access

time may grow as cache sizes are exceeded, effecting the packet-processing overhead.



216

Therefore, it would be worthwhile to analyze the amount of state and buffer space re-

quired for each algorithm under different conditions.

5.2.2. More Realistic Conditions

In this dissertation, time and space considerations limited the variety of conditions

used to evaluate each algorithm.   The traffic mixes used here were intentionally simplified

to limit the number of independent variables in each experiment.  Moreover, the traffic

patterns tended to be extreme in terms of load or having relatively constant bit-rate.  Fur-

ther, the network topology was the simple "dumbbell model", using two networks joined

by one link of limited capacity.  All of these limitations were necessary in the initial analy-

sis in order to determine relationships between specific factors and performance.  How-

ever, considering other combinations of traffic and network topologies may reveal addi-

tional issues with the behavior of the algorithms.  Future analysis may consider networks

with more complex topologies.  For example, the effects of having multiple routers in se-

quence running the same or different queue management algorithms may be considered to

determine the results of flows experiencing drops at multiple consecutive routers.

 Another possibility may be to use traffic loads that are much more variable in terms of

load, packet size, arrival rates, and combinations of traffic types.  All of these factors may

effect how the algorithm behaves.  For example, we have already shown that for CBT and

CBQ it is important that the bandwidth allocations represent the largest short-term aver-

age load, not the long-term average load.  Additionally, variability in packet arrival rate

may effect the behavior of the algorithm, as with FRED's biased behavior towards bursty

flows.  Other sensitivities may be discovered with more experimentation.  Another possi-

ble variation may distribute the load for class other across a large number of flows.  The

hypothesis would be that FRED would fail to constrain other in this scenario because each

flow would be individually allowed to maintain its fair share, leading to a large aggregate

load for other.  Finally, after extensive testing in the laboratory environments, the logical

next step would be to deploy CBT in a production environment, perhaps the router con-

necting a campus LAN to an ISP.



217

5.3. Deployment Issues

Another avenue for future work involves addressing the issues necessary to deploy

CBT in production networks.  In this work, many simplifying assumptions were made as

the focus was on analyzing CBT's effectiveness for bandwidth allocation and latency man-

agement.  Robustness and flexibility were secondary concerns.  For example, packets were

classified based on a combination of protocol identifier and destination port.  All TCP

packets were classified as TCP.  All UDP packets with destination port addresses in the

range 6000-6010 were classified as multimedia.   And, all other packets were in the class

other.   In a true production environment, the classification process must be much more

flexible.  If the bandwidth allocations are intended to be adjustable based on newly negoti-

ated service profiles, mechanisms for receiving these adjustments must also be considered.

All of these issues are considered below.

5.3.1. Packet Classification

The primary requirements for packet classification are accuracy and speed.  Addition-

ally, flexibility in defining how to classify packets is a highly desirable feature.  The options

for packet classification vary extensively.   Classification may be done with a filter based

on addressing information or by using a heuristic to determine the packet's class based on

the recent behavior of the flow [Floyd98].   Alternatively, classification might be done

based on tag bits in the packet header that are set at the end-systems and/or ingress and

egress routers for a given ISP.   Packet classification is relevant to many approaches to

quality of service and is the subject of active research.   The strengths and weaknesses of

several approaches are highlighted below.

Classification based on address filtering is a common approach.  Recent results show

such classification can be done in O(log2(address bits)) time [Waldvogel97].  However,

during periods of congestion this time does not effect end-to-end latency as long as the

packet processing time is less than the time required for transmitting a minimum size

packet on the outbound link.  Since transmission of prior packets happens in parallel with

the classification of arriving packets, if the time to transmit the previous packet is higher,

then that determines the latency incurred.  Although O(log2n) is very efficient, it is still an



218

additional overhead for each packet during periods without congestion.  Moreover, during

these periods, the contribution of classification to end to end latency is O(m × log2(address

bits)) where m is the number of routers that classify packets.  This address classification

approach also requires a significant amount of state as each address to be filtered against

must be stored in each router that the packets might pass through.  The benefit of this ap-

proach is that packets are classified on a per flow basis allowing more precise control and

the classification is controlled locally.

In contrast, some approaches seek to push the task of packet classification towards the

edges of the network, classifying and then tagging packets at the end-systems or at ingress

routers.  This approaches offers two major benefits.  First, the number of times a packet

must be classified is reduced.  The number of classifications may be reduced to one, if the

first classification is trusted, or possibly to once per autonomous system (e.g., an ISP)

traversed.  Second, because ingress routers support a smaller number of flows than core

backbone routers the amount of state that must be maintained is also reduced.  However,

this approach requires a level of trust, with down stream routers trusting the classification

of packets from upstream sources.  This can be addressed in part by verifying the classifi-

cation of packets at the ingress point for each autonomous system.   Another issue is that

tagging packets uses bits in the packet header.  The number of bits available to encode the

class tag limits the number of classes.  As a result, it is not reasonable to have a large

number of classes with this approach.  However, it is reasonable to encode a small number

of classes, such as the three used by basic CBT.  These three classes could easily be speci-

fied in the type-of-service field in the IP header.  The differentiated services architecture

specifies that six bits of that field are available to specify different service levels, offering

potentially sixty-four service levels and three of those could be the services outlined her

for CBT [Nichols98].

Another approach that may have value for CBT, is classification based on responsive-

ness as determined by examining a flow's recent drop history [Floyd98].  This approach

keeps track of the recent drop history for each active flow (i.e., flows with packets en-

queued) and classifies packets as TCP-friendly (i.e., responsive in a TCP like manner), un-

responsive, or high-bandwidth.  This classification determines a flow's characteristics by



219

examining that flow's recent drop history.   The flow's actual arrival rate can then be com-

pared to the expected arrival rate for a TCP flow under the same drop conditions to de-

termine if the flow is responsive or not.  Moreover, the flow's arrival rate can be compared

to the aggregate arrival rate at the queue to determine if the flow is "high-bandwidth".  To

integrate this approach with CBT, all flows could be initially classified as TCP and after an

interval in which they are subject to the RED drop policy, be reclassified based on their

drop history if they are unresponsive.  This approach has the benefit of actually classifying

flows based on their behavior and not on other information, such as protocol identifiers,

that may be spoofed.  However, it requires state be maintained for the flows in each

router.  Moreover, short-lived flows may terminate before reclassification occurs.

Packet classification remains an open area of research, with several promising ap-

proaches.  Before CBT can be widely deployed one approach must be selected for use.

Moreover, this section addressed the mechanics of how to classify packets within the

router.  The administrative issue of how to decide which flows belong to which classes (in

an address-based classification) is also an open question.

5.3.2. Negotiating Allocations

For CBT to be deployed and widely used there will also have to be some mechanism

to negotiate bandwidth allocations.  These topics, reservation protocols and admission

control, are areas of active research.  Approaches range from dynamic, short-term, per

flow reservations, to static, long-term, allocations for each of a small number of classes.

For CBT, a differentiated services type of approach may be best [Nichols97].   Rather than

negotiate short-term per flow reservations at each router, administrators of autonomous

systems (AS) may negotiate long-term allocations with neighboring AS administrators.

These administrators may then allow their clients to request allocations either in the short

or long term, based on current allocations of the bandwidth under contract with the next

AS to be traversed.   Each AS may be responsible for shaping traffic at egress points and

policing traffic (using CBT) at ingress points.  This work still must address issues such as

dynamic routing and balancing resource utilization against insuring allocations meet peak

demands.



220

6. Summary

This dissertation demonstrates that an active queue management algorithm, class-

based thresholds (CBT), can effectively isolate responsive traffic from the effects of unre-

sponsive traffic.  Moreover, CBT also isolates multimedia from the effects of other unre-

sponsive traffic.  Further, analysis shows that CBT can be configured to allocate band-

width and manage latency and that the performance under varying loads is predictable.

Additionally, optimal parameter settings are determined for a collection of other algo-

rithms and in accomplishing this goal, relationships between parameters and performance

metrics are identified and articulated.   Using these optimal settings, the algorithms are

empirically evaluated and CBT's superiority confirmed.  Finally, potential areas for future

work are identified and discussed.   



221

APPENDIX A. METHODOLOGY

This dissertation empirically compares the behavior of CBT to other algorithms under

the same network conditions.  Different parameter settings are also compared for a given

algorithm.  This appendix covers the details of the experimental methodology used in con-

ducting these experiments.  First is an explanation of the decision to use a private network

for the measurements instead of simulation or a production network. Then the network

configuration is discussed.  Section 3 describes the traffic types used and how they are

generated.  Section 4 details the specific ways traffic is mixed for different experiments.

Section 5 describes the data collection techniques.  Section 6 addresses statistical issues:

reproducibility, representativeness, and comparability.  Section 7 concludes with a discus-

sion of the specific metrics derived, what they mean, and how they are presented.

1. Experimental Model

Experiments described herein were performed on a private laboratory network.  The

network is configured to offer a single congested link.  This simple model is acceptable

because the experiments are not intended to be representative of the day to day behavior

of the Internet.  Instead, they are intended to test the effects of different active queue

management (AQM) algorithms and parameter settings under controlled network condi-

tions on different types of TCP and multimedia traffic.  Examining the results of these

controlled experiments gives better understanding of the algorithms and their effects of

their parameters under different network conditions.

1.1. Alternatives for Experimentation

In preparing for the empirical evaluation of the AQM algorithms and parameter set-

tings several alternatives were considered for the evaluation methodology.  These included

simulation, production networks, and a private experimental network configuration.  Each



222

alternative has strengths and weaknesses.  Below, the alternatives for experimental envi-

ronment are discussed and the reasoning for choosing to use a private laboratory network

explained.

Since production networks are the location one would ultimately deploy these algo-

rithms, experiments in production networks offer the most realistic conditions for evalua-

tion.  However, experimenting in production networks presents several problems.  First

among these is reproducibility.  In production networks the traffic loads vary widely and

unpredictably.  As a result, it is difficult to compare different algorithms against the same

network conditions in a production network.  Moreover, it is impossible to conduct con-

trolled experiments if conditions can not be reproduced.  This work seeks to observe the

behavior of the algorithms under specific pathological states.  It is difficult and undesirable

to establish such conditions in a production network.  Finally, it is impractical to deploy a

variety of experimental algorithms and parameter settings in a production network.  Be-

cause these queueing algorithms affect all traffic, not just traffic generated for the experi-

ment, the use of production networks must be limited to validation of experimental results.

For initial analysis a controlled environment is preferable.

 A controlled environment allows one to control the number of variables in a given ex-

periment to focus on the effects of specific factors.  For example, to have reproducible

experiments, the network load is controlled using traffic models and a script to control the

changes in load and traffic mixes.  This controlled environment also simplifies the analysis

and focuses on the effects of specific events, like the introduction of a particular traffic

pattern or changes in parameters, instead of accounting for a wide number of variables.

There are two alternatives for establishing such controlled experimental environments:

simulation and private experimental networks.  Simulation offers numerous benefits.

Simulations can be conducted using a single computer, requiring much less physical infra-

structure than experiments in a real network.   Given sufficient computing and storage re-

sources, one can conduct many experiments simultaneously by running each simulated ex-

periment as a separate process.   Moreover, simulations are easily reproducible as the net-

work topology and traffic conditions are all factors of input parameters or configuration



223

files.   Further, it requires minimal effort to change experimental conditions.  For example,

changing network topology simply requires editing the input file that specifies the topol-

ogy.   Simulation offers precise control over all factors, even controlling the rate at which

time passes allowing instrumentation to appear to have no impact on performance.  How-

ever this detailed control can also introduce complications.  This level of control is based

on accurately modeling all of the factors that contribute to network conditions.  These

factors are very complex.  They range from the obvious factors such as network topology,

traffic types, and average load from different traffic streams to less obvious factors such as

the behavior of different transport protocols, the behavior of the network media itself (e.g.

ethernet's collision detection and back-off), or timing and scheduling effects in the operat-

ing system.   As a result, it is possible that a simulation will not account for all of the pos-

sible factors and their effects.  Only by comparing simulation results to actual physical ex-

periments can the simulation model be validated.

In contrast to simulation, using a private physical network carries a great deal of over-

head.  First, this approach is much more expensive than simulation.  One must have end-

systems and network infrastructure sufficient to support the desired topology.  Second,

the complexity of managing the network can be significant.  A change to the network to-

pology requires reconnecting cables and changing network routes, possibly even installing

different network interfaces.   One must also take care to be sure the network is properly

configured for each experiment as a physical network may be shared by many researchers.

However, these complications are balanced by the benefits of using a physical network for

experiments.   The factors involved are real and can affect network conditions and conse-

quently, affect performance of the algorithms.  For example, in a simulation one may

model the router queues using a steady drain-rate.  However, in practice some network

interfaces drain the router queue in a bursty manner, using a threshold scheme with high

and low watermarks associated with on-board buffers, resulting in seemingly erratic queue

drain-rates.   This type of behavior has a significant affect on algorithms that rely on aver-

age queue behavior to infer network conditions.  Such factors must be considered.  Ex-

periments using a physical network uncover such factors; simulation may not.  Moreover,

factors like the behavior of the transport-level protocol stacks do not have to be modeled



224

with a physical network since it uses the real transport protocol stack on each end-system.

Similarly, using real network components (especially operating systems) provides the op-

portunity to assess issues of overhead which simulation fundamentally cannot do.

However, there is still a need for some simulation in this approach.  The behaviors of

the application-level protocols are modeled in order to allow for reproducibility.  Applica-

tion models must be used because some transport-level protocols, like TCP, change their

behavior in response to network conditions.  Moreover, application level behaviors also

depend on network performance.  For example, in a web-browser, one cannot follow a

link until the page containing that link is displayed.  Consequently, if network performance

is poor the time between consecutive page requests would increase.  Consequently, simply

recording and replaying a packet-level trace is insufficient.  (This is issue is discussed in

more detail in Section 3.4.)  The applications are also simulated with models because of

issues of scale.  For example, in a small private network it is impractical to set up a collec-

tion of web-servers with hundreds or thousands of users.  Instead the behavior of users

and web-servers are modeled with application models.  The details of such models are de-

scribed below in section 3.  Both simulation and private networks require this type of

modeling.  Finally, experimentation in a physical network offers a more direct path to de-

ployment and final testing in production networks as the implementation is not a model

built on a simulator but an actual implementation that could be deployed once the param-

eterization and testing have been completed.

In summary, both simulation and empirical experiments are worthwhile.  However, a

physical network is used, not a simulation.  The combination of control and reproducible

conditions made both alternatives attractive.  However, a laboratory infrastructure is well

suited for empirical experiments in a controlled network. The infrastructure was already in

place so the cost of acquiring and configuring the experimental infrastructure is not a con-

cern.  Also, these experiments repeatedly use the same simple network topology (see sec-

tion 2) so reconfiguration is not a concern.  As such, the fact that a private network more

accurately reflects real world factors was the deciding factor in the decision to use the pri-

vate network instead of simulation.  Although a private laboratory network is used, simu-



225

lation is a viable alternative, particularly because many experiments can be conducted si-

multaneously on a small set of computing resources.

2. Network Configuration

A very simple network topology is used for the experiments in this dissertation.  This

topology is not intended to be representative of the Internet as a whole and leaves out

many factors, such as the effect of feedback from multiple routers using AQM techniques

under various levels of overload.  Moreover, it is difficult to define what configuration

would be representative of the Internet.  Instead of attempting to model the entire Internet

in a laboratory network, this simple configuration limits the number of variables, focusing

on the effects of very specific factors on the traffic traversing a single bottleneck link.

This limits the scope of this work to focus on a basic understanding of the relationships

between queue management algorithms, parameters, and performance.

2.1. Network Configuration

The logical structure of the network is shown in Figure A.1.  This simple network to-

pology includes a set of traffic sources on the left side of the figure and a series of traffic

sinks on the right side.  This arrangement of the end-systems assures that all overloads oc-

cur in the desired network queue, eliminating concerns about the effects of overload on

other links or router queues.   This network configuration is intended to model the be-

havior of a router serving as an egress point for a campus or other autonomous system.

The router shown in crosshatched red is studied.  At this router, the capacity of the

link on the left exceeds the capacity of the one on the right, creating a bottleneck. Direct-

ing most traffic from the left to the right of the figure creates this bottleneck.  The two

routers on the bottleneck link are connected by a full-duplex connection so MAC-level

contention for the link is not an issue.   Beyond the bottleneck link, the other end-systems

are varying distances from the router (in terms of propagation delay) but there are no

other bottleneck points or opportunities for congestion.   This is a conscious design deci-

sion to simplify the analysis.  As this work focuses on the behavior and effects of a single

router, consideration of the interaction of multiple routers is left for future work.



226

Bottleneck

Sinks

Sources

Studied Queue

Figure A.1 Logical Network Configuration

2.1.1. Physical Network Configuration

In reality, the logical network configuration must be implemented within the laboratory

environment. Figure A.2 shows the physical network configuration.  It consists of a com-

bination of 12 end-systems, 2 systems (daffy, bollella) serving as network routers, and an

additional system (yosemite) as a network monitor.  All of these machines run FreeBSD

version 2.2.8.  The end-systems all have 10Mb/s connections to one of two Catalyst

switches.  There are 7 end-systems connected to either switch.  The bottleneck link repre-

sents the connection to an ISP while the switch labeled “138” represents the campus net-

work and the switch labeled “134” represents the various networks beyond the bottleneck

point. Artificial delays on the inbound interfaces of the sources (Section 2.1.4) give the

appearance that the "138" end-systems are at varying distances from the campus.  Addi-

tionally, each of these catalyst switches is connected to a 100 Mb/s hub.  The hubs are

used to provide a monitoring point as described below in Section 5.



227

roadrunner

thelmalou

goober

lovey

speedy

petunia

howard

tweetiewako

floyd)

yako

100Mb Hub

10Mb Appearances
Switched

138

brain

taz

10Mb Appearances
Switched

100Mb

134

goddard

(10Mb Hubs)

daffy

yosemite

P137

139

bollella

blast Monitor Multimedia

Figure A.2 Physical Network Configuration

The router labeled daffy is the focal point of the work.  It is the bottleneck router con-

necting the 100Mbs, campus network (134) to the 10Mb/s link.  Daffy runs the different

queueing algorithms analyzed (see section 2.1.3).  Bollella is the router on the other end of

the bottleneck link. Contention at Bollella is not an issue since most of the generated traf-

fic flows from the 134 network to the 138 network with only small requests and acknow-

ledgements travelling from the 138 network to the 134 network. (The networks are re-

ferred to by the third octet of their IP addresses.  The 'P' refers to a private,

192.168.xxx.xxx, network.)   To simulate a full-duplex link between bollella and daffy, the

routers are connected to two hubs, 139 and P137.  Static routes allow bollella to forward

all packets to daffy across the P137 hub and, likewise, for daffy to forward all packets to

bollella across the 139 hub.  The effect is that of a single 10Mb/s full-duplex link.  Hubs

were used instead of a true full-duplex connection to allow network monitoring by an in-

dependent system.

The traffic on each of these logical networks was monitored from yosemite.  That ma-

chine used 3 network interfaces to connect to the hubs. The actual monitoring is discussed

in Section 5.1, below.  Each component of the network configuration is discussed at more

length below.



228

2.1.2. End-systems

Physical constraints limited the number of end-systems available for use in the experi-

ments.  However, multiprocessing and multiplexing at the application protocol level al-

lowed the 7 end-systems on either side of the bottleneck router to simulate the traffic as-

sociated with thousands of simultaneous client-server interactions.  These end-systems

served as sources and sinks for each traffic model.  The details of traffic generation are

discussed at length in section 3.  Most of the end-systems were sources or sinks for TCP

traffic.   However, one end-system on each network (yako, taz) was a source or sink for

aggressive UDP traffic.  Finally, a single machine (yosemite), with interfaces on both the

"134" and "138" networks served as the multimedia source and sink.  This allowed precise

measurement of network latency because the sender and receiver time-stamps used the

same clock.

2.1.3. Router Configuration

While the end-systems are critical for generating traffic to evaluate the algorithms, it is

the routers in their roles as forwarding devices that are the focus of this work.  The actual

routing decisions are of little concern.  As such, static routes were used to establish the

desired network topology.  There were no routing protocols or dynamic routing issues in

this network configuration. Different queueing policies were evaluated by activating them

on the bottleneck router using the ALTQ [Cho98] framework.  ALTQ provides a frame-

work for implementing and activating alternative queueing policies using FreeBSD sys-

tems as network routers.  The standard distribution of ALTQ includes implementations of

the FIFO, RED, and CBQ algorithms.  For these experiments, the FRED and CBT algo-

rithms were also implemented within the ALTQ framework.

2.1.4. Induced Delay

To simulate realistic conditions, there must be variable round-trip times between end-

systems.  This avoids the synchronization effects that can occur when TCP flows have the

same round trip time.  To accomplish this, delays were artificially introduced using dum-

mynet [Rizzo97] on all of the source machines.  This tool introduced delays on the arriv-

ing packets.  So the delay is introduced for acknowledgements just before they reach the



229

original sender.   The effect is to increase the apparent round trip time as measured on the

sender.  Since none of the protocols or applications used one way delay in any fashion this

technique was acceptable.  If systems were concerned with one-way delay (or delay on

specific links) delay could have been introduced at other points in the network.  Table A.1

describes the delays between end-system pairs:

SinksSources
brain howard lovey speedy petunia tweetie Avg.

floyd 15 0 14 60 98 30 36.16667
goober 30 15 28 112 42 50 46.16667

thelmalou 10 45 80 84 154 60 72.16667
roadrunner 73 126 30 70 56 70 70.83333

goddard 40 5 96 15 49 110 52.5
Avg. 33.6 38.2 49.6 68.2 79.8 64 55.56667

Table A.1 Delays

The machines down the left-hand side are the senders.  The machines across the top

row are receiver machines.  All times are in milliseconds. This combination of round trip

times is based on round trip times to various internet sites from the laboratory at the Uni-

versity of North Carolina, measured using ping.  They represent typical delays associated

with visiting various representative web-sites.  With the network topology established, we

now consider the types of traffic modeled and evaluated.

3. Traffic

In almost all of the experiments there are three main types of traffic: TCP, multimedia,

and other.  (The main exception is in the baseline experiments where baselines are estab-

lished for each traffic type in isolation.)  Within the main classes of TCP and multimedia,

two different application types were considered for each class.  These applications repre-

sent different extremes in the behavior of each class. Each traffic type is briefly summa-

rized below and followed by more detailed descriptions of each traffic class and its signifi-

cance.



230

Load  (Mb/s) Packet Size (Bytes)Class Application

Average Variability Average Variability

HTTP 9-10 Moderate 1062 Moderate
TCP

BULK >10 Very Low 1440 Very Low

Other Blast 10 None 1024 None

Proshare 1.3 Low 700 Moderate
Multimedia

MPEG 1.3-1.5 High 811 High

Table A.2 Summary of Traffic Types

Table A.2 summarizes some of the characteristics of the traffic generators.  The table

has a row for each traffic type and shows the average load each type can generate on the

inbound link of the router, assuming no other traffic types are present.  It also shows the

average packet sizes for each type and indicates the variability in both load and packet size

associated with each class.   These ranges of variability will offer a more complete under-

standing of how the different router mechanisms behave under different conditions.

For these experiments, TCP traffic can be either a set of HTTP flows or a set of

BULK data transfers.  The HTTP traffic offers a large number of short-lived connections

transferring mostly small (~1KB) objects.  In contrast, the BULK traffic offers a small

number of long-lived flows transferring data at the maximum possible data rate.  The

BULK transfers generate greater than 10Mb/s of load in aggregate across 240 flows.

These traffic types were chosen to examine the effects of extremely different types of re-

sponsive traffic.

The multimedia traffic can either be Proshare or MPEG.  The Proshare flows are near

constant bit-rate but with variable packet sizes due to fragmentation and the mixing of

audio and video frames.  In contrast, MPEG has more variability.  MPEG uses three dif-

ferent frame types: Intraframe (I), Bi-directional (B), and Predictive (P).  The MPEG I-

frames can be significantly larger than the P-frames and B-frames, producing more vari-

ability in the packet sizes and bit-rate over small time scales.  Moreover, the MPEG



231

stream is also more variable over larger time scales as the encoding process responds to

scene changes or variations in the amount of motion in a given scene.

The other traffic, called a UDP blast, is constant bit-rate.  The total load generated by

the other traffic always sums to 10Mb/s.  However, the number of flows can be varied

producing this load, with each flow generating a load of 1/nth of 10 Mb/s where N repre-

sents the number of flows.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (K
B

/s
)

Proshare load

Link Capacity

HTTP Load Smoothed w/o other traffic)

Blast Load

Multimedia Measurement 
Period

Blast
 Measurement Period

Figure A.3 Example of a Traffic Mix

3.1. Understanding the Traffic Loads

Figure A.3 shows an example of the type of plot used to describe the traffic mixes.  As

each traffic pattern and the various mixes are introduced below, each part of this figure (or

one like it) will be considered in greater detail. This figure is presented here to explain the

general nature of these plots.  The figure shows representative load generated on the bot-

tleneck router’s in-bound link by each of the traffic types in an experiment. Load is defined

as the bandwidth used on the router’s inbound link and throughput is defined as the band-

width used on the router’s outbound link.  Throughput is a result of many factors, espe-

cially the behavior of the router’s congestion control mechanisms.  Because the aggregate



232

load for a given traffic type never exceeds the capacity of the inbound link the load is gen-

erally invariant for a traffic type.  The exception to this statement occurs in the case of a

responsive protocol, like TCP.  However, these figures focus on the potential load each

type could generate assuming that traffic type is the only one present in the network, not

the load generated when other types of traffic are present.

Consider Figure A.3.  The y-axis is the average load in kilobytes per second.  The load

measurements are averaged over 2 second intervals.  Other plots may also show the aver-

age over 100ms intervals to demonstrate short-term variability.   The x-axis is the trans-

lated time in seconds.  Most of the plots of individual traffic classes below are on the same

scale as the one above in order to facilitate comparison.  For those cases that zoom in to

illustrate details, the change in scale is clearly indicated.

The horizontal dashed line indicates the capacity of the bottleneck (the router’s out-

bound) link.  The HTTP traffic load is able to exceed the bottleneck link’s capacity be-

cause this is load measured on the in-bound link that has capacity of 100Mb.  The vertical

dashed lines delimit monitoring intervals that include different traffic mixes.  The data se-

ries themselves are the load generated by each traffic class.  The details of the different

traffic mixes and these monitoring intervals are discussed below.   Each traffic type is con-

sidered in turn.  The discussion begins with the simplest, other, proceeds to multimedia,

and then to the most complex: application models using TCP.

3.2. Other Traffic

The simplest traffic type modeled is the other traffic.  Other traffic is any traffic that is

neither TCP nor multimedia.  Other traffic is aggressive: high-bandwidth, unresponsive,

and constant bit-rate.  The other traffic type is made up of UDP flows referred to as a

UDP blast.  The UDP blast is a flow or collection of flows offering a load of approxi-

mately 10Mb/s.



233

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (K
B

/s
)

Blast Load (2 sec avg)

Blast Load (100 ms avg)

Link Capacity

Figure A.4 Load Generated by a UDP Blast

Figure A.4 shows the load generated by the blast during one experiment.  The figure

shows the load on the inbound link of the router averaged over both 100ms and 2 sec in-

tervals.  There is very little variability in the load.  Two spikes are visible during the 100ms

average due to flaws in the measurement technique.  The network-monitoring tool some-

times fails to record any data during a small interval, resulting in intervals with no re-

corded load.  This absence of data is interpreted as zero load, leading to the spikes shown.

Averaging over a larger interval decreases the effect of these lost samples.  Note that the

load for other is bounded above at 10Mb.  This limit is a result of the 10Mb link from the

UDP blast source to the 100Mb first-hop network.  This 10Mb load is sufficient for these

experiments, however, as the concern is with insuring that the UDP blast maintains a load

capable of consuming the entire capacity of the 10Mb bottleneck link.  This traffic pattern

is generated by periodic transmission of uniform sized packets. The experimental default

was one flow transmitting 1 KB packets at a rate of 1,270 packets per second resulting in

a target load of 1.3 MB/s.  Since this load exceeds the capacity of the 10Mb uplink, it re-



234

sults in a 10Mb throughput on the network.   The UDP blast traffic is a constant-bit-rate

traffic stream consisting of one flow.  The packet sizes are 1K and the load is 10Mb/s.

3.3. Multimedia

The second class of traffic is multimedia. One of the goals of this work is to provide

better support for multimedia while still isolating TCP from the effects of both multimedia

and other.  Two different types of multimedia traffic are modeled: Proshare and MPEG.

Proshare, a video-conferencing application from Intel, presents low-bandwidth, low-

variability video and audio streams, without inter-frame dependency.   Alternatively,

MPEG presents a moderate-bandwidth, moderate-variability video stream with inter-frame

dependency.   Both traffic types are unresponsive to congestion.  Since the traffic does not

react to network conditions the load generated is independent of network conditions. As a

result, traces of each type of traffic can be replayed to generate the traffic streams.  Each

traffic type is explained in more detail below.

3.3.1. Proshare

Proshare presents a low-variability multimedia traffic stream.  Six Proshare streams are

generated using six traffic generators, each modeling one side of a single Proshare video-

conference.  Figure A.5 shows the load generated by the six Proshare traffic-generators.

The load is shown on a scale of 0-2,500 KB/s to make it easy to compare this plot directly

to later plots that show different traffic types which generate higher loads.



235

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time

Lo
ad

 (
K

B
/s

)

Proshare Load

Proshare Load Smoothed

Figure A.5 Proshare Load

Six conferences are modeled because their aggregate load (approximately 160 KB /s, 1.3

Mb/s) is substantial enough to consume a noticeable fraction (13%) of the link’s capacity

without being excessive.

The Proshare traffic stream is generated by direct playback of a packet-level trace of a

Proshare media stream.  The original trace recorded an unresponsive Proshare

Audio/Video Conference [Nee97] for 294 seconds.  The original application generated

both audio and video.  The audio was a 16 Kb/s audio stream consisting of ten 200 byte

“audio-frames” per second.   There was no silence suppression so the frame size and rate

were uniform. The video was the high-quality, “smoother” option video generating a 200

Kb/s video stream.  The video stream consisted of fifteen 13.3 Kb (1.66 KB) frames per

second.  Fragmentation to the MTU size (1,500 bytes) meant that most video frames gen-

erated two packets.  There was some variation in the encoding resulting in occasional

frames smaller than the MTU size, leading to an average packet rate of 26 pkts/second for

video.  Combined with the 10 pkts/second for audio, this resulted in a packet rate of 36

pkts/second.



236

 This packet trace approach is viable because the Proshare video streams were unre-

sponsive so the traffic pattern was independent of the associated network conditions.

Using the packet trace makes the load associated with a single Proshare flow highly re-

producible.   Because the same trace is used for each of the Proshare generators, care is

taken to avoid synchronization of the six Proshare streams.  Synchronization would result

in amplified extremes in the aggregate load.  To avoid this possibility, each traffic genera-

tor begins at a random offset into the trace.  The generator simply transmits packets of the

appropriate size at the inter-packet intervals specified in the trace. When the end of the

trace is reached, the generators starts at the beginning again.

It is important to note that the frames in a Proshare stream are independent.  Decoding

any given frame does not depend on the content of any other frames.   As a result, a lost

packet only affects the frame that packet belongs to.  This will be important when pre-

senting results on loss-rate and their effect on the application.  The Proshare traffic gen-

erator presents 6 flows uniformly generating in aggregate a load of approximately 160

KB/s with an essentially constant bit-rate.  The bit-rate does vary slightly due to variable

packet sizes resulting from fragmentation effects and the variation between audio and

video frame sizes.  However, the six Proshare flows generate an average aggregate load of

160 KB/s with low variability.

3.3.2. MPEG

The second multimedia data type is MPEG-1 [Le Gall91].  MPEG differs from Pro-

share in several important ways.  First it presents a much more variable traffic load, over

both very small intervals (per frame) and large ones (tens of seconds).  Second, MPEG

uses interframe encoding to achieve its high compression rate.  As a result, a single lost

reference frame may result in many frames that cannot be decoded.  MPEG and other in-

terframe encodings are popular in the Internet today so it is important to consider the ef-

fect of different router policies on multimedia flows of this type as well.

Traffic Generation Details

MPEG traffic is modeled using an MPEG traffic generation tool.  The tool is trace-

driven.  The input trace specifies the size and type of each frame of the movie as well as



237

the frequency of frame generation, but it contains no actual content.  The MPEG tool gen-

erates packets of the appropriate size and transmits them at the appropriate time.    The

input trace is based on an MPEG encoding of the movie "Crocodile Dundee".   This movie

was 97 minutes long and the MPEG encoding uses a Group of Pictures (GOP) having a

sequence of frame types IBBPBB with a frame-rate of 30 frames per second.  As with

Proshare, multiple media streams are generated.  In the case of MPEG there are 4 streams,

each flow starting at a different offset into the trace.  The starting points are offset in in-

crements of 5,000 GOPs (1,000 seconds/16 minutes) in each instance in order to avoid

amplified extremes due to synchronization effects.  This MPEG tool is instrumented for

data gathering.  The details are discussed in the section on measurement below (Section

5.2).

Traffic Characterization

The aggregate load generated by the 4 flows ranges between 140-190 KB/s, but is

variable at both small and moderate time scales.   MPEG’s variability at different scales

stems from different sources.   At the very small scale, the MPEG traffic may be variable

for two reasons.  First, individual flows have high variability because of the different frame

types used in the encoding process.  Second, because this variability is periodic, as it is

associated with the frame order, it may be amplified if the flows happen to synchronize on

a GOP boundary.   Both concepts are explained below.

First, consider the behavior of a single MPEG flow.  Figure A.6 shows the MPEG

frame sizes for each frame type.  Figure A.7 shows the number of packets the frames

would span when fragmented.  Both plots reflect a one-minute interval of the movie.

During this interval the intra-pictures (I-Frames) can range from between 5 KB- 9 KB,

spanning 4 to 8 packets.  In contrast, the interpolated pictures (B-Frames) are always less

than 1 KB easily fitting in exactly 1 packet.  The P-Frames lie somewhere in between.



238

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

Time (s)

S
iz

e 
(b

yt
es

)

I-Frames

P-Frames

B-Frames

Figure A.6  MPEG Frame sizes by Type

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60

Time (s)

S
iz

e 
(b

yt
es

)

I-Frames

P-Frames

B-Frames

Figure A.7  MPEG Packets per Frame (Ethernet Packets)



239

These frames are from a GOP with organization IBBPBB.  As these different frame

types are transmitted the instantaneous load can vary by an order of magnitude.   To ap-

preciate this, consider a 50-second segment of the movie.    Figure A.8 and Figure A.9

respectively show the average aggregate load and packet-rate generated by all the frames

of an MPEG stream with a 66 ms network sampling interval.  This 66 ms sampling interval

is based on the fact that in many experiments the typical drain-time of a router’s queue

averaged 66 ms. In a sense this interval offers a snapshot of the potential occupancy of the

router’s queue during congestion.  Clearly the variability is quite high, ranging from al-

most 8000 bytes during an interval to nearly 0 bytes almost immediately.  The packet

transmissions over the interval range from 2 to 8 packets.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

Time (s)

S
iz

e 
(b

yt
es

)

Average Bytes per 66 ms

Figure A.8  MPEG Average Bytes per 66ms



240

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

Time (s)

P
ac

ke
ts

Average Packets per 66 ms

Figure A.9  MPEG Average Packets per 66ms

The aggregate MPEG behavior can display short-term variability as well.  Figure A.10

shows the average (over 2 seconds) MPEG load aggregated for all 4 of the MPEG flows.

This figure actually shows the average load from two different runs of the MPEG tool al-

though the two are nearly indistinguishable because the performance is nearly identical.

With this trace driven approach, one would expect the average loads to be identical and

they almost are.  This variability is accounted for by the fact that the exact start time of

each MPEG traffic generator may vary on the order of a second.



241

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Load (KB/s)

T
im

e 
(s

)

HTTP_MPEG

BULK_MPEG

Figure A.10 Average MPEG Loads from Different Traffic Mixes

However, this small variation in start times can result in significant variations in load

on small time-scales. Figure A.11 and Figure A.12 show two runs at 100ms (highly vari-

able) and 2 second (smooth) averaging intervals.  The same MPEG traffic pattern was

used for each run.  Notice that although they maintain the same average on the 2-second

scale, on the 100ms scale the run in Figure A.12 shows much more variation than the run

in Figure A.11.



242

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time

Lo
ad

 (
K

B
/s

)

MPEG Load

MPEG Load Smoothed

Figure A.11 MPEG Load During Run #1

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time

Lo
ad

 (
K

B
/s

)

MPEG Load

MPEG Smoothed

Figure A.12  MPEG Load During Run #2

Note that the 100ms sampling (blue) of the load appears very different between the

two runs with the run #1 experiment appearing much more variable.   This is actually sim-

ply a small time-scale synchronization effect.  The source of the difference can be ac-

counted for by considering amplification effects resulting in a form of synchronization

between MPEG streams.  Consider two extreme examples.   Recall that all four MPEG

streams use a GOP of IBBPBB with each frame sent 33 ms apart.  If all four of the MPEG



243

traffic generators happen to synchronize on GOP boundaries, they may all send the large I

frames nearly simultaneously followed by a series of small B-Frames, then moderately

sized P-Frames.  At a granularity of 100 ms, which will include 3 frames from each stream,

having all of the I-frames in one interval leads to no I-frames in the next interval.  The re-

sulting disparity results, on average, in samples with 4 I-frames and 8 B-frames totaling

approximately 29 KB compared to subsequent samples with 4 P-frames and 8 B-frames

totaling approximately 8 KB.  Obviously this will result in high variability in the sampling.

In the other extreme, if the I and P frames are equally distributed between the samples, all

samples will include 2 I-frames, 2 P-frames, and 8 B-frames, totaling approximately 19 KB

in all samples.

This variability in bandwidth is relevant because some queue management algorithms

(e.g. FRED) do use the short-term occupancy of the queue as an indication of network

conditions.  The queues used in these experiments can fully drain in a time on the order of

100ms.  As a result, the apparent state of the network as inferred by these algorithms can

appear to change radically over that interval if the sources are synchronized.

In addition to the short-term variability, MPEG streams also show more long-term

variability both in packet sizes and in average load. Figure A.13 illustrates this variability

both between frame types and even between frames of the same type over the entire

movie.  The figure shows the frame sizes in bytes vs. each frame of the movie.  While the

B-frames are consistently fairly small ( 1-2 KB ) the I-frames clearly range from almost

14,000 bytes to 2000 bytes and P-frames range from 10,000 to less than 1 KB.



244

I-Frames

P-Frames

B-Frames

Figure A.13 MPEG Frame Sizes over Time (Crocodile Dundee Movie)

Over this longer duration, variation in the scene and motion within the scene being en-

coded results in variation in the frame sizes because the redundancy between frames var-

ies.   Figure A.14 shows a closer look at the average load generated by the aggregate

MPEG traffic. The average load climbs to over 200 KB/s, presumably during scenes with

a great deal of motion or rapid scene changes.  Likewise, the load averages as low 130

KB/s, presumably due to a single still shot or close-up.  Moreover, these variations may

cover significant intervals.  For example, during the period marked measurement period 1

the average load is 145 KB/s, while during measurement period 2 it is 197 KB/s.



245

0

50

100

150

200

250

0 50 100 150 200 250

Time

Lo
ad

 (
K

B
/s

)

MPEG Smoothed

Measurement 
Period 1  Measurement Period 2

Figure A.14 MPEG Load

This long-term variation is a potential source of concern if two different intervals are

monitored and compared to one another.  The aggregate load in a variety of experiments

and measurement periods is shown in Table A.4. The details of these measurement periods

are explained in section 4.1.  The concern here is simply that the average loads are differ-

ent in different periods.

KB/sExp. Set Measurement

Period Average Range

1 164 138-191
A

2 160 143-170

1 183 162-191
B

2 154 145-168

1 186 174-192
C

2 151 144-168

Table A.4  MPEG Loads in Different Experiments and Measurement Periods



246

However, these problems are tolerable.  The measurements periods used in this dis-

sertation are coarse-grained.  Moreover, as explained in Section 4, the same intervals are

measured across all comparable experiments and results from measurement period 1 are

never compared to measurement period 2.  As a result, the comparisons are valid.  Only

CBT and CBQ have any concern with expected load and in both instances the correct ap-

proach is to provision for the worst case behavior.  In the metrics, loss-rate can be exam-

ined to get a sense of the effectiveness of any algorithm whether or not the inbound load is

known.  Moreover, even the largest variations are only 50 KB/s.  The significance of this

variation depends on perspective.  50 KB/s is 4% of the link capacity so the effect on the

majority of the link's load, TCP, is negligible.  However, 50 KB/s is 20-25% variation in

the MPEG load so the MPEG performance could vary significantly and must be consid-

ered when provisioning for algorithms like CBT and CBQ.

Sensitivity to Loss

Another important issue related to throughput is sensitivity to loss.  A low loss rate

may have little value if the few frames that are lost are needed to decode the other frames

of the media stream.  In that case, some of the frames that do arrive are also useless.

MPEG traffic is particularly sensitive to loss.  There are two major reasons that MPEG is

so sensitive.  First, because some frames span many packets, a single lost packet renders

the other packets of that frame useless.  Second, because of inter-frame encoding, the loss

of a single frame may make other frames of that GOP useless.  Consider each issue.

 First, as Table A.5 shows, MPEG’s I-frames are quite large, averaging almost 7 KB

(and ranging 2-14 KB).  In this MPEG stream the I-frames span 6 packets on average

while B-frames never span more than 1 packet.  (Note that the number of packets per

frame is not computed by dividing the average bytes per frame by the MTU.  Rather, it is

computed by actually counting the number of packets for each frame, which is always an

integer value, and dividing by the number of frames.)  If drops are uniformly distributed (a

goal of RED) a given packet-loss rate will on average result in 1.5 times as many lost I-

frames as B-frames  because the four B-frames in a given GOP represent 4 packets while

the singe I-frame spans 6 packets.  Moreover, the frame loss-rate for I-frames would be 6



247

times the packet loss-rate because when one packet in an I-frame is lost, all of the other

packets in that frame have to be discarded.  This does not consider any relation that might

exist between burstiness and drop-rate (as in algorithms like FRED) which may make

larger frames more susceptible to loss.  Those issues will be considered for those algo-

rithms where it is a factor.

Frame

Type

Bytes Per

Frame

Packets per

Frame

I 6916 5.26

B 241 1

P 1646 1.69

Table A.5 MPEG Average Packet Statistics by Type

This increased probability that drops will occur in I-frames leads to the second reason

MPEG is sensitive to loss.  While loss of a single packet will always cause the effective

loss of the frame that packet belongs to, loss of a packet in a reference frame also results

not only in loss of that frame but also in loss of all of the frames that refer to that frame

due to interframe encoding.  This leads to effective frame loss-rates that exceed the packet

loss-rate.  Effective loss-rate is defined to include the frame that is successfully delivered

but useless because of the loss of other frames required to correctly decode the success-

fully delivered frames.

Frame Type Packets per
Frame

Frames per
GOP

Effective Lost
Frames

I 6 1 8

B 1 4 1

P 2 1 5

Table A.6 MPEG Frame Losses Assuming a Single Frame Loss

Table A.6 illustrates the effects of packet loss on frame loss.  Recall that in this MPEG

stream each GOP contains one I-Frame, 4 B-frames, and 1 P-Frame.  Those frames span

on average 6, 1, and 2 packets respectively.  Loss of a single I-frame results in the effec-



248

tive loss of more than an entire GOP.  It results in the effective loss of the preceding B-

frames that were interpolated using the I-frame as a reference and on the subsequent B-

frames and P-frames up to the next I-frame. Loss of one packet in an I-frame results in the

effective loss of 8 frames of video.   Loss of a single P-frame results in the loss of the B-

frames that depend on it.  In this encoding, 5 frames (1 P-frame and 4 B-frames) are ef-

fectively lost whenever a P-frame is lost.  Lost B-frames do not affect other frames and

results in the loss of only that one frame.

On average the GOP spans 12 packets.  If the probability of a packet loss is 1 in 12,

then on average one packet, and thus one frame, will be dropped in every GOP.  Table

A.7 shows the effective frame loss rate with this packet loss rate.  Since half of the packets

in the GOP are I-frames the probability that the dropped packet will be part of an I-frame

is 50%.   33% of the lost frames will be B-frames and 16% will be P-frames.  Each of

these losses results in effective losses of 8, 1, or 5 frames, respectively.  Multiplying the

probability that a given frame type will be lost by the number of effective lost frames asso-

ciated with that frame type and summing gives us the average number of frames that may

be lost per GOP with this loss rate.   Effectively, nearly 43% of the frames are lost when

the packet loss rate is only 8% (1 in 12).

Frame
Type

Average
Packets

per
GOP

Probability of
Packet Loss in
Frame Type

Effective
Frame Loss

Rate
(frames/GOP)

Loss
Rate

I 6 50% 4.00 33%

B 4 33.3% .333 2.8%

P 2 16.6% .833 6.9%

Total 12 100% 5.166 43%

Table A.7 MPEG Frame Drops with 1 in 12 Packet Loss

Figure A.15 shows the relationship between the packet loss rate and the frame loss

rate for this MPEG stream.  The frame loss rate is almost 5 times the packet loss rate in

this GOP format.   This analysis is somewhat over simplified but it is accurate for this



249

drop-rate.  When the packet drop rate exceeds 1 packet per GOP the effects of multiple

drops in one GOP must be accounted for.  Moreover, the fact that B-frames may be af-

fected by different I-frames and/or P-frames is ignored.  However, this simplified analysis

makes the point.  MPEG’s interframe encoding and large reference frames combine to

make MPEG very sensitive to packet loss.

0.000

0.100

0.200

0.300

0.400

0.500

0.000 0.020 0.040 0.060 0.080 0.100

Packet-Loss Rate

F
ra

m
e-

Lo
ss

 R
at

e

Frame LossRate
Packet Loss Rate

Figure A.15 MPEG Packet Loss vs. Frame Loss

3.4. TCP

As the predominant transport protocol in the Internet today, TCP is a key traffic type.

Because TCP is a responsive protocol the trace-driven approach used for the multimedia

traffic types is not applicable.   At the packet level, the TCP implementation adjusts the

rate at which it generates and transmits packets in response to network conditions.

Moreover, user or application behavior also varies depending on network performance.

Unlike unresponsive multimedia where the application simply generates and transmits

frames periodically, TCP applications often have application level exchanges of requests

and replies.  In the case of HTTP, the generation of application level messages depends on



250

the performance of the network.  For example, as a user follows links through a sequence

of pages he must receive the current page before following links on that page.  As a result,

if the time required to receive a page increases, the time between page requests will also

increase.   Because of these factors, these traffic types must be modeled at the application

level.

The specific modeling approaches taken for each TCP traffic type are discussed below.

Two different types of application level protocols that depend on TCP were studied.  The

first is the most popular application protocol in the Internet, HTTP.  The modeled HTTP

traffic is referred to simply as HTTP throughout this dissertation.  The second type was an

alternative model which contrasted some of HTTP's extremes (e.g., short-lived, light-

weight connections) with long-lived, high-bandwidth bulk data transfers. This model is

referred to as BULK throughout this dissertation. The HTTP and BULK models are de-

scribed in more detail below.  First, consider the general details of the TCP implementa-

tion and configuration for these experiments.

For these experiments all of the end-systems are configured to have TCP sender and

receiver windows of 16K.   The round-trip times between the end-systems vary between

approximately 0 and 126 milliseconds as discussed in Section 2.1.4.   This combination of

window size and round-trip times should allow any single TCP flow to generate at least 1

Mb/s of traffic based on the delay-bandwidth product.  Of course, other factors, such as

application behaviors, TCP’s response to congestion, contention for shared media, or

network-based delay may limit the actual per-flow throughput.  The curious reader may

find the relevant details of the TCP implementation used in Table A.8.  The items listed

and explanations of their significance can be found in [Allman99].



251

FreeBSD 2.2.8 TCP Implementation (4.4 BSD)

Basic Congestion Control: OK

Extensions for High Perf: OK (RFC 1323)

Selective Acknowledgements: NO

Delayed Acknowledgements: OK (RFC 1122)

Nagle Algorithm: OK

Larger Initial Windows: NO (RFC 2414)

ECN: Optional (RFC 2481)  on

Bugs (See RFC 2525)

Bugs in 4.2BSD: NO

Window Size Bug: YES

Other Issues
(See draft-ietf-ippm-btc-framework-01.txt)

What happens when (cwnd == ssthresh)? Acts like cwnd < ssthresh (slow-start)

Default ssthresh: 1 MB

Table A.8  TCP Specifics

3.4.1. HTTP

HTTP flows are often referred to as “web mice” as they can be thought of as large

numbers of small, short-lived entities scurrying about the network.  These mice contrast

the elephants of the Internet, large file transfers, which are represented by the BULK

transfers.  HTTP flows spend most of their time in slow-start and some flows never see

the effects of congestion control.  This traffic is also burstier than that generated by an ap-

plication that is constantly trying to transmit data.  Instead HTTP flows may consist of a

series of request-reply exchanges as the client requests a page, waits for the page to arrive,

requests the embedded objects within the page, waits for those object to arrive, and then



252

requests another page.   HTTP traffic generation used the model developed by Mah, et al

[Mah97] and implemented by [Christiansen00].

Although HTTP flows are individually low bandwidth flows, the large volume of

HTTP clients active at any given time represents the majority of the network load as dis-

cussed in I.1.1.1.   In order to compare experiments, the number of independent variables

that change from experiment to experiment must be limited.  One such variable is the av-

erage load generated by the HTTP traffic model. Christiansen et al., conducted an analysis

of the load generated in our experimental network as the number of browsers was varied

[Christiansen00] and found a linear relationship.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000

 Browsers

K
bp

s

Measured
y = 2.9546x - 53.596

Figure A.18  Generated Load vs. Simulated Browsers

Figure A.18 shows this relationship between the number of simulated browsers and the

generated load. They also confirmed that other concerns such as socket limits and cli-

ent/server processor speeds were not factors in this network configuration.  On a 100Mb/s

network, they measured the load generated as they varied the number of clients.  They

then applied a linear regression to find the relationship between the number of browsers

and the resulting load.  That relation is expressed by the equation y = 2.9546x – 53.596



253

where x is the number of browsers and y is the resulting load.  Using this equation and the

observed measurements yields the result that 3,000 browsers generate a load of 1.1 MB/s

or 8.8 Mb/s, or approximately 90% of the capacity of the link.  This is the standard HTTP

configuration used in the experiments.  The load is divided between 5 servers being con-

tacted by 6 client machines.  Each client runs a model simulating 500 browsers distributing

requests across the 5 servers.  The router algorithms affect the replies traveling from the

servers to the clients (left to right in Figure A.1).  The replies represent the majority of the

network load for HTTP.  This load combined with the 140-190 KB/s of MPEG traffic

(160 KB/s for Proshare) should keep the bottleneck link shown in Figure A.1 fully util-

ized.

The relationship between browsers and load was based on averages over hour long

runs. Actually, those runs lasted for more than an hour but the first 25 minutes were ig-

nored because start up effects in the traffic model were very apparent.  Consequently, the

model used in these experiments also runs for 25 minutes before collecting any measure-

ments.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (
K

B
/s

)

HTTP Load
HTTP Smoothed
Link Capacity

Figure A.19  HTTP Load Alone (but with bottleneck link of 10Mb/s)



254

Figure A.19 shows the load generated by the HTTP model when no other traffic types

are present.  The load line is based on averages over 100ms intervals while the smoothed

line is based on averages over 2 second intervals.  The load is quite variable on both time

scales.  The behavior of the clients is very bursty, even when aggregated over 3,000 active

clients.  Note that the load often exceeds 1.2 MB/s, the capacity of the bottleneck link.

This is because new connections are always starting and trying to use more capacity.

When this effect is aggregated over 3,000 clients it results in the TCP load often exceed-

ing the bottleneck link's capacity.   However, as discussed above, the behavior without

other traffic types present only gives a general sense of the traffic's behavior. The traffic's

responsiveness to changing network conditions must also be considered.

Recall both TCP, the simulated web browser, and users, are responsive to changing

network conditions.  To illustrate the change in load due to these responsive elements, the

load in the presence of other traffic types is also examined.  Figure A.20 and Figure A.21

show the load for HTTP with and without different traffic types present on the bottleneck

link. Figure A.20 adds the scenario with other traffic to the results shown in Figure A.19.

Both show the respective loads averaged over both 100 ms and 2 second intervals. Figure

A.21 shows only the averages over 2 second intervals for easier viewing. Figure A.20

shows that the load is bursty in both cases.



255

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (
K

B
/s

)

HTTP Load (w/o other traffic)
HTTP Load (w/ other traffic)

HTTP Smoothed (w/ other traffic)
HTTP Smoothed (w/o other traffic)

Figure A.20  HTTP Load with and without other traffic types present.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (
K

B
/s

)

HTTP Smoothed (w/ other traffic)
HTTP Smoothed (w/o other traffic)

Figure A.21 HTTP Average Load with and without Other Traffic Types



256

Note that in Figure A.21 and Figure A.20 the HTTP behavior (i.e. generated load) in

the presence of other traffic types can be better than the HTTP behavior without other

traffic types.  This happens in the HTTP model because individual browsers continue to

start independent of the behavior of other browsers. The duration of browsing sessions

may increase because of increased response times due to congestion while sessions con-

tinue to start at the same rate.  If this is the case, the number of overlapping sessions will

increase.  More simultaneous browsing sessions increase the application level demand on

the network during a given interval.   Recall that the duration of the browsing sessions in-

creases because of the need for retransmissions due to congestion. Because the HTTP

flows are numerous as well as short-lived and low bandwidth the TCP congestion window

may have limited effect reducing the average load in response to drops.   However, the

resulting retransmissions increase the load on the network.

Moreover, HTTP flows are particularly sensitive to loss because of their short lives.

Because of their short-lives the synchronization handshake represents a significant fraction

of the connection's packets.  Since HTTP flows represent 75% of the flows in the Internet

this means a significant fraction of all packets are associated with TCP initialization.  TCP

is particularly sensitive to loss during initialization and losses result in time-outs on the

order of seconds. Many HTTP flows have lifetimes less than one second.  As a result,

drops during initialization can result in order of magnitude increases in the response time

for an HTTP request.

Summary

The HTTP traffic generators model the application level behavior of web-browsers

and generate network traffic based on this model.  The model considers user-think time,

average page sizes and the number of embedded objects associated with a given page.

The model also reacts to network conditions.  At the transport level, TCP responds to

network congestion by adjusting its congestion window to control the load placed on the

network.  At the application level, the browser only initiates requests for new objects or

pages when it has received the necessary information from previous requests.  The net-

work performance determines how long the model must wait for the objects to arrive.



257

The HTTP model offers a traffic pattern that is variable for both single flows and in ag-

gregate over small and large time scales.  It generates load capable of consuming 90% of

the link's capacity.

3.4.2. BULK

In contrast to the “web mice” presented by HTTP, BULK transfers are the "elephants"

of the Internet.  Although small in number, these large, long-lived flows represent a sig-

nificant proportion of the Internet traffic (after the world-wide web traffic).  While WWW

traffic represents 75% of the bytes flowing across the internet and 70% of the flows, FTP

represents 5% of the bytes (25% of what remains after WWW) but only 1% of the flows.

These flows are typically both long-lived and high-bandwidth.

These flows represent the opposite extreme from the TCP traffic presented by HTTP.

They last long enough to experience the effects of congestion windows and are able to

consume the available bandwidth of the network.   The number of flows is 360 total, 60

for each of the 6 clients.  This is 12% of the number of maximum clients possible with the

HTTP model.  However, because these flows are always active, the number of flows is

likely much greater than the average number of active TCP connections in HTTP.  Many

flows were used so that time-outs would be less common.  (In early experiments with a

small number of TCP flows, the TCP load was very low in all the configurations because

many of the flows were in retransmission time-out.  With the larger number of flows, if

any flow, or small group of flows experience retransmission time-out other flows are able

to maintain the load.)   Even with the maximum RTT (120ms + 100ms) and 16K win-

dows, only 16 TCP flows are required in order to consume the capacity of a 10Mb/s link

so these flows are capable of fully-utilizing the network.

This model focuses only on modeling the transport level behavior associated with

BULK flows, focusing purely on TCP's reaction to network conditions. Starting and stop-

ping different flows is not considered.  Instead all flows transfer data as fast as conditions

allow and run for the duration of the experiment.  Each of the 6 clients establishes 60 con-

nections, 12 to each of 5 servers, for a total of 360 flows (60/client, 72/server).   These

servers establish flows that all start nearly simultaneously and simply send as fast as possi-



258

ble (at the application level) for the duration of the experiment.   There is some delay as-

sociated with starting 60-70 processes on a given machine so the flows do not actually

start at the same instant.  To address that issue the BULK traffic model runs for 12 min-

utes before any other traffic type is introduced or measurements taken.  At the application

level, each server is always transmitting so TCP's congestion avoidance mechanism must

regulate the actual transmission rate to avoid congestion.  Even so, the aggregate effect of

360 flows constantly oscillating between reducing their load in response to loss and in-

creasing their load to probe for available capacity are able to exceed the capacity of the

bottleneck link.  Figure A.22 shows the load generated by this BULK traffic on the 100

Mb link before the bottleneck router when no other traffic types are present.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (
K

B
/s

)

BULK Load (w/o other traffic)
BULK Smoothed (w/o other traffic)

Figure A.22 BULK Load with no other traffic types (but with 10Mb/s bottleneck link)

Clearly, the BULK traffic is capable of exceeding the bottleneck link's 1.2 MB/s ca-

pacity.   However, one should not assume this constant load of 1.5 MB/s reflects unre-

sponsiveness on the part of the BULK traffic load.  Rather, it is the result of a large num-

ber of TCP flows testing the network's available capacity by probing.  As some flows re-

duce their congestion windows in response to loss, others are increasing their congestion



259

window and taking advantage of the capacity released by those flows that are backing off.

This probing behavior also explains the short-term variability seen in the average over 100

ms intervals.   BULK's responsiveness is demonstrated when other traffic types are added

to the mix.  Figure A.23 illustrates this phenomenon.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (
K

B
/s

)

BULK Load (w/ other traffic)

BULK Smoothed (w/ other traffic)

Multimedia Traffic Active

UDP Blast 
Active

Figure A.23 BULK Load in the Presence of Other Traffic Types

Recall this plot shows the load on the inbound link to the router, before contention for

the bottleneck link occurs.  The changes in the load are the result of the traffic generators

changing the load they are generating (by adjusting the congestion window in the sender),

not the direct result of drops in the router's queue.   The BULK traffic load clearly de-

creases as each new traffic type, first multimedia, then the blast, is introduced and in-

creases as they are removed.  This data was actually gathered while the CBQ scheduling

algorithm that offered TCP a significant minimum allocation of the bottleneck link's ca-

pacity was running.  Otherwise, as shown in Chapter III, TCP's responsiveness would be

evident as a complete collapse of the TCP load when the UDP blast is present.



260

0

500

1000

1500

2000

2500

0 50 100 150 200 250
Time (s)

Lo
ad

 (
K

B
/s

)

BULK with other traffic

BULK without other traffic

Multimedia Traffic Active

UDP Blast 
Active

Figure A.24 Average Bulk Load with and without Traffic

Figure A.24 compares the load generated by the BULK traffic generators with and

without the other traffic types.  This simply allows for direct comparison of the offered

BULK load in both scenarios.

4. Traffic Mixes

Combinations of the traffic types established above are mixed and then the effects of

the different router-based queue management techniques on each mix are analyzed. Most

of the experiments are composed of a set of measurement intervals.  First measurements

are collected with TCP and multimedia, and then with a UDP blast added.   This allows

one to consider separately the interaction between TCP and multimedia and the effects of

aggressive, unresponsive flows on each.

All possible combinations of the traffic types discussed above are not explored. First,

only one of each type of TCP, multimedia, and other is used in each traffic mix.  Second,

specific settings are used for each traffic type (e.g., 3,000 HTTP clients, 360 BULK flows,

six Proshare flows, 4 MPEG flows, and 1 UDP blast flow of 10Mb/s) as the standard set-

tings for each traffic mix. These settings change only as necessary to illustrate specific

conjectures.  The focus in this work is not exploring wide ranges of traffic conditions but

on studying the behavior of a few specific traffic mixes in detail to better understand the



261

effects of each algorithm.  Additional concerns include understanding the effects of differ-

ent parameter settings for each queue management algorithm and, for comparability, re-

producibility.

4.1. Timing of when each type of traffic is introduced

All of the traffic mixes follow the same basic pattern. TCP traffic generators start and

are allowed to stabilize.  Then the multimedia traffic begins.  After a brief interval, the

blast traffic begins.  Then the blast traffic stops, followed by the multimedia, and finally the

TCP, with a delay between each action.  During each experiment two periods are consid-

ered, one including TCP and multimedia, and the other including all three traffic types.

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Time (s)

Lo
ad

 (K
B

/s
)

MPEG load
Link Capacity
Blast Load

BULK Load (w/o other traffic)

Multimedia 
Measurement Period

Blast
 Measurement Period

Figure A.25 Traffic Mix for BULK+MPEG

Figure A.25 illustrates the timing of the introduction of the different traffic mixes and

the measurement periods.  A BULK+MPEG experiment serves as an example. (The type

of TCP and multimedia traffic used determines the name of the traffic mix.  In this case the

TCP type is BULK and the multimedia type is MPEG so it is BULK+MPEG.)  The figure

shows the typical potential load on the inbound link during such an experiment.  All loads



262

are averaged over 2 second intervals.  The plot also shows the capacity of the bottleneck

link, to allow easy assessment of the overload created by the traffic mix.  In the case of

MPEG and Blast, since those traffic types are unresponsive the load is the same across all

experiments.  Recall that because TCP is responsive its actual load does change based on

traffic conditions.  The plot above shows the potential BULK load that can be generated

when no other traffic types are present, not the actual load during an experiment.

Figure A.25 shows the timing of the BULK+MPEG traffic mix and the loads pre-

sented by the different classes of traffic.  This figure is translated to the time that the net-

work monitoring begins.  At that time (0 on the x-axis), the BULK traffic has been run-

ning for 12.5 minutes before the period shown.  After the network monitoring begins, the

MPEG traffic is introduced around 32 seconds later.   The blast is introduced around time

93 seconds.  The blast stops at time 140 seconds and the multimedia at time 210 seconds.

Finally, the TCP stops at time 314 seconds.

This analysis focuses on two measurement periods.  The first is the period during

which multimedia and TCP are running, called the multimedia measurement period.  The

second, the blast measurement period, is the period during which multimedia, TCP, and

the blast are running.  The multimedia measurement period begins 5 seconds after the

multimedia is introduced and ends 5 seconds before the UDP blast begins.  The blast

measurement period begins 5 seconds after the blast begins and ends 5 seconds before it

stops.  Measurements are gathered during each of these intervals. The metrics themselves

are discussed in section 5. After the blast terminates, the multimedia stream and then the

TCP streams also stop at intervals of several minutes.  The termination of the generators is

of no consequence for the analysis and they are deactivated in this way simply for the con-

venience of the experimenter.

These measurement periods and general timing patterns apply independent of the spe-

cific traffic mixes as shown in Figure A.26.  Note that the loads generated, particularly

those generated by HTTP, do vary significantly between measurement periods.  This is not

a concern however, as the focus is on comparing a single traffic mix and measurement pe-

riod across multiple algorithms, not on comparing different traffic mixes or measurement



263

intervals to one another. In other experiments a single traffic mix and measurement period

are compared across multiple parameter settings for a given algorithm.  But, once again,

variation between measurement periods or traffic mixes is not a concern.

0

500

1000

1500

2000

2500

0 50 100 150 200 250
Time (s)

Lo
ad

 (
K

B
/s

)

Proshare load

Link Capacity

HTTP Load Smoothed

Blast Load

Multimedia 
Measurement Period

Blast
 Measurement Period

0

500

1000

1500

2000

2500

0 50 100 150 200 250
Time (s)

Lo
ad

 (
K

B
/s

)

MPEG load

Link Capacity

HTTP Load Smoothed

Blast Load

Multimedia 
Measurement Period

Blast
 Measurement Period

a) HTTP+Proshare b) HTTP+MPEG

0

500

1000

1500

2000

2500

0 50 100 150 200 250
Time (s)

Lo
ad

 (
K

B
/s

)

Proshare load

Link Capacity

Blast Load

BULK Load

Multimedia 
Measurement Period

Blast
 Measurement Period

0

500

1000

1500

2000

2500

0 50 100 150 200 250
Time (s)

Lo
ad

 (
K

B
/s

)

MPEG load

Link Capacity

Blast Load

BULK Load

Multimedia 
Measurement Period

Blast
 Measurement Period

c) BULK+Proshare d) BULK+MPEG

Figure A.26 All Traffic mixes

There is one variation in this method that is not shown on these plots.  The variation

lies in the increased time TCP flows are allowed to stabilize in the case of HTTP.  This

stabilization is necessary to reach a point where the HTTP flows are starting and stopping

in a manner comparable to the Internet.  Consider that there is no time at which a network

link suddenly goes from an idle state to thousands of active HTTP flows.  This sudden

start is quiet chaotic and requires time to stabilize.  Because the HTTP model requires 20-

25 minutes to stabilize, allow the HTTP traffic generators run for 25 minutes before the

interval shown. Although this stabilization period is important to obtain consistent results,

the difference in time required for HTTP and BULK to stabilize has no effect on the

analysis.  As a result, all results are translated to have this startup period before time 0.



264

5. Data Collection

Evaluating a queue management algorithm consists of three steps: creating conditions

to evaluate the algorithm, collecting data about the performance of the algorithm, and

analyzing that data to extract useful metrics.   This section focuses on the data collection

techniques used to collect data on the application-level performance, network perform-

ance, and the behavior of the router.  At the application level, instrumented traffic gen-

erators record information such as frame-rate, packet-rate, loss rate, and latency.  At the

network level, packet-level tracing is used to record the traffic traversing specific links in

the network.  The infrastructure for data collection and the general information collected

are described below. The analysis and specific metrics are considered in more detail in

Section 7.

5.1. Network Monitoring

Packet level traces are captured at selected points in the network using tcpdump.  All

packets are recorded to a trace file and filtered for selected flows during post-processing.

Figure A.28 shows the monitoring points.  One machine monitors both networks.  This

uses the same clock to generate the time stamp for both traces, allowing the traces to be

synchronized and compared during analysis.  This machine has the capacity to monitor the

highest loads used in these experiments and capture 99.5% of all packets. Traffic on each

logical network passes through an Ethernet hub to provide a shared medium that can be

used as an access point for monitoring.   Traces are recorded during the multimedia and

blast measurement periods indicated in Section 4.1.



265

Monitor

Figure A.28 Location of Network Monitoring

5.2. Application Level Monitoring

All of the applications in these experiments are actually traffic generators.  As such, it

was easy to instrument and modify the applications to acquire application-level measure-

ments.  Specifically, packet payloads included sequence numbers and timestamps to allow

detection of loss, out of order delivery, and latency at the receiver for protocols that could

not otherwise report such information. Network monitoring alone was used to collect the

necessary data for TCP and other traffic as well as for some multimedia data.  However,

most multimedia measurement data were gathered by application level instrumentation.



266

Multimedia

Source Sink

Figure A.29 Location of Multimedia Traffic Generator

As shown in Figure A.29, one multi-homed end-system acted as the source and sink

for multimedia traffic.  Multimedia traffic was forced to traverse the network using static

routes.  This configuration used one clock to record the time packets were transmitted and

the time they were received, offering accurate one-way latency measurements.   The spe-

cific data collected varied between the two media types and is described below.

5.2.1. Measuring the Performance of Proshare

The Proshare traffic generator is instrumented to report packet-level statistics at one

second intervals. The Proshare simulator is based on a raw packet trace so it does not dis-

tinguish between frames of audio and video. The generator is also aware of the minimum

MTU size along the path and does fragmentation at the application level so that packet

drops can be determined accurately at the application level.  Over each interval, the gen-

erator reports the current time, the bits received, the packets received, the bit rate, the

packet rate, and the average latency of the packets delivered.  It also reports the cumula-



267

tive number of dropped packets and the cumulative number of out-of-order packets

through the interval.  While the generator records this data for the life of the application,

the data associated with the two measurement periods is sliced out and examined inde-

pendently.  The data from these “slices” is used to plot behaviors of both individual and

aggregate flows.  To compare these runs with other experiments, the samples are averaged

over the measurement period and the class's average performance reported over the entire

period. Specific metrics considered are discussed in section 7.

5.2.2. Measuring the Performance of MPEG

The receiver for the MPEG traffic generator is specifically designed to report perform-

ance statistics.  It is aware of the expected GOP structure and uses that information to

determine which arriving frames could be decoded based on the other frames that have

arrived. Like the Proshare generator, the MPEG generator also is aware of the minimum

MTU size along the path and does fragmentation at the application level so that packet

drops can be determined accurately.   Each packet includes a time-stamp and a sequence

number to allow for calculating latency and detecting out of order delivery.  The generator

reports only the network latency, the time between when the packet is transmitted and

when it is received.  It does not consider the latency involved in decoding the frames, par-

ticularly time spent waiting for frames that are the target of forward references in bidirec-

tional encodings.

The MPEG traffic generator reports statistics at the end of every sampling interval.

For these results, the sampling interval was one second.  The statistics reported include a

timestamp, and some statistics averaged over the previous interval and others averaged

over the duration of the run.  The statistics reported for the current interval include the

playable frame rate, the actual frame rate, throughput, average latency, packet loss rate,

and packets received per second.  The generator also reports a running average of the

frame rate over the life of the stream. The details of these metrics and the ways in which

this data is analyzed are described in Section 7.



268

5.3. Router Queue Management Overhead

As the queue management algorithm increases in complexity one must consider the

effect of the additional complexity on the per-packet processing time.  As the enqueue and

dequeue operations grow increasingly complex, the number of operations required to pro-

cess each packet can lead to the packet processing overhead dominating the time it takes a

packet to traverse the router.  If packet processing time grows too high, it becomes the

limiting factor for throughput on the outbound link instead of the physical transmission

speed of the link.  Evaluating this overhead is beyond the scope of this work but we report

some limited observations.

5.4. Summary

Network behavior is monitored with packet traces, and  application performance with

application level instrumentation.  With the infrastructure in place to collect this informa-

tion, next consider the statistical issues involved with analyzing this data.

6. Statistical Issues

In this work five different router queue-management algorithms are compared to one

another over a large set of parameter settings and traffic patterns.  Because the results are

compared between experiments, reproducibility is an issue.  To address the need for re-

producibility, controlled traffic mixes described in Section 4 are used in the closed net-

work environment described in Section 2.  Additionally, because the use of random sam-

pling in the traffic generators creates variations between experiments, care must be taken

to insure the results are representative and not single instances of extreme behavior.  Ad-

dressing this concern involved conducting multiple experiments for each set of parameter

settings.  In most cases each experiment was repeated five times.  In a few instances there

were more runs.  Multiple instances of each experiment were also used because the ex-

perimental setup is complex and components may sometimes fail in ways that are most

easily detected by changes in the experimental results.  (Once detected, one can confirm

that the change was due to a failure, not a pathological state of the algorithm.)

Because the volume of data makes comparing the second-by-second behavior of indi-

vidual runs impractical, average behavior over a given measurement period is considered



269

and compared, both over time and across multiple runs.  However, select instances are

also compared for illustrative purposes.  For the same reasons, in some instances the

analysis focuses on the behavior of either an entire traffic class in aggregate or the behav-

ior of a single representative flow, but never the individual behaviors of all the flows.

For a given metric and experiment, the samples for that metric are averaged over the

selected measurement period.  That value is then averaged with the same values for other

runs of the same experiment (i.e., with the same algorithm, traffic mix, and parameter set-

tings).  One value that represents the average performance of that metric across all runs

with the given configuration of the queue management algorithm, traffic mix, and algo-

rithm remains. For example, consider comparing TCP throughput during the blast meas-

urement period.  First, the average TCP throughput over small (100 ms) intervals is re-

corded during the experiment.  After the experiment is complete, the values during the

blast measurement period are extracted and averaged to determine the average TCP

throughput during the blast measurement period for that instance of the experiment.  The

average TCP throughput values for all runs with the same algorithm and experimental

conditions (queue management parameters, measurement period, and traffic mix) are then

averaged together to produce a single value. Comparing that value to the same value for

other algorithms and/or experimental conditions highlights the differences.  Throughout

this work the average performance of multiple executions of the same experiment are pre-

sented.   Usually the analysis considers only the aggregate performance of a particular

traffic class or, occasionally, of a single, representative flow.  Limiting the evaluation to

long-term average behavior neglects some aspects of performance.   Averaging over inter-

vals on the order of 30 seconds removes the opportunity to examine the short-term or in-

stantaneous behavior of the system.  Further, examining aggregate performance prevented

examination of the fairness between flows in a given class.  However, this type of analysis

is beyond the scope of this work.

7. Performance metrics

Throughout this dissertation the focus is on comparing the effects of different queue

management algorithms on a wide range of network and application metrics.  They range



270

from throughput and latency at the network level to playable frame-rate in the application.

In this section the metrics are defined, techniques for deriving them described, and their

significance explained.

7.1. Bandwidth Usage Measures

Bandwidth usage refers to the amount of data crossing a network segment over a

given time interval.  Bandwidth usage is considered from many perspectives and is usually

referred to in bytes per second, though it is also referred to in bits per second.  At times

packets per second may also be considered; however, packets per second is a less precise

measure unless the average packet size is known.    

Bandwidth usage on a particular link or series of links is a somewhat ambiguous

measure of end-to-end performance. To clarify the basic terms used to refer to different

kinds of bandwidth are defined here:

• Capacity is the bandwidth available on a given link.

• Load is the bandwidth demand placed on a network element or the bandwidth de-

mand generated by a given flow or class.

• Throughput is the amount of data traversing a network element over a given inter-

val.  The load at a router is determined by the throughput on the inbound links.

However, the throughput of the router is the limited by the capacity of the router

and its outbound link.

• Utilization is the lesser of the ratio of load to capacity or 100%.  Since the utiliza-

tion of a given network element may not exceed one hundred percent, some data

may be lost if the load is greater than the capacity.  These drops limit the useful-

ness of throughput as a metric in some cases.

• Loss rate is an expression of the fraction of traffic that is discarded at a given net-

work element. Loss rate is most commonly used regarding unresponsive and,

usually, unreliable protocols.  (Loss rate also effects responsive protocols but its

effect on the actual goodput is the key measurement in those cases.)  Also loss-

rate commonly refers to packets per second, not bits per second.



271

In addition to these basic terms, there are a few others that are more complex.  While

throughput is a straight-forward measure, it fails to consider the overall usefulness of the

packets transiting the link.  That is, packets that are ultimately dropped further along the

network path or that are duplicates of data that has already traversed the link, are not a

good use of the link’s capacity. Goodput is used as a measure of the traffic that is useful

and is strictly defined as the rate at which data is ultimately acknowledged by the TCP re-

ceiver.  Considering goodput leads to a metric for considering the effectiveness of a pro-

tocol's responsiveness. Responsive protocols are supposed to be able to adjust their load

to match the available capacity of the network (i.e., the available capacity at the bottleneck

link).  If they succeed in this, the responsive traffic's load at the source should equal its

throughput and end-to-end goodput. The effectiveness of the response is a measure called

efficiency.  Efficiency is the ratio of goodput to load.

Finally, note that although capacity, load, throughput, utilization, goodput, efficiency,

and loss rate were used to refer to all of the traffic on a single network element above,

those terms also apply relative to subsets of flows and across multiple network elements.

For example, comparing the end-to-end goodput for all TCP flows to their load on the

source network may be used determine TCP's efficiency.  Alternatively, the loss rate for a

representative multimedia flow may be considered.  Below the derivation of each measure

is explained.

Most of the bandwidth metrics are gathered from packet traces (Section 5.1) collected

using tcpdump.  Another tool, ifmon, reads the tcpdump file format, filters packets ac-

cording to specified rules, and generates reports of the bandwidth consumed by those

packets. Filter rules use protocol type, source and destination IP addresses and port num-

bers to group packets into classes of TCP, multimedia, or other.  The tool reports average

bandwidth.  It reports this bandwidth in three forms.  At configurable intervals, it reports

the average over the interval as well as the running average up to that point.  It also re-

ports the average over the entire period.  Unless otherwise stated, the tool samples over

intervals of 100ms.   This interval results in averages that reflect some amount of the

burstiness of the traffic while still capturing the average behavior.  However, most of the



272

results presented compare the average bandwidth over the entire period to the same value

in other experiments.

Because a closed and controlled network is used, simplifying assumptions can be made

to derive these metrics.  First, capacity is a known constant for each link in this network

configuration.  Similarly, utilization can be measured simply by dividing the load at a given

network element by the capacity of that element.  Since all the traffic generator sources

are connected to the router's inbound network and that network is over provisioned the

bandwidth on that link is the load being generated by the traffic generators.  As a result,

generated load is simply the bandwidth used on the router's inbound link.  Further, knowl-

edge that there is no source of loss beyond the bottleneck router simplifies the considera-

tion of loss, goodput, and efficiency as well. Since end-to-end load can be derived from

the inbound link and end-to-end goodput from the outbound link, the ratio between the

two loads is the efficiency.  Finally, the difference between the throughput of the outbound

link and to the load on the inbound link divided by the load is the loss rate.  Although we

can calculate loss rate by comparing load to throughput this is not the way it is calculated

here.  Instead, the analysis relies on application level instrumentation. The multimedia ap-

plications are instrumented to report the number of packets received and dropped over

every one-second interval.   This information is used to calculate the multimedia loss-rate

over a given interval.

7.2. Latency

With interactive multimedia, end-to-end latency has a significant impact on the quality

of the communication. If latency is too high, interaction becomes difficult or impossible.

End-to-end latency is measured in the multimedia applications by recording a time-stamp

at transmission and receipt of each packet.  The transmission time-stamp is carried in the

payload of the packet so it can be compared to the time the packet is received.  Latency

can be calculated by taking the difference between these two values.  Recall that using the

same end-system as sender and receiver allows the same clock to be used for both time-

stamps, insuring an accurate measure of the end-to-end latency for the system.  Further,

the only bottleneck point in the system is the router.  As a result, the only factor contrib-

uting to any significant change in the end-to-end latency is the queue-induced latency on



273

the bottleneck router.  As such, end-to-end latency measurements can be compared to one

another in order to compare the queue-induced latency associated with different algo-

rithms or parameter settings.  As with bandwidth, the average multimedia latency is re-

ported across a given measurement period in multiple runs of the same configuration.

7.3. Frame-rate

Delivered frame-rate is a key performance measure for multimedia data.  Two meas-

ures come into play here: actual frame-rate and playable frame-rate.  The actual frame-rate

is based on the number of frames that arrive successfully at the receiver.  This measure

ignores any inter-frame encoding concerns such as lost reference frames.  The playable

frame-rate does consider inter-frame encoding and only counts frames that can be decoded

and played successfully.  It also does not include frames that arrive out of order if the pre-

ceding frames have already played.

In this work, Proshare traffic is generated and measured only at the packet level so no

frame-rate information is available.  Because of this, the resulting frame-rate for Proshare

cannot be computed since the frame a lost packet is associated with is unknown.  As a re-

sult one can not tell if the loss affects the audio or video frame-rate.  Moreover, two lost

packets may be part of different frames or a single video frame.  Thus, only packet rates

are reported for Proshare.

In contrast, the application level instrumentation of the MPEG traffic generator does

report the true frame-rate and playable frame-rate. Since the encoding scheme of MPEG is

based on dependencies between frames, the loss of one frame, or part of one frame, also

makes the frames that reference that frame useless.  As a result, the distribution of drops

can have a significant effect on the playable frame-rate, even as the drop-rate remains con-

stant.   Given the standard GOP of IBBPBB used by this trace, a single lost fragment in an

I-frame results in the effective loss of all of that GOP's frames in the playback stream.  Be-

cause some AQM algorithms may have a bias against large packets (or sequences of frag-

ments) like I-frames, this is a particularly relevant measure.



274

8. Summary

This dissertation empirically compares the behavior of CBT to other algorithms under

the same network conditions.  In addition, different parameter settings are also compared

for a given algorithm.  This appendix explained the details of the experimental methodol-

ogy used in conducting these experiments including network topology, traffic mixes, data

collection, and metrics considered.



277

APPENDIX B. CHOOSING OPTIMAL PARAMETERS

Before experiments can be conducted to compare algorithms to one another, fairness

of the comparison must be assured.  Towards that end, experiments were conducted to

determine the parameter settings which give optimal performance for each algorithm. Op-

timal performance is defined for each algorithm in terms of the goals of that algorithm.

For example, RED's goal is improved feedback to responsive flows and shorter queues.

On the other hand, FRED's primary goal is to provide fair sharing of network resources.

When there is no discernible difference in the primary metrics secondary metrics are con-

sidered.  For example, with RED the focus is first on TCP goodput as a measure of the

efficiency of TCP.  (Goodput is explained in Appendix A.)  If RED provides better feed-

back to the senders they should be able to more accurately adjust the loads they generate,

resulting in higher TCP goodput.  If the goodput is equivalent for multiple parameter set-

tings, then another metric, network latency, is used to distinguish between those settings.

Network latency is a reflection of average queue length, and minimizing average queue

length is another of RED's goals.  In contrast, when selecting the optimal parameters, met-

rics related to multimedia performance under RED are not emphasized because improving

multimedia performance was not a goal of RED's design.

Although selecting optimal parameters for each algorithm is important, it was also

necessary to limit the number of parameters considered both for practical concerns associ-

ated with finite experimental resources and because some of the parameters are known to

have more effect on the performance than others.  For RED, FRED, and CBT  the ex-

periments focused on the threshold settings while holding the weighting factor, the maxi-

mum drop probability, and queue length constant.  For other algorithms, parameters that

served the same general purpose as the thresholds were explored.  For CBQ, a wide range



278

of bandwidth allocations was considered.  For FIFO the only parameter, the queue size,

was varied.  Details of the analysis of each algorithm are discussed separately below.

First, the general experimental methodology is discussed.  After establishing the ap-

proach, the analysis of each algorithm is presented in turn and finally, the optimal pa-

rameter settings are summarized.

1. Methodology

To determine the optimal parameter settings, these experiments used a standard net-

work configuration in a private laboratory network as described in Appendix A.  In that

network configuration each queue management algorithm was tested on a bottleneck

router connecting a 100 Mb/s and a 10 Mb/s network.  The queue management algorithm

manages the queue servicing the 10 Mb/s link.   The traffic mixes used to evaluate each

algorithm and the reasons for selecting those mixes are detailed in the discussion of each

algorithm.  Detailed explanations of traffic mixes as well as the metrics measured can be

found in Appendix A.

In these experiments each algorithm was evaluated under different traffic conditions

and varied combinations of parameter settings. Initially a range of parameter combinations

was selected based on knowledge of the algorithm and previously published results. Then

one experiment was conducted for each of the selected parameter settings and the results

evaluated.  Some of those parameter settings were selected simply to confirm the hypothe-

sis that those settings would result in sub-optimal performance.   After evaluating these

initial runs, the experiments with parameters in a range that seemed likely to yield optimal

results were repeated and the focus shifted to selecting the optimal parameter combination

from this set of repeated experiments. Each experiment was repeated five or six times to

lessen the effect of any anomalous performance from a single run. Table B.1 shows an ex-

ample of the number of executions of each experiment in the evaluation of the RED algo-

rithm.  For RED, only the minimum and maximum threshold parameters were varied. Each

column is a setting of the maximum threshold and each row represents a setting for the

minimum threshold.  The values in the table represent the number of runs for each pa-

rameter combination. For example, there were 6 runs of the  (ThMin, ThMax) combination



279

(5,60) and 1 run of the combination (5,30).  Note that although the matrix shows all pa-

rameter combinations, only a subset of these was considered. The empty cells (e.g. (0,10))

indicate that no experiments were conducted for that parameter combination. Many of the

empty combinations are invalid because the maximum threshold would be less than the

minimum threshold.  These are darkly shaded in the table. In other cases combinations

were skipped because they would not add any information and practical concerns moti-

vated limiting the number of experiments conducted where possible.  Those cells are sim-

ply blank.  Such a grid is presented for each set of experiments.

Max
Min

10 15 20 30 40 60 80 100 120 180

0 1 5 5 5 5

2 1 5 5 5 5

4 1 5 5 5 5

5 1 2 1 2 5 6 6 6 6 5

10 2 1 5 5 5 6

15 2 5 5 5 5

20 1 5 5 5 5

25 1 5 5 5 5

30 5 5 5 5

60 5 5 6 4

120 5

Table B.1 Example Showing the Number of Runs for Each Parameter Combination.

Basing the decision to eliminate a parameter combination on a single run of an experi-

ment may seem unsound.  However, no parameter combination was ever discarded on the

basis of one run alone but, rather, on the pattern indicated by runs of a group of similar

parameter settings.   For example in Table B.1, after conducting one run of each parame-

ter setting it was evident that all experiments with a maximum threshold less than 30 had

poorer TCP performance than those with a maximum threshold greater than or equal to

30.  Because this result was consistent across all such runs and because it was expected

based on knowledge of the algorithm (explained in section III.3.2) those parameters were

eliminated.  Additional experiments were conducted only for maximum threshold settings

of 40 or greater.  Although the approach was iterative, in this document only the final re-

sults that include all runs are shown.  This presentation does not affect the resulting analy-

sis or conclusions.



280

Having established the experimental methodology, now proceed to consider the ex-

periments themselves.  First, FIFO's performance relative to queue size is considered.

Next RED and FRED and their performance relative to the maximum and minimum

threshold settings are studied.  Finally, the process for choosing the settings for CBT and

CBQ is explained and those parameters are demonstrated to be optimal.

2. FIFO

The FIFO, or drop-tail algorithm, has only one parameter: maximum queue size

(maxq).  (The FIFO algorithm is explained in chapter III.)  To choose the optimal value,

the queue size is varied at the bottleneck link and the resulting performance is examined.

Consider queue sizes of 30, 60, 120, 240, and 360 packets. Experiments were conducted

for all four of the traffic mixes (Appendix A).  The results were comparable for all mixes.

For brevity a subset of those experiments is presented here.  For each setting of maxq and

traffic mix the experiment was repeated 5 times. The results for the selected metric were

averaged over the measurement period. Those results were then averaged across all 5

runs.  Plots illustrating the performance of different metrics as queue size was varied are

presented below.  All of the plots will show the maximum queue size, in packets, along the

horizontal axis and the values of a particular metric along the vertical axis.

Latency was the first metric considered.  The maximum queue size should determine

an upper limit on the maximum average queue-induced latency.  This limit can be calcu-

lated using equation B.1.  Latency is a function of the average packet size, the maximum

queue size (maxq), and the link capacity, C.

C

sizepacket
Latency

maxq*_= (B.1)

In this experimental setup the link capacity was 10 Mb.  The average packet size var-

ied as a function of the traffic mix and as a function of the traffic mix enqueued.   How-

ever, the maximum packet size was 1,500 bytes, the size of the ethernet MTU.  So the

maximum average latency in milliseconds is 1.2 * maxq.  In these experiments the average

packet size is less than the maximum MTU so smaller latency values will often occur.



281

 Figure B.1 shows the end-to-end latency during the blast measurement period (when

all three traffic types are present).  As the maximum queue size increases so does the aver-

age latency.  The correlation is clearly linear.  This occurs because the traffic load, par-

ticularly the other traffic, exceeds the capacity of the bottleneck link.  As a result, the

overload keeps the queue full almost all of the time during the blast measurement period.

Consequently, the maximum queue size is limiting the average queue occupancy and, thus,

the average queue-induced latency.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Figure B.1  Latency (ms) vs. Maximum Queue Size (packets) with FIFO during the
Blast Measurement Period (HTTP-Proshare)

It is interesting to note that in the case of the BULK-Proshare traffic mix, the latency

is higher during the multimedia measurement period than it is during the blast measure-

ment period.  Figure B.2 (a) below shows the latency during the blast measurement period

while Figure B.2 (b) shows the latency during the multimedia period.  The higher latency

during the multimedia measurement period seems counter-intuitive.  Since the blast period

includes BULK, Proshare, and other traffic one might expect the queue occupancy, and



282

thus the latency, to be higher in that case.  However, the load is sufficient to keep the

queue fully occupied most of the time in both cases because BULK offers a high load.

Moreover, in the blast measurement period most of the BULK traffic has decreased its

load in response to congestion so most of the packets in the queue are of type other.  The

average packet size of other is 1,080 bytes.  However, in the case of the multimedia meas-

urement period, most of the packets in the queue are of type BULK.  The average packet

size of BULK is 1,500 bytes.   This difference in the average packet size also results in a

difference in the average queue occupancy in bytes and is the major reason for the latency

results observed.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

a) Blast Measurement Period a) Multimedia Measurement Period

Figure B.2 Latency (ms) vs. Maximum Queue Size (packets) with FIFO (BULK-
Proshare)

The central observation for latency is that the maximum queue size and queue-induced

latency are linearly related during periods of overload.  As a result, increasing the maxi-

mum queue size increases the queue-induced latency.  This argues for using a small maxi-

mum queue size.

However, the primary motivation to having a queue in a router is to allow for bursty

arrivals to be buffered and serviced during idle periods in order to maintain good link utili-

zation.  This argues for a large maximum queue size. Consider the effect of the maximum

queue size on the link utilization during the multimedia measurement period. The multi-

media measurement period is considered because the packet arrivals may be bursty enough

to illustrate the effects of queue drain on link utilization.  This contrasts with the blast

measurement period which has a higher traffic load leading to full queues almost all of the



283

time. Figure B.3 shows the average throughput on the bottleneck link during the multime-

dia measurement period.  Each data series represents one of the traffic mixes.  If the queue

size limits the router's ability to buffer bursty arrivals and avoid an empty queue, this

should be reflected in a higher average throughput on the bottleneck link.  Another factor

effecting the throughput on the bottleneck link is the actual load arriving at the router and

this varies between traffic mixes.  The loads for traffic mixes using HTTP are typically a

little lower than those using BULK and this is reflected in the results.  As Figure B.3

shows, there is little change in the throughput on the bottleneck link for the BULK-mpeg

and BULK-Proshare traffic.   In fact, for all of the traffic mixes and maximum queue sizes

the generated load is sufficient to saturate the link and hence the new is nearly fully util-

ized.  Because of the, the experiment does not give a strong indication of the actual benefit

of increased queue size for bursty traffic with conditions of moderate load.  However,

since these are the measurement periods and traffic combinations that will be used to

evaluate the queue management algorithms, this analysis is appropriate.  To choose the

optimal setting, note that in these experiments although the HTTP mixes have a bit more

variation, the queue size of 60 gives performance almost as good as any other value for all

of the traffic mixes.  Given that a smaller maximum queue size results in significantly bet-

ter latency these results indicate a queue size of 60 is the current likely optimal setting.



284

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

BULK_BLAST__mpeg

BULK_BLAST__proshare

HTTP_BLAST__mpeg

HTTP_BLAST__proshare

Figure B.3 Maximum Queue Size (packets) vs. Throughput (KB/s) with FIFO for All
Traffic Mixes during Multimedia Measurement Period

Generally, as expected, FIFO gives poor performance for the other metrics during the

blast measurement period. Multimedia packet loss is high and frame-rate is low during the

blast measurement period because the other traffic is able to dominate the queue.  Figure

B.4 shows the packet loss rate for Proshare during the blast measurement period and

Figure B.5 shows the frame-rates for MPEG.   The key observation for choosing the op-

timal parameter setting for FIFO is that the loss-rate and frame-rate are relatively invariant

and unacceptable with respect to the maximum queue size.



285

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

Figure B.4  Maximum Queue Size (packets) vs. Packets Lost (packets/second) for
FIFO with HTTP-Proshare during Blast Measurement Period

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

a) MPEG True Frame Rate b) MPEG Playable Frame Rate

Figure B.5 Maximum Queue Size (packets) vs. Frame-rate (frames/second) for FIFO
with HTTP-MPEG during the Blast Measurement Period

One of the reasons for the poor multimedia performance is that the UDP blast is able

to dominate the queue managed by the drop-tail (FIFO) algorithm.  Because the UDP

blast is high bandwidth and unresponsive the drop-rate is very high for all packets.  How-



286

ever, even with a large percentage of packets dropped, the UDP blast still gets high

throughput while lower bandwidth flows like multimedia have their throughput decreased

significantly.  This is evident in Figure B.6.  During the blast measurement period the TCP

throughput on the bottleneck link is approximately 150 KB/s while the other throughput

(the UDP blast) has throughput of 1,000 KB/s.  Once again, in choosing the optimal

queue length for FIFO, the key observation is that the performance is relatively invariant

as the queue size changes.  If anything the TCP throughput decreases slightly as the queue

size increases.  This argues slightly against increasing the maximum queue size.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

a) TCP Throughput b) Other Throughput

Figure B.6  Maximum Queue Size (packets) vs. Throughput (KB/s) with FIFO during
the Blast Measurement Period

The optimal maximum queue size for FIFO in these experiments is 60 packets.  This

conclusion is based on the following observations:

• Latency is directly correlated with the queue size, increasing as the queue size in-

creases.

• Although the link utilization is relatively uniform for all traffic mixes and queue

sizes, a queue size of 60 offers performance equal to or better than the other set-

tings, particularly the queue size of 30 packets for the HTTP mixes.

• Multimedia loss rate and frame-rate do not change relative to queue size.

• Throughput for TCP and other traffic classes does not vary relative to queue size.



287

Since latency is the only metric strongly effected by the queue size, a small queue size

should be used to minimize latency.  The link utilization metric encourages the selection of

a maximum queue size of 60 instead of 30.

3. RED and FRED Analysis

Next, consider the selection of optimal parameters for RED and FRED.  Because most

of the parameters and much of the analysis for RED and FRED are similar, it is convenient

to address some issues that apply to both.  The focus here is on the values of the minimum

and maximum threshold parameters for each algorithm, while holding the other parameters

constant. The reason for this decision will become apparent as the experiments are dis-

cussed.

To begin, to determine the optimal parameter settings each algorithm must be evalu-

ated with a range of threshold settings. Charts representing the individual performance

metrics for the combination of parameter settings are considered.  Those parameter com-

binations that offer poor performance are eliminated through the analysis of different met-

rics until only parameter settings that offer good performance across all key metrics re-

main.  Before beginning the actual analysis it is helpful to explain the charts and tables

used in making this analysis.

3.1. Understanding the Charts and Figures

Figure B.7 shows an example table and chart for analyzing one of the performance

metrics (latency) under RED.  The caption for the figure indicates the metric (latency),

traffic mix (HTTP and Proshare), measurement period (Blast), and the algorithm (RED)

used for this set of experiments.  The chart is a three dimensional bar graph with each bar

representing the results of an experiment.  The maximum threshold setting (max is short-

hand for ThMax) runs along one horizontal axis and the minimum threshold setting (min is

shorthand for ThMin) runs along the other horizontal axis.   These are the RED thresholds

on the average queue occupancy in packets.  Note that although the threshold values are

numeric labels on these axes, the numeric values are indices to identify the parameter

combination and not a scale.  For example, the increment from a minimum threshold of 0

to 2 is the same size in the chart as the increment from 60 to 120.  Also note that the col-



288

ors group values by the minimum threshold setting.  That is, all runs with the same mini-

mum threshold setting have the same color.   For example, all experiments with a mini-

mum threshold value of 0 are represented by light blue bars.  (For careful study, obtaining

a color copy of this document is recommended.)  The vertical axis is the metric being con-

sidering.  In this case the metric is network latency as measured with the instrumented

multimedia application, Proshare.   The value represented by a given bar is the value of the

metric averaged over the measurement period and across all runs with that parameter

combination.  More specifically, in the case of latency, the instrumented Proshare applica-

tion reports the mean latency over one second intervals. Tthe values reported during the

measurement period for a given run are then arithmetically averaged to obtain that run's

mean latency.  Finally, the arithmetic average of the mean latency values reported for all of

the runs is computed and that value reported.  The chart offers a graphical representation

of the data that allows one to discern trends and relationships visually.  For example, in

this plot one can see that the latency value is correlated with the maximum threshold value

but not the minimum thresholds.



289

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 27 35 50 98 146
2 28 34 50 98 147
4 27 35 50 98 147
5 13 16 21 28 35 51 67 83 99 147

10 16 29 34 51 99 148
15 28 34 52 98 147
20 28 34 51 98 147
25 27 36 51 99 146
30 35 51 99 147
60 67 83 99 147
120 147

Figure B.7 Latency (ms) during Blast Measurement Period for RED and HTTP and Pro-
share

For more precise analysis, the data is also presented in tabular form.  The table beneath

the chart is another representation of the same data.  Each column represents a setting of

the maximum threshold and each row represents a setting of the minimum threshold.  The

contents of each cell represent the average value of the metric with the combination of pa-



290

rameters for that row and column.  For example, the experiment with a minimum thresh-

old of 10 and a maximum threshold of 40 had an average latency of 34 ms.

As the analysis of parameter settings proceeds some parameter combinations are

eliminated from consideration.  Shading in the tables indicates parameter combinations

that are eliminated.  Dark gray shading indicates combinations previously eliminated by

analysis of other metrics.  For example, as we will later see, the values in Figure B.7 with

minimum threshold values of 5 or less were eliminated after analysis of the same experi-

ments with respect to another metric which is not shown for this example.  In this case,

while analyzing the effects of the parameters on throughput it was evident that minimum

threshold values of 5 or less gave unacceptable throughput.  Light gray shading indicates

combinations eliminated by the current metric.  For example, if maintaining average net-

work latency of less than 50 ms were a concern, these results would indicate all combina-

tions with a maximum threshold value of 60 or more are unacceptable.  Those values are

shaded with light gray.  When combinations have poor performance with respect to the

current metric and a previous metrics (e.g., (5,60)) those cells remain shaded with dark

gray.  Finally note that shading of the row or column labels indicates all runs using that

threshold setting have been eliminated.   For example all rows representing minimum

threshold settings of 5 or less are darkly shaded, indicating those values were eliminated

by a prior metric.  Those cells that are not shaded remain in contention as optimal pa-

rameter settings.

3.2. Fixed Parameters

While the threshold values were varied, RED's and FRED's other parameters remained

constant. Thresholds have the most direct effect on the performance of the network with

the RED and FRED algorithms they were examined and the other parameters of the algo-

rithms were held constant.  For both algorithms, the queue length was 240, the weight

factor was 1/256, and, the maximum drop probability was 10%.  Additionally, FRED’s

minq value was set to 2.  The drop probability and minq values were selected based on the

recommendation of the algorithm designers.    The RED designers recommend this value

of maxp based on the fact it is a slightly higher drop probability than that seen in the



291

steady state in a router [Floyd97a].   The FRED designers recommend using a minq of 2 in

their work [Lin97].  This value of minq is intended to insure that all flows can have a few

packets enqueued even when severely constrained.

The choice of the weighting factor and the queue size are intertwined.  The weighting

factor can be thought of as a "time constant" that determines how closely the instantane-

ous queue occupancy and the weighted average are bound together [Floyd97a].  If the

weight is too high, the average will be too sensitive to bursty behavior.  If the weight is

too low, the average will not indicate congestion until the queue is overflowing.   Even

more, the weighting factor determines how large a packet burst the queue can accommo-

date without triggering the dropping mode of the RED algorithm.  Equation B.2 shows

the weighted average that results when a burst of L packets arrives at an idle queue.  This

equation is explained in [Floyd93].

( )
q

L
q

w

w
Lavg

11
1

1 −−
++=

+

(B.2)

 In this work the queue size was set large enough to insure it would not be a factor in

he dropping scheme.  Maintaining an average queue size small enough to insure reason-

able queue-induced latency, on the order of 40 packets, was also a concern.  With a

weighting factor of 1/256 a burst of 158 packets would result in an average queue size of

40.39 packets, more if the average was greater than zero initially.  As such, the weighting

factor of 1/256 and queue size of 240 are sufficient.

4. RED

Thresholds have the most direct effect on the performance of the network with the

RED algorithm.  As a result, choosing the optimal threshold values is the focus here.  The

settings for RED's other parameters, the weighting factor, maximum drop probability, and

queue size, are held constant throughout so that the effect of varying threshold settings

can be isolated.  The choice of the fixed parameter values was discussed in Section 3.2.

Here, the threshold settings and their effects are examined.



292

4.1. RED Threshold Settings

In selecting optimal parameters for RED, first the following metrics were considered

in the order listed:

1. Goodput for TCP.

2. Aggregate Throughput.

3. TCP Efficiency.

4. Network Latency.

RED's design goals include elements that concern each of these metrics.  First, RED

wishes to offer better feedback to responsive flows.  If feedback is effective, the flows

should be able to stabilize at a load that minimizes retransmissions and losses while still

obtaining high throughput.  This is best measured by examining the goodput across all

TCP flows.  While the RED algorithm seeks to provide effective feedback by discarding

packets when congestion is imminent, it also seeks to avoid unnecessary drops in the face

of bursty traffic which may lead to an empty queue and idle outbound link.  Aggregate

throughput on the outbound link is an effective metric for assessing the parameter settings

in this regard.  If the parameter settings lead to unnecessarily aggressive packet discards,

the queue will empty and, consequently, the outbound link will have idle periods, resulting

in lower average aggregate throughput.

After considering aggregate throughput, TCP efficiency is the next metric considered.

It is another, more precise measure of the effectiveness of the feedback.  This efficiency is

expressed as the ratio of TCP throughput on the outbound link to the TCP load on the

inbound link.  If the feedback mechanism is effective, the senders should be able to adjust

their load to match the available capacity resulting in throughput equal to the generated

load and efficiency approaching 1.0.  Finally, one of RED's goal is to maintain shorter av-

erage queues, both to leave room to accommodate bursts and to minimize queue-induced

latency.  Because the bottleneck router's queueing delay is the only source of latency in

this network configuration, measuring the network latency between the sender and re-



293

ceiver can estimate the average queue length. This latency is measured using the instru-

mented multimedia applications.

Using these metrics eliminates many of the possible parameter combinations but pa-

rameter combinations that offer no discernible difference in performance remain.  The

choice between those alternatives relied on the recommendations of the designers of the

RED algorithm and the studies they conducted in their original work.

With this elimination process established, consider the experiments themselves.  While

selecting the optimal parameters for RED, the HTTP and Proshare traffic mix was used

for the base set of experiments. The same type of experiments were then conducted with a

more limited parameter space for the BULK and Proshare traffic mix. These traffic mixes

were considered because RED's focus is on improving feedback for responsive flows.  As

a result, the performance of the TCP traffic is the emphasis. Hence, performance with

MPEG is not examined for these experiments.  Moreover, RED has no mechanisms for

distinguishing between either individual flows or classes of flows.  As such, the MPEG

and Proshare traffic types are both simply unresponsive flows that generate approximately

150-200 KB/s of load on the network.  Although it is possible that the RED parameter

settings will have different effects on those two multimedia types that issue is deferred un-

til the multimedia performance is considered when the algorithms are compared to one

another.  This choice is made because RED does not intend to improve multimedia per-

formance.  And hence, the multimedia performance is not a concern as a metric for se-

lecting the optimal parameters of RED.  However, RED does intend to give better feed-

back to responsive flows.  Consequently, TCP performance is a concern so the TCP traffic

types are varied.  Because HTTP and BULK flows represent two extremes both in life-

time, bandwidth, and number they may respond differently to the different drop distribu-

tions resulting from the different parameter settings.  This leads to considering the traffic

mixes first of HTTP and Proshare and then of BULK and Proshare while selecting the op-

timal parameters.



294

4.1.1. HTTP and Proshare

While evaluating RED, the minimum thresholds on average queue occupancy ranged

from 0 to 120 and the maximum thresholds ranged from 10 to 180.  Table B.2 shows the

number of experiments conducted for each parameter combination.   The effect of these

parameter combinations on each of the key metrics is considered below.

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

0 1 5 5 5 5
2 1 5 5 5 5
4 1 5 5 5 5
5 1 2 1 2 5 6 6 6 6 5

10 2 1 5 5 5 6
15 2 5 5 5 5
20 1 5 5 5 5
25 1 5 5 5 5
30 5 5 5 5
60 5 5 6 4
120 5

Table B.2 Count of RED Experiments for Each Parameter Combination with HTTP-
Proshare

The analysis begins by considering the performance of a traffic mix of HTTP and Pro-

share across the different RED threshold combinations.  The initial criterion for evaluating

the parameters is the resulting TCP goodput. RED should insure that TCP throughput re-

mains high and should provide effective feedback to the senders since packets dropped by

RED are distributed evenly across flows.  Although RED's signaling mechanism, packet

drops, necessitates retransmissions, these retransmissions should be minimized if the drops

are well distributed.  To evaluate RED's effectiveness in this regard, consider the goodput

metric.  TCP goodput is the amount of unique TCP data that successfully reaches the re-

ceiver.  Unnecessary retransmissions or dropped packets may contribute to the throughput

on a given link, but the capacity they consume is wasted if they do not contribute to the

end-to-end TCP goodput.  RED seeks to insure both that TCP throughput remains high

and that TCP flows' use of the network is efficient.  Goodput is an effective measure of

both of these criteria.  However, ranging the parameter settings had little effect on good-

put.  Figure B.8 shows the TCP goodput for RED during the multimedia measurement



295

period with Proshare and TCP traffic.  The goodput is uniformly in the 900-1000 KB/s

range.  Multimedia consumes ~150-200 KB/s of capacity so the TCP traffic appears to

have stabilized at a load that is near the available capacity of the bottleneck link.  Based on

this metric no parameter combinations can be eliminated.

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

0 903 964 986 946 989
2 981 948 960 924 968
4 940 976 936 967 951
5 945 909 896 962 954 958 949 954 965 946

10 964 957 951 975 962 964
15 952 939 965 992 939
20 972 952 983 966 991
25 902 938 958 945 916
30 917 954 910 984
60 956 952 950 966
120 986

Figure B.8 TCP Goodput (KB/s) During Multimedia Measurement Period with RED for
HTTP and Proshare.



296

Next, consider the aggregate throughput on the outbound link.  The performance as

measured by this metric is shown in Figure B.9.  This figure shows the aggregate through-

put during the multimedia measurement period.  Note that the Z axis (link utilization)

starts at 1000 KB/s and ranges up to 1250 KB/s.   The results are magnified in this way to

discern any trends that might not be apparent with a larger scale.   This data indicates the

link is operating at 85-95% of capacity in these experiments.  However, again there are no

obvious trends to indicate a relationship between the parameters and the performance of

this metric so no parameter combinations are eliminated.



297

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

1,000.00

1,050.00

1,100.00

1,150.00

1,200.00

1,250.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 1,083 1,149 1,175 1,141 1,179
2 1,168 1,130 1,150 1,115 1,157
4 1,134 1,155 1,127 1,155 1,140
5 1,122 1,091 1,058 1,158 1,132 1,141 1,141 1,141 1,147 1,137

10 1,149 1,124 1,130 1,157 1,147 1,149
15 1,141 1,120 1,153 1,175 1,123
20 1,171 1,135 1,165 1,152 1,174
25 1,101 1,133 1,142 1,135 1,101
30 1,093 1,137 1,092 1,173
60 1,148 1,134 1,138 1,153
120 1,174

Figure B.9 Aggregate Throughput (KB/s) during Multimedia Measurement Period with
RED for HTTP and Proshare

Since goodput and aggregate throughput did not indicate optimal parameters, next

consider efficiency.  The key to maintaining high efficiency is effectively notifying respon-

sive senders when congestion is imminent without giving false signals because of bursty

packet arrivals.  Achieving this effect requires carefully balancing the minimum and maxi-

mum threshold values.  Setting the maximum threshold too small can result in false signals



298

because a small burst may increase the average queue occupancy enough to reach the

maximum threshold and trigger forced drop mode.  Clearly, dropping all arriving packets

due to a single burst of packets would result in very low efficiency.  Moreover, even with

a large maximum threshold, setting the minimum threshold too close to the maximum

threshold limits the time flows have to respond to actual congestion.  Recall that it takes

one round-trip time for the senders to detect a dropped packet and adjust their transmis-

sion window. During that interval the average queue size continues to grow as the senders

maintain their load.  As a result, a smaller range between the thresholds means the drop-

rate grows very quickly (as the average approaches the maximum threshold), resulting in

lower efficiency.  Therefore, it is important to maintain a reasonable range between the

minimum and maximum thresholds.  Moreover, the average may reach the maximum

threshold and trigger the forced drop mode when the range is small.  Whenever RED is in

the forced drop mode efficiency will suffer greatly as all arriving packets are dropped.

However, efficiency should improve as the maximum threshold is increased and a reason-

able range between the thresholds is maintained.

Figure B.10 shows the efficiency metric during the multimedia measurement period

and Figure B.11 shows the efficiency metric during the blast measurement period.  For

RED, during the multimedia measurement period the outbound TCP traffic is roughly 95-

98% of the inbound and the ratio is fairly uniform across all of the parameter settings.

However, the settings with a maximum threshold greater than an average queue occu-

pancy of 30 packets have better efficiency than those with a smaller maximum threshold

setting.  Therefore, the parameter combinations with a maximum threshold of 30 packets

or less are eliminated.



299

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 0.97 0.96 0.95 0.98 0.97
2 0.92 0.96 0.96 0.97 0.98
4 0.97 0.95 0.97 0.97 0.97
5 0.89 0.95 0.94 0.95 0.95 0.96 0.98 0.98 0.97 0.98

10 0.88 0.93 0.94 0.96 0.97 0.97
15 0.94 0.96 0.97 0.96 0.97
20 0.94 0.96 0.96 0.97 0.96
25 0.97 0.97 0.97 0.98 0.98
30 0.96 0.97 0.98 0.97
60 0.98 0.98 0.97 0.98
120 0.97

Figure B.10 TCP Efficiency during the Multimedia Measurement Period with RED for
HTTP and Proshare

During the blast measurement period (Figure B.11) the efficiency ratio is much worse,

with only about 60-64% of the inbound TCP traffic making it to the outbound link.

Clearly, the TCP sources have trouble adjusting their load to match the available capacity.

However, once again, the efficiency is nearly uniform across all of the available parameter



300

combinations.  This indicates the overload resulting from the presence of the aggressive,

unresponsive UDPblast is the major factor in this performance.  However, once again the

maximum threshold settings of 30 or less have slightly worse performance, reinforcing the

decision to eliminate them.

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 0.62 0.63 0.63 0.63 0.63
2 0.63 0.62 0.63 0.63 0.65
4 0.64 0.63 0.63 0.63 0.63
5 0.59 0.60 0.60 0.62 0.62 0.62 0.62 0.63 0.63 0.63

10 0.60 0.60 0.63 0.62 0.63 0.63
15 0.60 0.63 0.63 0.64 0.63
20 0.60 0.63 0.63 0.62 0.63
25 0.61 0.62 0.63 0.64 0.63
30 0.63 0.63 0.64 0.64
60 0.63 0.64 0.63 0.64
120 0.64

Figure B.11 TCP Efficiency during Blast Measurement Period with RED for HTTP and
Proshare



301

Note that the very low efficiency rating during the blast period should not be inter-

preted to indicate TCP does not reduce its load in response to the congestion caused by

the UDP blast.  As shown in Figure B.12, TCP's load reduces to less than ~500 KB/s.

However, the UDP blast is capable of consuming the entire capacity of the bottleneck link.

Even with well distributed drops, TCP's throughput on the outbound link, shown in Figure

B.13, is only ~300 KB/s.  The problem is that while the load does decrease, it only de-

creases in half, while the throughput on the outbound link decreases to 30% of the per-

formance during the period without the blast. TCP's inability to reduce its load in this sce-

nario is attributed to the number of flows involved.  With the large number of active TCP

flows, there are always enough flows probing for available link capacity (or, in the case of

HTTP starting a connection) to maintain a load of 500 KB/s.



302

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 505 485 497 484 463
2 496 516 482 481 451
4 475 495 487 468 461
5 423 466 469 517 492 502 483 481 462 467

10 501 510 493 486 470 483
15 523 478 500 460 465
20 511 500 485 499 475
25 481 500 484 457 457
30 493 483 470 450
60 459 452 470 442
120 448

Figure B.12  TCP Load (KB/s) during Blast Measurement Period with RED for HTTP
and Proshare



303

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1,000.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 312 307 314 305 293
2 314 319 305 303 290
4 302 311 307 297 293
5 250 280 282 319 307 312 301 302 292 294

10 299 307 309 303 297 305
15 314 300 313 292 293
20 306 313 305 311 297
25 295 311 305 292 289
30 309 306 298 286
60 291 288 297 282
120 288

Figure B.13 TCP Throughput (KB/s) during Blast Measurement Period with RED for
HTTP and Proshare

To select a suitable set of parameters, consider network latency as a measure of the

effectiveness of RED. The latency should be directly related to the maximum threshold

setting.  The maximum threshold places an upper limit on the average queue occupancy

and the queue occupancy determines the queue-induced latency.  Recall that in these ex-

periments an aggregate load is maintained that usually exceeds the capacity of the bottle-



304

neck link during the multimedia measurement period and always exceeds the capacity

during the blast measurement period.  As a result the queue occupancy and queue-induced

latency is limited by the maximum threshold's limit on the average queue occupancy.

The queue-induced latency can be predicted as a function of the capacity of the out-

bound link, the average packet size, and the maximum threshold.  If the link is continu-

ously congested the queue will build up and have an average occupancy equal to the

maximum threshold.  Any arriving packet will be delayed for the time necessary to service

the packets ahead of it in the queue.  Since the queue is serviced at the rate of the out-

bound link and the link's capacity is expressed in bytes per second, to determine the length

of the queue-induced delay the queue occupancy must be expressed in bytes.  The occu-

pancy of the queue in bytes is the product of the occupancy in packets and the average

packet size. The average latency can then be calculated by dividing the average queue oc-

cupancy in bytes by the capacity of the outbound link as shown in B.3.

outbound

Max

C

Thsizepkt
Latency

*_= (B.3)

This equation can be used to predict the results of the experiments.  Consider an ex-

ample. Figure B.14 shows the network latency measure during the blast measurement pe-

riod. During the blast measurement period the observed latency with a maximum threshold

of 120 ranges from 98-99 ms. Compare this to the expected value using Equation B.3.  In

this configuration the queue services a link with a capacity of 10Mb/s and an average

packet size of 1,000 bytes.  The calculated latency for 1,000 byte packets and an average

depth of 120 packets is 96 milliseconds. The difference of 2-4 milliseconds between this

value and the observed value is because 2-4 milliseconds is the actual time required for the

packet to traverse the network and sender and receiver protocol stacks when the network

is not congested.  The latency measurements, particularly those during the blast measure-

ment period, clearly confirm that maximum threshold and network latency are directly re-

lated.  Moreover, the results show no relation between the minimum threshold and the la-

tency.



305

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 27 35 50 98 146
2 28 34 50 98 147
4 27 35 50 98 147
5 13 16 21 28 35 51 67 83 99 147

10 16 29 34 51 99 148
15 28 34 52 98 147
20 28 34 51 98 147
25 27 36 51 99 146
30 35 51 99 147
60 67 83 99 147
120 147

Figure B.14 Network Latency (ms) during Blast Measurement Period for RED with
HTTP and Proshare

Figure B.15 shows that the maximum threshold is also related to the latency for RED

during the multimedia measurement period.  Although the relationship is not as strong, it

is apparent.  The relationship is not as strong because the link is not severely overloaded

during the multimedia measurement period.  As a result, the RED algorithm is effective in



306

managing the queue size so an average queue occupancy equal to the maximum threshold

is not maintained.

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 0.
00

2.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

max

min

Max
Min

10 15 20 30 40 60 80 100 120 180

0 11 17 24 24 33
2 18 16 19 25 29
4 12 19 19 31 31

5 9 10 10 16 17 19 19 21 25 28

10 12 16 19 21 28 46
15 17 18 23 38 31
20 19 19 26 35 48
25 14 19 24 30 24
30 18 26 24 44
60 35 37 47 55
120 82

Figure B.15 Network Latency (ms) during Multimedia Measurement Period with RED for
HTTP and Proshare

Because link utilization seemed best for maximum threshold values greater than 40, only

consider the latency values that result from setting ThMax greater than 40. Since latency

decreases with the maximum threshold, examining the results during the blast measure-



307

ment period (Figure B.14) reveals that the latency values for a maximum threshold of 40

and 60 are generally the lowest among those settings still under consideration.  The la-

tency values for a maximum of 60 is generally ~50ms and the latency values for a maxi-

mum threshold of 40 are generally ~35ms.   As a result, a maximum threshold of 40 is

chosen.  Although this ThMax is rather small, note that because this threshold setting is

compared to the average queue size, not the instantaneous, it does still allow the queue to

accommodate larger bursts during periods when the network is not congested.  As a re-

sult, end-to-end latencies as high as 158 ms are possible if the queue size is large enough,

though rare, due to a burst (see section 3.2) but the average should be around 35ms.

Based on the queue-induced latency metric all values with a maximum threshold of 60 or

more are eliminated.

Parameter settings including a wide range of minimum threshold settings combined

with a maximum threshold of 40 remain.  With no other key metrics to consider, consider

the recommendations of the original designers or RED [Floyd97a]. They point out the

minimum threshold should be kept small to insure feedback whenever a queue begins to

build.  However, they also note setting the minimum threshold as small as one or two

packets does not allow for much burstiness in the arrival process without triggering the

random drop mechanism.  As a result, they recommend a minimum threshold setting of 5.

Although the expected difference in performance is not evident in these experiments, this

recommendation is accepted.  Thus, for RED, threshold values of (5,40) should be used as

the optimal setting.

4.2. BULK and Proshare

While the previous section considered the performance of RED with HTTP and Pro-

share traffic, this section repeats the evaluation using BULK as the TCP load.  Table B.3

shows the parameter combinations considered for this traffic mix.  A smaller set of ex-

periments were used with this traffic mix because the results of these experiments were

expected to confirm the findings with HTTP and Proshare.  If discrepancies had appeared,

the parameter space would have been explored in more detail as necessary.



308

MaxTh
MinTh

15 30 60 120 180

5 6 5 2 5 4
15 4 2 5 5
30 2 5 4
60 5 4

Table B.3 Count of RED Experiments for Each Parameter Combination with BULK and
Proshare.

In fact, the analysis of these experiments did confirm the parameter selections from

HTTP and Proshare.  Analysis of the goodput, aggregate throughput on the bottleneck

link, and efficiency metrics did not indicate any optimal parameters (though efficiency and

goodput did once again increase slightly as maximum threshold increased).  The latency

results were consistent as well.  Average latency increased as a function of the maximum

threshold just as with the HTTP and Proshare traffic mix.  These findings reaffirm the se-

lection of (5,40) as the optimal threshold settings for RED.

There was one interesting finding in these experiments, however.  Although the effi-

ciency during the multimedia measurement period was nearly uniform, it was significantly

lower with BULK and Proshare (74-77%) than it was with HTTP and Proshare (95-99%).

This result is discussed when the efficiency data is presented below.



309

15.00
30.00

60.00
120.00

180.00 5.00
15.00

30.00
60.00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max
min

MaxTh
MinTh

15 30 60 120 180

5 983 1,008 1,016 1,011 1,008
15 1,011 1,015 1,007 1,010
30 1,008 1,006 1,005
60 1,007 1,009

Figure B.16 TCP Goodput (KB/s) During Multimedia Measurement Period with RED for
BULK and Proshare.

Just as with HTTP, this analysis begins by examining the TCP goodput.  The TCP

goodput during the multimedia measurement period, shown in Figure B.16, is similar to

what was observed with HTTP and Proshare.  The goodput is relatively uniform, although

the goodput is a little worse for the maximum threshold value of 15.  However, no pa-

rameter settings are eliminated based on this performance metric.



310

Next consider aggregate throughput on the bottleneck link during the same period.

Figure B.17 shows the aggregate throughput on the outbound link.  Once again the results

are uniform so parameter settings are eliminated.

15.00
30.00

60.00
120.00

180.00 5.00
15.00

30.00
60.00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

max
min

MaxTh
MinTh

15 30 60 120 180

5 1,168 1,187 1,206 1,201 1,183
15 1,197 1,206 1,185 1,187
30 1,199 1,196 1,186
60 1,197 1,190

Figure B.17 Aggregate Throughput (KB/s) during Multimedia Measurement Period with
RED for BULK and Proshare



311

Next, RED’s efficiency without the blast is shown in Figure B.18.  About 75% of the

inbound TCP traffic reaches the outbound link.  Once again, changing the thresholds does

not affect the efficiency so no parameters can be eliminated based on this metric.

15.00
30.00

60.00
120.00

180.00 5.00
15.00

30.00
60.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

max
min

MaxTh
MinTh

15 30 60 120 180

5 0.74 0.73 0.74 0.77 0.76
15 0.73 0.75 0.75 0.77
30 0.78 0.76 0.77
60 0.77 0.77

Figure B.18 TCP Efficiency during Multimedia Measurement Period with RED for BULK
and Proshare

Recall that using the HTTP and Proshare traffic mix efficiency values between 94%

and 98% were observed during the multimedia measurement period. This is because

HTTP and Proshare generated a load near the capacity of the bottleneck link.  However,

BULK alone is able to exceed the capacity of the bottleneck link.  As a result, BULK's

behavior during the multimedia measurement period is somewhere between that of HTTP

during the measurement and blast periods.  The network is more overloaded than the mul-

timedia measurement period for HTTP and Proshare, but less overloaded than the blast



312

measurement period.  As a result, the BULK flows are constantly probing for excess ca-

pacity and then backing off again, leading to the overload.

Next, consider TCP efficiency during the blast measurement period, as shown in

Figure B.19.  RED consistently gives 61-63% efficiency during the blast.  This measure

does nothing to indicate a preferred threshold setting.

15.00
30.00

60.00
120.00

180.00 5.00
15.00

30.00
60.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

max
min

MaxTh
MinTh

15 30 60 120 180

5 0.61 0.62 0.61 0.61 0.60
15 0.61 0.62 0.61 0.60
30 0.62 0.61 0.60
60 0.61 0.60

Figure B.19 TCP Efficiency during Multimedia Measurement Period with RED for BULK
and Proshare

Finally, consider network latency in order to try to identify the optimal threshold set-

tings.  Figure B.20 shows the network latency measured using the instrumented Proshare

traffic generator. The latency increases as the maximum threshold increases but is inde-

pendent of the minimum threshold.  The queue-induced latency latency equation  (B.3)

holds again.  BULK packets are bigger on average than the HTTP packets, resulting in



313

average packet size of ~1,400 bytes.  For this average packet size, a link capacity of 10

Mb/s, and a threshold of 60, latency of 67 ms is expected and a latency of 66 ms is ob-

served for thresholds (5,60).

Note that the HTTP and Proshare mix only reached the expected latency limit during

the blast measurement period while BULK and Proshare reached the limit during the mul-

timedia measurement period.  This happens because the BULK traffic alone can overload

the bottleneck link, resulting in near constant overload and a queue occupancy near the

maximum threshold.  With HTTP and Proshare, this network state only occurred when the

blast was active.

15.00
30.00

60.00
120.00

180.00 5.00
15.00

30.00
60.00

0.00

50.00

100.00

150.00

200.00

250.00

max
min

MaxThMinTh
15 30 60 120 180

5 17 32 66 133 198
15 32 65 133 199
30 65 133 199
60 133 200

Figure B.20 Network Latency (ms) during Multimedia Measurement Period for RED with
BULK and Proshare



314

These latency results reiterate the observations from the HTTP experiments, keeping

the maximum threshold small minimizes latency. Those values that result in latency greater

than 50 milliseconds, those with maximum threshold of 60 or greater, are eliminated.

Since none of the results from the BULK experiments conflict with the observations with

HTTP traffic, and HTTP traffic accounts for 70% of the flows in the Internet, the previ-

ously selected threshold values of (5,40) are maintained.

5. FRED

Next, consider the selection of optimal parameters for FRED.  As with RED, practical

considerations demand that this work focus on a subset of the parameters.  As with RED,

the two parameters expected to have the greatest impact are the minimum and maximum

thresholds. The other parameters are held constant (Section 3.2) and the effects of ranging

the minimum and maximum thresholds are examined.  After determining the values for the

constant parameters, the next task was determining the range of threshold combinations to

consider.  As with RED, every possible combination of threshold settings was not ex-

plored. Further, once trends were established from examining single runs for all the se-

lected parameter combinations, the focus turned to the optimal range of combinations and

additional experiments were conducted with those settings to validate those results.  Table

B.4 shows the parameter combinations considered and the number of runs for each.  The

criteria for evaluating these parameters is explained below.



315

MaxThMinTh
10 15 20 30 40 60 80 100 120 180

2 5 5 5 5 5
3 5 5 5 5 5
4 5 5 5 5 5
5 1 1 1 1 5 5 5 5 5 5

10 1 1 5 5 5 5 5 5
15 1 5 5 5 5 5 5
20 1 5 5 5 5 5 5
25 1 5 5 5 5 5 5
30 5 5 5 5 5 5
60 5 5 5 5

120 5

Table B.4 Count of FRED Experiments for Each Parameter Combination with HTTP-
Proshare

Choosing the optimal parameter settings for FRED differs from RED in that while

FRED’s primary goal is to offer good performance for responsive flows (i.e. TCP) it also

has a secondary goal of encouraging fairness.  FRED seeks to divide the network band-

width fairly between flows, thereby limiting the effect of unresponsive flows.  Thus, the

first metric examined is the TCP goodput during periods with only TCP and Proshare run-

ning.  Next, the overall link utilization is considered.  If necessary, how other traffic is

constrained will be examined.  Finally, latency will be considered.



316

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0

200

400

600

800

1,000

1,200

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 928 885 912 890 919

3 959 942 929 953 957

4 987 964 897 960 973

5 956 952 964 845 944 975 977 942 969 976

10 943 846 920 955 910 943 961 882

15 926 934 929 942 957 979 950

20 947 944 942 964 977 949 978

25 976 943 933 973 936 948 967

30 965 953 937 893 961 926

60 980 995 993 993

120 960

Figure B.21 TCP Goodput (KB/s) During the Multimedia Measurement Period with
FRED for HTTP-Proshare

Figure B.21 shows TCP goodput during the multimedia measurement period.   As

with RED, the performance is fairly uniform. However, a ThMin value of 2 has throughput

that is 10% worse than larger settings.  A few other scattered data points also offer lower

performance and are so indicated with shading.  No parameter settings are eliminated

based on these parameter settings alone.  However, they will be shaded lightly to note



317

their suspect performance thus far.  To further refine the parameter settings, next consider

overall link utilization.

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

1,000.00

1,050.00

1,100.00

1,150.00

1,200.00

1,250.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 1,111 1,067 1,090 1,082 1,109

3 1,145 1,123 1,120 1,143 1,140

4 1,172 1,150 1,083 1,145 1,158

5 1,144 1,132 1,145 1,033 1,128 1,168 1,166 1,128 1,145 1,153

10 1,132 1,035 1,105 1,142 1,094 1,130 1,151 1,072

15 1,117 1,110 1,111 1,126 1,143 1,161 1,140

20 1,146 1,127 1,130 1,153 1,165 1,135 1,159

25 1,157 1,125 1,117 1,160 1,119 1,136 1,150

30 1,157 1,135 1,135 1,088 1,150 1,113

60 1,178 1,180 1,181 1,179

120 1,146

Figure B.22 Aggregate Throughput (KB/s) during Multimedia Measurement Period
with FRED for HTTP-Proshare

As with RED’s link utilization plot, the scale in Figure B.22 has been adjusted to range

from 1000-1250 KB/s.  The previously noticed performance drop-off ThMin = 2 continues,

but no other trends are obvious.  Although the differences are still small these parameter



318

combinations are eliminated based on the performance across all of the metrics considered

up to this point.

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 941 875 908 869 911

3 902 948 947 948 955

4 899 963 838 951 1,019

5 916 980 981 793 858 894 956 944 948 981

10 936 802 846 859 903 928 926 941

15 741 792 828 790 905 948 966

20 704 847 791 862 897 930 966

25 970 833 796 839 867 920 962

30 780 782 671 661 885 944

60 713 722 785 921

120 642

Figure B.23 TCP Throughput (KB/s) during the Blast Measurement Period with
FRED for HTTP-Proshare

Figure B.23 shows the TCP throughput during the blast measurement period.  The

trend shown indicates that TCP throughput increase as ThMax increases and as ThMin de-

creases.  This is because these parameter settings restrict the percentage of the queue allo-

cated to a given misbehaving flow.   That is, each misbehaving flow can use up to ThMin



319

queue slots.   The ratio between ThMin and ThMax determines the portion of the link band-

width a single flow can use.  The misbehaving flow is limited to a share of the queue equal

to ThMin/ThMax.  Thus, as ThMin approaches ThMax, TCP throughput decreases.  Note,

however, that small values of ThMax are an exception to this trend, with TCP demonstrat-

ing good throughput in those cases.  One theory for this behavior is that with such a small

ThMax the queue behaves like a FIFO queue of length equal to ThMax.  Consequently, some

TCP flows are able to make progress although others may starve.  The aggregate TCP

throughput remains high, since the class other is constrained.   However, the TCP effi-

ciency values presented later will demonstrate that TCP does suffer in these situations.

Consequently, at this point the parameter combinations with poor TCP throughput are

eliminated.  These are the parameter combinations with ThMin as a significant fraction of

ThMax, along the diagonal from the upper left to the lower right.

To further refine the selection, consider the throughput of other traffic during the blast

measurement period.  The goal is to minimize the share of bandwidth given to other traf-

fic.  Figure B.24 shows the overall UDP throughput.  Since UDP and TCP are the only

traffic types in the network and the overall link utilization was constant during this period,

UDP throughput is the compliment of TCP throughput.   Clearly, UDP throughput de-

creases as ThMax increases and as ThMin decreases, with the only exception being when

ThMin = 2.  No new parameter combinations are eliminated.



320

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 256 321 292 326 285

3 291 243 251 244 240

4 292 230 361 239 166

5 255 208 206 359 330 285 232 250 235 199

10 245 353 347 327 288 264 262 252

15 410 397 357 403 284 236 226

20 459 347 401 329 289 260 218

25 215 357 385 353 331 275 230

30 416 401 537 542 303 242

60 470 460 399 269

120 541

Figure B.24 Aggregate UDP Throughput (KB/s) during the Blast Measurement Period
with FRED for HTTP-Proshare



321

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 21 16 19 16 20

3 17 16 19 19 18

4 23 22 16 22 30

5 30 26 34 8 14 20 23 17 20 31

10 25 9 18 19 17 19 23 18

15 14 16 17 21 24 28 26

20 18 23 21 24 30 32 33

25 35 22 23 28 24 27 35

30 22 26 30 25 30 26

60 43 47 46 54

120 71

Figure B.25 Network Latency (ms) during the Multimedia Measurement Period for
FRED with HTTP-Proshare

The next criteria for selecting the parameters is network latency.  Figure B.25 shows

the network latency for FRED during the multimedia measurement period.  The latency

increases with ThMax. The trend is more apparent during the blast measurement period,

shown in Figure B.26.



322

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

max

min

MaxThMinTh
10 15 20 30 40 60 80 100 120 180

2 37 27 41 29 32

3 35 42 54 45 49

4 39 52 51 58 94

5 33 45 46 28 32 39 53 56 62 80

10 37 35 36 43 54 62 67 67

15 34 36 45 54 66 86 98

20 31 42 44 57 70 82 108

25 51 43 49 58 70 86 107

30 40 51 59 73 83 99

60 70 80 87 106

120 147

Figure B.26 Network Latency (ms) during the Blast Measurement Period with FRED
for HTTP-Proshare

Although latency is generally unrelated to ThMin, very small values of ThMin also lower

latency.   However, this lower latency is obtained by maintaining a lower average queue

size.   These small queue sizes come at the price of increased drops.  Recall the TCP

throughput results for ThMin = 2.  Although this setting offers lower latency, as shown in

Figure B.25 and Figure B.26, prior results indicated that with ThMin = 2 the throughput

and the efficiency values were worse than for the other parameter settings.   Based on the



323

data from the multimedia measurement period, many parameter combinations offer rea-

sonable latency.   However, the data from the blast measurement period indicates that the

differences are clearer cut.  The latency clearly decreases as ThMax decreases and as ThMin

decreases.  Eliminating all latency values of 40 ms or more leaves only three values with

ThMax equal to 60 and two with ThMax equal to 10 and 15.

To make the final decision on optimal parameters, consider TCP efficiency, shown

below in Figure B.27.  During the multimedia measurement period the efficiency is gener-

ally 95-99% uniformly across all the combinations of ThMin and ThMax.  This is shown in

Figure B.27.  The exceptions to this seem to be for small values of ThMin (< 3) and small

ThMax (<30).  The efficiency values during the blast measurement period support this find-

ing as well.  Since the efficiency metric eliminates values with ThMax less than 30, only the

parameter combinations: (60,3), (60,4), and (60,5) remain.  The combination (60,5) is se-

lected as the optimal parameter combination based on its slightly higher efficiency.



324

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 0.89 0.90 0.91 0.91 0.90

3 0.95 0.95 0.97 0.96 0.95

4 0.94 0.95 0.97 0.96 0.96

5 0.90 0.89 0.90 0.98 0.95 0.96 0.96 0.96 0.96 0.96

10 0.89 0.98 0.95 0.96 0.97 0.97 0.96 0.98

15 0.97 0.96 0.97 0.97 0.96 0.96 0.98

20 0.96 0.94 0.97 0.97 0.96 0.97 0.97

25 0.90 0.94 0.96 0.97 0.97 0.97 0.97

30 0.96 0.96 0.98 0.99 0.97 0.98

60 0.97 0.97 0.98 0.97

120 0.98

Figure B.27 TCP Efficiency during the Multimedia Measurement Period with FRED
for HTTP-Proshare



325

10
.0

0

15
.0

0

20
.0

0

30
.0

0

40
.0

0

60
.0

0

80
.0

0

10
0.

00

12
0.

00

18
0.

00 2.
00

3.
00

4.
00

5.
00

10
.0

0

15
.0

0

20
.0

0

25
.0

0

30
.0

0

60
.0

0

12
0.

00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

max

min

MaxTh
MinTh

10 15 20 30 40 60 80 100 120 180

2 0.88 0.88 0.90 0.89 0.88

3 0.93 0.95 0.95 0.96 0.96

4 0.92 0.95 0.92 0.96 0.96

5 0.87 0.88 0.88 0.91 0.92 0.94 0.94 0.97 0.96 0.96

10 0.88 0.91 0.91 0.94 0.95 0.96 0.97 0.98

15 0.90 0.91 0.93 0.91 0.94 0.94 0.97

20 0.91 0.90 0.93 0.93 0.93 0.95 0.95

25 0.89 0.89 0.91 0.93 0.94 0.95 0.96

30 0.90 0.91 0.85 0.85 0.95 0.96

60 0.89 0.91 0.92 0.96

120 0.89

Figure B.28 TCP Efficiency during the Blast Measurement Period for FRED with
HTTP-Proshare

5.1.1. BULK-Proshare

Next, consider BULK-Proshare.   As with RED, this set of experiments only considers

a subset of the parameter space considered for HTTP-Proshare, simply seeking to confirm

that the previously observed relationships continue to hold. If so, the optimal parameter

settings established for HTTP-Proshare will be maintained.  However, in fact, the relation-

ships previously noted do not hold. Changing the parameter settings has no impact on the



326

performance measured.  All parameter settings yield the same results. This behavior can be

explained. There are a large number of long lived flows in the BULK traffic type and

FRED with support for many flows allows each flow to buffer at least two packets.  Since

the BULK traffic generators generate sufficient load to saturate the bottleneck link, the

per flow buffer allocation overrides the standard RED drop mechanisms and the queue

remains full whenever BULK traffic is present.  Because these experiments will show that

all parameter combinations give the same results, the 3-D bar charts that have been used

to illustrate the effects of different parameter combinations hold little value.  One chart is

included for the first metric considered in order to demonstrate this lack of value.  For the

remaining metrics, the results are presented only in tabular format and examined briefly.

Table B.5 shows the number of runs for each parameter combination.

MaxTh
MinTh

40 60 80 100 180
3 5 5 5 5 5
5 5 5 5 5 5
15 5 5 5 5 5
30 5 5 5 5 5

Table B.5 Count of FRED Experiments for Each Parameter Combination with BULK-
Proshare

First, consider the TCP goodput during the multimedia measurement period, shown in

Figure B.31.   The goodput ranges varies by only 7 KB/s.   Varying the parameters has no

effect.  Moreover, because there is no variation in results, displaying the data in the chart

carries little value beyond that apparent from the table.  Since the remaining metrics also

have little variation, they will be presented only in tabular format.



327

40.00

60.00

80.00
100.00

180.00 3.00

5.00

15.00

30.00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

max min

MaxTh
MinTh

40 60 80 100 180

5 1,104 1,100 1,102 1,103 1,103
15 1,103 1,104 1,101 1,103 1,097
30 1,104 1,103 1,103 1,104 1,103
60 1,103 1,100 1,104 1,103 1,101

Figure B.31 TCP Goodput (KB/s) During Multimedia Measurement Period with
FRED for BULK-Proshare

Next, consider total link utilization, shown in Table B.6.  Once again, there is very lit-

tle difference, with all of the considered threshold combinations resulting in link utilization,

by all traffic types in aggregate, of approximately 1.2 MB.
MaxTh

MinTh
40 60 80 100 180

5 1,188 1,198 1,190 1,190 1,194
15 1,187 1,189 1,187 1,196 1,181
30 1,190 1,188 1,197 1,202 1,187
60 1,199 1,190 1,183 1,188 1,189

Table B.6 Aggregate Throughput (KB/s) During Multimedia Measurement Period
with FRED for BULK-Proshare

Given that one of FRED’s goals is to constrain misbehaving flows, TCP throughput

during the blast measurement period must be considered. Table B.7 shows TCP through-



328

put on the congested link during the blast measurement period. Since the blast is a single

flow, this mechanism is very effective in constraining the blast and, thus, increasing the

throughput of TCP.  TCP throughput is very high during this period.  However, the per-

formance is uniform across parameter combinations so this data indicates no preferred pa-

rameter settings.
MaxTh

MinTh
40 60 80 100 180

5 1,179 1,175 1,177 1,175 1,177
15 1,177 1,176 1,178 1,179 1,174
30 1,178 1,176 1,179 1,178 1,176
60 1,179 1,178 1,176 1,179 1,177

Table B.7 TCP Throughput (KB/s) During Blast Measurement Period with FRED for
BULK-Proshare

FRED's effectiveness constraining the blast is further supported by examining the UDP

throughput during the same period as shown in Table B.8.   Although the UDP through-

put is very low, its performance is again uniform across all parameter
MaxTh

MinTh
40 60 80 100 180

5 46 49 48 50 48

15 48 47 47 46 50

30 46 49 46 47 49

60 46 46 48 46 48

Table B.8 Aggregate UDP Throughput (KB/s) during the Blast Measurement Period
with FRED for BULK-Proshare

The next metric to consider is latency.  Table B.9 shows the network latency during

the multimedia measurement period as measured using the instrumented Proshare applica-

tion.  Since queue size determines latency and the queue is always full, latency is very

high.  Again the latency values are uniform.

MaxTh
MinTh

40 60 80 100 180

5 264 257 255 251 256

15 261 253 270 269 249

30 265 257 265 264 263

60 268 262 253 270 263

Table B.9 Network Latency (ms) During Multimedia Measurement Period for FRED
with BULK-Proshare



329

The latency during the blast measurement period, shown in Table B.10, is similar.  The

latency is limited only by the queue size of 240 packets.  Because it takes slightly more

than 1 ms to process each packet, the average latency is approximately 265 ms.

MaxTh
MinTh

40 60 80 100 180

5 270 247 261 246 257

15 258 261 269 270 255

30 269 252 269 263 266

60 270 267 255 268 268

Table B.10 Network Latency (ms) During Blast Measurement Period for FRED with
BULK-Proshare

Finally, consider TCP efficiency (percentage of inbound traffic that reaches the out-

bound link) during the blast measurement period. Table B.11 shows that the combination

of the parameters has no effect on efficiency.  The efficiency is consistently between 82-83

%.
MaxTh

MinTh
40 60 80 100 180

5 0.83 0.83 0.83 0.83 0.83

15 0.82 0.83 0.82 0.82 0.82

30 0.82 0.83 0.82 0.82 0.83

60 0.82 0.83 0.83 0.82 0.82

Table B.11 TCP Efficiency during Blast Measurement Period with FRED for BULK-
Proshare

FRED efficiency during the multimedia measurement period (Table B.12) is similar.

Once again, the efficiency ranges between 80-83%.
MaxTh

MinTh
40 60 80 100 180

5 0.80 0.82 0.81 0.82 0.82

15 0.81 0.81 0.80 0.81 0.81

30 0.81 0.81 0.81 0.83 0.81

60 0.82 0.82 0.81 0.80 0.81

Table B.12 TCP Efficiency During the Multimedia Measurement Period for FRED
with BULK-Proshare

The results of the BULK-Proshare experiments show changing parameter settings has

no effect for this traffic mix.  Since the BULK-Proshare analysis doesn't indicate an opti-

mal setting, the previously selected threshold values of (ThMax, ThMin) = (60,5) are main-

tained since HTTP is the most common traffic type.



330

6. CBT

Unlike the other queue management techniques considered, Class Based Thresholds

explicitly allocates resources to different classes of traffic. The other mechanisms sought

to manage the queue while CBT seeks to manage the performance classes of traffic re-

ceive as they pass through the router.  Because CBT does allocate resources, one can cal-

culate the parameter settings that should offer optimal performance based on knowledge

of the traffic types involved.  As a result, selection of optimal parameters for CBT focuses

on confirming that the calculated parameters are optimal rather than probing a wide range

of parameters.  This confirmation is necessary despite the availability of information about

the traffic, such as the average load generated by different traffic classes over a measure-

ment period. This is because the average load over shorter intervals, on the order of a few

seconds, is unknown.  Such intervals may be important for traffic types, such as multime-

dia that demonstrate variability in generated load over those time scales. The process used

to calculate and evaluate the optimal values is discussed below.  But first, the choice of

settings for those parameters held constant across all experiments is discussed.

6.1. Constant Parameters

CBT takes a large set of parameters.  In addition to the maximum queue size, each

class of traffic has a weight (w), a maximum drop probability (maxp), and minimum (Thmin)

and maximum (ThMax) thresholds.  To limit the number of variables considered this analysis

focuses on only ranging the parameters that should have the greatest effect on perform-

ance: the maximum thresholds.  It is possible that the other parameter settings could be

fine-tuned to offer even better performance but those effects are expected to be secondary.

The weighting factors used in tracking each class’s average queue occupancy are one

of the parameters that held fixed across all experiments.  In order to have efficient calcula-

tions of the average queue occupancy a weighting factor that is a power of two is used so

that the algorithm can use shift operations instead of multiplication. This limits the options

for the weighting factor value.  Next, since the queue occupancy for each class is sampled

when a packet of that class arrives at the queue, and, since the classes have different arri-

val rates, the averages for the classes may have different sample rates. For two classes of



331

traffic with the same arrival rates, the weighting factors effectively determine how much

effect new samples have on the average and, in some sense, determine the period repre-

sented by the average [Floyd93]. A higher weighting factor leads to an average that re-

flects the effect of recent packet arrivals on the queue while a lower weighting factor leads

to an average that reflects the effect of older packet arrivals on the queue.  However, if

packet arrival rates differ across class, in order for all of the averages to indicate behavior

over the same approximate time scale, the weighting factors must be adjusted to achieve

this effect.  However, it is desirable to have some classes be more sensitive to recent

queue occupancy than others.  Because most of the arrivals at the queue should be TCP

and because TCP should receive feedback only when there is sustained overload, but yet

allow bursts, a weighting factor of 1/256 is used for TCP.  Conversely, multimedia, with

its periodic frame transmission should have a much lower arrival rate at the queue.

Moreover, the goal is to constrain multimedia to its allocated share.  As a result multime-

dia’s weighting factor is set to 1/16.   This limits the burstiness accommodated but this is

acceptable since multimedia's transmission has limited variability.  The desire to accom-

modate some burstiness to allow for large frames fragmented across many packets ac-

counts for the setting of 1/16 instead of a lower weighting factor that would be more sen-

sitive to bursts.   Finally, the traffic class other may demonstrate extremely aggressive be-

havior generating a very high arrival rate at times.  This argues for a small weighting fac-

tor (as more samples arrive during a given period).  However, the goal is to very strictly

constrain other traffic to its fair share.  As a result, each new sample has a very high

weighting factor, ¼.  Using this weighting factor insures that other traffic is tightly con-

strained. The process of selecting weighting values is discussed in IV.4.2.1 and the poten-

tial for additional work in this area in VI.5.1.1.

Additionally, there are some parameters, maxp and ThMin, that can be eliminated for

some classes of traffic.  Recall that the goal is only to constrain, not provide feedback to

the traffic classes of multimedia and other.  Consequently the random drop mode of the

RED drop algorithm is not used.  Instead, the minimum thresholds for the unresponsive

traffic classes of traffic is set equal to their maximum thresholds, leaving the drop algo-

rithm to operate in two modes, no drops or forced drop.  As a result, the average queue



332

occupancy for those classes has a fixed limit equal to the maximum threshold.  It may be

possible to provide effective feedback to responsive multimedia using ThMin; however, that

issue is left for future work.  As long as the multimedia and other classes do not exceed

the maximum threshold, no packets are dropped.  Further, because the minimum and

maximum thresholds are equal, the maximum drop probability isn’t used for those classes.

However, to provide feedback to responsive traffic the minimum threshold and maximum

drop probability must be set to meaningful values for TCP traffic.  For TCP the values

were a maximum drop probability of 10% and a minimum threshold of 5.  These values

are both the recommended values for RED and the values determined as part of the opti-

mal parameter set in the RED experiments.   Table B.13 shows the settings held constant

for the CBT algorithm.

Traffic Class w maxp ThMin

TCP 1/256 1/10 5

Multimedia 1/16 n/a =ThMax

Other 1/4 n/a =ThMax

Table B.13 Constant Parameter Settings for CBT

Finally, the desired latency was, arbitrarily, held fixed at 100 ms.  Although latency is

not actually a parameter of the CBT algorithm, is it a factor in the calculation of the

maximum threshold parameters.  As already demonstrated in IV.5.1.2, the parameter set-

tings do control the maximum average latency independent of the bandwidth allocations.

As such, the desired latency value was selected and then CBT's performance confirmed.

6.2. Determining Threshold Settings from Bandwidth Allocations

Consider the parameters that are varied between experiments: the bandwidth alloca-

tions for each class.  Multimedia’s performance is the key to determining whether or not

the parameter settings are optimal.  This translates to allocating multimedia sufficient

bandwidth to maintain its desired frame-rate with low loss.  Similarly, other traffic should

be constrained to a small share of the link’s capacity. 150 KB/s was arbitrarily chose as the

other bandwidth allocation.   The goal is simply to demonstrate that CBT is effective in



333

constraining other traffic to a desired allocation.  In contrast, the allocation for multimedia

is carefully determined. Multimedia's bandwidth allocation is based on the expected load

generated by the multimedia applications.  For these experiments the actual load was de-

termined by running the traffic mixes.  As documented in Appendix A Proshare generates

an average load of approximately 160 KB/s while MPEG generates an average load of ap-

proximately 190 KB/s so these are the respective multimedia bandwidth allocations.  Once

these values are established, the rest of the link’s capacity is allocated to TCP.  This is ac-

ceptable since TCP has no minimal acceptable allocation − it simply needs as much band-

width as possible, ideally with little fluctuation in the available capacity so that the load

generated by different TCP streams can stabilize in aggregate at the available capacity.

The threshold setting for a given class (Thi) can be calculated using the desired latency

(L), the desired bandwidth allocation for the class (Bi), and the average packet size for that

class (Pi) as shown in equation B.4 (see IV.4 ).

i

i
i

P

LB
Th = (B.4)

CBT could, and should, be implemented by monitoring the average number of bytes

enqueued instead of packets.  Doing so would alleviate the need to know the average

packet size for each class and make the bandwidth allocations more accurate.  However,

this implementation used the average queue occupancy in packets so that information is

included here.  In addition to measuring the average load generated for each traffic mix,

the average packet size for each traffic class was also measured during each traffic mix

combination.   When the calculations of the thresholds for each traffic combination are

presented below the observed average packet sizes for each traffic class are also indicated.

The threshold settings expected to provide optimal performance were calculated using

the formula above, the desired bandwidth allocations for multimedia and other, and allo-

cating the remaining capacity to TCP.  To confirm these values, bandwidth allocations in a

series of small increments (+/- 5 KB/s) on either side of these settings were also consid-

ered.  For example, Table B.14 shows the initial bandwidth allocations considered for

HTTP-MPEG in bold.



334

Bother Bmm BTCP

150 220 855

150 200 875

150 195 880

150 190 885

150 185 890

150 180 895

150 160 915

150 140 935

Table B.14 Initial Bandwidth Allocations for CBT with HTTP-MPEG

As the initial results were considered, it became apparent that the more parameters

needed to be considered.  First, the initial increments in the allocations were too small to

reveal the relationship between allocations and resulting performance.  Second, in some

cases the computed optimal bandwidth allocations were not actually optimal.  In response

to both issues, additional allocations (indicated in italics in Table B.14) were considered.

Although the original process was iterative, for clarity of presentation here all parameters

are analyzed as a single group.

6.3. Evaluating Parameter Settings

To actually determine which parameter settings offered the optimal performance a

number of metrics were monitored in order to determine how well CBT met its goals of

good multimedia performance, isolation for TCP, and constraint of other traffic.   For

more information on these performance metrics see Appendix A.  The first consideration

was multimedia performance.  Three metrics are considered here.  First, consider the accu-

racy of the allocation of the multimedia class.  To do this, compare Bmm to the observed

multimedia throughput on the bottleneck link during the blast measurement period.  Be-



335

cause the allocations may not be sufficient for the multimedia load at all times the multi-

media loss-rate and, for MPEG, the true and playable frame-rates relative to the  Bmm,

were also considered.   If the multimedia allocation is sufficient, the frame-rate should be

high.  If it is inadequate, the frame-rate should suffer.  Last, a latency value of 100 ms or

less was confirmed for all runs.

To determine the effect the multimedia allocation has on TCP, the TCP throughput

was also considered as a function of Bmm. TCP throughput is expected to be inversely re-

lated to Bmm since the TCP allocation decreases as the multimedia allocation increases.

Finally, CBT's effectiveness constraining the class other is considered.  CBT does achieve

this goal but the analysis of throughput for class other requires some additional discussion.

As a result, throughput for other is examined across all the traffic mixes at the end of this

section.

Because bandwidth is allocated for each traffic class based on its expected load and

because the average packet sizes change with the traffic mix, separate optimal parameter

settings must be selected for each traffic mix in CBT.  The procedure for selecting and

confirming the parameter settings is the same for each traffic type.  To explain the selec-

tion process, the experiments for HTTP-MPEG are presented in detail and then the results

for the other three traffic mixes are summarized. In all cases, experiments were repeated

five times for each parameter setting and report average values over both the measurement

period and across all runs with that parameter combination and traffic-mix.

6.4. HTTP-MPEG

The first traffic mix considered is the HTTP-MPEG mix.  Since MPEG has an average

load of 190 KB/s, an allocation of 190 KB/s should be optimal.  However, a range of

multimedia bandwidth allocations above and below that setting was also considered. The

allocation for other was fixed at 150 KB/s and TCP was allocated the remaining link ca-

pacity.



336

HTTP MPEG Other

1053 889 1075

Table B.15 Average Packet Sizes (Bytes) Including Packet Headers for HTTP-MPEG

Using the observed average packet sizes shown in Table B.15 and the desired band-

width allocations the corresponding threshold values were calculated as shown in Table

B.16.  For example, consider a target bandwidth allocation for MPEG of 185 KB/s.  The

value for ThMax for multimedia for that bandwidth allocation was calculated using equation

B.4, above.  Using the average packet size of 889 bytes and a desired latency of 100ms

leads to:

Packets

Bytes

KB

Packet

Bytes

KB

ThMax 3.21

1024

1
*

889

sec1.*
sec

185

== (B.5)

ThMax
Exp. Bother Bmm BTCP

other mm TCP

1 150 220 855 14.28 25.33 83.15

2 150 200 875 14.28 23.03 85.09

3 150 195 880 14.28 22.45 85.58

4 150 190 885 14.28 21.87 86.07

5 150 185 890 14.28 21.30 86.55

6 150 180 895 14.28 20.72 87.04

7 150 160 915 14.28 18.42 88.98

8 150 140 935 14.28 16.12 90.93

Table B.16 CBT Parameter Settings for HTTP-MPEG with 100 ms of Latency



337

To determine which of these parameter settings is optimal, the accuracy of the multi-

media bandwidth allocation (Bmm) is the first metric considered.  To do this, the average

multimedia throughput during the blast measurement period is compared against the mul-

timedia bandwidth allocation in Figure B.32.  At the standard scale it is difficult to discern

much beyond the fact that settings for Bmm of 180 KB/s and higher  offer slightly higher

throughput.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.32 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput
(KB/s) during Blast Measurement Period for HTTP-MPEG

To clarify the difference, Figure B.33 shows the same data at a finer scale.  If the allo-

cations are accurate, the data points would follow a line with a slope of one and a inter-

cept at the origin.   However, the values of 180 KB/s and above offer better performance

with realized multimedia throughput of 184 KB/s and above.  Note that the multimedia

throughput is able to exceed its allocation for the settings of 140 and 160 KB/s.  This is

because of borrowing.  Since TCP's congestion control algorithm causes oscillations in

TCP's load, TCP's temporarily unused allocation is available for borrowing.  Because the

average load for MPEG is 190 KB/s over the duration of the movie, the suspicion is that



338

the throughput levels off and fails to use its full allocation beyond Bmm of 180 KB/s simply

because the throughput observed represents all of the available load. This can be seen

more clearly by examining the loss-rate and frame-rates.

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

140.00 150.00 160.00 170.00 180.00 190.00 200.00 210.00 220.00

Figure B.33 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput
(KB/s) during the Blast Period with HTTP-MPEG on a One-to-One Scale

Figure B.34 shows the multimedia packet loss-rate during the blast measurement pe-

riod.  As expected, the loss-rate is on the order of 5 packets/second for the restricted Bmm

settings of 140 and 160 KB/s.  There is still a small amount of loss for settings of 180-190

KB/s and there appears to be almost no loss for the settings of 200-220 KB/s.  However,

because MPEG can be sensitive to packet loss (e.g., if the loss is biased against large

frames, like I-frames) the best way to evaluate the effectiveness of these settings is by ex-

amining the frame-rates.



339

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.34 Multimedia Bandwidth Allocation (KB/s) vs. Packet Loss (packets/s)
during the Blast Measurement Period for HTTP-MPEG

Figure B.35 shows the true and playable frame rates for MPEG during the blast meas-

urement period.  The goal is a frame rate of 30 frames per second in both cases.   Al-

though the true-frame rate is essentially the complement of the loss-rate, the playable

frame-rate shows greater variation.  Because of interframe dependencies, the relatively

low drop-rates do have a significant impact on the playable frame-rate as other frames

cannot be decoded due to packet losses in prior or subsequent references frames. This plot

limits the options for the optimal parameter settings to the Bmm settings of 195-220 KB/s.



340

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00

a) True Frame Rate b) Playable Frame Rate

Figure B.35 Bandwidth Allocation for Multimedia (KB/s) vs. Frame Rate (Frames/s)
during the Blast Measurement Period for HTTP-MPEG

Examining multimedia performance should also confirm that CBT is managing the la-

tency as desired.  Figure B.36 shows the end-to-end latency for MPEG during the blast

measurement period.  Although there is a bit of variation, all of the values are between 73-

85 ms, well within the 100ms limit.  The latency is lower than 100 ms because the HTTP

traffic is constantly oscillating to attempt to stabilize at the available capacity and rarely

using all of its allocated queue capacity.  Said another way, the calculated latency bound is

a worst case value that should only be realized if when all classes transmit at levels ap-

proaching (or exceeding) their allocation.



341

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.36 Multimedia Bandwidth Allocation (KB/s) vs. Latency (ms) during the
Blast Measurement Period for HTTP-MPEG

Next, consider TCP throughput to confirm that the optimal multimedia allocations do

not have any unnecessarily adverse effect on TCP performance. TCP performance is ex-

pected to decrease as Bmm increases since TCP's allocation is the complement of the mul-

timedia allocation. However, TCP's performance should be near its allocation.  Figure

B.37 shows the TCP throughput during the blast measurement period relative to the Bmm

setting.  This scale is chosen to make it easy to compare these results with trends in other

plots.  The throughput varies very little (753-795 KB/s).



342

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.37 Multimedia Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s)
during the Blast Measurement Period for HTTP-MPEG

Figure B.38 shows the same data at a finer scale and plotted against BTCP.  Moreover,

if the throughput matched the allocation precisely the line should have a slope of one and a

y-intercept at the origin.  Instead, HTTP consistently has throughput lower than its alloca-

tion.  However, this is consistent with the observed performance of HTTP traffic under

other queue management algorithms.  The combination of the TCP congestion control

mechanism's oscillating nature and the lightweight and short-lived flows in HTTP, seldom

lead to full utilization of available capacity for HTTP.   It is interesting to note however,

that TCP's throughput seems the lowest when the multimedia seems most precisely allo-

cated (at Bmm of 195 above or BTCP of 875 below).  This is easy to explain.  When multi-

media is overallocated, TCP is able to borrow the unused capacity and when multimedia is

more constrained there is additional capacity allocated to TCP because of the comple-

mentary allocations.  Thus TCP gets its worst throughput when it is constrained and there

is no unused capacity to borrow.



343

753.80

773.80

793.80

813.80

833.80

853.80

873.80

893.80

913.80

933.80

753.80 773.80 793.80 813.80 833.80 853.80 873.80 893.80 913.80 933.80

Figure B.38 TCP Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s) during the
Blast Measurement Period for HTTP-MPEG

Based on the results shown here, the optimal settings are those in experiment 3 from

Table B.16 (Bmm=195, BTCP=880, and Bother=150 KB/s).  These settings allowed multime-

dia to minimize loss-rate and maximize playable frame-rate.  Moreover, this was the low-

est multimedia allocation (and, thus the highest TCP allocation) that offered the desired

multimedia performance.  Note that this was not the expected optimal setting.  Since

MPEG's average load during the blast measurement period had been measured at 190

KB/s, 190 KB/s for Bmm was assumed to be the optimal setting.   However, there was

some medium term variation in the load that resulted in periods where the multimedia load

reached 195 KB/s.  To provide good multimedia performance the allocation had to be in-

creased accordingly.



344

6.5. BULK-MPEG

BULK MPEG Other

1507 807 1075

Table B.17 Average Packet Sizes (Bytes) Including Packet Headers for BULK-MPEG

The evaluation of BULK-MPEG closely parallels the evaluation of HTTP-MPEG. The

measured average packet sizes shown in Table B.17 were used along with the desired

bandwidth allocations to compute the threshold settings shown in Table B.18. The most

likely optimal value should have a multimedia bandwidth allocation of 190 KB/s.  How-

ever, the optimum allocation proved to be slightly higher, leading to the examination of

the range 200-210 KB/s in smaller increments.

ThMax
Exp. Bother Bmm BTCP

other mm TCP

1 150 220 855 14.29 27.93 58.09

2 150 210 865 14.29 26.66 58.77

3 150 205 870 14.29 26.06 59.11

4 150 200 875 14.29 25.39 59.45

5 150 195 880 14.29 24.76 59.79

6 150 190 885 14.29 24.12 60.13

7 150 185 890 14.29 23.49 60.47

8 150 180 895 14.29 22.85 60.81

9 150 160 915 14.29 20.31 62.17

10 150 140 935 14.29 17.77 63.52

Table B.18 CBT Parameter Settings for BULK-MPEG with 100 ms of Latency



345

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00

a) Multimedia Throughput (KB/s) b) Packet Loss (packets/s)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00

c) True Frame Rate d) Playable Frame Rate

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

e) Latency (ms) f) TCP Throughput (KB/s)

Figure B.39 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-MPEG

Figure B.39 shows the metrics examined for BULK-MPEG plotted using Bmm as an

index along the horizontal axis.  All of these measurements are from the blast measure-

ment period.  These results are all similar to those for HTTP-MPEG.  The multimedia

throughput (Figure B.39a) increases with allocation up to the range of Bmm set to 180



346

KB/s and above.  Examining the packet loss rate (Figure B.39b) offers a clearer indication

that the allocation is insufficient below 195 KB/s.  The true-frame (Figure B.39c) reflects

the same finding as the packet loss while the playable frame-rate (Figure B.39d) only

reaches 30 frames/second at a value of Bmm equal to 205 KB/s.  As expected, the latency

(Figure B.39e) values do not vary significantly, remaining almost entirely centered on 100

ms.  Note, however, that this is an increase compared to the latency values with HTTP-

MPEG.  This is because the BULK traffic type does come much closer to fully utilizing its

allocated capacity.  If all classes are operating at capacity the latency should reach the limit

of 100ms.  The TCP Throughput (f) shows that the TCP load is higher with this traffic

mix than observed with HTTP-MPEG.  This data is also shown in Figure B.40.  The fig-

ure shows TCP throughput during the blast measurement period versus the TCP band-

width Allocation (BTCP).  Notice that the throughput comes much closer to following the

desired line with slope 1.0 than with HTTP-MPEG.  BULK is almost able to consume its

entire allocation.

The values of experiment 3 from Table B.18, a Bmm value of 205 KB/s, BTCP of 870,

and Bother of 150 KB/s are chosen as the optimal parameter settings for HTTP-MPEG.

This is based primarily on the playable frame-rate, and, secondarily, on the fact that none

of the settings demonstrate an unreasonable impact on TCP.



347

854.40

864.40

874.40

884.40

894.40

904.40

914.40

924.40

934.40

854.40 864.40 874.40 884.40 894.40 904.40 914.40 924.40 934.40

Figure B.40 TCP Bandwidth Allocation (KB/s) vs. TCP Throughput during the Blast
Measurement Period with BULK-MPEG

6.6. HTTP-Proshare

The approach for selecting optimal parameters remains largely the same for HTTP-

Proshare.  However there are a few small changes.  First, the observed average multimedia

load for Proshare is 160 KB/s so some smaller bandwidth allocations for multimedia will

be examined.  Second, there is no frame-rate information for Proshare so the analysis will

not include those two metrics.  This is acceptable because Proshare does not have inter-

frame dependencies to allow a single packet drop to effect multiple frames.

HTTP Proshare Other

1061 738 1075

Table B.19 Average Packet Sizes (Bytes) Including Packet Headers for HTTP-
Proshare



348

As with the other traffic types, observed average packet sizes (Table B.19) were used

along with the desired bandwidth allocations to calculate the threshold values (Table

B.20).

ThMax
Exp. Bother Bmm BTCP

other mm TCP

1 150 190 885 14.28 26.35 85.45

2 150 170 905 14.28 23.58 87.38

3 150 165 910 14.28 22.88 87.87

4 150 160 915 14.28 22.19 88.35

5 150 155 920 14.28 21.50 88.83

6 150 150 925 14.28 20.80 89.32

7 150 130 945 14.28 18.03 91.25

8 150 110 965 14.28 15.26 93.18

Table B.20 CBT Parameter Settings for HTTP-Proshare with 100 ms of Latency

Figure B.41 shows the metrics examined for HTTP-Proshare plotted using Bmm as an

index along the horizontal axis.  All of these measurements are from the blast measure-

ment period.  The results are all similar to those for HTTP-MPEG.  The multimedia

throughput (Figure B.41a) increases slightly with allocation up to Bmm set to 150 KB/s and

above.  Examining the packet loss rate (Figure B.41b) offers a clearer indication that the

allocation is insufficient below 160 KB/s. As expected, the latency (Figure B.41c) values

do not vary significantly, remaining almost entirely centered on 75 ms.  As noted previ-

ously with HTTP-MPEG, this is because HTTP does not consume its entire allocation.

Instead the TCP throughput (Figure B.41d) is near 800 KB/s.

The values from experiment 4 from Table B.20, a Bmm value of 160 KB/s, BTCP of 915,

and Bother of 150 KB/s are selected as the optimal parameter settings for HTTP-Proshare.



349

This is based primarily on the packet loss-rate, and, secondarily, on the fact that none of

the settings demonstrate unreasonable impact on TCP.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

a) Multimedia Throughput (KB/s) b) Packet Loss (packets/s)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

c) Latency (ms) d) TCP Throughput (KB/s)

Figure B.41 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with HTTP-Proshare

6.7. BULK-Proshare

BULK Proshare Other

1468 757 1075

Table B.21 Average Packet Sizes (Bytes) Including Packet Headers for BULK-
Proshare

The approach for selecting optimal parameters remains largely the same for BULK-

Proshare as it was for HTTP-Proshare. As with the other traffic types observed average



350

packet sizes (Table B.21) were used along with the desired bandwidth allocations to cal-

culate the threshold values (Table B.22).

ThMax
Exp. Bother Bmm BTCP

other mm TCP

1 150 200 875 14.29 27.04 61.04

2 150 195 880 14.29 26.36 61.39

3 150 190 885 14.29 25.69 61.74

4 150 185 890 14.29 25.01 62.09

5 150 180 895 14.29 24.33 62.44

6 150 175 900 14.29 23.66 62.79

7 150 170 905 14.29 22.98 63.14

8 150 165 910 14.29 22.31 63.49

9 150 160 915 14.29 21.63 63.83

10 150 155 920 14.29 20.95 64.18

11 150 150 925 14.29 20.28 64.53

12 150 130 945 14.29 17.57 65.93

13 150 110 965 14.29 14.87 67.32

Table B.22 CBT Parameter Settings for BULK-Proshare with 100 ms of Latency

Figure B.42 shows the metrics examined for BULK-Proshare plotted using Bmm as an

index along the horizontal axis.  All of these measurements are from the blast measure-

ment period.  These results are all similar to those for HTTP-Proshare.  The multimedia

throughput (Figure B.42a) increases slightly with allocation up to the range of Bmm set to

185 KB/s and above.  Examining the packet loss rate (Figure B.42b) offers a clearer indi-

cation that the allocation is insufficient below 190 KB/s. As expected, the latency (Figure

B.42c) values do not vary significantly, remaining almost entirely centered on 100 ms.  As



351

noted previously with BULK-MPEG, this is because BULK does consume its entire allo-

cation.  This is reflected by the TCP throughput (Figure B.42d) values in the range 855-

910 KB/s.

The values of experiment 3 from Table B.22, a Bmm value of 190 KB/s, BTCP of 885,

and Bother of 150 KB/s are selected as the optimal parameters for BULK-Proshare.  This is

based primarily on the packet loss-rate, and, secondarily, on the fact that none of the set-

tings demonstrate unreasonable impact on TCP.  Note that the Bmm setting for BULK-

Proshare is much higher than that for HTTP-Proshare.  This is because multimedia is able

to borrow sufficient link capacity from HTTP in the HTTP-Proshare case to be successful

with a lower bandwidth allocation.  With BULK, which uses most of its utilization, multi-

media must have a larger allocation to accommodate the medium-term variations in load.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00

a) Multimedia Throughput (KB/s) b) Packet Loss (packets/s)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

c) Latency (ms) d) TCP Throughput (KB/s)

Figure B.42 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-Proshare



352

106.20

116.20

126.20

136.20

146.20

156.20

166.20

176.20

186.20

196.20

106.20 116.20 126.20 136.20 146.20 156.20 166.20 176.20 186.20 196.20
875.00

885.00

895.00

905.00

915.00

925.00

935.00

945.00

955.00

965.00

875.00 885.00 895.00 905.00 915.00 925.00 935.00 945.00 955.00 965.00

a) Multimedia Throughput (KB/s) vs. Bmm

(KB/s)
b) TCP Throughput (KB/s) vs. BTCP (KB/s)

Figure B.43 Multimedia and TCP Throughput vs. Allocations on a 1:1 scale during the
blast measurement period with BULK-Proshare

Figure B.43 presents the throughput for multimedia (a) and TCP (b) vs. their respec-

tive allocations.  Perfect allocations again corresponds to a line with slope one and a y-

intercept at the origin.  These two traffic types come very close to following this line.

Multimedia tails off when the traffic stream can no longer generate sufficient load to use

the available capacity.  Conversely, TCP is able to exceed its allocated capacity in the

lower left because it is able to borrow that capacity unused by multimedia.

6.8. Constraining Other

In addition to selecting the optimal parameters for each traffic mix, CBT's effective-

ness constraining the traffic class other must also be confirmed.  Figure B.44 shows the

throughput for the traffic of type other during the multimedia measurement period.  Each

plot shows other throughput for one traffic mix.  The use of Bmm on the horizontal axis

simply serves to separate different experiments.  The primary point to note is that other

does exceed its allocation (150 KB/s) most of the time.  This happens for three reasons.

First other is able to borrow unused capacity from multimedia or TCP.  The most signifi-

cant amount of borrowing occurs when the TCP type is HTTP.   The nature of the HTTP

traffic and TCP’s oscillating load (due to responsiveness) prevents it from using its full

allocation.  However, even in the case of BULK, other traffic is able to exceed its alloca-

tion slightly (~170 KB/s).  This is due to the fact that the UDP blast is maintaining its load

so aggressively that its average occupancy is always equal to ThMax (during the blast



353

measurement period).  As a result, any time that multimedia or TCP display any bursti-

ness, reducing their queue occupancy, other is immediately able to borrow this unused ca-

pacity.   Finally, the allocations of bandwidth leave 25 KB/s of link capacity unaccounted

for.  As a result, that capacity is also available for borrowing.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

a) HTTP-MPEG b) BULK-MPEG

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

c) HTTP-Proshare b) BULK-Proshare

Figure B.44 Bmm (KB/s) vs. Other Throughput during the Blast Measurement Period
Across All Traffic Mixes

6.9. Summary

To determine optimal parameter settings for CBT, these experiments focused on the

parameters with the greatest effect on performance: the maximum threshold settings

(ThMax).  To keep the number of necessary experiments reasonable the other parameters:

ThMin, maxp, queue size, and weights were held constant across all runs.  After calculating

expected optimal parameter settings for each traffic mix, experiments using those band-

width allocations as well as allocations above and below the expected optimal settings

were run.  For each traffic mix the parameters were evaluated by examining the perform-



354

ance of multimedia, TCP, and other. Multimedia's throughput, loss-rate, frame-rates, and

latency were also examined.  Frame-rate and loss-rate were the primary criteria for

choosing between settings. The throughput for TCP and other were also considered to be

sure that the parameter settings had no unexpected extreme effects on those classes of

traffic.   Table B.23 shows the bandwidth allocations and parameter settings determined to

be optimal.

Weight ThMax
KB/sTraffic Mix

Mm other TCP other Mm TCP Bother Bmm BTCP

HTTP-MPEG 1/16 1/4 1/256 14.28 22.45 85.58 150 195 880

BULK-MPEG 1/16 1/4 1/256 14.29 26.06 59.11 150 205 870

HTTP-Proshare 1/16 1/4 1/256 14.28 22.19 88.35 150 160 915

BULK-Proshare 1/16 1/4 1/256 14.29 25.69 61.74 150 190 885

maxp = 1/10, maxq = 240

Table B.23 Optimal Parameter Settings for CBT

7. CBQ

Finally, optimal parameter settings must be chosen for the packet-scheduling algo-

rithm, Class-Based Queueing (CBQ).  Because CBQ parameter settings are calculated di-

rectly as a function of the desired bandwidth allocation these experiments are intended

largely to simply confirm that the calculated optimal parameters do in fact offer the opti-

mal performance.  However, there are factors, such as medium-range (on the order of

seconds) variability in offered multimedia load which do lead to adjustments of the alloca-

tions.  In this case, increasing the multimedia allocation to match the maximum sustained

load, instead of the long-term average, helps to minimize losses.  Moreover, metrics such

as latency are not among the inputs used to calculate the parameters for CBQ so the effect

these parameters have on latency is not considered.

In most of the active queue management policies, with the exception of CBT, the pa-

rameters were simply tuned to minimize latency and fine tune how effectively each algo-



355

rithm gave feedback and managed queue size.  All of those factors were relatively inde-

pendent of the specific traffic mix.  With CBQ, this is not the case.  The different loads

generated in each traffic mix are important considerations in determining the optimal allo-

cations for each traffic mix.  Because CBQ allocates bandwidth instead of simply manag-

ing congestion it is important the allocations accurately reflect the expected load for each

traffic mix.  As a result, optimal CBQ parameters must be chosen for each of the four

traffic mixes. This section focuses on the details of this process for one traffic mix and

then summarizes the results for the others. A full analysis of how the optimal parameters

were selected for the HTTP-MPEG traffic mix is presented, followed by the summaries

for each of the other traffic mixes.

7.1. HTTP-MPEG

CBQ is parameterized by the percentage of the link's capacity allocated to each class

of traffic. Recall the goal of providing good performance for multimedia while constrain-

ing other traffic and insuring that TCP is isolated from the behavior of other traffic types.

Given this goal, the amount of bandwidth needed by multimedia must be determined, a

low limit must be set on the bandwidth other traffic can use, and TCP should be allowed

to have the remainder of the link's capacity.  To make comparisons straightforward, the

limit on other traffic is the same as in the CBT evaluation, namely150 KB/s.  However,

because the implementation of CBQ only supported bandwidth allocations in increments

of one percentage point the allocation of 150 KB/s had to be represented as an integral

percentage.  As a result the bandwidth allocation for other traffic is 12% of the link or 147

KB/s.  This allocation is held fixed while the multimedia and TCP allocations are varied.

Because the load generated by the MPEG traffic generators varies between 140 KB/s and

190 KB/s, 190 KB/s was the bandwidth allocation for MPEG. Thus, the desired allocation

of 190 KB/s is represented as 15% of the link capacity.   Allocating 12% of the link for

other and 15% for multimedia left 73% of the link available for TCP.  This setting is

shown in experiment 3 in Table B.24.  Since the goal is to explore a range of parameters

and confirm the optimal setting, two settings that under allocate multimedia (experiments

1 and 2) and two settings that over allocate for multimedia (experiments 4 and 5) were



356

also considered.   The TCP allocations are adjusted correspondingly to maintain the total

allocation of 100% in all cases.

KB/s
Experiment MM % Other % TCP %

Bmm Bother BTCP

1 13% 12% 75% 159 147 919

2 14% 12% 74% 172 147 907

3 15% 12% 73% 184 147 894

4 16% 12% 72% 196 147 882

5 17% 12% 71% 208 147 870

Table B.24 CBQ Parameter Settings for HTTP-MPEG

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.45 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput
(KB/s) during the Blast Measurement Period for HTTP-MPEG



357

Figure B.45 shows the average multimedia throughput as the multimedia bandwidth

allocation ranges.  The actual changes in throughput as a fraction of the overall link ca-

pacity appear rather small.  Indeed, each experiment simply increments the bandwidth al-

location by one percentage point of the overall link's capacity (i.e. 12 KB/s) so small

changes in the throughput are expected.  It is helpful to look at this data at a different

scale.  Figure B.46 zooms in on the same data.  If the allocations translated precisely to

the throughput measurements they should be along a line from the point (159, 159) to

(208, 208).   In fact, multimedia has higher average throughput than its allocations of 159

KB/s and 172 KB/s should allow.  The allocation is almost precise for the allocation of

184 KB/s, and multimedia is unable to use the full allocations for settings of 196 and 208

KB/s.   Borrowing explains multimedia's ability to exceed its allocation in the case of the

lower bandwidth allocation.  Recall that TCP's responsive nature prevents it from fully

utilizing its allocated capacity as the sources oscillate in response to congestion.  In the

CBQ algorithm when one class of traffic fails to use its allocated capacity the other classes

of traffic may borrow this excess capacity in proportion to their allocation.  As a result,

the multimedia traffic is able to exceed its allocated capacity as long as it generates suffi-

cient load and another class (e.g., TCP) fails to use its full allocation.  In contrast to the

borrowing at the lower allocations, multimedia fails to match its allocated capacity for the

higher allocations because it simply does not maintain sufficient load to use that capacity.

From this data is appears that a bandwidth allocation of 196 KB/s for multimedia may be

the best.  This is based on the fact that throughput does not improve when the allocation is

set to 208 KB/s and overallocating is wasteful and imprecise.  Moreover, the unused part

of an allocation is shared between other classes.   If bandwidth is allocated accurately, the

reallocation of this "excess" can be controlled.



358

159.00

164.00

169.00

174.00

179.00

184.00

189.00

194.00

199.00

204.00

159.00 164.00 169.00 174.00 179.00 184.00 189.00 194.00 199.00 204.00

Figure B.46 Multimedia Bandwidth Allocation (KB/s) vs. Multimedia Throughput
(KB/s) during the Blast Period with HTTP-MPEG on a One-to-One Scale

To fully evaluate the effectiveness of these settings one could compare the multimedia

throughput to the multimedia load for each set of parameter settings.  However, other

metrics, packet loss rate and frame-rate measurements, address the same performance

concerns for the multimedia stream.  If the throughput fails to match the load, the frame-

rate and loss-rate will degrade.  Moreover, these metrics offer an expression of the quality

of the multimedia stream that may include the effects of other factors such as a bias

against bursty traffic.  For example, if an algorithm were most likely to drop single frag-

ments of large packets, this may show up as a relatively small decrease in the overall

throughput for multimedia.  However, since the largest packets in MPEG are I-frames and

those are the reference frames for other packets, such a drop distribution could result in

extremely poor playable frame-rates.  Given this consideration, packet loss and frame-

rates are the next metrics considered.

Figure B.47 shows the packet loss rate for these experiments.  The multimedia band-

width allocations are used as indices for each experiment.  Clearly, the packet loss rate



359

decreases as the multimedia bandwidth allocations increase and the two lowest settings do

not give good performance, as previously observed.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.47 Multimedia Bandwidth Allocation (KB/s) vs. Packet Loss (packets/s)
during the Blast Measurement Period for HTTP-MPEG

However, to discern the difference in quality resulting from the higher bandwidth allo-

cations, consider the frame rate measurements.  Figure B.48 shows the multimedia frame

rates at the receiver during the blast measurement period.  Recall that actual frame rate

(Figure B.48a) is based on the number of frames that arrive intact at the receiver, regard-

less of dependencies between frames, while playable frame rate (Figure B.48b) is the num-

ber of frames that arrive intact and are decodable (i.e., their reference frames also arrived

intact.)    Focusing on the higher allocations which seemed promising based on packet

loss, it is apparent that bandwidth allocations of 196 and 208 KB/s offer frame rates of 30

frames/second.



360

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00

a) Actual Frame Rate b) Playable Frame Rate

Figure B.48 Bandwidth Allocation for Multimedia (KB/s) vs. Frame Rate (Frames/sec)
during the Blast Measurement Period for HTTP-MPEG

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.50 Multimedia Bandwidth Allocation (KB/s) vs. Latency (ms) during the
Blast Measurement Period with HTTP-MPEG

Finally, consider the effect the bandwidth allocations have on latency.  Figure B.50

shows the end-to-end latency for MPEG during the blast measurement period.  Unlike the

active queue management algorithms, latency is not uniform across all classes or band-



361

width allocations.  Because in CBQ classes have their own queues that are serviced at

different rates, one class of traffic may experience significant queue-induced latency while

another class experiences little or no latency. However, this is not a significant concern as

TCP is tolerant of some latency and there is not attempt to provide any type of perform-

ance guarantees for the class other.  Thus, the focus is on multimedia latency.  Any class

that is generating load less than its allocated capacity should experience minimal queue

induced delay as queues only build up when load exceeds allocated capacity.  This is ap-

parent in Figure B.50.  Bandwidth allocations of 196 and 208 KB/s have low latency (less

than 30 ms).  However, when a class exceeds its allocation latency increases relative to the

intensity of the overload.  Thus, lower bandwidth allocations have latency on the order of

50 ms or more. Llatency concerns also demand that multimedia be allocated sufficient

bandwidth to have minimal drops.

The final concern is TCP throughput.  Recall that there is an inverse relationship be-

tween multimedia bandwidth allocation and TCP bandwidth allocation. Increasing the al-

location for multimedia requires a decrease in the allocation for some class.  In these ex-

periments the allocation for the other traffic was held constant.  Hence, the allocation for

TCP was decreased.   This decision was arbitrary.   The primarily goal of this experiment

is simply to confirm that TCP performance is equally predictable for all allocations.  Figure

B.51 shows the TCP throughput during the blast measurement period.  The TCP through-

put does decline as the multimedia bandwidth allocation increases, as expected, but the

degradation is small.  Note, however, that the TCP throughput is lower for a multimedia

allocation of 208 KB/s than for a multimedia allocation of 196 KB/s, despite the fact that

Figure B.45 showed that media throughput did not increase for an allocation of 208 KB/s.

This behavior is explained by borrowing.  Since multimedia doesn't use its full allocation

other classes are able to borrow from multimedia's unused allocation.  In this case other

and TCP share the excess capacity.   However, when the multimedia allocation is more

precise at 196 KB/s, TCP's allocation is also larger than it is when Bmm is 208 KB/s.  Con-

sequently, instead of sharing multimedia's excess bandwidth with other, TCP is able to use

that bandwidth as it is allocated to TCP initially.  This illustrates that point that it is im-

portant to allocate multimedia all of the bandwidth it needs, but no more.



362

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

Figure B.51 Multimedia Bandwidth Allocation (KB/s) vs. TCP Throughput (KB/s)
during the Blast Measurement Period with HTTP-MPEG

For the HTTP-MPEG traffic mix, multimedia throughput, packet loss, frame-rates,

and latency were considered in an effort to determine which parameter settings offer opti-

mal performance.  In all of the multimedia metrics, multimedia allocations of 196 KB/s and

208 KB/s offered superior performance.  Moreover, the 208 KB/s allocation offered little

improvement over the 196 Kb/s allocation.  Since multimedia did not benefit from the

larger allocation and TCP's throughput did degrade when multimedia was over allocated,

the allocations used were 196 KB/s (16%) for multimedia, 147 KB/s (12%) for other, and

882 KB/s (72%) for TCP.  Note that this is not the allocation originally calculated as the

optimal setting.  Because the load resulting from the MPEG media stream was variable

over medium time-scales (seconds), a larger multimedia allocation had to be used to ac-

commodate brief periods when multimedia's load was greater than 184 KB/s.  A larger

queue length for CBQ could have avoided some drops in this scenario, but at the cost of

increased latency.   Increasing the allocation minimizes loss and latency.



363

The optimal parameters for each of the other three traffic types were determined using

the same methodology as before.  The findings for those cases are summarized below.

7.2. BULK-MPEG

The analysis for BULK-MPEG very closely parallels that of HTTP-MPEG, including

the parameter space explored. Since the allocation for other traffic is fixed, and the TCP

allocation is simply the leftover allocation, the expected multimedia load and the resulting

allocation determines all of the parameter settings for these experiments.  As a result, the

same parameter settings are considered for BULK-MPEG as with HTTP-MPEG (shown

in Table B.25).  However, because the behavior of BULK traffic is different from HTTP

traffic, results with those traffic types must be examined to determine the optimal pa-

rameter settings.

KB/s
Experiment MM % Other % TCP %

Bmm Bother BTCP

1 13% 12% 75% 159 147 919

2 14% 12% 74% 172 147 907

3 15% 12% 73% 184 147 894

4 16% 12% 72% 196 147 882

5 17% 12% 71% 208 147 870

Table B.25 CBQ Parameter Settings for BULK-MPEG

Figure B.52 shows the plots of  (Figure B.52a) multimedia throughput, (Figure B.52b)

packet loss, (Figure B.52c,d) frame rates, (Figure B.52e) latency, and (Figure B.52f) TCP

throughput.  As with HTTP-MPEG, the telling metrics are the frame rates (Figure

B.52c,d).  The media stream sustains both an actual and playable frame-rate of 30 frames

per second for both of the higher multimedia bandwidth allocations (196 KB/s and 208

KB/s).  The latency (Figure B.52e) for those two settings is less than 30 ms in both cases

(26 ms and 14 ms respectively).  The goal is to use the minimum multimedia allocation

that offers acceptable performance in order to allocate as much bandwidth as possible to



364

TCP.  As a result, setting 4 in Table B.25, 16% for Multimedia, 12% for other, and 72%

for TCP, is chosen

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 50.00 100.00 150.00 200.00 250.00

a) Multimedia Throughput (KB/s) b)  Packet Loss (packets/s)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.00 50.00 100.00 150.00 200.00 250.00

c) Actual Frame Rate (Frames/s) d ) Playable Frame Rate (Frames/s)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 50.00 100.00 150.00 200.00 250.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 50.00 100.00 150.00 200.00 250.00

e) Latency (ms) f) TCP Throughput (KB/s)

Figure B.52 Multimedia Bandwidth Allocation (KB/s) vs. Selected Metrics during the
Blast Measurement Period with BULK-MPEG



365

7.3. HTTP-Proshare

Next, consider the HTTP-Proshare traffic mix. The Proshare media stream is both less

variable in the medium term (seconds) and has a lower average bandwidth than the MPEG

media streams.  As a result, the optimal parameter setting should allocate ~160 KB/s for

multimedia.  This allocation is experiment 3 in Table B.26.   As with the other experiments

multimedia parameter settings are considered in increments of one and two percentage

points above and below the expected optimal settings.

KB/s
Experiment MM % Other % TCP %

Bmm Bother BTCP

1 11% 12% 77% 135 147 943

2 12% 12% 76% 147 147 931

3 13% 12% 75% 159 147 919

4 14% 12% 74% 172 147 907

5 15% 12% 73% 184 147 894

Table B.26 CBQ Parameter Settings for HTTP-Proshare

The evaluation of HTTP-Proshare is limited to only four metrics because frame-rate

information for Proshare is not available (see Appendix A).   However, unlike MPEG,

Proshare's encoding mechanism does not use interframe encoding so packet loss is a rea-

sonable indicator of media play-out quality.  These metrics are shown in Figure B.53.

The multimedia throughput (Figure B.53a) is unremarkable, simply increasing slightly as a

result of the increased allocation.  However, the packet loss (Figure B.53b) is clearly bet-

ter for the higher multimedia allocations (159-184 KB/s) as they lead to loss of less than

one percent of the packets.  However, the allocation of 159 KB/s does lead to slightly

more latency (21 ms) (Figure B.53c) than with the two higher allocations (7ms).  Note

that the combination of latency and very low loss indicates that the Proshare traffic is

bursty enough to exceed the 159 KB/s allocation for very brief intervals and build a queue

but that the allocation is rarely exceeded long enough to force any overflow of that class's

queue.  Since the goal is to choose the minimum acceptable multimedia bandwidth alloca-



366

tion, the allocation from experiment 3 in Table B.26, 13% for multimedia, 12% for other,

and 75% for TCP, are chosen as optimal.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

a) Multimedia Throughput (KB/s) b)  Packet Loss (packets/s)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

e) Latency (ms) f) TCP Throughput (KB/s)

Figure B.53 Multimedia Bandwidth Allocations (KB/s) vs. Selected Metrics during the
Blast Measurement Period forHTTP-Proshare

7.4. BULK-Proshare

The evaluation of BULK-Proshare is almost identical to that of HTTP-Proshare.

Since the traffic mixes have the same multimedia traffic type, the initial allocations exam-

ined are identical.  The allocations for BULK-Proshare are shown in Table B.27.



367

KB/sExperiment MM % Other % TCP %
Bmm Bother BTCP

1 11% 12% 77% 135 147 943

2 12% 12% 76% 147 147 931

3 13% 12% 75% 159 147 919

4 14% 12% 74% 172 147 907

5 15% 12% 73% 184 147 894

Table B.27 CBQ Parameter Settings for BULK-Proshare

Figure B.54 shows the four metrics examined for BULK-Proshare with CBQ.  The

packet loss (Figure B.54b) metric indicates multimedia allocations greater than or equal to

159 KB/s give minimal packet loss.  However, the latency (Figure B.54c) observed indi-

cates the setting of 159 KB/s is unacceptable as the average latency is 42 ms. Both of the

higher allocations (172 and 184 KB/s) are acceptable with latency of 7ms.   It interesting

to note that the latency behavior here is slightly different than that for HTTP-Proshare

even though both have the same multimedia traffic type.  The difference is that the BULK

TCP traffic is more aggressive and more fully uses its allocated bandwidth, leaving no op-

portunity for multimedia to borrow unused capacity.   As a result, the brief periods when

Proshare exceeds its average load of 160 KB/s show up more dramatically when combined

with BULK than with HTTP.  As a result, for BULK-Proshare a multimedia bandwidth

allocation of 172 KB/s, 14%, other of 12%, and TCP of 74% is selected as optimal.



368

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

a) Multimedia Throughput (KB/s) b)  Packet Loss (packets/s)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00
0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

e) Latency (ms) f) TCP Throughput (KB/s)

Figure B.54 Multimedia Bandwidth Allocations vs. Selected Metrics during the Blast
Measurement Period with BULK-Proshare

7.5. Summary

KB/s
Traffic Mix MM % Other % TCP %

Bmm Bother BTCP

HTTP-MPEG 16% 12% 72% 196 147 882

BULK-MPEG 16% 12% 72% 196 147 882

HTTP-Proshare 13% 12% 75% 159 147 919

BULK-Proshare 14% 12% 74% 172 147 907

Table B.28 Optimal Parameter Settings for CBQ

Table B.28 shows the optimal CBQ parameter settings for each traffic mix.



369

8. Summary

All of the optimal parameter settings are presented in Table B.29, Table B.30, and

Table B.31, below, for ease of reference.

Algorithm maxq w maxp Th Min ThMax minq

FIFO 60 n/a n/a n/a n/a n/a

RED 240 1/256 1/10 5 40 n/a

FRED 240 1/256 1/10 5 60 2

Table B.29 Optimal Parameter Settings for FIFO, RED, and FRED Across all Traffic
Mixes

Weight ThMax KB/s
Traffic Mix

Mm other TCP other Mm TCP Bother Bmm BTCP

HTTP-MPEG 1/16 1/4 1/256 14.28 22.45 85.58 150 195 880

BULK-MPEG 1/16 1/4 1/256 14.29 26.06 59.11 150 205 870

HTTP-Proshare 1/16 1/4 1/256 14.28 22.19 88.35 150 160 915

BULK-Proshare 1/16 1/4 1/256 14.29 25.69 61.74 150 190 885

maxp = 1/10, maxq = 240

Table B.30 Optimal Parameter Settings for CBT

KB/s
Traffic Mix MM % Other % TCP %

Bmm Bother BTCP

HTTP-MPEG 16% 12% 72% 196 147 882

BULK-MPEG 16% 12% 72% 196 147 882

HTTP-Proshare 13% 12% 75% 159 147 919

BULK-Proshare 14% 12% 74% 172 147 907

Table B.31 Optimal Parameter Settings for CBQ



370

REFERENCES

[Allman99]  M. Allman and A. Falk, On the Effective Evaluation of TCP, ACM Computer
Communications Review, October 1999

[Balakrishnan99] Hari Balakrishnan, Hariharan Rahul, and Srinivasan Seshan, An Inte-
grated Congestion Management Architecture for Internet Hosts,  Proceeding ACM
SIGCOMM, Cambridge, MA, September 1999

[Baker95] F. Baker, Editor, Requirements for IP Version 4 Routers, RFC 1812, June
1995

[Berners97] T. Berners-Lee, R. Fielding, and H. Nielsen, “Hypertext transfer protocol –
HTTP/1.0”, Internet RFC 1945, http://ds.internic.net/ds/rfc-index.html, May 1996,
[September 1997]

[Bhola98] Bhola, Sumeer and Banavar, Guruduth and Ahamad, Mustaque, Responsive-
ness and Consistency Tradeoffs in Interactive Groupware, Proceedings of ACM
Conference on Computer-Supported Cooperative Work, 1998.

[Bhushan72] A. K. Bhushan, File Transfer Protocol (FTP) Status and Further Comments,
RFC 414, December, 1972

 [Blake97] S. Blake, Some Issues and Applications of Packet Marking for Differentiated
Services.  Internet Draft, Internet Engineering Task Force, Dec. 1997, Work in prog-
ress

[Braden89] R. Braden, Ed., Requirements for Internet Hosts-Communication Layers,
RFC-1122, October 1989.

[Braden94] R. Braden, D. Clark, S. Shenker, Integrated Services in the Internet Archi-
tecture: an Overview, Internet Request For Comments: 1633, work in progress, 1994

[Braden98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.
Wroclawski, & L. Zhang, Recommendations on Queue Management and Congestion
Avoidance in the Internet, Internet draft, work in progress, 1998.

[Brakmo94] L.S. Brakmo et al., TCP Vegas: New Techniques for Congestion Detection
and Avoidance, in SIGCOMM’94, pp. 24-35, August 1994.

[Cen98] S. Cen, C. Pu, J. Walpole, Flow and Congestion Control for Internet Streaming
Applications, Proc. SPIE/ACM Multimedia Computing and Networking '98, San Jose,
CA, January 1998, pages 250-264.



371

[Cho98] K. Cho, A Framework for Alternate Queueing: Towards Traffic Management by
PC-UNIX Based Routers, In USENIX ‘98, Annual Technical Conference, New Or-
leans, LA, June 1998.

[Chung00] J. Chung, M. Claypool, Dynamic-CBT – Better Performing Active Queue
Management for Multimedia Networking, submitted to NOSSDAV’00.

[Claffy98] K. Claffy, G. Miller, K. Thompson, The Nature of the Beast: Recent Traffic
Measurements from an Internet Backbone,
http://www.caida.org/outreach/papers/Inet98/

[Clark97] D. Clark, J. Wroclawski, “An Approach to Service Allocation in the Internet”,
Internet Draft, work in progress, draft-clark-diff-svc-alloc-00.txt, July 1997, Int-Serv
Working Group at the Munich IETF, August, 1997

[Clark99] M. Clark, K. Jeffay, Application-Level Measurements of Performance on the
vBNS,  Proceedings of the IEEE International Conference on Multimedia Computing
and Systems, Vol. II, pp. 362-366.  Florence, Italy, June 1999

[Charzinski 00] J. Charzinski,  Internet Client Traffic Measurement and  Characterisation
Results, Proc. ISSLS 2000, Stockholm, 18. 23.6.2000, Paper 12:1.

[Christiansen00] M. Christiansen, K. Jeffay, D. Ott, F. D. Smith, Tuning Red for Web
Traffic, ACM SIGCOMM 2000, Stockholm, Sweden, August, 2000.

[Delgrossi93] Delgrossi, L., Herrtwich, R., Vogt, C., Wolf, L., Reservation Protocols for
Internetworks: A Comparison of ST-II and RSVP,  Proceedings of Network and Oper-
ating System Support for Digital Audio and Video, Sept. 1993.

[Delgrossi95] L. Delgrossi, L. Berger, Editors, Internet Stream Protocol Version 2 (ST2)
Protocol Specification - Version ST2+, Request for Comments, RFC 1819, Internet
Engineering Task Force, August 1995.

[Delgrossi93] Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich, R., Krone, O., Sand-
voss, J., Vogt, C., 1993.  Media Scaling for Audiovisual Communication with the
Heidelberg Transport System, Proc. ACM Multimedia T93, Anaheim, CA, August
1993, pp. 99-104.

[Eleftheriadis95] A. Eleftheriadis and D. Anastassiou, Meeting Arbitrary QoS Constraints
Using Dynamic Rate Shaping of Coded Digital Video, Proceedings, 5th International
Workshop on Network and Operating System Support for Digital Audio and Video,
Durham, New Hamshire, April 1995, pp. 95-106

[Feng] W. Feng, W. Feng, "The Impact of Active Queue Management on Multimedia
Congestion Control," Seventh International Conference on Computer Communications
and Networks (IC3N'98), Lafayette, Louisiana, October 1998



372

[Feng99] W. Feng, D. Kandlur, D. Saha, K. Shin, "A Self-Configuring RED Gateway",
INFOCOM '99, March 1999.

[Feng99] W. Feng, Improving Internet Congestion Control and Queue Management Al-
gorithms, Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 1999.

[Ferguson97] P. Ferguson, Simple Differential Services: IP TOS and Precedence, Delay
Indication, and Drop Preference, Internet draft, work in progress, 1997

[Ferrari90] D. Ferrarri, Client Requirements for Real-Time Communication Services,
IEEE Communications, November, 1990, pp. 65-72.

[Firoiu00] V. Firoiu, M. Borden, A Study of Active Queue Management for Congestion
Control, INFOCOMM 2000

[Floyd91a] S. Floyd & V. Jacobson, On Traffic Phase Effects in Packet-Switched Gate-
ways, Computer Communications Review, April 1991

[Floyd91] Floyd. S., Connections with Multiple Congested Gateways in Packet-Switched
Networks Part 1: One-way Traffic, Computer Communications Review, Vol. 21, No.
5, October 1991, p. 30-47

[Floyd93] S. Floyd, & V. Jacobson, Random Early Detection gateways for Congestion
Avoidance, IEEE/ACM Trans. on Networking, V.1 N.4, August 1993, p. 397-413.

[Floyd94] S. Floyd, TCP and Explicit Congestion Notification, ACM Computer Commu-
nications Review, 24(5):10-23, Oct. 1994.

[Floyd95a] S. Floyd & V. Jacobson, Link-Sharing and Resource Management Models for
Packet Networks, IEEE/ACM Transactions on Networking, V.1, N.4, August 1995,
pp. 365-386.

[Floyd95b] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L.Zhang, A Reliable Multi-
cast Framework for Light-weight Sessions and Application Level Framing, ACM
SIGCOMM ’95, pp. 342-355.

[Floyd97a] S. Floyd, RED: Discussion of Setting Parameters,
http://www.aciri.org/floyd/REDparameters.txt

[Floyd97b]  S. Floyd, RED: Discussions of Byte and Packet Modes, March 1997. e-mail
archive, With additional comments from January 1998 and October 2000.
http://www.aciri.org/floyd/REDaveraging.txt

[Floyd97c]  S. Floyd, RED:  Optimum functions for computing the drop probability?,
http://www.aciri.org/floyd/REDfunc.txt



373

[Floyd98] S. Floyd, S., & K. Fall, Promoting the Use of End-to-End Congestion Control
in the Internet, IEEE/ACM Transactions on Networking, August 1999

[Gaynor96] M. Gaynor, Proactive Packet Dropping Methods for TCP Gateways, October
1996, URL http://www.eecs.harvard.edu/~gaynor/final.ps

[Guerin98] R. Guerin, S. Kamat, V. Peris, and R. Rajan, Scalable QoS Provision Through
Buffer Management, Proceedings of SIGCOMM’98, (to appear).

[Gupta99] P. Gupta and N. McKeown, Packet classification on multiple fields, in Pro-
ceedings of ACM SIGCOMM'99, ACM, August 1999.

[Hashem89] E. Hashem, Analysis of Random Drop for Gateway Congestion Control, Re-
port LCS TR-465, Laboratory for Computer Science, MIT, Cambridge, MA, 1989, p.
103.

[Hof93] Hoffman, D., Speer, M., Fernando, G., Network Support for Dynamically Scaled
Multimedia Data Streams, Fourth International Workshop on Network and Operating
Systems Support for Digital Audio and Video, Lancaster, UK, November 1993, pp.
251-262.

[ISO93] ISO/IEC: Coded representation of picture, audio and multimedia/hypermedia in-
formation (MPEG-2). Video 4th Working Draft, Sept. 9, 1993

[Jacobs96] S. Jacobs and A. Eleftheriadis,  Providing Video Services Over Networks
Without Quality of Service Guarantees.  In RTMW’96, Sophia Antipolis, France, Oct.
1996.

[Jacobson88] V. Jacobson, Congestion Avoidance and Control,  ACM Computer Com-
munications Review, 18(4):314-329,  Proceedings of ACM SIGCOMM '88, Stanford,
CA, August 1988.

[Jain88] Jain, R. and Ramakrishnan, K.K., Congestion Avoidance in Computer Networks
with a Connectionless Network Layer:  Concepts, Goals, and Methodology, Proc.
IEEE Computer Networking Symposium, Washington, D.C., April 1988, pp. 134-143.

[Kent87] C. Kent and J. Mogul, Fragmentation Considered Harmful, SIGCOMM Sym-
posium on Communications Architectures and Protocols, pp. 390-401, Aug. 1987

[Kent88] C. Kent, K. McCloghrie, J. Mogul, and C. Partridge, IP MTU Discover Options,
Request for Comments, RFC 1063, Internet Engineering Task Force, July 1988.

[Keshav97] S. Keshav, An Engineering Approach to Computer Networks: ATM Networks,
the Internet, and the Telephone Network, Addison-Wesley, professional computing se-
ries, 1997



374

[Laksham96] T.V. Lakshman, A. Neidhardt, T. Ott, The Drop From Front Strategy in
TCP Over ATM and Its Interworking with Other Control Features, Proc. Infocom 96,
pp. 1242-1250.

[Le Gall91] D. Le Gall, MPEG: A Video Compression Standard for Multimedia Applica-
tions, Communications of the ACM, 34(4), April 1991

[Leland94] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, On the Self-Similar Na-
ture of Ethernet Traffic (Extended Version), IEEE/ACM Transactions on Networking,
2(1), pp. 1-15, February 1994

[Lin97] D. Lin & R. Morris, Dynamics of Random Early Detection, In Proceedings of
ACM SIGCOMM ‘97,  pages 127--137, Cannes, France, October 1997.

[Mah97] B. A. Mah, An Empirical Model of HTTP Network Traffic, in Proceedings of the
Conference on Computer Communications (IEEE Infocom), (Kobe, Japan), pp. 592-
600, Apr. 1997.

[Mahdavi97] J. Mahdavi and S. Floyd, TCP-Friendly Unicast Rate-based Flow Control,
June 1997.  Technical Note, available from http://ftp.ee.lbl.gov/floyd/papers.html

[Mankin91] A. Mankin, K.K. Ramakrishnan, editors for the IETF Performance and Con-
gestion Control Working Group, “Gateway Congestion Control Survey”, RFC 1254,
August 1991, p. 21

[Mathis97] M. Mathis, J. Semke, J. Mahavi, and T. Ott.  The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm., IEEE Network, 11(6), Novem-
ber/December 1997.

[McCreary00] S. McCreary and K. C. Claffy, Trends in Wide Area IP Traffic Patterns,
Tech. Rep., CAIDA, Feb. 2000

[Rosolen99] V. Misra, W. Gong, D. Towsley, A Fluid-based Analysis of a Network of
AQM Routers Supporting TCP Flows with an Application to RED,  Proceedings of
ACM SIGCOMM'00, (Stockholm, Sweden, September 2000)

[Morris97] R. Morris, TCP Behavior with Many Flows, IEEE International Conference on
Network Protocols, October 1997, Atlanta, Georgia.

[Nagle84] J. Nagle, Congestion Control in IP/TCP, RFC 896, January 1984.

[Nee97] P. Nee, Experimental Evaluation of Two-Dimensional Media Scaling Tech-
niques for Internet Videoconferencing, Master’s Thesis, University of North Carolina
– Chapel Hill, 1997

[Nichols97] K. Nichols, V. Jacobson , & L. Zhang, A Two-bit Differentiated Services Ar-
chitecture for the Internet, Internet draft, work in progress, 1997.



375

[Nichols98] K. Nichols, S. Blake, F. Baker, D. Black, Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers, RFC 2474, December 1998

[Ott97] T. Ott, J. Kemperman, and M. Mathis.  Window Size Behavior in TCP/IP with
Constant Loss Probability.   In the Fourth IEEE Workshop on the Architecture and
Implementation of High Performance Communication Systems (HPCS’ 97),
Chalkidiki, Greece, June 1997.

[Pan00] R. Pan, B. Prabhakar, K. Psounis, CHOKe: A Stateless Active Queue Manage-
ment Scheme for Approximating Fair Bandwidth Allocation, INFOCOMM’00

[Paxson96] V. Paxson, End-to-End Routing Behavior in the Internet. In IEEE/ACM
Transactions on Networking 5(5), pp. 601-615

 [Paxson97] V. Paxson, Automated Packet Trace Analysis of TCP Implementations. In
Proceedings of ACM SIGCOMM, September 1997

Apparently indicates Loss-rate is currently increasing in the Internet (as referenced in
[Feng]).

[Postel80] J. Postel, Unreliable Datagram Protocol, RFC 768, August, 1980

[Postel81] J. Postel, Internet Control Message Protocol, RFC 792, September 1981

[Postel82] J. Postel, Simple Mail Transfer Protocol, RFC 821, August, 1982

[Ramakrishnan99] K.K Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP. Internet draft draft-ietf-tsvwg-ecn-04.txt, work
in progress, June 2001

[Rizzo97] L. Rizzo, Dummynet: a simple approach to the evaluation of network proto-
cols, ACM Computer Communication Review, January 1997,
URL:http://www.acm.org/sigcomm/ccr/archive/1997/jan97/ccr-9701-rizzo.pdf

[Romanow95] A. Romanow and S. Floyd, Dynamics of TCP Traffic over ATM Networks,
IEEE Journal on Selected Areas in Communications, 13(4), 1995.  URL:
http://www.nrg.ee.lbl.gov/nrg-papers.html

[Rosolen99] V. Rosolen, Bonaventure, O., and G. Leduc, A RED discard strategy for
ATM networks and its performance evaluation with TCP/IP traffic, ACM Computer
Communication Review, July 1999,
URL:http://www.acm.org/sigcomm/ccr/archive/1999/jul99/ccr-9907-leduc.pdf

[Salim00] J. Hadi Salim, and U. Ahmed, Performance Evaluation of Explicit Congestion
Notification (ECN) in IP Networks, Request for Comments, RFC 2884, July 2000



376

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark, End-to-end Arguments in System
Design, ACM Transactions on Computer Systems, pages 277-288, 1984

[Schulzrinne96] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.  RTP: A
Transport Protocol for Real-time Applications.  Technical Report RFC 1889, Internet
Engineering Task Force, Jan. 1996

[Schneiderman98] Shneiderman, Ben.  Designing the User Interface:  Strategies for Effec-
tive Human-Computer Interaction, Third Edition.  1998.  Addison Wesley.  p. 360

[Sisalem97] D. Sisalem, H. Schulzrinne, F. Emanuel. The Direct Adjustment Algorithm: A
TCP-Friendly Adaptation Scheme.  Technical Report, GMD-FOKUS, Aug. 1997.
Available from http://www.fokus.gmd.de/usr/sisalem.

[Sisalem98] D. Sisalem, H. Schulzrinne, The Loss-Delay Based Adjustment Algorithm: A
TCP-Friendly Adaptation Scheme, Eighth International Workshop on Network and
Operating Systems Support for Digital Audio and Video, Cambridge, UK, July 1998,
pp. 215-226.

[Srinivasan99] V. Srinivasan, S. Suri, and G. Varghese. Packet Classification using Tuple
Space Search. In Proc. of SIGCOMM '99, pp. 135--146.

[Stevens94] W. R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols. Addison-Wesley,
Reading, Mass. 1994.

[Stone95] D. L. Stone, Managing the Effect of Delay Jitter on the Display of Live Con-
tinuous Media, Ph.D. Dissertation, University of North Carolina at Chapel Hill,
Chapel Hill, NC, July, 1995.

[Talley97] T. M. Talley, A Transmission Control Framework for Continuous Media,
Ph.D. Dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC, May
1997.

[Thompson97] K. Thompson, G.J. Miller, and R. Wilder. Wide-area Internet Traffic Pat-
terns and Characteristics.  IEEE Network, 11(6):pp. ??-??, November/December
1997.

[Varghese96] G. Varghese. On Avoiding Congestion Collapse, Technical report, Nov. 19,
1996, view-graphs, Washington University Workshop on the Integration of IP and
ATM.

[Villamizar94] C. Villamizar and C. Song, High Performance TCP in ANSNET.  Com-
puter Communications Review, V. 24, N. 5, October 1994, pp. 45-60.  URL
ftp://ftp.ans.net/pub/papers/tcp-performance.ps

[Wakeman95] I. J. Wakeman, Congestion Control for Packetised Video in the Internet,
Ph.D. Dissertation, University of London, London, 1995.



377

[Waldvogel97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, Scalable High
Speed IP Routing Lookups, ACM SIGCOMM '97. PalaisdesFestivals, Cannes, France,
pp.25-36

[Willinger95] W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson, Self-Similarity
Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source
Level, ACM SIGCOMM ’95, pp. 100-113, August 1995.

[Wilson93] F. Wilson, I. Wakeman, and W. Smith.  Quality of Service Parameters for
Commercial Application of Video Telephony.  In Human Factors in Telecommunica-
tions Symposium, Darmstadt, Germany, Mar. 1993.

[Wolf82] C. Wolf, Video Conferencing: Delay and Transmission Considerations, in Tele-
conferencing and Electronic Communications: Applications Technologies, and Human
Factors, L. Parker and C. Olgren (Eds.), 1982

[Ziegler99] T. Ziegler, S. Fdida, & U. Hofmann, A Distributed Mechanism for Identifica-
tion and Discrimination of non-TCP-friendly Flows in the Internet, Submitted to
ICNP99.

[Zakon99] R. H. Zakon, Hobbes' Internet Timeline v5.0
http://www.isoc.org/zakon/Internet/History/HIT.html, January 2000


