Managing the Effect of Delay Jitter
on the Display of Live Continuous Media

Donald L. Stone

A dissertation submitted to tHiaculty of the University of North Carolina at Chapétill
in partial fulfillment of the requirements for the degree @bctor of Philosophy in the
Department of Computer Science.

Chapel Hill

1995

Approved by:

Advisor

Reader

Reader

0 1995
Donald L. Stone

All Rights Reserved

DONALD L. STONE. Managingthe Effect of Delay Jitter on theDisplay of Live
Continuous Media (under the direction of Kevin Jeffay).

ABSTRACT

This dissertation addresstse problem of displaying liveontinuousmedia €.g, digital
audio and video) with low latency ime presence ofielay jitter, wheredelay jitter is
defined as variation in processing and transmission dé&leplay inthe presence afelay
jitter requires a tradeoff betwedwo goals: displaying frameswith low latency and
displaying every frame. Applicatiomaust choose alisplay latency that balancésese

goals.

The driving problem for my work is workstation-basedideoconferencing using
conventionaldata networks. | propose a two-part approadétist, delay jitter at the
source and destination should be controlledying network transnssion asthe only
uncontrolled source. Second, themaining delayjitter should be accommodated by
dynamically adjusting display latency in response to observed delay jitter. My ttbsis is
this approach issufficient to support thelow-latency display ofcontinuous media

transmitted over building-sized networks.

Delay jitter at the source and destination is controlletinpjementingthe application as a
real-time system. The key problem addressed is that of showing that &em®cessed
with bounded delay. Thanalysisframework required to demonstrate ttpsoperty
includes a new formal model of real-time systems aset aftechniques for representing

continuous media applications in the model.

The remaining delayitter is accommodated using a n@wlicy calledqueue monitoring
that managethe queue oframes waiting to be displayed. This policy pigato delay

jitter by increasingdisplay latency imresponse to longelays and by decreasing display

latency wherthe length ofthe display queueremains stabl@ver a longinterval. The
policy is evaluated with aempirical study inwhich the application was executed in a
variety of network environments. The study shows that queue monitoring pelfettas
than apolicy that staticallychooses alisplay latency or amadaptive policy thasimply
increases display latency smcommodate the longest obserdethy. Overallthe study
shows that my approach resultsgood quality display ofcontinuousmediatransmitted
over building-sizednetworks that do not suppocommunication with boundedelay

jitter.

ACKNOWLEDGMENTS

First, | must thank my advisaKevin Jeffay. Higguidance, advice, and patience made the
mostsignificantcontribution to my success in graduate school. In addtisrfriendship
made the experience particularly rewarding.

Thanks aswell to F. Don Smith whose help was extremely valuable. In addition to
serving on my committee, he helped to obtain funding and equippetiipated in the
initial design and implementation tife system, and conductelde experiments performed
on the IBM network.

Thanks toall the students, staff, arfdculty of the ComputeiScience Department. In
particular, thanks to the otherembers of my committe®on StanatJim Anderson, and
Jan Prins, and tthe othermembers othe DIRT project, past and present. One of my
greatest rewards in graduate schdals beenthe set ofwonderful personal and
professional relationships | have developed over the years.

Thanks to the IBM and Intel Corporations for their generswgport infellowships,
money, and equipment. Thanks alsahe alumni ofthe ComputeScience Department
whose generous contributions made the Alumni Fellowship possible.

Thanks to Dean Smith and the 1990-1995 Tar Heel basketball teams.

Thanks particularly to myife Clairewhose love andupporthave been more important
to me than she cdmow. Of themanywonderful things | did during my time graduate
school, meeting and marrying her was the most wonderful.

Most of all, thanks to myather. Throughout miffe, he hastaught and inspirethe, not
least by imparting to mhkis love for Computer Science. Thus, it is altogetiiteng that
my dissertation work, like all the important things in my life, be dedicated to him.

TABLE OF CONTENTS

Page
Chapter | INtrodUCTION........ciee e e e ees 1
1.1 CONtINUOUS MEAIA. ...ttt 1
1.2 DEIAY JIHEOL.... .ttt et 3
1.3 Research Approach and ContribUtioNS............ccooviiiiiinieiiiiii e 5
1.4 RelAted WOTK.....ccoieeiiii e 7
1.5 DiSSErtation OVEIVIEW........uuuuieeieiiiiie ettt e ettt e e et e e e e e 13
Chapter Il System DeSCriPtiQN.........ccuuuiiiiiieiiree e 15
2.1 INEFOAUCTION ...ttt e e e e e e e e ennanas 15
2.2 Overview Of the APPlICALION.........cocuuuiiiieiieei e 16
2.3 Hardware INTEITUPLSottt e e e e e e e e eneees 17
24 YARTOS. ...t e e e e e e e e e e a e 18
2.5 ACQUISItION-SIAE PrOCESSING. ... i eiiieiiiiie ettt 25
2.6 SUMMAry and DISCUSSION.ccuuuuiiaeiieiiiii et a7
Chapter Il Feasibility Analysis of YARTOS Task Systems................. 49
L INIFOAUCTION ...ttt e e e e e e e eennaaaas 49
3.2 SYSEM MOUEL.....oeeii e 51
3.3 The Effect of Interrupt HaNdIGIS.........coooiiiiiii e 54
3.4 EDF/DDM Scheduling DiSCIPIINE..........uuuiiiiiiiiiieeeeeeeii e 57
3.5 Feasibility CONAIIONS.......ccouuiieeiiei e 60
3.6 FEASIDINTY TOSL....cciiiiiiii e 65
ST SUMMIAIY. ettt ettt ettt e et et e et e et e e e e e n e e e naa e 70
Chapter IV Feasibility Analysis of the Acquisition-Side........................ 71
o R [T i (0o (B To{ 1 [0] o HO PP UPPPPPTTTR 71
4.2 Modeling Hardware INtEITUPLS........oviiiiiiii e 72
4.3 Reasoning about Request-Response INterrupts...........ccovvvvviinieneeeennnnnnn. 74
4.4 Determining the Minimum Interarrival Time of Application Tasks........... 80
4.5 Feasibility of the APPlICAtION..........ccovueiiiiii e 85
4.6 SUIMIMANY. .. ettt ettt e et et e et e e et e e e e e e e n e e e st e e e e e e en e e e ennnn s 101

Vi

Chapter V Analysis of the Delay Bound.............c..ocooiiiiiiiniiieeenn, 102

S0 R 11 o o [1 T 1 o] o PP 102
5.2 Overview of Real-TiMe LOGUC.........iiiiiiiiiiiieeeeeeeei e 103
5.3 BASIC CONCEPLS. ... ittt e et e e e e e e e eennaes 105
5.4 CorrectNeSS CONAITIONS.oieiiieiiiee ettt 109
5.5 Basic AXIoms and ThEOIremS...........uuuuiiiiiiiiiiii e 111
5.6 TASK DESCIIPONSceeiiiiie ettt e e e e e eeees 119
5.7 Bounded Delay ThEOI&ML........couuuuiiiieieiiiie e 128
5.8 A Note on the LOWer BOUNGuiiiiiiiiiii e 163
RS B o 151 (o) PP 164
Chapter VI Policies for Managing Delay Jitter............ccoooevviveviinenennn. 166
0 R 11 o o 11 T 1 o o PP 166
6.2 Effect of Delay JIer.......coooviiiieeeie e 167
6.3 QUEUE MONITOIING ... ettt 171
5.4 SUMMIAIY. ..ttt e et e e e e e e e e e e e e e e n e e e enaan s 174
Chapter VII Evaluation of Delay Jitter Management Policies............ 175
4% R 11 o To 11 T 1 o o 175
7.2 Description Of the StUAY.......couuuiiiiii e 176
7.3 Evaluating Delay Jitter Management POIICIES...........ccoevviiiiiiiiiniiiiineees 181
7.4 Comparison of Queue Monitoring to the I- and E- Policies.................. 185
7.5 Effect of the Threshold Parameter.............ccoooeiiiiiiiiiiii e 190
7.6 DIiSCUSSION aNA SUMMEIY......citieiiiiieeeeiitii et e e e 196
Chapter VIII Conclusions and Contributions...............ccoocoeveiiien. 198
8.1 TNESIS SUMMIBLY......uieeieeiiie ettt ettt e e e e e e e e 198
8.2 CONCIUSIONS. ...t et e e et e e e et e e eenes 200
G I @] o1 (] o]0 11 o] o F- 3PP 200
B4 FULUIE WOIK. . ettt e et e et e e et e e e e ea e e e eeeaaeeeees 201
R (=T =T o 205

Vi

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:
Figure 2-23:
Figure 2-24:
Figure 2-25:
Figure 2-26:
Figure 2-27:

Figure 4-1:
Figure 4-2:
Figure 4-3:

LIST OF FIGURES

Page
A Pipeline View of Continuous Media Processing..............cccevvvvuunenneeee. 2
Hardware ENVIFONMENT..........oooiiiiiiii e 6
Table of Hardware INterrUPLS.oovuuiiieiiiiii e 18
Interrupt Handler Declarations..............oov v 19
Application Task DecClarations.............ccouuuuiiiieiiiiiiii e 19
YARTOS System CallS........oooiiiiiiiiieeeiee e 21
Architecture of Example YARTOS ApplicatiQn...............cevveeeriiiiinnnnnnn. 22
Example YARTOS APPHCAtION.ccouuuiiiieiiiiiiiie e 23
AUdIO and VIdEO BUEIS.......coiiiiiiiie e 27
Memory Management CallS...........coouuiiiiiiiiiiiiii e 27
Audio and VIdeO OPEratiONS.........ccouuuuuiieeiiiiiiiaa et e et eeeeees 27
Operations 0N QUELIESciiiiiiiie e eeeeiiii ettt e e e 27
Network Transmission Declarations.ccoovvviiiiiineeiiiiiiine e 28
Global Variable Declarations..............ccoouuiiiiiiiiiiiiii e 28
High-Level ArChiteCture...........uui i 29
High Level View of the Video ProCess...........cccvviviiiiieiiiiiiiiiineeeeeenen, 31
DIgItIZAtiON PrOCESSceuiiiieiieiie e 32
High Level View of the Audio PrOCESS..........cooveviiiiiiiiieeeiieiii e 33
High Level View of the Transport Process............coooevvvvviiiiinieeeeennnnnnn. 34
Fragment of the Vide0 ProCess.ccouvvuiiiiiiiiiiiiii e 36
Video Fragment Divided Into TaskS........ccouvuiiiiiiiiiiiiiiei e 36
Software Architecture of the Acquisition-Side...............cccviiiiiieiienne 38
Pseudo Code for VBI TasK........ccouuuiuiiiiiieeiiieiiiii e e 41
Pseudo Code for VBIL TasK........ccoooiiiiiiiiiiiiiiiee e 42..
Pseudo Code for VBIO TasK........cccouiiiiiiiiiiiiiiie e 43..
Pseudo Code fOr CC TaSK ... 43
Pseudo-Code for Audio TaskK..........oovriiiiiiiiiiiiiieee e 44....
Pseudo-Code for Initiate_Send TasK..........ccoiiiiiiiiiiniiiiiiecceeeeeen 45
Pseudo-Code for Transmit_Complete TasK.........cccccoovieviiiiiiiiinennnnns 46
Successive Executions of the Audio TasK.............cooovviiiiiniiiiiiiiinneee, 73
Interval Between Odd/Even Pairs of Audio Tasks...........ccooeevveiiiiennnn. 74
Minimum Interarrival Time of Application Task Invocations................. 81

viii

Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:

Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 7-1:
Figure 7-2:
Figure 7-3:

An Alternative View of the Acquisition-Side Architecture..................... 86
EXECULION COSIS.....uuiiiiiiiii e 87
Summary of Interrupt Handlers. ... 95
Summary of Application TASKS..........cccuuuiiiiiiiiiii e 95
Formal Definitions of the Interrupt Handlets...............oooiiiiiiieinnnnnnn. 96
Formal Definitions of the Application Tasks............ccccuviiiiiiiiiiiiinneee, 96
Formal Definitions of the RESOULCES..........cccoviviiiiiiiiiiiii e 97
Graph of CONAItION.L......cooviiiiieiiii e 98
Graph of Condition 2 for VDIO Task..........ccceiiiiiiiiiiii e 99
Graph of Condition 2 for Initiate Send TasK...........ccccoeveveiiiiiiiiiiinennns 99
Graph of Condition 2 for Packet Transfer Task............cccooevviiiinnnnens 99
Graph of Condition 2 for Transmit Complete Task..................cceeeen 100
Graph of Condition 2 for User Tick Task..........cccuuiiieiiiiiiiiiiiiieeeeenns 100
Condition 2 for Keyboard Check TasK...........ccccceeiiiiiiiiiiiiiiieeeeeeiiinn, 100
Graph of Condition 2 for Screen Output Task................eeeee e 101
SymDOlIC CONSTANTScoviiiiee e 105
Relationships Among Symbolic Constants............ccccoevvviiiiiieiiiineeeennnnn. 106
TASK ACHONS. ...ttt 106
SUDLASK ACHIONS ...t 106
IMESSAGE ACHIONS. ...ttt 107
QUEUING ACTIONS. ...ttt e e e eeeeeees 107
Memory Management ACHQNS...........couveuuuuiiieeiieiiii e e 107
Video Frame ProcesSing ACHONS.oveeiiiiiiiiiieeeeeeiiie e 108
EXTErNal EVENIS. ... e 108
Correctness Conditions for a Video Frame............ccccccvviiiieeeviininnnnnn. 111
Actions Performed in Mutual EXCIUSION.............coooiiiiiiiiiiieiei 116
At-MOSE-ONCE ACHONSuuieiieiiiii ettt 117
MaIN TREOMEIM 129
Summary of AXioms and Theorems.............ccouviiiieiiiiiiiiinneeeee e 131
I-Policy and E-Policy with Persistent Delay Jitter.............cccccceeveevieennns 168
[-Policy and E-Policy with Occasional Delay Jitter................ccccvvunnnn. 170
Queue MoNitoring ProCeAUIE..........c.uuuiii e 173
Basic Data (UNC NetWOrK)........cooiiiiiiiiiiiiiiee e 178
Distribution of End-to-End Delay Jitter (UNC Network)..................... 178
Basic Data (IBM-RTP FIOQL).......ccouuuiiiiiiiiiii e 180

Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:

Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:

Distribution of End-to-End Delay Jitter (IBM-RTP Flaar)................... 180

Basic Data (IBM-RTP CamPUS).........iieeiiiiiiiieeeeeieiiiie e e e eeeeeeens 181
Distribution of End-to-End Delay Jitter (IBM-RTP Campusy.............. 181
Comparison of I, E, and QM Policies (UNC Netwark)....................... 187
Comparison of I, E, and QM Policies (IBM-RTP Floor)..................... 188
Comparison of I, E, and QM Policies (IBM-RTP Campus)................ 189
QM Policies with Varying Thresholds (UNC Netwark)..................... 191
QM Policies with Varying Thresholds (IBM-RTP Flaar)................... 192
QM Policies with Varying Thresholds (IBM-RTP Campus).............. 192
QM Policies with Multiple Thresholds (UNC Network)..................... 194
QM Policies with Multiple Thresholds (IBM-RTP Floar)................... 195
QM Policies with Multiple Thresholds (IBM-RTP Campus).............. 196

— —

—

cCoOo oD

o

kernel

LIST OF SYMBOLS

A real-time task system.

An interrupt handler.

An application task.

A resource.

Cost of interrupt handléy.

Minimum interarrival time of interrupt handlér

Cost of application task.

Set of resources used by application tGsk

Relative deadline of application tagk

Minimum interarrival time of application tagk

Minimum relative deadline among tasks that share a resourc& with
Upper bound on time spent executing interrupt handlers in an interval of length

Upper bound on number of invocationsipbccurring in {, t+]
Achievable processor utilization of a taskset

Max. value for which condition 1 of the feasibility conditions must be checked.
Lower bound on the response time of a request for intelrrupt

Upper bound on the response time of a request for intd{rupt

Set of interrupt handlers with priority greater than thdt of

Blocking term forl.

Upper bound on time required to complete executidn of

Upper bound on the length of an interval executed with interrupts disabled

overload Maximum cost among tasks overloaded with

Xi

Chapter |
Introduction

1.1 Continuous Media

The wideavailability of powerful graphics workstations and low-casgital audio and
video technology has led tihe development omultimedia applicationghat integrate
audio and video with graphics and traditiodaita. This integration allows application
developers to create revolutionary newls. Howeverapplications that include digital
audio and videodata requireservicesnot usually found in traditional workstation
operating systems. Furthermonaultimedia applications thaéxecute in distributed
environments require services not usually provided by traditional networks.

The need for new operatingystem anchetwork services tosupport audicand video
arises fromthe continuous nature of theseedia. Consider video. A real-world scene
changes continuously. A digital video cameaptures the scene gpidly acquiringstill
images calledramesat a constant rate referred to as treme rate If frames are
acquired at asufficiently high rate and at regular intervals, and if theBames are
displayed athe samerate,then a viewer is presented with titlasion of a continuously
changing scene. Digitaludio works on aimilar principle: sounds arsampled at a very
high rate at regular intervals atite samplesareplayed back athe samerate. Mediathat
are acquired and displayed at fixed high rates are knowordiiuous medigCM).

Applications thatisplay CMdata must adhere 8everal timingconstraints. Firsframes
must be displayed at precise intervals. As an example, conkeldisplay of video
acquired at theate of 30frames asecond. Tayive theillusion of smooth motiongach
frame must be displayedr exactly 1/30th of a second. Tsatisfy this requirement, an
application must be able &xecute the operatiomgecessary to display frames so as to
guarantee that neftamesaredisplayed at specific timesSimilar timingconstraints exist
for the operations that acquire video frames.

A secondtiming constraint arises when CM applicatioese used forinteractive
communication€.g, a videoconference between geographicediyarated users). souch
cases, the CM data is referred to l@e continuous media. A key measure of the
performance of applications thatipport live CM igdisplay latency Thedisplay latency
of live CM data isdefined aghe elapsedime from acquisition othe data at a source on
one workstation talisplay ofthe data at a second workstatidatfective communication
between users is hampered wlasplay latency is highe(g, consider theeffect ofdelay

in a phone conversation conducted ovesatellite link). Thetiming constraint on CM
applications with distributed users is that dmgplay latencynust besmallenough that the
round-trip delay in the users’ communication is acceptable.

To meet theséiming constraints, a CM application musly on adequate performance
from the underlying network and operatingystem. Two of the most important
performance parameters are bound®iwod-to-end delagndend-to-end delay jitter To
motivate these terms, it isseful to viewthe process of generating aaidplaying live CM
data as a distributedipeline. Each frame iggenerated, undergoes some intermediate
processing €.g, video framesmay becompressed), is transmitted over the network,
undergoes more intermediate processing, and is displayed.

Display
Queue

Decompressio

Reception

Acquisition Side Display Side
Figure 1-1: A Pipeline View of Continuous Media Processing

Figure 1-1 illustrates this pipeline. Of particulaterest is théuffer placedmmediately
before the display stage of thgpeline. This buffer iseferred to as thdisplay queueand

is implemented as a queueindividual bufferseach of which can hold a single frame. It is
necessary fotwo reasons. Firstsince framesare generated at one workstation and
displayed atanother, the processes that generatedisplay framesare presumably not
synchronized. Thushuffering must exist somewhere ithe pigline to hold frames
waiting to be synchronized withe displayprocess. Morémportantly, unless eadtage

of the pipeline processes edcame withconstantdelay,the time requiredfor individual
frames to movehrough the pipline will vary. Sincethe display processdisplays new
frames at a fixedate, variation in thearrival of frames athe display process must be
“smoothedout” with buffering. Intheidealized pipelineshown in Figure 1-1, the display
gueue provides any buffering required for frames to synchronize with the display process.

Theend-to-end delagf a CM frame is defined as the elapsed time betwezgeneration
of theframe and its arrival ahe displayqueue. End-to-end delay jitters a measure of
the variability in end-to-end delay of frames.

1.2 Delay Jitter

An application that displays liveontinuousmediamust address several problethsit
arise becausthe end-to-endlelays experienced bgdividual framescan vary. Consider
video frames inthe pigelineillustrated in Figure 1-1Initially, framesenter the pipeline at
regular intervals of approximately 33 ms. the delay experienced by each frame at the
first stage is constant, thearrivals atthe next stage in the @fine will also occur at
regular intervals. Howevewhenthe delay at astage can varyframes vl arrive at the
next stagdrregularly. As a result, severihmesmay arrive at the next stage napid
successiond.g, several frames arrive #ite networkinterface ofthe displayworkstation

in a shortinterval); this is called durst Because resources suchaasilable preessor
time and buffer space may be limited, the arrival of a burst can result in loss of frames.

Another problem resulting from delay jitter is that it becomes difficulan application to
display frames “smoothly”. Ideally, an applicatishoulddisplayeach continuousedia

frame immediatehafter its predecessor€., frameN+1 should belisplayed immediately

after frame N). However, if the end-to-edelays experienced by frames vahen this is

not always possible. For example, consider a case where a frame incurs a particularly long
end-to-enddelay. As aresult, theframe may not beavailable wherthe display of the
preceding frame is complete atite application vill be unable to displayhe newframe.

Such an event is calledgap in thedisplay. Inthe application illustrated in Figure 1-1, a
gap occurs whenever the display queue is empty when the display of a frame completes.

Delay jitter can also lead to increases display latency. Tounderstand why, it is
instructive to consider thdisplay queue in Figure 1-1 from the perspectiveqokuing
theory. Assuming ndoss, frames arrive dhe displayqueue at an averagate equal to
the rate awhich framesare generated.¢., the framerate). Howeverpecausalelays
experienced by frames the pigeline can vary, thenterarrival time can vary.Thus, the
arrival process at théisplay queue has a general distribution witmaan equal to the
framerate. On the othdrand, framesre removedrom the displayqueue(to beplayed)
at periodic intervals defined lihe framerate. Thus theserviceprocess for the display
gueue is deterministic with mean equal tohe framerate. Queuing theory tells us that,
unless the arrival process is deterministic, this queue is unsiEiteeis, if the end-to-end
delays experienced by frames can vary, aral framesare assumed to arrive, then the
length ofthe displayqueue camrow without bound.The implication of this observation
for applications thatlisplay continuousmedia is that if framearereliably delivered, then
in the presence of unbounded delay jitter the display queue will grow longer over time. As
a result,frames vill wait longer in thedisplay queue, and thugdisplay latency il grow
over time.

Overall,the effect of delayjitter on thedisplay ofcontinuousmedia frames can dgoken
into three potential problems:

+ Bursts cause loss of frames.
« Large variation in end-to-end delay causes gaps.

« Growth of the display queue causes high display latency.

Furthermore, under the natural assumption that small variations in delay are more common
than large variations in delathere is a tradeoff betweeninimizing displaylatency and
minimizing gap frequency. The tradeoff resuitsm the fact that the shorter the display
gueue, and thus the lower the display latency, the higher the probability of encountering an
end-to-end delay sufficient to cause a gap.

1.3 Research Approach and Contributions

The goal of my research is an understanding ofuhdamental principles governing the
processing andisplay ofcontinuousmedia inthe presence alelayjitter encountered in
distributed systems. My approach to this research is to address a padroutey
problem: how to support workstation-baseddeoconferencing applicationsi.q.,
applications that acquire, transmit, amiisplay live audio and videodata) in an
environment consisting of today’s persomairkstations, today’sommercially available
audio/video hardware, and today’s netwomkg (Ethernets, tokerings, etc). There are
four principal reasons for studying this problem. Fitstere iscommercial demand for
workstation-based videoconferencisgstems based ocommonly availablehardware.
Second,while long-haulnetwork providersmay soon supportommunication services
with low delay andow delayjitter, today’sinstallednetworkbase Wl likely continue to
be used to suppocommunication within buildings. Third, solutions tfwe problems of
supporting live audio and videtatacan be applied to a larger class of continumeslia
data types €.g, moving imagesgenerated fordisplay in virtual reality applications).
Finally, solutions for today’s environment can be used to evaluato#tsand benefits of
specialized service®r audio and video thatillvappear in next generation workstations,
audio/video hardware, and networks.

For the purposes dhis dissertation, | have imposédo additional constraints on the
driving problem. First, | will only address solutions based on end-to-end network
transport protocolsi.g., the network is treated as‘lslack box”). This constraint arises
from the observation that for thfereseeable future, it idesirable that audio and video
capable workstations canoperate withoutrequiring changes to existingetwork
infrastructurg(including the software at gateways and bridges). The second constraint is
that | will only address transport protocols that operate witHeetlback from the
destination to the source. Such protocols desirable if audio and videdata are
broadcast to many destinations from a single source.

To address thdriving problem, | haveonstructed a CMypplication that acquires video
datafrom a camerattached to a workstation, transmits it overetwork, andisplays it

on the monitor of a second workstation. In addition,aplication also acquires audio
data from a microphone attached to fir workstation anglays it onspeakers attached

to the second workstation. The workstations are 66 MHz IBM PS/2 personal computers
based on the Intel 486 microprocessor. Each workstation is outfitted with IBM-Intel

ActionMedia 750 adapters foacquiring, compressing, decompressing, drgplaying
audio and video. In addition, each workstation contains an IBM 16/4 TRkenor an
IBM Ethernet adapter. The workstations are connected throughmpus-sized netwaqrk
defined as aimternetwork consisting of several local-arestworks connected Hyidges
and routers. The primary hardware environment is illustrated in Figure 1-2.

Because processing and network trassin delays in this environment can vary, a key
question that must be addressed is how caefthet of delayjitter on thedisplay oflive
audio and video be minimized? | propose a two part approach to address this question.

IBM PS/2 IBM PS/2
66 MHz 486 66 MHz 486
ActionMedia | ; ;
ActionMedia |
Capture Adapter Display Adapter
Token Ring Token Rin
Adapter Adapter g
Token Token
Ring T1 Ring
(16 Mb) (16 Mb)
We_llfleet
RS6000 Bridge RS6000
Workstation Workstation
Ethernet Ethernet

Figure 1-2: Hardware Environment

First, 1 bounddelay jitter at the source and destination workstations; thus under my
assumption that theetwork is ablack box, | bound that portion afelayjitter that | can
control. This is achieved by designing, analyzing, and implementing the software as a real-
time system with strict performance requirements. As a result, | can show that end-to-end
delay andend-to-enddelayjitter, excepting thosdelaysdue to networkransmission, are

tightly bounded. The second part of my approach is to use adaptive best-effort techniques
to account fordelay jitter in the network. Networldelay jitter is accounted for by

managing the display queue with a policy catie@ue monitoringhat dynamicallyadjusts
display latency t@accommodate observel@layjitter. Thus, thehesis of this dissertation
is that:

The variation indelaysencountered when transmitting continuousdia
over acampus-sizedhetwork islarge enough that it must bexplicitly
addressed in thdesign of distributed live continuousedia applications.
A sufficient approach is tocombine real-time design, analysis, and
implementation techniques tmntrol delayjitter in end-systems with best-
effort techniques for managing the effect of delay jitter in the network.

This dissertation will make contributions in several areas. In the arealdime systems,
it will expand the toolkit oschedulingtheory andanalysistechniquesavailable to the
designers of hard-real-time systems and provide a case-sttidy désignanalysis, and
implementation of a significant real-time system. the area of network and operating
systemsupport for continuousedia,the dissertation il introduce and evaluatepmlicy
for amelioratingthe effect of delayjitter on thedisplay of continuousmedia frames,
provide data on thdelayjitter that is experienced by continuooeediadata incampus-
sizednetworks, and provide a case study of dlesign of a continuousiedia application
in an environment consisting of today's persomalrkstations, today’scommercially
available audio/video hardware, and today’s networks.

1.4 Related Work

A number ofproductsand research efforts in bothdustry and academia have addressed
the problem of supporting continuousedia applications ithe presence daelay jitter.
Approaches to th@roblem can be broken intovo categories: those that reduce or
eliminate delayitter and those that accommodaidayjitter. Approaches to reducing or
eliminating delay jitter can be furthdivided intothose approaches that redulstay jitter

on the network, and those that reddetay jitter at the endpoint workstationsAll of
these approaches atemplementary; if delaytter can be bounded aliminated in any
stage of the processing of continuousedia frames,then it becomes easier to
accommodate theemaining delayitter. In this section, | describe a numberpobducts
and research efforts that have used one or more of these approaches.

1.4.1 Approaches that Reduce Delay Jitter in the Network

Ideally, the network used by a distributed continuonedia applicatiorwould provide
transmission with guarantee of lowdelay andlow delay jitter. Ferrarigives agood
overview of general requirements for real-tint@mmunication servicesncluding
transmission of continuousedia [6,7]. Amonghese requirements are boundsdefay
and delayjitter. Ferrari describeswvo useful classes of such bounds: a deterministic
bound is a guarantee thdelay (or delay jitter) will be less thanthe bound,while a
statistical bound is a guarantee that phabability that delayor delayjitter) will exceed
some threshold is less than the bound. In addition, he propagasesl scheme for
implementingbounds ondelay jitter [8]. Such bounds are among thoseammonly
referred to aguality of Servicg(QOS) guarantees. #ood survey ofnetworks and
protocols for supportingeneralQOS guarantees gven in [5]. Here, | wil highlight a
few of thesenetworks and protocols thaupport QOS guarantees delay anddelay
jitter.

A straightforwardway of supporting guarantees atelay and delayitter is to use a
dedicated transmission line.g, a T1 connection). This ihe approach thdtas been
used in a number of room-based videoconferencing systensgnilar but less expensive
approach is to use ISDBkrvices that provide lowelay andow delayjitter at a lower

bandwidth than dedicatetines. Intel's ProShare is arexample of a commercial
workstation-based videoconferencing product based on ISDN [19].

Next generationhigh-bandwidthnetwork technologiesuch as ATM (Asynchronous
Transfer Mode) [35,30] and FDFiber Distributed @ta Interface) [43,29]dve been

explicitly designed tssupport the transission of high-bandwidth, fixed-ratdatasuch as

continuousmedia with QOS guaranteeslongside traditionadata typeswith bursty

transmissionrates. The Pandoraystem is an example of a system tsapports

continuous media using an ATM network [28,16].

Work has also beedone on theroblem of supportin@QOS guaranteessing networks
that were nobriginally designed tesupportsuch guaranteesThis work has generally
been based othe principle of resource reservatian In this approachapplicationsthat
wish to transmitdata over the networkpecify the traffic they wish tosend, and their
desired QOS guarantees, and the network respondsskyving sufficient proessor
capacity, bufferspace, etc., atach hop in thenetwork to ensure that thapplication
receiveghe desired service. gooddiscussion of principlegsed in this approach and an

example ofprotocols thatembody thisapproach iggiven in an overview othe Tenet
project [7].

Another project that has useelsource reservatioextensively ishe DASH projectfrom
Berkeley [1]. Theearly work on this project included both formal and systems
components. Th#rmal aspect of the project was tdefinition of the DASH Resource
Model to describéhe resources required lapplications thasupport continuousedia.

In this model, every device argbftware component thdtandles CM is considered a
resource. Tamanagethe network resources, the DASH project developedSemsion
Reservation ProtocqISRB. SRP operates ajlowing applications teeserve capacity at
each host in an IP internetwork, and then use standard IP protocols to transmit data [2].

Another protocolbased on resource reservation fmding QOS guarantees to IP
networks is thesT-II protocol [52]. Animplementation of thigprotocol for TokenRing
networks was developed by researchers at the IBM European Networking Center as the
foundation of theHeidelberg Transport SystefieiTS, an end-to-endommunication
system for continuous media data as well as traditional data [13,14,15].

1.4.2 Approaches that Reduce Delay Jitter at the Endpoint Workstations

In traditional workstation operatingystems such as Uniprocesses can experience a
wide range of delays. [frocesses are used to generate, procesdisglay continuous
media framesthen thosdrames will experience a higlevel of delayjitter at the endpoint
workstations. Thus, workstation operatisgstems such asnix do not provide agood
base forbuilding continuousmedia applications.For example, in hisdescription of a
virtual reality system that displays images ihead-mountedlisplay, Azumanotes that
the variable delays experienced pyocessesunning under Uhix lead to unacceptably
largeerrors in the correspondence between objects inith&l world and objects in the
real world [3].

One approach that hdseen used to addreske problems encountered wharsing
traditional workstation operatingystems tosupport continuousnedia is to implement
critical continuous media functions with high-priority processes. This is the approach used
by the HeiTS project iwhich continuousmedia applicationsvere implemented using
high-priority threads on PS/2 workstations running OS/2 [33].

However, in [38],Nieh, et al. show thahe addition of &real-time class” of processes in
Unix SVR4 (.e., a class ofprocesses that execute whigher priority thanany other
processes) isot sufficient to allowcontinuousmedia applications to effectively coexist
with otherapplications. In particular, graphiaader interfaces anatherapplicationghat
require quick responstime donot performwell in the presence of a continuoogdia
application executing at high priority.

Other approachebave attempted to integrateeal-time processes mowgarefully into
workstation operatingsystems. In [9], Fisher describes experiences withet of
modifications tothe Uhix kernel tosupport better responsienesfor processes in a real-
time class. The ARTproject has used an extensiontloé Mach workstation operating
system, Real-Time Mach, #ise basis of technique®r ensuring that real-time processes
receive guaranteed service [34,51].

The DASH kernel was designed amdplemented as #estbed forexperimenting with
operating systenmechanismsand policiesspecially tailored to the requirements of
continuous media. This kernel allows applicationsgecifytheir resource requirements
usingthe DASH resource model. heturn, thekernel schedules processesomler to
meet the requested QOS guaranteeSpecialized implementations of interprocess
communication and virtual memosgpporting thesharing of CM betweeprocesses are
also integrated into the DASH kernel [1,10].

An alternate approach that can reduceloninate delayitter at endpoint workstations is
the use of special-purpose deviceBhis wasthe approach adopted in the Etherphone
project at Xerox PARCbasicaudio acquisition and playout was provided dpecial-
purpose telephones théigitized, packetized, and transmitted audaiadirectly onto an
Ethernet [50]. Anotheexample of thisapproach is provided by the Pandora project in
which a speciapurposedeviceattacheddirectly to the networkhandles audio and video
processing [16,28].

1.4.3 Approaches that Accommodate Delay Jitter

If it is not possible to eliminate delay jitter, or if it is too expensiveliminate delayitter,
then applications il need to accommodatkelayjitter whendisplayingcontinuousmedia
frames. Applications accommodatelayijitter by choosing dargetdisplay latency large
enough that modtames arrive in time to be played, and by attemptinglag eachframe
at that latency. Three issues must be addresked: does arapplication estimate the

10

end-to-enddelay experienced by a framtew does ampplicationchoose a target display
latency, and at what points should an application choose a new target display latency?

In order todisplay frames at aargetdisplay latency, an applicatiomust be able to
estimate the end-to-emtklay experienced by each framglontgomery describes several
approaches to this problem [36]. If the clocks at the sender and receiver are synchronized,
then thedelay experienced by a frame can be determinexligh the use dimestamps;
Montgomerycalls thisabsolute delay If the clocks areot synchronized, thethe delay
experienced by a frame can be estimated usnegofseveral approaches thate similar

to clock synchronizatioprotocols. Ineach of these approaches, the estimate of the end-
to-end delay experienced by a frame is used to determine the time the frame should be held
in the display queue before it is playedFor example, assume th#he target display
latency isD, and a frame arrives at the receivetiraet with a delay estimated to loe If

d < D, then the frame is played at tif¥d-d. Otherwise, thérame is late and must either

be discarded, or played at a latency higher than the target display latency.

Alternately, a conservative assumption can be used in place of an accurate estimate of end-
to-end delay. In this approaahhich Montgomerycallsblind delay the receiveassumes

that thefirst received frame experiencednimum possible delay and delayse display of

the frame accordinglyd.g, if the minimum possibleend-to-enddelay is assumed to lag

the targedisplay latency i©, and thdirst frame arrives at timg then the receivarlays

thefirst frame at timeg+D-d). Then, each successive framéligplayed immediatelgfter

its predecessor.¢€., with the same display latency as the first frame).

The Internet EngineeringaBk Force (the IETH)as used Montgomerydassification of
delay estimation techniques in thework on practical solutions to thg@roblems of
supporting continuoumedia inthe Internet. In [45]Schulzerinne includes a discussion
of these techniques ihis discussion ofthe requirements foRTP (the Real-Time
Transport Protocol), the IETF’s transport protocol for continunedia [46]. Because it
results in the sallesterror in theestimate of delay, Schulzerinne recommeth@suse of
absolute delay. Nevertheless, in environmentghich it is undesirabléor impossible) to
synchronize clocks, blind delay is a useful technique.

The problems of choosingtargetdisplay latencyand determining when tchoose a new
targethave been studiegrimarily in the context ofapplications thasupport audio. In
many of these applications, audio is modeled as of a sequence of “talkspurts” (some
period oftime in whichaudio data must be acquired, transmitiad playedseparated by

11

“silent periods” (some period dfme in whichthere is naosignificantaudio activity, so
audio neechot beacquired or played). In [37], Naylor and Kleinrocloposed that a
display latency be chosenthe beginning ofeach talkspurt by observirige transmission
delays ofthe lastm audio fragments, discardirthe k largest delays, and choosing the
greatestemaining delay.For their particular model of audio quality, thetated aule of
thumb for choosingn andk (m > 40 andk = .07*m) that usuallyresulted ingood quality
audio. Nevot provides a more recemtample of an application thahooses a new
display latency athe beginning ofeach talkspurt based on observations of redelaty
jitter [44].

In some sense, theart of a talkspumprovides a convenient opportunity to choose a new
target display latency, since display latencan be changed simply by shortening or
extendingthe length of a silenperiod. However, such convenient opportunities do not
necessarily exisfor continuousmedia data typesother than audio. Furthermore,
talkspurts in audio data other thsppeech €.g, music)may bequite long, resulting in few
opportunities to changdisplay latency. Irsuch a case, anotherechanismmust be used

to determine whethe targetisplay latencyshould be changed. One example is provided
by theclawback buffer mechanism the Pandoraystem [28]; display latency reduced
when the display queue has contained more than a target amount of audsafficreatly
long interval (the clawback buffer is discussed in more detail in Chapter 6).

1.4.4 Summary

In theremainder othe dissertation, | iV address th@roblem of reducing delaytter at
the endpoint workstations, and theblem of accommodating delg@ster. My approach
to reducing delayitter at the endpoint workstations is to useombination of a real-time
operating system andormal modeling andanalysis techniques to support the
implementation and performanemalysis ofcontinuousmedia applications. By using a
real-time operating system support continuousiedia, | am taking aimilar approach to
those used by HeiTS and ARTS; howevethis work | emphasizehe formal analysis of
the real-time system to determine hard boundthedelay and delajtter experienced by
continuous media. lcontrast to DASHwhich usesmechanisms designed to directly
supporting theiformal model ofcontinuous media, | am addressihg use of operating
system mechanisms desigrfed general real-timesystems tasupport continuousnedia.
My approach to accommodating delay jitter is to use a generalizatibe blicy used to
manage clawback buffers in Pandora.

12

I will not, however, address the problem of reducing delay jitter in the network. There are
two reasons. First, guaranteed boundslelay and delayitter arenot provided by the
network hardware or network protocols thatish to sipport. Secondsince | amonly
addressing end-to-end solutions, | ammable touse a resource reservation approach.
Nevertheless, my approach e®@mplementary to these approachasything done to
reducedelayijitter in the network vl result inless delayitter to be accommodated at the
display.

1.5 Dissertation Overview

The centerpiece of this dissertation ipratotypesystemfor acquiring, transmitting and
displayingaudio and video. Chapter 2 provides a detailed description of this system. It
begins with a discussion of YARTOS, a real-time operatygiem kernel that runs on the
acquisition anddisplay workstations (see Figure 1-2) arsupports areal-time
programming model in whichinterrupt handlers, operatingystem services, and
application code execute tocompletion before well-defined deadlinesNext, the
programming interface to the audio/video hardware is described. This descnglioles
pseudo-code for the set of YARTOS tasks used to contradbeisition, compression,
decompression, ardisplayprocessesFinally, the programming interface tthe network

is described along with the tasks that control the transmission and reception processes.

Chapters 3, 4, and 5 present a performamadysis ofthe application. Thebjective in
these chapters is to demonstrate that audio and \fideawes are processed at the
acquisition andlisplay machines witlbounded delay. Becaudiee analysis ofaudio is
similar to thatfor video, and theanalysisfor the display-side is similar to that of the
acquisition-side, | concentrate on showing simply that vifemesare acquired and
processed on the acquisition-side with bounded delay.

In Chapter 3, define an astract model of real-time systems that is implementable using
the programming model of YARTOSfor this model, | develop conditions that are
sufficient toshow that applicatiotasks can be guaranteed to execute pri@apfication-
defined deadlines. I€hapter 4, these conditions are shown to didnthe acquisition-
side of the application is defined in terms of the abstract model. In Chapter 5, tihwatact
eachtask will always execute prior to itsleadline is included as an axiom in an axiomatic
specification ofthe software and hardware on theguisition machinethen the fact that
delay at the acquisition machine is bounded is derived from this specification.

13

Chapters 6 and 7 discuss and evaluate best-effbciesfor accommodatinglelay jitter
in the network. Chapter @escribes several policiésr managing delayitter. Chapter 7
evaluates these policies with an empirical study performed using the prototype system.

Finally, Chapter 8 presentssammary ofthe dissertation and my conclusions. Teal-
time implementation ofthe system, along withthe best-effort mechanisms for
accommodating delayitter in the network are shown to bsufficient to provide
acceptable display of audio and video data transmitted over campus-sized LANS.

14

Chapter Il
System Description

2.1 Introduction

The thesis of this dissertation is thdie combination of best-effort techniques for
managing delayitter in the networkwith real-time design and implementation techniques

to controldelayjitter in end-systems isufficient to supportdistributed live continuous
media applications in a building-sizedtwork. To evaluatthis thesis, | haveonstructed

a workstation-based videoconferencing application that acquires audio and video at one
workstation, transfers it over a network, asidplays it at asecond workstation. The
purpose ofthis chapter is to describe this application. In particulae, description
includesthe implementation details needed to devetbp performancenalysis of the
acquisition-side of the application described in Chapters 3, 4, and 5.

The design and implementation of the application is based on an operational understanding
of several hardware devices and their associated device drivers. Unfortunately, | do not
have access to documentation for either the hardwieraces othe source code for the
device drivers used bthe application. Instead, Have used severalther sources of
information to gain an understanding of tbe-level behavior othe hardware andevice

drivers. These include clues derived from documentdtiomser-levelibraries [17, 18,

20], information provided bguthors of proprietary software [49], aadhpiricalstudy of
executing applications. Thushile the descriptions of the hardwairgerfaces in this
chapter aresufficientfor understanding thdesign and implementation tfe application,

they may be incomplete in some details.

Section 2.2 provides a hidgével description of theapplication andthe mechanics of
acquiring, transmitting, andisplayingaudio and video frames. Section 2.3 discusses the
handling ofhardware interrupts on PS/2 workstations. Sectiord8stribes YARTOS,

the operatingystem kernel on whictine application executes. Section 2.5 describes the
acquisition-side othe application {.e., that portion of theapplication that runs on the
workstation that is connected to the camera and microphone); the pro@esgiiohg

and compressing audio and video frames is described alongheitimterrupthandlers,
application tasks, and resources that perform this process.

2.2 Overview of the Application

The basic function othe experimental application is to acquire audio and vidig@a at a
workstation, transmit it over a network, and display it at a second workstation. Both sides
of the application run on 66 MHz IBMPS/2 workstations based on the Intel 486
microprocessor. The workstatiomgically communicatehrough an internetwork of
ethernet andtoken ring networks running the IP protocols. Each workstation is
connected to thisetwork through an IBM 16/4 TokeRing adapter(or anIBM Ethernet
adapter). In additiongeach workstation is outfitted with IBM-IntéhctionMedia 750
adapters for processindigital audio and video. Ormhe acquisition-side, aset of
ActionMedia adapters connettte workstation to a camera and microphone and produce
digitized audio and videdata. On thelisplay-sideanother ActionMediadapter is used

to display digitalvideo on the monitor of the workstation anday digital audio on
attached speakers.

Video frames irthe applicationarefull-color still imagesacquired at aate of 30frames

per second with a resolution of 256x240 pixels. Each frame is processed in several stages.
First, it is acquired and digitized ke ActionMedia hardware. Next, theframe is
compressed by th&ctionMedia hardware. After compressidhe frame isadded to the

gueue offrames waiting to be transmitted tre network. Once thigame is athe head

of the queue, it iglivided into packets. These packets are then transferred over the
network to thalisplay-side. On arrivathe packets areeassembled into a frame, and the
frame is added to a queue of frames waiting to be decompressed and displayed. At regular
intervals of approximately 33 ms., a frame is removed fromginesie and decompressed.
Finally, the frame is displayed.

Audio processing in thapplication differs from video processing tiwo ways. First,

audio data isiot compressed. Rather, the audubsystem ofhe ActionMedia hardware
delivers audio directly tdhe application at adata rate of 120 Kb per second. Second,
there is no fundamental unit of audio data directly analogous to the video frame. Digitized
audio data isontinuallywritten into aninternal hardware buffer, and an application may
removedatafrom this buffer at any timeNevertheless, in théesign ofthe application, |

have chosen to manipulate audiata inatomic units of 1/60th of a second. For

16

convenience, these atomic unitdl we called audio frames. Thus, ithe application,
audio dataconsists of frames thare acquired andisplayed ategular intervals o1/60th
of a second.

The stages of processing audio sireilar tothose for video. First, audio dataaisquired
and digitized bythe ActionMedia hardware. Next, aframe of audio igeadfrom the
internal audio buffer anddded to the queue of audimmes waiting to be transmitted
over the network. Thérame is then transferred the display-side andadded to the
gueue of audidrames waiting to be displayed. At regular intervals of approximagly
ms., an audio frame is removed from this queue and played.

2.3 Hardware Interrupts

On the PS/2devices communicate witthe CPUusing a combination ahterrupts, I/O
commands, and memory-mappE®. In particular, the CPWommunicates with the
ActionMedia andnetwork adapters used by thpplication by passindata toand from
the adapters witimemory-mapped 1/O; thesadapters signal events to the CRlidh
interrupts.

The delivery ofinterrupts to the CPU is controlled by a pair of Intel 8pE3yrammable
interrupt controllers.Individual devicesareassigned tmne of 16interrupt request lines
(IRQs). When anlRQ is raised, the interrupt controllesises an interrupt othe CPU
according to a set gbriority rules. For the mode inwhich the application uses the
interrupt controller, each IRQas a static priority. An interrupt is raisedly if no IRQ
with a higher priority is currently being service@therwise, it is delayed unglll higher
priority interrupts have been serviced.

In addition to theservicing of a higher-prioritynterrupt, there arewo otherreasons why
an interruptmay bedelayed. Firstthere is &lag onthe CPU thatlisables alinterrupts.

This flag isused by the YARTO%ernel to enforce critical sectionsSecond, the 8253
allows an application to mask individuaterrupts, a feature used on ttiisplay-side by
the handler for token ring adapter interrupts.

17

IRQ number Device Interrupt Handler
IRQO PS/2 timer TIMER

IRQ9 ActionMedia adapter DVI

IRQ 10 ActionMedia adapter DVI2

IRQ 15 Network adapter NETWORK

Figure 2-1: Table of Hardware Interrupts

During execution of the application, foudifferent hardware interrupts ilw be
encountered. IRQO is raispdriodically by an InteB259 prgrammable timer at eate of
18.2 times per secondife., every 55 ms.). IRQ9 and IRQ10 are raised by the
ActionMedia adapters to signtile application thatone ofseveral events hasccurred.
IRQ15 is raised by theetwork adapter to gnalthe application that aetwork event has
occurred. (The eventmsised by theActionMedia andnetwork adapters argetailed in
Section 2.5.) Figure 2-lists these interrupts in prioritgrder (highest to lowestalong
with the name of the corresponding interrupt handler.

24 YARTOS

Operating systersupport for theapplication is provided by an operating system kernel |
have developed called YARTOS (Yet Anotlial-Time Operating System). This kernel
was originally developed to provide low-levaupport for the construction oéal-time
systems specified according to a programmidigcipline called the Real-Time
Producer/Consumer (RTP/@aradigm [23]. Use athe RTP/Cparadigm aids a system
designer irspecifyingthroughput constraints arsthowing that a real-time system adheres
to these constraints. YARTOS supports the construction of meneral real-time
systems with both throughput and response time constraints.

In general, YARTOS is designed to support the constructisgstéms in whiclsoftware
executes in response to events generated by processes externalsystehe €.9,
interrupts from hardware devicés) In particular, it is designed tsupportsystems in
which the time required taespond to an event must be predictable. YARBEOSeves

this goal by providing a programming model that is consistent with a formal model of real-
time systems (developed @hapter 3). This programming model allows an application

ISuch systems are often referred toeasctive systems

18

developer to express a system design in termsfain@al model thasupports the use of
formal techniques to analyze the real-time response of the system.

2.4.1 Programming Model

In a YARTOS application, software asvided into aset of interruphandlers and aet of
applicationtasks. Interruphandlers and applicatiolasks are eqjuential programshat
execute in response to different kinds of evemserrupthandlers execute in response to
hardware interrupts and applicatitasks execute in response to messages generated by
interrupt handlersptherapplicationtasks, or YARTOStself. Inall cases, it is assumed
that interrupts or messageslivbe generated repeatedly, with each resulting in one
complete execution of a corresponding interrupt handler or application task.

handler <name>
interrupt <IRQ>
body
<sequential program>
end body

Figure 2-2: Interrupt Handler Declarations

Before an applicatiomay be executednder YARTOS, the set of interrupandlers and
applicationtasks must be declareéd The syntax of annterrupt handler declaration is
given in Figure 2-2.There are three components in a declaratiomarae,the interrupt

thehandler respond®, and the squential program that should be executed &aehthe

interrupt occurs.

task <name>
period <time>
deadline <relative deadline>
resources <resource list>
body

<sequential program>
end body

Figure 2-3: Application Task Declarations

2The YARTOS programming model presented here uses an abstract syntax. In the actual implementation
of YARTOS, interrupt handler andpplication task declarations are records wighls corresponding to

each component of the abstract declarateord thesequential programs are functions written in the C
language.

19

The syntax of an applicatidslask declaration igiven in Figure 2-3. There areseveral
components to this declaration: a name, a relative deadliinst, af resources, and the
sequential program that should be executed @aehthe applicationtask is invoked. In
addition, the declaratiomay optionally specify gperiod atwhich YARTOS should send
messages to the task. These components of the declaration are discussed in turn.

One component of an applicatitéisk declaration is eelative deadline YARTOS is
designed to ensure that each invocation of an applictdisi executes t@ompletion
within an interval beginning dhetime the task isnvoked and ending at a deadline. The
length of this interval is defined #se relative deadline ofhe task €.g, each invocation
of a taskwith a relative deadline of 10 ms.sspposed to complete executiwrthin 10
ms. after the task is invoked).

Another component of an applicatitask declaration is st of resources A resource is

an abstraction provided by YARTOS to allow applicatitasks to share data.
Syntactically, aresource is simply gymbolic name. Thdist of resources in the task
declaration is the set of resources “used” by the task. YARTOS guarantees that tasks that
use thesameresource are grantaedutually exclusiveaccess to that resource. Mutual
exclusion is maintained by prohibitirigsks that share a resourftem preempting one
another.

An optional component of an applicatitessk declaration is period Most application
tasks are invokeevhen they receive a message sent by an intehapdler or another
application task using the YARTOS send_message system call. However, if an
application task is declaredvith a period, the YARTOSkernel periodically sends
messages directly time task ice., if a task is declaredith a period of 10 ms., YARTOS
will send a message to the task every 10 ms.).

2.4.2 YARTOS System Calls

YARTOS supports thregystem calls. Declarations thfesecallsaregiven in Figure 2-4.
The first call iscreate_application . This calltakes a set of interrupandler and
applicationtask declarations as an argument. In response, the YAREDS| creates
the interrupthandlers and applicatiotasks andbinds the interrupthandlers to the
hardware interrupts.

20

procedure create_application(s: set of declarations)
procedure send_message(t: application_task);
function eventcount(t: task) returns integer;

Figure 2-4: YARTOS System Calls

The next system call ®nd_message . This call isused by either interruptandlers or
applicationtasks toinvoke atask. Whenever a message is sent to an applicédisk, the
YARTOS kernel creates a new thread of controlvimch to execute the task.This

thread,called atask invocationis assigned a deadline aadded to dist of readytasks.
YARTOS schedules readtask invocations using an Earliest Deadline Fi(&DF)

discipline (defined in Section 3.4).

Tasks may often wish to perform processing that is conditional on a particular event
having alreadyoccurred €.g, transmit a packeonly if the previous transmit has
completed). If a tasketermines ithe eventhasoccurred bychecking a flagset by the
task that executes in response to the event, thepviddaation ofthe conditional will
depend on therder inwhich tasks are scheduled. Bflow tasks toreliably determine if

an event hasccurredindependent of therder inwhich tasks are scheduled, YARTOS
provides theeventcount system call. This calteturns a count of theumber of
requests for execution of the taskh@ndler. This allows task todetermine if an event
has occurred, even though the task that responds to the event may not have executed.

2.4.3 Assigning Relative Deadlines

YARTOS allows an applicatiotask declaration tgpecify anarbitrary relative deadline.
However, it is useful to describe some practical guidelines for choosing these deadlines.

One reason fomassigning a particular relative deadline totamk is that itperforms
processing that is subject to some extetimalng constraint ¢.g, a device must be
serviced within ashort interval). | wlil refer to relative deadlines imposed by such
constraints asequired deadlines

If a task does ndtave a required deadline, then somtieerrule must be used to choose
therelative deadline. Ayoodchoice is thenatural deadlineof the task. Assume that the
invocations of a task are always separated by atpease units; in this case, lilvdefine
the naturadeadline ofthe task ap. The effect ofassigningthe relative deadline of the
task to be the naturdeadline is that each invocationtbke task Wl complete execution
prior to the next invocationThroughoutthis work, in theabsence of a requirettadline

21

or someother constraint on thehoice of a deadline, |illvchoose to declarapplication
tasks with a relative deadline that approximates the natural deadline.

2.4.4 An Example YARTOS Application

I will now present aexample application to illustratee YARTOSprogramming model.

Theexample is a simplapplication thatounts keystrokes and printsreessage with the
current countipproximately onceer second. There atwo hardware interrupts used in
this example: IRQO is a timer interrupt thaiccursapproximately 18 timeper second,

and IRQ1 is an interrupt that occurs on each keystrakeerall,the example application

includes three tasks, two interrupt handlers, and one resource.

Typically, a YARTOS applicationincludes aninterrupt handler and a corresponding
application task for each hardware interrupt. In an application witlstiusture, thenly
activity performed bythe interrupthandler is to send a messagethe task; the task
contains théoulk of the code thashould execute in response to the interruphis task
may then send messages to other tasks. This is the structure used in this example.

IRQO IRQ 1
Int t Handl
Timer Keyboard nterrupt Handler

Application Task

B B Resource
) Keyboard
Tlm@ %’@ Interrupt
i N Message

AR

|
Resource Use

S

Figure 2-5: Architecture of Example YARTOS Application

Figure 2-5 illustrates the software architecturetho$ application. Rectanglegenote
hardware interrupt handlers, single ovdenoteapplicationtasks, doubleovals denote
resources, and arrovi®m handlers tdasks denotenessages sent in responsdoigical
interrupts. Messages froone task to another are alsmlicated byarrows. Resource
usage by an applicatialask {.e., access to a shared variable) is indicated by a dashed
arrow from the task to the resource.

22

Var
ticks : integer := 0; -- count of timer interrupts
count : integer := 0; -- keystroke count

-- Interrupt handler for the timer interrupt
handler timer
interrupt IRQO
body
send_message(timer_task);
end body

-- Application task that responds to timer interrupts
task timer_task
deadline 55 ms -- the natural deadline
resources none
body

ticks :=ticks + 1;

if ticks mod 18 = 0 then

send_message(output_task);

end if;

end body

-- Application task that prints message
task output_task
deadline 1000 ms -- the natural deadline
resources count
body
print count;
end body

-- Interrupt handler for the keyboard interrupt
handler keyboard
interrupt IRQ1
body
send_message(keyboard_task);
end body

-- Application task that counts keystrokes
task keyboard_task
deadline 20 ms -- a lower-bound on the natural deadline
resources count
body
count := count + 1;
end body

Figure 2-6: Example YARTOS Application

Figure 2-6 lists pseudo-code for the application. It begins with declarationgofgtobal
variables;ticks which isused to countimer interrupts, and¢ount which isused to
count keystrokes.Ticks is only accessed by one task, lmdunt is accessed by two
tasks. As a result, in order emsure that tasks accessunt in a mutually exclusive

23

manner, eackask that usesount must include it orthe list of resources in the task’s
declaration.

The next declaration is for themer interrupt handler. This handler is executed
whenever the IRQO interrupbccurs. It simply uses the YARTOSystem call
send_message to send a message to the application tias&r_task

Timer_task is an applicatioask that performall the“real” processing that should be
done in response to a timer interrupt.this applicationthere is no requiredeadline for
this task, so thaelative deadline iset toits natural deadline of 55 mwhich is the
expectedime between timeinterrupts. The body dhe task counts theumber of times
it has executed; every 18 time®(approximately oncper second) it sendsnaessage to
the application taskutput_task

Output_task is the application task that prints the current keystroke count. Again, this
taskhas no required deadline, so its relative deadlisetigoits natural deadline at000

ms. The body ofhe task simply prints the curreveillue ofcount ; since this is a global
variableshared with anothepplicationtask (.e., keyboard_task), count is listed a
resource used byutput_task

The next declaration is for tHeeyboard interrupt handler. This handler is executed
whenever the IRQ1 interrumiccurs. Aswith the timer handler, it simply sends a
message tdhe keyboard_task , an applicatiortask that Wi perform all the “real”
processing that should be done in response to a keyboard interrupt.

Thefinal declaration is for th&eyboard_task applicationtask. While the other tasks
had an obvious natural deadliriee naturaldeadline of thigask is notobvious because
the minimumtime betweertwo keyboard interrupts isot well-defined. Nevertheless, a
reasonable lower bound can be estimated; in this taseslative deadline ofhe task is
set to amarbitrary value of 20 msi.é., 50 keystrokes per sec.). In additiemce the
global variablecount is used by the task, it is included as a resource in the declaration.

2.4.5 Implementation Details

In order to correctly specify the behavior of YARTOStasks, etc., in theaxiomatic
specification presented in Chapter 5, it is necessary to disdugs additional
implementation details 0f ARTOS. The first issue ihe method byvhich the deadline
of application task invocations is computespecifically,the deadline of aaskinvocation

24

is defined to behelogical arrival time of the invocatiomplusthe relative deadline of the
task.

The logical arrival time of a task invocation is defined differently for internaptllers and
applicationtasks. Thelogical arrival time of aninterrupt handler is determined by
checkingthe currentiime; this isthe first activity performed when a hardware interrupt
occurs. Thus, thiogical arrival time of aask is somewhat greater than its actaralal
time. Thelogical arrival time of an applicaticlaskinvocation is defined to ke logical
arrival time of the interrupt handler or application task that sent gssage; thas, when

a task isinvoked by asend_message system callthe logical arrival time of new
invocation is set to the logical arrival time of the sender.

The otherimplementation detail that must be discussetiesmethod byvhich YARTOS
generates messages to applicatiasks thatspecified aperiod as part of the task
declaration. Abstractly, the YARTO&rnel should generate messages to suelskaat
regular intervals. However, becauseplicationtasks carspecify anarbitrary period, an
ideal implementation of thigbstraction would require a clock that could interrupt the
processor at arbitramptervals. Inthe implementation off ARTOS, | have chosenot to
rely on the presence of such a clock.

Instead, the YARTOSernel approximatethe periodic generation ohessages with the
following technique. For eachtaskwith a specifiedoeriod, YARTOS keeps track of the
times at which messagesttee taskshould be generatedVhenever any applicatiaiask
or interrupthandler completes execution, or wibe processor iglle, YARTOS checks
to see if such a time has passedoif itsends a message ttoee appropriate task. In any
case, the logical arrival time of tih@skinvocation isset to thaime at whichthe messages
should have been generated (if the message should have been generatéidhat, it is
assigned a logical arrival time pfeven if YARTOS actuallgenerated thenessage later).
The effect of this approximation ahe problem of ensuring that applicatidasks meet
their deadline constraints is investigated in Chapter 4.

2.5 Acquisition-Side Processing

This section describdabe design and implementation dfe portion of the workstation-
based videoconferencing application that runs oradgisition-sidevorkstation {.e., the
workstation that is connected to the camera and the microphdingg.portion of the

25

applicationdoesseveral things: it acquires and compresses video frames, acquires audio
frames, and transmits the frames over the network.

The implementation consists of a set of interrupt handlers, applitatks, and resources
running ontop of the YARTOS Kkernel. Interrupt handlers execute in response to
hardware interrupts and send messages to applicatsks. Theseapplication tasks
perform most of thactivities involved in acquiring, compressing, and transmitting audio
and video. Applicationasks cooperate lgommunicatingdata through sharedariables;
access to these variables is protected with YARTOS resources.

Most of the processing performed by thegpplication is executed in response to the
hardware interrupts listed in Figure 2-1. Each harduwdegrupt can be raised for one of
several reasons. As amamplethe IRQ 15 interrupt is raised by thetwork adapter to
indicate that it is ready to accept a negtwork packet, or to indicate that a packet has
been successfullyansmitted, or to indicate that a packes been receivedl hroughout
the remainder of this discussion, | ugee termlogical interruptto refer to a hardware
interrupt raised for a particular reason. The applicathmtudes an applicatiomask
corresponding to eadbgical interrupt. \WWhen ahardware interrupt is raised, the interrupt
handler executes, communicates vitlk hardware taetermine which logical interrupt
has been raised, and sends a message to the appropriate application task.

| begin by describing sondata typesand global variablegsed in the application. Next, |
detail the operations thapplication must perform iorder toacquire, compress, and
transmit the audio and vidé@mes. | then present a design ttiatdesthese operations
into a set of YARTOS interrupbandlers andasks that share datasing resources.
Finally, | present detailed pseudo-code for the YARTOS tasks.

2.5.1 Basic Declarations

I beginthe description of thacquisition-side othe application by defining severalata
types andprimitive operations that ilvbe used in the code. Th@imarydata types used
arebuffers. Therare three types diuffers, defined byhe type of datdhey can hold: a
digitize buffercan hold onedigitized video frame, acompress buffelcan hold one
compressed video frame, andaudio buffercan hold one audiivame. Declarations for
these three types are listed in Figure 2-7.

26

Type
digitize_buffer : array of bytes;
compress_buffer : array of bytes;
audio_buffer : array of bytes;

Figure 2-7: Audio and Video Buffers

Each type of buffer igslynamically allocated from gpool of freebuffers of that type;
declarations of thenemory management routinage listed in Figure 2-8. Available
andallocate are overloadedunctions thattake abuffer typename as an argument:
available is a boolean function that returtise if abuffer of the proper typean be
allocated from itgool, while allocate takes abuffer ofthe proper typdrom its pool
and returns it.Free returns a buffer to the corresponding pool.

function available(buffer_type: type) returns boolean;
function allocate(buffer_type: type) returns buffer_type;
procedure free(buffer: buffer_type);

Figure 2-8: Memory Management Calls

Figure 2-9 lists declaratiorisr operations used to acquire and compress audiwidad
frames.Digitize initiates a request to thctionMedia hardware téll db with a new
digitized video frame. Start_compress initiates arequest to theActionMedia
hardware to compress the video framedhnandput theresult incb. Audio_acquire
retrieves a new audio frame from the ActionMedia hardware and putsat in

procedure digitize(db: digitize_buffer);
procedure start_compress(db: digitize_buffer, cb: compress_buffer);
procedure audio_acquire(ab: audio_buffer);

Figure 2-9: Audio and Video Operations

Another data type used in theplication ighe queue. Each queudlveontain items of a
single type €.g, a queue ofdigitize_buffer will containzero or moredigitize
buffers). Figure 2-10ists declarationgor the operationslefined onqueues: length
returns the length of the queulesert_queue inserts an item ahe proper type at the
tail of a queue, andemove_queue removes théuffer atthe head of the queue and
returns it. In each declaratiodata_type is a generic namér the type ofitem
contained irg.

function length(q: queue of data_type) returns integer;
procedure insert_queue(q: queue of data_type, d: data_type);
function remove_queue(qg: queue of data_type) returns data_type;

Figure 2-10: Operations on Queues

27

Figure 2-11 lists declarations for the data types and routines used to trdausnaver the
network. Thebasicdata type is thgpacket descriptor This is arecord that is used to
specify the data that should be placed metwork packet. Each packsn contain up to
one compressed viddrame and up tdawo audio frames.Cb_count is thenumber of
video frames that should be put into the pacdetcount is the number of audio frames
that should bgut into the packetandcb, abl, andab2 are thebuffers containing the
data that should be put into the packet. ffaesmit routine takes a packet descriptor
as an argument and initiates the transmission of the appropriate packet.

Type
packet_descriptor : record

cb_count : integer;

cb : compress_buffer;
ab_count : integer;

abl : audio_buffer;
ab2 : audio_buffer;

end record;

procedure transmit(d: packet_descriptor);

Figure 2-11: Network Transmission Declarations

Constant

max_audio_transport: integer; -- max buffers “in transport”

max_video_transport: integer; -- max buffers “in transport”
Var

vbi_count . integer;

next_digitizing . gueue of digitize_buffer;

digitizing . queue of digitize_buffer;

compress_source . queue of digitize_buffer;

compress_sink . queue of compress_bulffer;

db_freed . integer,

transmit_video . queue of compress_buffer;

video_transport . integer;

transmit_audio : queue of audio_buffer;

audio_transport . integer;

transmit_queue : queue of packet_descriptor;

transmits_started : integer;

Figure 2-12: Global Variable Declarations

28

Finally, Figure 2-12lists a number ofonstant andylobal variable declarations. The
meaning otthe constants and the use of ghebal variables W be explained below. One
general note is in order though: ealghta structure thdtolds a buffer during execution is
declared as a queu@cluding those that coulchave been implemented assenple
variable. Thigproperty is reflected in theniform treatmentgiven the data structures in
the axiomatic specification presented in Chapter 5.

2.5.2 High-Level Architecture

The acquisition-side dhe application is designed and implemented agtaof YARTOS
interrupt handlers andasks that share datssing resources. However, tspecify the
activities that must be performed, aheé timing constraints on thosactivities, it is useful

to first describehe design in terms of bher-level abtract processes. The acquisition-
side ofthe application can béhought of as three concurrent processesidao process
that acquires and compresses video framesudio procesghat acquires audio frames,
and atransport processhat transmits framesver the network. Notkowever that these
abstract processes aot execute at runtimaatherthey are presented here order to

give a high-level view ofhe processing that must be performed by the application. Later
in the chapter, it W be shown how the processing described in these abstract processes is
realized by a set of YARTOS application tasks.

_ Transmit_Video
Video ,
Process

Transport
Process

Audio
Process Djjj _
Transmit_Audio

Figure 2-13: High-Level Architecture

The architecture of these abstract processes is illustrated in FigureR2&alBes acquired
and compressed by the video process are placed in a queue of cobyfiess the
transmit_video gueue. Frames acquired the audio process are placed in a queue

29

of audio buffersthe transmit_audio gueue. The transport processnoves buffers
from these queues and transmits the data over the network.

There is oneomplication in this simple architecture. Becauseeifvork congestion, it
may not bepossiblefor the transport process tansmit every frame that generated; if

so, buffers will accumulate in th&ransmit_video andtransmit_audio gueues.
Because the totalumber of audio and video buffers tine application is limited, this
could eventually lead to situations which buffersare notavailable tothe video process
and the audio process. dnder toensure that buffersilvbe available, | limitthe number

of buffers defined to béin the transporsystem”. A buffer is defined to btn the
transportsystem” if it has been placed dme appropriate transmit queue at some point in
the past,and hasnot yet been freed byhe transport process. Twglobal variables,
video_transport andaudio_transport , are used to count timmber of video
and audio buffers ithe transporsystem; each is incremented when a buffer is placed on
the appropriate transport quewad each is decremented when a buffer is freed. Two
constantsmax_video_transport and max_audio_transport provide bounds

on thenumber of compress buffers and audio buffers respectively. The video and audio
processes enforce these limits each time they add a new frame to a transmit queue.

2.5.3 The Video Process

Figure 2-14 shows the abstract video prosgiseh acquires andompresses each video
frame. At a high level, this process has three stepggiteze operation tanitiate the
acquisition of a digitized video frame, start_compress operation toinitiate the
compression of thbtame, and amnsert_queue operation to placéhe frame on the
transmit_video queue. The WAIT statements” arenot executable statements;
ratherthey are placeholders that indicate that further processing shieldged until a
particular logicalinterrupt occurs. Thus th&/AIT statements can béaought of as
constraints on théiming of these operations. Thesiening constraints areliscussed
below.

In the above description,digitized video frame is acquired by executthg digitize

operation. Irreality, the acquisition of individual digitizedideo frames isnore complex.

The ActionMedia video acquisition hardware continuously acquires, digitizes, and writes
video data; thaligitize operationmerely informsthe hardware tdegin writing the

data to anew location. It takes 1/30th of a second to write tgitized data

30

corresponding to a single video frame. Thilng application acquiregndividual video
frames by executing tragitize operation at regular intervals of 1/30th of a second.

var

db: digitize_buffer; -- holds the digitized frame

cb: compress_buffer; -- holds the compressed frame
WAIT (VBI1); -- VBI1 signals opportunity to digitize

-- initiate a digitize operation
db := allocate(digitize_buffer);

digitize(db);
WAIT (VBIO); -- VBIO signals start of digitize
WAIT (VBIO); -- 2nd VBIO signals end of digitize

-- initiate a compress operation
cb := allocate(compress_buffer);
start_compress(db,cb);

WAIT (CC); -- CC signals end of compress

-- give frame to transport process
insert_queue(transmit_video,cb);
video_transport := video_transport + 1;

-- enforce limit on compress buffers “in transport system”
if video_transport > max_video_transport then
video_transport := video_transport - 1;
cb := remove_queue(transmit_video);
free (cb);
end if

-- free the digitize buffer
free(db);

Figure 2-14: High Level View of the Video Process

Specifically, the application acquires video frames by responding to logidakrupts
known asvertical blanking interrupt{VBI interruptsfy. These interrupts are generated

3The ActionMediavideo hardware is designed to be compatible whe NTSC broadcagelevision
standard. In NTSCyideo isscanned in horizontal lines from topkiottom. A complete scan ofvédeo
frame occurs inwo vertical passes, one ftie odd lines ofthe frameand one forthe evenlines of the
frame. The time during which the scanning pogegets to the top of the image is known as the vertical
blanking interval. The vertical blanking interrupt is so-namedause it occurs dhe start of each
vertical blanking interval.

31

periodically bythe ActionMedia hardware at sate of 60 interrupts per second. An
application acquires a video frame by executingjgitize operation in thanterval
betweentwo VBI interrupts. At the next VBI interrupt, the hardward Wwegin writing
digitized video into the specified buffer. The application must then wait for two more VBI
interrupts before a complete frame has been written to the digitize buffer.

Specify Digitize Buffer Specify Digitize Buffer
for Frame 1 for Frame 2

— N — N
o o L g o

Digitizing Frame 1

VBI ‘ ‘ ‘ ‘
interrupts 1 2 3 4

Figure 2-15: Digitization Process

Figure 2-15 illustrates the processaaiquiring a digitized video frame. Sometime after
VBI interrupt 1 and before VBI interrupt 2, tlag@plication must execute digitize
operation to pass a digitize buffer to the video subsystem. Between VBI 2 and Bl 4,
buffer isfilled with a digitized video frame. AftevBI 4, the buffer contains a complete
video frame. However, between VBI 3 and VBI 4, tlagplication must executnother
digitize operation. Otherwise, after VBI 4, the video subsystem will continue to write
digitized data into the first buffer overwriting the acquired frame.

Thus thefirst timing constraint indicated by 8VAIT statement in Figure 2-14 that
digitize operations should be executed after every secdBdl interrupt; for
convenience, | W assume thadligitize operations are executed after odd-numbered
VBI interrupts. Odd-numbered VBI interrupts will be referred to as VBI1 interrupts.

The nexttiming constraint arises fronthe fact that theligitized frame hasot been
completely acquired untthe second VBI interrupt after trstart of thedigitization; the
second and thir@VAIT statements in Figure 2-14 indicate that $tert compress
operation shouldot beinitiated untilthen. Thusstart_compress operations are
executed after even-number&BI interrupts. These W be referred to as VBIO
interrupts.

The final WAIT statement in Figure 2-14 indicates that the compressed fvaiae should

not bedelivered tothe transport processitil the frame has been completely compressed.
Thestart_compress operation initiates the compressioripgical interrupt known as
thecompress comple{€C) interrupt is generated by the ActionMedia hardware when the

32

compression is finishedThus, the fourtWWAIT statement indicates thtte frame should
not be placed on theansmit_video queue until the CC interrupt occurs.

2.5.4 The Audio Process

Figure 2-16lists the statements executed by the audio process to acquire each audio
frame. At a high level, thiprocess haswo steps: araudio_acquire operation to
retrieve a digitized audio frame andiasert_queue operation to placéhe frame on
the transmit_audio queue. TheWAIT statement indicates aming constraint
dictated by the fact that audio frames are assumed to correspond to a fixed-length interval.

The audio subsystem dhe ActionMedia hardwareoperates bycontinuously writing
digitized audiodata to aarge internal circular buffer. Aany time, an application can
copy audio datdrom this buffer to itsown internal memory. The audisubsystem
maintains gpointer to the last copied byte, so each cojdly begin where the previous
copy finished. In the application, audio is acquireasing the audio_acquire
operation that copies 1/6®f a second of audio datapproximately264 bytes). To
ensure that each audio frame is acquired,aadio_acquire operation must be
executed evere/60" of a second. Sinc¥BI interrupts are generated #iis rate, it is
convenient to assume thatidio_acquire operations should be executed aftach
VBI interrupt.

Var
ab: audio_buffer;

WAIT (VBI); -- VBI signals opportunity to acquire next frame

-- Acquire a new audio frame
ab := allocate(audio_buffer);
acquire_audio(ab);

-- give frame to transport process
insert_queue(transmit_audio,ab);
audio_transport := audio_transport + 1;

-- enforce limit on audio buffers “in transport system”
if audio_transport > max_audio_transport then
audio_transport := audio_transport - 1;
ab := remove_queue(transmit_audio);
free(ab);
end if

Figure 2-16: High Level View of the Audio Process

33

2.5.5 The Transport Process

Var
d: packet_descriptor;

-- check to ensure all outstanding transmits are completed
if eventcount(TC) < transmits_started then

return;
end if

-- if available, add video frame to packet
if length(transmit_video) > 0 then
d.cb_count :=1;
d.cb := remove_queue(transmit_video);
else
d.cb_count :=0;
end if

-- if available, add audio frames to packet
if length(transmit_audio) > 1 then
d.ab_count :=2;
d.abl := remove_queue(transmit_audio);
d.ab2 := remove_queue(transmit_audio);
else if length(transmit_audio > 0) then
d.ab_count :=1;
d.abl := remove_queue(transmit_audio);
else
d.ab_count :=0;
end if

-- initiate transmission, maintain count of transmits initiated
transmits_started := transmits_started + 1;
transmit(d);

WAIT (TC); -- TC signals end of transmission

-- free the compress buffer, maintain count of buffers “in transport”
if d.cb_count > 0 then

video_transport := video_transport - 1;

free(d.cb);
end if;

-- free the audio buffers, maintain count of buffers “in transport”
if d.ab_count > 1 then
audio_transport := audio_transport - 2;
free(d.abl);
free(d.ab2);
else if d.ab_count > 0 then
audio_transport := audio_transport - 1;
free(d.abl);
end if

Figure 2-17: High Level View of the Transport Process

34

Figure 2-17lists the statements executed by the transport procesartemit one packet

on the network. At digh level,there are four steps in the process. First a check is
performed to ensure that all outstanding transmit requaststieen completed (described
below). Ifso,then a packet descriptopntaining up toone videoframe and up to two
audio frames ixonstructed; thdramesare removedrom the appropriate queue and
placed in the packet descriptor. Next, ttamsmit operation is executed toitiate the
transmission. Finally, the buffers that were transmitted in the packet are freed.

The WAIT statement in Figure 2-17 indicatesimaing constraint: thduffers placed in the
packet shoulchot befreed untilthe packethas been successfultyansmitted over the
network. Thetransmit operationinitiates the transmit request; gical interrupt
known as theransmit completgTC) interrupt is generated by the network hardware
when the transmission is finished.

The check that ensuradl outstanding transmit requestave been completed is based on
a YARTOS eventcount of TC interrupts. Eatime a transmit operation is
performed, théransmits_started counter igncremented. Then, it is the cabat

all outstanding transmissiaequestdiave completednly if the number of TC interrupts
that have occurred is equalttansmits_started

2.5.6 Breakdown into Application Tasks

The next step indescribingthe acquisition-side ofthe application is to divide the
operations listed in the high-level abstract processes described aboveehif anterrupt
handlers and applicatioiasks that can execute under YARTORecall thatthe video
process, the audio process, andtthasport process werdivided into phases safated
by WAIT statements. These phaskfined byWAIT statements are theasis of the
division of the application into tasks.

With the exception of théirst phase ofthe transport processyhich will be discussed
separately, each phase begins withVAIT for a particularlogical interrupt. Thus, a

natural architecture is to define application tasks corresponding to each phase, and arrange
for eachtask to execute in response to the approptageal interrupt. Forexample,
consider thdragment of the video process listed in Figure 2-18. Jroeip of statements

from the first to the secondWVAIT statements igmplemented a®ne applicationtask.
Sincethe WAIT statement that starts the group is for a VRI@ical interrupt (.e., an

35

even-numbered/BI interrupt), this task should be sent a message whenever a VBIO
interrupt occurs.

WAIT (VBIO);

cb := allocate(compress_buffer);
start_compress(db,cb);

WAIT (CC);

insert_queue(transmit_video,cb);

Figure 2-18: Fragment of the Video Process

A buffer (or other data) that igsed in several phases of arstafict process is passed
between the corresponding tasks by puttingbiliéer on aqueue. To ensure that access
to the queue by eactask is mutually exclusive, eaclask declares the queue as a
resource.Again, considethe fragment of the video procebsted in Figure2-18. Figure
2-19 showsthis fragment split intotwo tasks. A queue of compredsuffers,
compress_sink , is used to pass the comprdsdfer betweerthe two tasks. This
gueue is included on the resource list of each task.

task one

resources compress_sink

body
cb := allocate(compress_buffer);
start_compress(db,cb);
insert_queue(compress_sink,cb);

end body

task two

resources compress_sink

body
cb := remove_qgueue(compress_sink);
insert_queue(transmit_video,cb);

end body

Figure 2-19: Video Fragment Divided Into Tasks

Thus, thebasicsoftware architecture of trecquisition-side othe application is based on
dividing the abstract processedsfined in Figure®-14, 2-16, and 2-17 intapplication
tasks andusing queues to paskta between the tasks. addition to these tasks, the
architectureincludes aninterrupt handlerfor each of the hardware interrupts listed in
Figure 2-1, and several other miscellaneous tasks discussed below.

36

The overall architecture is illustrated in FiguPe20. Rectangles denote hardware
interrupt handlers, single ovatkenoteapplicationtasks, doublevals denote resources,
and arrowdrom handlers tdasks denotenessages sent in responsdaogical interrupts.
Messages fronone task to another are alsmlicated byarrows. Resource usage by an
applicationtask {.e., access to a shared variable) is indicated by a dashed from the
task to the resource.

While the rules described above fdividing the abstract processes irgpplication tasks
are sufficient to explairmost of the actualmplementationthere areseveral exceptions
that must be addressed. First, in the abstract processes listed abovessumaesdhat
calls toallocate always succeeded. In the actual tasks, executiproiectedwith a

call to available ; if a needed buffecannot be allocated, the code that allocates and
uses theuffer isnot executed.Similarly, before a buffer is removed fromcaeue, the
length ofthe queue is checked to ensure thatréreove_queue will succeed; ihot,

the code that requires the buffer is not executed.

Another exception is the location of the code that retdigisze buffers tathe free pool.
A digitize buffer containing a frame can keturned to the free pool ason as thérame
has been compressed. Accordinghe rules described abowugjs codeshould be placed
in the CC task that contains the code that executes after a CC inteigmais that a
compression is complete. However, becausentimber of digitize buffers available to
the application is restricted bynemory limitations orthe ActionMediaadapter this code
must execute prior to the next time a digitize buffer is allocatedMBi& task; if not, the
pool of digitize buffers wll be empty whenthe VBI1 task executegresulting in a lost
frame).

It will be shown in Chapter 5 that the CC interrggnaling that a digitize bufferan be
returned to the free poolilhalways becompleted before thieuffer must beeused. The
problem arises because it cannot be guaranteethth@Ctask wil execute prior to the
VBI1 task that W require thebuffer. Thusthe code thafrees thedigitize buffer is
moved fromthe CCtask to thébeginning ofthe VBI1 task and a YARTOS eventcount is
used to determine if the CC interrupt has occurred.

37

IRQ 9 IRQ 15

! '

DVI Network

YARTOS
Periodic Task

IRQ 10 || nterrupt Handler
i Q Application Task
DVI2 © Resource

— Interrupt

——» Message

- - -» Resource Use

Screen
Output

Figure 2-20: Software Architecture of the Acquisition-Side

38

2.5.7 Assigning Relative Deadlines to the Application Tasks

In choosing relative deadlindsr the set ofapplicationtasks, there arewo constraints
that must be addressed. First, et&$sk with a required deadline must be assigned a
relative deadlineshort enough to ensure that thming constraint is met. Timing
constraints aregenerally based orthe actualarrival time of ahardware interrupt;
processing musbccurwithin a well-defined intervaafter the interrupt. Bubecause of
measurement delays, and maignificantly because the execution of interru@ndlers
can be delayednhile higher-priorityinterrupthandlersexecute, thdogical arrival time of
an interrupthandler is somewhajreater than the actualrival time ofthe interrupt.
Thus, to ensure that a taskvoked by an interruphandler executewithin a required
interval, it must be assigned a relative deadline somewtmadler than the timing
constraint.

The second constraint that must be addressed when choosing @daiiih@es is that it
must be possible to schedulee set ofapplicationtasks so that eactask invocation

executes to completion prior to itkeadline. Thisproperty can be checkagsing the

procedure developed in Chapters 3 and 4.

In addition, for reasons that will be explored further in Chaptanyt applicatiortask that
receives a message fraamnotherapplicationtask should be assigned a relative deadline
greater than or equal to the relative deadline of the sender.

The rules | have used to choose relative deadlines for the set of appt&sitsescribed
here are based on these constraints. Oradhaisition-side othe application, there is
only one taskwith a required deadlinghe VBI1 task. Recall that if framesre to be
digitized correctly digitize operations must be executed after a VBI1 interrupt and
prior to the next VBIO interrupt. A VBIO interrupt is expected to ocapproximately
16.67ms. after eaclVBI1 interrupt. Thus, thé&/Bl1 taskhas a required deadline of
approximatelyl6.67ms. Inthe declaration of th&BI1 task, | lave chosen to use a
conservative estimate of 15 ms. for the relative deadline.

The next taskwvith a constraint on the choice déadline isthe VBI task. Because it
sends a message tize VBI1 task, itshould be assigned a relative deadline less than or
equal to the relative deadline of tBI1 task. Thus, | also assign th@&I task arelative
deadline of 15 ms.

39

For each of theotherapplicationtasks, Ihave mordilexibility in choosing a deadline. For
thetwo othertasks that execute in response to VBI interrig®0 andaudio , | have
simply chosen to use the same relative deadline agBhé¢ask, 15 ms. For théCtask, |
have chosen a deadline of 8 ms. which is a conservative estimatenatuital deadline.
For all other applicationtasks except theitiate_send task (discussed below), |
have arbitrarily chosen to use a relative deadline of 33 ms.

2.5.8 The Initiate_Send Task

Most of theapplicationtasks discussed here wetefined by agroup of statements in an
abstract process starting withW@AIT for a particulatogical interrupt. However, because
the activities performed by the transport process need not occur in respornpsettouéar
logical interrupt, thefirst phase ofthe transport procesdid not begin with aWAIT
statement (see Figure 2-17). Rathdrave agreatdeal offlexibility in determining when
this code should be executed.

Because one viddoame andwo audio framesre produce@pproximately every 33 ms.,
the application must, on average, transome video andwo audio frames every 33 ms.
The code for the abstract transport process was designed to send one visiemaartio
frames in a singlpacket. Thusthis codeshould be executed at least once every 33 ms.
Therefore, thiscode isplaced in an applicatiotask called initiate_send with a
period of 33 m$.

Next, | mustassign a relative deadline to thessk. As wll be discussed below, the
execution of gransmit operation results in the generationseteral logicainterrupts
by the network hardware. In order to guarantee dpalicationtask invocationswill
alwaysexecute prior to theideadlines, | must ensure that successive occurreneexiof
logical interrupt are separated by sfficient interval. Thus, | must ensureghat
transmit operations are separated bysuafficient interval. This can beone by
ensuring that successive invocations tbé initiate_send task areadequately
separated and that can be achieved by settinteliteve deadline othe task to avalue

4Becausethis task will beinvoked at a period of 3ghs., this taskcould have executed in response to
messages generated diyernateexecutions othe VBI task. However, | chose to uggeriodic messages
generated by YARTOS so that this period could be easily changed.

40

less thanthe period of the task. As a result, hlave chosen to assign the
initiate_send task a relative deadline of 20 ms.

2.5.9 Description of the Interrupt Handlers and Application Tasks

I am now ready to present declarations and pseudo-code for eachapplicationtasks.
Figure 2-21 shows the declaration for Wil task. This task executes in response to a
message generated the DVI interrupthandler whenever ¥BI logical interrupt occurs.
TheVBI task does not correspond tplaase in one of the abstract processes; rather, it is
used to send messages to each of the tasks that execute in response to VBI interrupts.

task VBI
deadline 15 ms
resources none;
task body
vbi_count := vbi_count + 1;

if vbi_count mod 2 <> 0 then
send_message(vbil);
else
send_message(vbiO);
end if

send_message(audio);
end task

Figure 2-21: Pseudo Code for VBI Task

Each timethe VBI task executes, gends a message tioe audio task and either the
VBI1 orVBIO task. A count of theumber of timeshe VBI taskhas executedstored

in the global variablevbi_count , is used to determine the VBI interrupt is odd or
even numbered. Th¥BI task isassigned a deadline of 15 ms. alwks notuse any
resources (the global variable is not shared with any other task).

TheVBI1 task is the application task corresponding to the first phase of the video process
(see Figure 2-14). Figure 2-22 shows ek declaration. Theelative deadline iset to

15 ms. Theesourcelist includestwo global variables that thisask sharesvith other

tasks: thenext_digitize gueue and theompress_source queue. The other

two globals used by this task, the pool of free digitize buffers andbthieeed counter,

are notused byany other taskand thus needot beincluded onthe resourcdist. In

order topass thaligitize buffer tothe next phase, théBI0 task, code is added fdace

the buffer on th@ext_digitize queue.

41

task VBI1
deadline 15 ms
resources next_digitize, compress_source
task body
var db: digitize_buffer;

if length(compress_source) > 0 and eventcount(CC) >= db_freed then
db_freed := db_freed + 1,
db := remove_queue(compress_source);
free(db);

end if

if available(digitize_buffer) then
db := allocate(digitize_buffer);
digitize(db);
insert_queue(next_digitize,db)
end if
end task

Figure 2-22: Pseudo Code for VBI1 Task

In the abstract video procelssted in Figure2-14, there aréwo WAIT statements for the

VBIO logical interrupt. The two waits ensure that a compress operation is not started on a
video frame untikhe digitization is complete. Thiproperty must also be ensured in the
actual implementation.

Each timethe VBIO task executes, it do#®o things. First, it removes a digitizmiffer

from thedigitizing queue and performs the activities listed in the second phase of the
video processig. Initiate acompress operation, etc.). Second, théBIO task
removes a digitize buffer fronthe next_digitize queue and places it on the
digitizing gqueue. Because eadlyitize buffergoes througtthis two-stage process,

the VBIO task only performscompress operations orbuffers thatwere used in a
digitize operation occurring prior to the previouBIO task.

Figure 2-23 shows th&ask declaration. Theelative deadline iset to 15ms. The
resourcelist includesfour global variables that thisask sharewith other tasks: the
next_digitize gueue, thecompress_source queue, thecompress_sink
queue, and the pool of free compréssdfers. Theother global used by thigask, the
digitizing queue, is notised byanyother taskand thus needot beincluded on the
resourcelist. In order topass thedigitize buffer andthe compres$uffer to the next
phase, th€Ctask, code is added pdace thesbuffers onthe compress_source and
compress_sink queues.

42

task VBIO
deadline 15 ms
resources next_digitize,compress_source,compress_sink,compress_free
task body
var db: digitize_buffer;
var cb: compress_buffer;

if length(digitizing) > 0 and available(compress_buffer) then
db := remove_queue(digitizing);
cb := allocate(compress_buffer);
start_compress(db,cb);
insert_queue(compress_source,db);
insert_queue(compress_sink,cb);

end if

if length(next_digitizing) > O then
db := remove_queue(next_digitizing);
insert_queue(digitizing,db);
end if
end task

Figure 2-23: Pseudo Code for VBIO Task

task CC
deadline 8 ms
resources compress_sink, compress_free,
transmit_video, video_transport
task body
var cb: compress_buffer;

if length(compress_sink) > 0 then
cb := remove_queue(compress_sink);
insert_queue(transmit_video,cb);
video_transport := video_transport + 1;

if video_transport > max_video_transport then
video_transport := video_transport - 1;
cb := remove_gueue(transmit_video);
free (cb);
end if
end if
end task

Figure 2-24: Pseudo Code for CC Task

The CCtask is theapplicationtask corresponding to the last phase ofuideo process
(see Figure 2-14). Figure 2-24 shows tiek declaration. Theelative deadline iset to
8 ms. Theresourcelist includesfour global variables that thitsask sharesvith other
tasks: the pool of free compredsuffers, the compress_sink queue, the
video_transmit queue, and thevideo_transport counter. Note that as

43

discussed previouslyhe code to return thaigitize buffer tothe free pool isiot included
in this task.

The audio task is theapplicationtask corresponding to the single phase ofahéio
process (see Figure 2-16). Figure 2-25 showsatle declaration. Theelative deadline
is set to 15ms. Theresourcdist includesthreeglobal variables that thimsk sharewith

other tasks: the pool dfee audio buffersthe transmit_audio queue and the
audio_transport counter.
task audio

deadline 15 ms
resources transmit_audio, audio_transport, audio_free
task body

var ab: audio_buffer;

if available(audio_buffer) then
ab := allocate(audio_buffer);
audio_acquire(ab);
insert_queue(transmit_audio,ab);
audio_transport := audio_transport + 1;

if audio_transport > max_audio_transport then
audio_transport := audio_transport - 1;
ab := remove_queue(transmit_audio);

free(ab);
end if
end if
end task
Figure 2-25: Pseudo-Code for Audio Task
Theinitiate_send task is theapplicationtask corresponding to thHiest phase of the

transport process (séggure 2-17). Figure 2-26 shows ttask declaration. Theelative
deadline isset to 20ms. Theresourcdist includesthreeglobal variables that thisask
shares withother tasks: th&ansmit_video gueue, théransmit_audio queue,
and the transmit_queue . The otherglobal variable used by thistask, the
transmits_started counter, is noused byany other task,and thus needot be
included onthe resourcdist. In order topass the packet descriptor to the next phase,
implemented byhe transmit_complete task, code is added macethe descriptor

on thetransmit_queue

44

task initiate_send
deadline 20 ms
resources transmit_video, transmit_audio, transmit_queue
task body
var
d: packet_descriptor;

if eventcount(TC) < transmits_started then
return;
end if

if length(transmit_video) > 0 then
d.cb_count :=1;
d.cb := remove_queue(transmit_video);
else
d.cb_count :=0;
end if

if length(transmit_audio) > 1 then
d.ab_count :=2;
d.abl := remove_queue(transmit_audio);
d.ab2 := remove_queue(transmit_audio);
else if length(transmit_audio > 0) then
d.ab_count :=1;
d.abl := remove_queue(transmit_audio);
else
d.ab_count :=0;
end if

transmits_started := transmits_started + 1;
transmit(d);

insert_queue(transmit_queue,d);
end body

Figure 2-26: Pseudo-Code for Initiate_Send Task

The transmit_complete task is theapplicationtask corresponding to the lgstase
of the transport process (segure 2-17). Figure 2-27 shows ttask declaration. The
relative deadline iset to 33ms. Theresourcdist includes five global variables that this

task shareswith other tasks: theransmit_queue , the video_transport

counter, theaudio_transport counter, the pool ofree compress buffers and the

pool of free audio buffers.

45

task transmit_complete
deadline 33 ms
resources transmit_queue,
video_transport, compress_free,
audio_transport, audio_free
task body
var d: packet_descriptor;

if length(transmit_queue) > 0 then
d := remove_queue(transmit_queue);

if d.cb_count > 0 then
video_transport := video_transport - 1;
free(d.cb);

end if;

if d.ab_count > 1 then
audio_transport := audio_transport - 2;
free(d.abl);
free(d.ab2);
else if d.ab_count > 0 then
audio_transport := audio_transport - 1;
free(d.abl);
end if
end if
end body

Figure 2-27: Pseudo-Code for Transmit_Complete Task
2.5.10 Miscellaneous Tasks and Interrupts

In addition to the interrugtandlers andasks thatorm the application, there aseveral
more interrupthandlers andasks that execute during a run of the application. The
TIMER interrupthandler runs in response to timer interrupts fitbke PS/2. Thenain
function ofthe handler is taupdate thenternal timekeepinglata structures of YARTOS.

In addition, it sends messages tiwo tasks that control user interactions with the
application. Once every 9 executions (approximadedysec.), th@ IMER handler sends

a message to theyboard_check task which polls for user input and responds to user
commands. Once every 4 executions (approxim&dlysec), the&keyboard_check

task sends a message the screen_output task thatdisplays applicatiorstatus
messages on the workstation monitor.

The ActionMedia adapters generatreralotherlogical interrupts in addition to the VBI
and CC logicalinterrupts described above. The handkersthese interrupts perform

46

some internal processirfgr the ActionMedia device driver One of these interrupts
occurs at a regulamate oncesvery 33 ms. and is handled the DVI interrupthandler.
The other interrupt occuisimediatelyafter anaudio_acquire operation is executed;
this interrupt is handled by the DVI2 interrupt handler.

The network adapter generatesveralother logical interrupts in addition to the TC
logical interrupt described abovalVheneverthe transnssion of a newpacket isinitiated

by atransmit call, the network adapter responds by generatvglogical interrupts.

In response to thérst interrupt,the NETWORKandler performéimited processing on
the packet. In response to the second interrupt\ElBNVORKandler sends a message to
an applicatiortaskcalledpacket_transfer that then copies the packet contents into
memory onthe network adapter. Ahis point,the network adaptearansmits thedata,
although theremay besome delay ithe adapter cannatnmediatelyaccess thghysical
network.

2.6 Summary and Discussion

In thischapter, Ihave describethe workstation-baseddeoconferencing applicatichat
serves as the centerpiece of the dissertation. In particular, facdoeésition-side of the
application, | have explainedhe implementation details thaare needed for the
performance analysis described in Chapters 3, 4 and 5.

| began with a high level description of the application. | then presented YARTOS, a real-
time operating system kernel thaupports aprogramming model in which interrupt
handlers, operating system services, and applicatiole execute teompletion before
well-defined deadlines.Next, | described thenechanics of acquiring, compressing, and
transmitting audio and video frameBinally, | presented pseudo-code descriptions of the
set of YARTOS interrupbandlers and applicatidasks that comprise tlaequisition-side

of the application.

This chapter has concentrated the acquisition-side othe applicationput thedisplay-
side implementation has much in common wvitile acquisition-side. For example, the

SThese interrupts are good example ofhe operational nature of my understanding of the hardware
interface to the ActionMedia adapters. | can determine when these intecaptsaand | canverify that

the handlers requireery little execution time. However, | donot know what processinthe handlers
perform.

47

majority of audio and video processing the display-sideoccurs in response to VBI
interrupts. Audidramesareplayed by aask that executes in response to VBI interrupts.
Video frames are decompressed by a task that executes in response to VBIO interrupts and
displayed by another task that executes in response to VBI1 interrupts.

In general, the implementation of the display-side caindweght of as th&nverse” of the
acquisition-side. As otheacquisition-sidethe design and implementation tife display-

side can be described in termstimfee higHlevel alstract processes: a transport process

that receives frames from the network and puts them on queues, a video process that takes
video frames from dransport queue, decompressasd displaysthem, and an audio
process that takes audi@ames from daransport queuandplaysthem. As a result, the

set of interrupthandlers and applicationasks on thelisplay-side is similar tohe set on

the acquisition-side, except thadataflows in the opposite directions. Thushile the
performanceanalysisdescribed in Chapters 3, 4 and 5 is for dlequisition-side of the
application, analysis of the display-side of the application would be quite similar.

48

Chapter Il
Feasibility Analysis of YARTOS Task Systems

3.1 Introduction

The workstation-based conferencing application described in Chapter 2 is subject to a
number of timingconstraints. One constraint arises from propertigheActionMedia
hardware: to preventrgewly acquired digitized video frame from beingerwritten, the
application must provide a new digitize buffertb@ ActionMedia video subsystemithin

a well-defined interval(see page 32). Anothaiming constraint arises from the
application requirements: if framese to beplayed with acceptabldisplay latency, then

the delay experienced by a frame #ite acquisition workstation and at the display
workstation must be bounded. These constraints/pieal in hard real-timesystems for

which the correctness of a system depends on the system adhering to timing constraints.

One useful toofor designing, implementing, arahalyzinghard real-time systems is the
theory of deterministischeduling andesource allocation agst developed by Liu and
Layland [31]. Liu and Layland defined a formal model of real-time systems in which a
real-time system consists ofsgt of tasks that must execute dompletion prior to a
deadline. Aset of tasks isalledfeasibleif there exists &cheduling discipline that always
results in eachask in the seéxecuting to completion prior to ittkeadline. Theuthors
proposetwo scheduling disciplinegor their model; for each discipline they develop
sufficient conditiondor guaranteeing that set of taskscheduled undehe discipline is
feasible. | refer to these conditionsfeasibility conditionsand | refer to an algorithm for
testing the conditions ad@asibility test

Feasibility is animportant concept because the knowledge that taskssystamwill
always execute to completion prior to @eadline can be an extremely useful tool for
analyzing a real-time systemHowever, wemay often wish to determine if processing
performed by a collection of tasks adherestitoing constraints that ar@ot easily
expressed in terms of a single deadlif®r example, can wehow that théime required

to process a videdrame is boundedjiven that processing of a video frame is a

combination of activities performed by several taskSimply knowing that each task
completes prior to a deadline is not in general sufficient to determine such properties.

Another approach to the problem of demonstrating that real-time systems adimanegto
constraints usesfarmal logic extended taccount fortiming behavior. Examples of this
approachinclude Jahanian antlok’s Real-Time Logic(RTL) [22] and a method
proposed by Shankar [47]. However, analysis of a large system with such a formal logic is
often complex. One reason for tldemplexity isthe need to reasaaboutall possible
orderings of events and task executionkich inturn are dependent on tiparticular
scheduling disciplineised in thesystem as well as deta#sich as theime required to
execute operations.

It is possible however to design a system so thatateectness is independent of the
particular schedulinglisciplineand ordering of events; rather the correctnessd#sagn

will dependonly onthe fact that tasks ilv execute to completion prior to specified
deadline and will access data in accordance with specified mutual exclusion constraints. In
such a case, theomplexity of using a formal logic to verifyne correctness of system

can be substantiallseduced. Irthis work, | use acombination of schedulintheory and
Real-Time Logic(RTL) to show that thedelay experienced by video frames during
processing on the acquisition-side of the application is bounded at 100 ms.

Bounding delay ishe key to reducing oreliminating the delay jitter experienced by
frames. As long as ampper bound ordelay isknown, delay jitter can be reduced or
eliminated simply by bufferinghe frames toaccount for thelifference betweethe actual
delay experienced bghe frame andthe upper bound. Thus, Ishowing thatthe delay
experienced by video frames during processinghemcquisition-side othe application is
bounded, | W demonstrate that it is feasible to reduceetminate the delay jitter
experienced by video frames on the acquisition-side.

While in principle anmarbitrary bound ordelay can beised to reduce cgliminate delay
jitter, in practice such a bound should be reasorizgity. A loose bound would result in
buffering a largeamount of dataand more importantly would result imnecessarilyigh
display latency.While | do not formally derive lower bound othe delay experienced by
video frames otthe acquisition-side, | vt argue in Chapter 5 that it must be at least 55
ms., even under assumptions tlsaftware operations take rtome, and thatwork is
alwaysperformed as soon @®ssible. Thughe upper bound odelay 0f100 ms. shown
here is reasonably tight.

50

There are three steps in thealysis othe upper bound odelay. First, deasibility test is
used to demonstrate that edelk in thesystem Wl execute to completion prior to its
deadline and adhere to its mutual exclusionstraints. Next, aaxiomatic specification
of the system is developed (iRTL) in which the fact that tasks execute with these
properties isncluded as an axiomFinally, the boundedielayproperty is shown to be a
theorem derivable from the axiomatic specification.

In thischapter, Idefine an astract model of real-time systems that is implementable using
the programming model of YARTOS.For this alstract model, | develofpeasibility
conditions that can be used to show that applicateshks in a YARTOSapplication
alwaysexecute to completion prior todeadline and that accessresources by tasks is
mutually exclusive. IrChapter 4, lapply thesefeasibility conditions to the workstation-
based videoconferencing applicatiorfinally, in Chapter 5, | develop thexiomatic
specification otthe application andhe proof that the processidlglayfor videoframes is
bounded. In addition, | W argue thasimilar proofscan be developed to show that the
delays experienced udio frames onhe acquisition-side, and byoth audio andiideo
frames on the display side are bounded.

The remainder of this chapter is organized as follows. Section 3.2 deshebssstract
model oftasks that matches the executimodel of YARTOS. Sections 3.3 and 3.4
develop two theorems abouthis model; Section 3.3jives anupper bound on the
processortime spent executing interrupihandlers and Section 3.4 shows that the
scheduling disciplinaised by YARTOS enforces mutual exclusions constraintsask
executions. Section 3.5 uses these results to derive corfgalsitality conditions for the
abstract model. Section 3.6 shows how these conditions can be usedasishef a
practical feasibility test.

3.2 System Model

As described in Section 2.4, the YART@&gramming model providesree primitives

to an application developer: interrupt handlers, application tasks, and resources. Interrupt
handlersare programs that execute in response to hardware interrypgdication tasks

are programs that execute in responsenéssages sent from interrugndlers orther

tasks. Resources asgnchronization primitives thgtrovide mutually exclusiveaccess to

tasks that sharéata. Inthis section, ldefine an astractmodel of real-time systenthat

reflects this programming model.

51

| assume that real-time systearg systems in whiclsoftware executes in response to the
occurrence o$poradic events A sporadic event idefined as a stimulus thatgenerated
repeatedly with a lower bound on th@erval between consecutivecurrencesd.g,
interrupts from a hardware timer)lhis lower bound iscalled the minimum interarrival
time of the event.Specifically, if asporadic evenE has aminimuminterarrival time ofp,
andt, is defined as the time of tifeoccurrence oE, then for all > 1,t,, >t + p.

In my model, a real-time system is assumed to consistseft @f €quential programs
calledtasksthat execute in response to sporadic events. Whenever anoevart, the
corresponding task isaid to beinvoked An invocationof a taskT is a copy of the
sequential program af which iscreatedwhenthe task is invoked. Eacdhvocation of a
task executes independently.

Tasks aredivided into two distinct classes: interrupt handlersand application tasks
These classatdiffer in the rules governing eorrect execution of a real-time system. For
an execution to be considerearrect, thescheduling ofnterrupthandler invocations and
application task invocations must adhere to several constraints.

« An interrupt handler executes whenever one is available.
- Application task invocations complete execution prior to their deadlines.

« Resource usage by application tasks is mutually exclusive.

Formally, areal-time task systemis defined as aet ofm interrupthandlers {,, I, ...,
[}, n applicationtasks {I,, T,, ..., T}, andr resources R, R, ..., R}. An interrupt
handlerl is a pair ¢ a) wheree is the coseinda is theminimuminterarrival time of the
handler. Theostof an interruphandler is defined afe maximumamount of processor
time required toexecute thenandler to completion on a dedicated uniprocessor. The
minimum interarrival timeof an interrupthandler is defined athe minimum interarrival
time ofthe event thainvokesthe handler. ArmapplicationtaskT is a 4-tuple ¢, U, d, p)
wherec is the cost oT, U is the set of resources usedThy is therelative deadline of,
andp is theminimuminterarrival time ofT. Thecost of anapplicationtask isdefined as
above. Each application task is saidisea subsefpossibly empty) othe resources in
Therelative deadlineof an application task is defined as the length of the interwathich
an invocation of théask must execute; if a taskimvoked at timet, the invocation is
assigned a deadline bf-d. Finally, the minimum interarrival time of an applicatiotask
is defined agshe minimuminterarrival time ofthe event thainvokesthe applicationtask.

52

A tasksystem ideasibleif, for an arbitrary sequence of interrdgindler and application
task invocations, it is possible to schedule the task system correctly on a single processor.

Theformal model is based on several additional assumptiemst, except foapplication
tasks that share a resource, executi@sssimed to brilly preemptive in the sense that a
higher prioritytask isallowed to preempt a lower prioritgsk atany time. Second, it is
assumed that time is measured in discrete uditgtis, interrupts andaskinvocations
occur atclock ticksand parameters d, p, a, ande are expressed as integeultiples of
the interval between successive clock tickisinally, it is assumed that application tasks
and interrupthandlersare independent in the sense that tihee at which atask is
invoked is unrelated tany invocation of any other task (other than thprevious
invocation of the same task).

In the original model poposed by Liu and Layland [31asks arelefined withrespect to
a number of constraints:

« Synchronous. Each task is invoked at time 0.

« Periodic. Each task iavoked periodicallyj.e., if a taskhas aminimum
interarrival time ofp, it is invoked every time units.

- Deadline equal period. The relatideadline of atask isdefined to be
equal to the period of the task.

« Fully preemptive. A scheduling algorithm is allowed poeempt the
execution of a task invocation at any time.

+ Specific priority assignmentsThe theory assumesspecific assignment
of priorities to task invocations.

Since Liu and Layland, a number of authors have defined and analyzed models of real-time
tasks that relax one or more of these restrictions. The formal model defined in this chapter
is a generalization of three of these models. In [4], BaMalk, and Rosier developed
feasibility conditiondor amodel consisting of sporadiasks with arbitrargleadlinesi(e.,

relaxing the synchronous, periodic, amttadlineconstraints). In [25]Jeffay derived
feasibility conditions for a model in whidporadic tasks share resourdes,(relaxing the

fully preemptive constraint). Finally, in [26], Jeffay and Stone derived feasibility
conditions for amodel that includedboth periodic interrupthandlers and periodic
applicationtasks (.e., relaxingthe algorithm-defined priority constraint). The model |
propose heraelaxesall of these constraints. Because this modanbines several

53

properties of these three modelsyenber ofthe proofs irthis chaptehave beemdapted
from the proofs in these three papers.

3.3 The Effect of Interrupt Handlers

As thefirst step inderivingthe feasibility conditions for real-tim¢ask sets, Examine the
effect of interrupthandler execution omthe time required to complete invocations of
applicationtasks. Because interrupindler invocations execute with priority strictly
greater tharapplicationtask invocations, theeffect of executing interrugtandlers is to
reduce the amount dfme available toexecute invocations of applicatidasks. To
guantify the time spent executing interrufiandler invocations, considertask systemt

that includesninterrupthandlers €, a,) ... (e, a,). Letf(l) be a function fronthe non-
negative integers to the non-negative integers defined by the following recurrence relation:

f(0)=0,

F(l-1) i f(l _DZE[LWQ
01>0,f ()= =18
F-1)+1 if f(-1< E[L—‘q

i=1 a1.
As shown in thdollowing theorem,f(l) is an upper bound on the amounttiofie spent
executing interruphandler invocations in an arbitrary interval of lengtsf an execution
of 1. Thedefinition can banterpreted by considerintpe worst-case execution of in
which every interrupt handler is invoked at time O and perioditadiseafter. In this case,
at any timel, f(l) is exactlythe time that wasspent executing interruptandlers in the
interval [0, I]. The two cases in thalefinition correspond to whether arot all the
interrupthandlers thatvere requested in theterval[O, | — 1] completed prior td — 1; if
so, thenf(l) = f (I —1) +1 since an interrupt handler was executed in the intdrval [].

One additional note about the definitionfdf) is useful. For all >0,

fl-1<f() (3.1)

Theorem 3.1: Lett be a taslsystem withm interrupthandlers ¢, &) ... (e, a,). For
alla=0, b= a, letg(a,b) be the amount of procesdone consumed binterrupthandler
invocations in thenterval [a, b] during an arbitrary execution of Forall t andl, t>0,
| 20, f(I) is an upper bound ag(t,t+1) (i.e, g(t,t+1)< f(1)).

54

Proof (adapted from a proof given in [26]): By contradiction.

Suppose€f(l) is not an uppebound ong(t,t+1) forallt>=0 andl =0. Then therexists
somex andk such that

f(k) <g(x x+ K (3.2)

Choose the smallestfor which (3.2) holds,and for thatx, choose the satlestk. This
choice has several consequences:

1. k>0. Sincethe amount of processtime consumed binterrupthandler
invocations in an interval of length O is necessariffofall x, g(x, X) = 0.
Since by definitionf (0) = 0, g(x, X)< f(0).

2. Fort<x, g(t,t+I)< f(I). Sincexis chosen to be the shest value oft

for which f(l) is not an uppebound ong(t,t+1), f(l) is an upper bound
for all intervals starting prior t®.

3. Forl <k, g(x, x+ 1)< f(l). Sincekis chosen to be the sitest value for

which f(1) is not an uppebound ong(x, x+ 1), f(I) is an upper bound for
all intervals starting at with length less thak

The assumption that (k) is not abound on the amount of processione consumed by
interrupthandler invocations itheinterval [x, x+ k] (i.e., equation 3.2ran be combined
with equation (3.1) and fact 3 fo=k —1 to produce:

g(x, x+ k=1)< f(k-1)
< f(K)
<g(x x+ K (3.3)

The interpretation of equation (3.3) is that the amouriinod spent executing interrupt
handler invocations irthe interval [x, x+k-1] is strictly less tharthe time spent
executing interrupthandler invocations irthe interval [x, x+k]. As a result, the
processor mushave executed an invocation of amerrupt handler inthe unitinterval
[x+k-1, x+Kk]. Thus

g(x+ k-1, x+ =1 (3.4)

Hence

55

g, x+K=dxx kl)+ ¢ * k1, x Kk
=g(x, x+ k-1)+1
<f(k-D+1 (3.5)

It follows from (3.2) and(3.5) thatf (k) < f(k—1)+1. Sincefor all 1 >0, f(1-1)< f(l),
it then follows thatf (k) = f(k—1). Thus by the definition dfl),

=y [kale (3.6)

Now, there aréwo cases that must be considered, dependinthewalue ofx. If x>0,
then by fact 2 fort = x-1, g(x—-1, x+ k-1 < f(K. Combining this with assumption

(3.2),

g(x-1, x+ k-1 < f(K
<g(x x+ K

Thus

gxX-LX)+gdx x+ kD)< g xx kDH+ g x k1 x K
g(x-LY)<dx+ k-1 x R

It follows from this and equatior§3.4) that g(x—-1, x)<1, and thusg(x-1, x)=0.
Therefore, during the unihterval [x—1, x], the processodid not execute an interrupt
handler invocation. Thus)l invocations of interruphandlers occurringrior to X must
have completed execution before

On the otherhand, if x=0, then bydefinition there were no invocations of interrupt
handlers thabccurred prior to. Thus, independent of thvalue ofx, theonly interrupt
handler invocations that executedte interval [x, x+ k] were thosenvoked at or after
X.

Since an invocation of aimterrupthandler caronly execute in an interval] b] if it is
invoked at or befordb—1, the only interrupt handler invocations that executed in the
interval X, x + k] were those invoked in the interval [x + k—1]. An upper bound on the
number of invocations of anterrupthandler €, a) in this interval is given byk/a] and

thus an upper bound on the topabcessing requirement of interrumndler invocations

56

occurring in thenterval is given byzzlfk/ﬂe. Thus,g(x, x+ K) < Z:lf Kale It
then follows from (3.6) that

g(x x+K<y [kale= (& (3.7)
which contradicts the assumption tHgk) < g(x, x+ K. O

Theorem 3.1 shows that any interval of length., at mostf(L) units ofprocessotime
are expended executing interrupt handlers. Thus it is the case dhgtinterval of length
L, at leastL— f(L) units of processortime are available toexecute applicatiotasks.

This fact will be used in Section 3.5 as part of the derivation of feasibility conditions.

3.4 EDF/DDM Scheduling Discipline

Next, | describethe scheduling disciplineised in YARTOS to schedule application tasks
and show that the use thiis discipline is sufficient t@nforce the property that tasteat
share resources access those resourcesnuilly exclusive manner. This scheduling
discipline is calledEarliest Deadline First with Dynamic Deadlinélodification
(EDF/DDM), a (trivial) variant of the scheduling discipline proposed by Jeffay in [25].

The EDF/DDM scheduling disciplineoperates as follows. Aany time there is an
applicationtask eligible for execution, the taskiwvocation with the nearestontending
deadlineis executed. The contendidgadline isinitially defined aghe deadline of the
invocation. However, once the invocatioas begun executing, its contending deadline is
modified (asexplainedbelow). In the case tie contendidgadlinestaskinvocationsthat

are preempted are given precedence; otherwise the choice is arbitrary.

Consider a taskystem withm interrupt handlersn applicationtasks, and resources,
defined asabove. For tasK,, let D, represent the saflest relative deadline of any
application task with which it shares a resource. That is,

D, =min{d,[L< j<nOy n U, =0}

Lett, be a time at whicfi; is invoked. The deadline dfe invocation ofl; occurring at,
is defined a4, +d . Thus, thenitial value ofthe contendingleadline of this invocation is

alsot, +d. Whenthe invocation begins executiosay at timet, >t;, its contending

57

deadline is modified tohe earlier oft,+ D, +1 or theoriginal deadline. Thatis, once a
task invocation begins execution, its contending deadline is given by

min(t, + D, +1t +d,)

BecauseD, < d; for all tasksT; with whichT, shares a resource, this contending deadline is

guaranteed to be nearer than ithigal deadline of anynvocation ofT, that occurs after
the invocation ofT, beginsexecution. Thus, taskwhich share resources and are
scheduled undehe EDF/DDMscheduling disciplin@re guaranteedot to preempt one
another. Thusthey access resources inmautually exclusive manner.The following
theorem demonstrates this principle.

Theorem 3.2: Invocations of applicationtasks in a task set scheduled with the
EDF/DDM scheduling discipline access resources in a mutually exclusive manner.

Proof (adaptedrom aproof given in [29): It suffices toshow that under the EDF/DDM
scheduling discipline, an invocation oftask that requires resourd¢® cannotbegin
execution if an invocation of another task that requRdsas begun but not yet completed
execution.

Let T, be a task that requirdg, lett be a point irtime whenT, is invoked, and let, be
the point intime at which that invocation df; first commences executionLet T, be
another task that requed®. The proof shows that anvocation ofT, cannotbegin
execution if the invocation of, has begurbut notyet completed execution. This is
shown by contradiction.

Let t>t, be a point irtime whenthe invocation ofT, has begurbut notyet completed

execution and assume that an invocatiofl, dfegins execution dt Lett be thetime at
which this invocation of; occurred.

Because it starteelxecuting prior tdimet, the invocatiorl, has a contending deadline of
min(t, + D, +1,t, +d) at timet. SinceT, has not yet begun execution at titng contends
for the processor dime t with its initial deadline oft; +d,. BecauseT, is chosen for

execution, it must be the case thtas deadline isiearer than the contendidgadline of
taskT.. Thus,

58

t;+d <min(t + D +1t +d) (3.8)

SinceT, began execution &t either or both of the following facts are true

- The invocation off; occurred after thenvocation ofT; began execution.
Thus,t; >t >t

- The invocation off; had a nearenitial deadlinethan the invocation of,.
Thus,t; +d =t +d.

If neither of these facts weteue, thenT, would have been executedtasince it would
have been availabléor execution and wouldhave had a nearedeadline than the
invocation ofT..

Because task$ andT, share a resource, it ecessarilthe case thab, <d;. Thus, if
the invocation off;, occurred after the invocation dfbegan execution, then
t;+d 2t +0
> ts + Di
>t +D,+1

>min(t,+ D, +1,t, +d)
which contradicts (3.8).

If the invocation off, had a nearer initial deadline than the invocatiofi,achen
t,+d =2t +d
>min(t, + D, +1,t +d,)

which also contradicts (3.8). O

This theorem has shown that any task system scheduled with the EDFIB&Minewill
enforcemutually exclusiveaccess to resourcedhis fact wil be used in the next section
in the derivation of feasibility conditions for task sets.

59

3.5 Feasibility Conditions

I am now ready to develdjeasibility conditions for themodel described in Section 3.2.
To begin, it is useful to quantiyhe maximumtime required to complete execution of all
task invocations thabccur in aninterval. Consider an interval, [t + L] and a taskT..
How many invocations of, can occur at or aftéwith a deadline at or befote- L? The
maximum number of invocations meeting this criteriall woccur when an invocation
occurs at and subsequent invocatiomscurperiodically {.e., tasks are invoked at- kp
and have deadlines &t kp + d for k=0). If L<d, then the invocation occurring &t
has a deadlinaftert + L, so there are no invocationgeetingthe criteria. IfL>d, then

the deadline of the invocation occurring & in theinterval. Furthermoreghe number of
additional invocations with deadlines at or befofe_ is equal tdL(L -d,)/ |qJ. Thus for

eachtaskT,, an upper bound on threimber of invocations occurring at aftert with a
deadline at or before+ L is

0 if L<d

o(L)= 1+MEZQJ if L>d
p

Therefore, for eactaskT,, an upper bound on thmumber of invocations occurring at or
after t, with a deadline at or beforg is d,(t, —t,). Thus, an upper bound on the

processing requirement of these invocations & o, (t, —t,) [C,.

For a task set to bfeasible,two conditions must hold. First, any given time, the
amount of time that has beawailablefor executing applicatiomasks up to that point
must be at least ageat as the totgdrocessing requirement afi applicationtasks up to
that point. In thanterval [0, L], the amount otime availablefor executingapplication
tasks is at leadt minusthe maximumtime that could have beapent executing interrupt
handlers, orL—-f(L). An upper bound on the processing requiremenappiication
tasks invocations in thaterval[O, L] is thesum ofthe requirements for eatask. Thus,
the first feasibility condition is

OL,L=>0,
L—HUzi&@ﬂm

60

The second condition that must hold for a task set to be feasible addresses the effect of the
preemption constraint introduced by shared resources. e&artask, thefollowing
feasibility condition must hold:

OL,D <L<d,
L-f(L)ze+3 3 (L-DLg
=1

This condition can beterpreted by considering a particulaorst-case sequence of task
and interrupthandler invocations. Assume thatask T, is invoked at some timg — 1.
Then, at timet, every other application task isinvoked and eachask is invoked
periodically thereafter. The condition shows thatadt times in the interval [t, + D,

t, +d], there is enoughime available to met the processing requirement aif task
invocations with deadlines ithe interval. Thefollowing theorem shows that these two
conditions are sufficient to show that a task set is feasible.

Theorem 3.3: Lett be a tasksystem withm interrupthandlers {¢, a), ..., €,, a,)},
n applicationtasks {¢c,, U,, d,, p), ..., C, U,, d, p,)} andr resourcesR, R,, ... R}. 1
will be feasible if the following two conditions hold.

1) [0OL,L=0,
L-f(1)2 Y 30

2) DOid<i<n,0L,D <L<d
L-f(L)zg+3 3 (L-DLg
=1

Proof: To prove the theorem, it must be shown thiaén Conditions 1 and 2 hold for a
task setr, the EDF/DDMscheduling discipline il succeed in schedulirthe tasks it so
that access to resources nutually exclusiveand so that tasks always execute to
completion prior to theideadline. Theorem 3.2 has already shown tt@atEDF/DDM
scheduling discipline maintairthe mutual exclusion constraints on accesgdsources,
independent of Conditions 1 and 2. Thusreinains toshow that tasks meet their
deadlines. This is shown by contradiction.

61

Assume that Conditions 1 and 2 hold, and ydask invocation fails to execute to
completion prior to itsdeadline wherthe task set ischeduled undethe EDF/DDM
scheduling disciplineLet t; be the earliest point itme at which aaskinvocationmisses
its deadline. Let, be the latest of:

-0
- The end of the last period in which the processor was idle prigr to

- The last timeprior to t;, a taskinvocation with both adeadline and a
contending deadlinaftert, stopped executio(efined ag, if such a task
was still executing &t,).

- The last timeprior to t, a taskinvocation with a deadlinaftert, and a
contending deadline at or befdgestarted execution.

As a result of this definition df, several facts hold:

1. The processor executed continuously in the intetydl]. If this was not
the case, then there would be sotinee aftert, and prior tot, during
which the processor was idle. This is prohibited by the choite of

2. By Theorem 3.1, it is the case that at mbd{, —t,) units of processor
time were spent executing interrupt handlersjrt]. Therefore, because

the processor executedntinuously, at least(-t,)f t(-t, dnits of

processoitime were spent executing invocations agplicationtasks in
the interval {, t].

3. Everytaskinvocation occurring prior t& with a deadline at or befotg
completed execution prior tig. Thus,any taskinvocation that misses a
deadline at; must have been invoked at or aftgr To show this fact,
four cases must be considered corresponding to the four restrictions on
the choice oft, definedabove. First, it, = O, then bydefinition there
were no taskinvocations thatoccurred prior tot,, Second, if the
processor was idlémmediately prior to t,, then there were no task
invocations thatoccurred prior tot, that hadnot already completed
execution byt,. Third, if the processor stoppestecuting aaskwith a
contending deadlinaftert, at timet,, then at timet, — 1 there were no
outstanding taskvocations with a deadlingrior tot,. Finally, if atask
with a deadline aftel, started executing at tinig then there were no task
invocations with deadlines at or befagehat occurred prior tg, that had
not already completed executionthy

62

4. At most one tasknvocation with a deadlinafter t, executed in the
interval ft, t,J. Furthermore, thigask invocation began execution gt
and had a contending deadline at or befpreThis fact is a consequence
of the fact that, was chosen to be greater tharequal to the lagime a
task invocation with a deadline aftgbegan execution.

5. Theonly other taskinvocations executed by thpFocessor in thénterval
[t,, t,] were those that werivoked at or aftet, with deadlines at or
beforet,. This fact results from facts 3 and 4.

Next, | use these facts tderive anupper bound on the totgrocessing required to
complete execution ddll taskinvocations that can execute in tingerval ft,, t,]. | then
show that Conditions 1 and 2 asafficient to guarantee that this requirement is met.
Sinceall taskinvocations with deadlines at or befdgesither complete execution prior to
t, or areeligible toexecute at some point in tigerval f,, t,], this will show thatevery
task invocation with a deadline at or befgraill complete execution at or befotg This
will contradict the assumption that a task misses a deadlipe at

There aretwo cases to be considered depending on whethemobrthere is a task
invocation with a deadline aftgrwhich executes in the interval,[t,].

Casel: Assume that ntaskinvocation with a deadlinaftert, executes intf, t,]. Then
by facts 4 and 5only taskinvocations thabccurred at or aftet, with deadlines at or
beforet, were executed by the processor in ititerval ft,, t,]. An upper bound on the
total processing required to complete executiomalbftask invocations occurring at or
aftert, with deadlines at or befotgis

iéi(td _to)m

1=1

By fact 2, at leastt{-t,) f t{—t,)units of processortime were spent executing
invocations of application tasks in the interglt] and by Condition 1, it is the case that

(td _to)_ f(td _to)z iéi(td _to)m

Thus, it is the casthat, in theinterval f,, t,], the time spent executing invocations of
application tasks invoked at or aftgwith deadlines at or befotgwas at least as great as
the totalprocessing requirement of thesskinvocations. Thus, evemaskinvoked at or
after t, with a deadline at or befortg must have completed execution at or befgre

63

Because by fact anytaskinvocation that misses a deadling amnust have been invoked
at or aftert,, and becausg was chosen to be the earliste at which aaskinvocation
misses a deadline, thisiplies that notaskinvocation misses a deadline at lweforet,,
which contradicts the assumption that a task missed a deadijne at

Case2: Assume that an invocation sk T, with a deadlinaftert, executes int, t]
and further assume that this invocatmecurred ats. By fact 4, this invocation began
executing at,, sos < t,. Thus, itis the case that

s+d>4
di >4, -3
d >4 -t (3.9)

In addition, by fact 4, this invocation ¢dsk T, must have a contending deadline at or
beforet, Thus, mift,+D +15+d)<t. Because it has been assumed that the

deadline the task invocation is aftgrit is the case theg + d > t,. Thus

min(t, + D, +1,5 +d)< |,
t,+D, +1<t,
D <t,—t,-1
D <t -t (3.10)

Combining (3.9) and (3.10) give3 <t, —t, <d..

By fact 4, the invocation absk T, with a deadlineftert, that executes intj t,] began
executing at,. Furthermore, because this invocation began executipgvih a deadline
aftert,, no other task coultlave been invoked &f with a deadline at or befotg (any
such invocation would have been cho$enexecution aty). Thus, in addition to the
invocation ofT,, only taskinvocations thabccurred at or aftet; +1 with deadlines at or

beforet, were executed by the processor in ititerval ft,, t,]. An upper bound on the
total processing required to complete execution of these task invocations is thus

n

¢+ 8(t - (t+1)ce,

=1

64

By fact 2, at leastt{—-t,) f t{—t,)units of processortime were spent executing
invocations of applicatiortasks in theinterval t, t] and becauseD, <t, -t, <d,
Condition 2 implies

(td _to)_ f(td _tO)ZCi +i61(td _(t0+1))E¢j

Thus, it is the casthat, in theinterval ft,, t], the time spent executing either invocations
of application tasks invoked at or aftgewith deadlines at or befotgor the invocation of
taskT, that occurred a4 was at least agreat as the totgdrocessing requirement of these
taskinvocations. Thus, the invocation Bfthat occurred ag and eventaskinvocation
occurring at or aftet; with a deadline at or befotgmust have completed execution at or
beforet,, Because by fact &ny taskinvocation that misses a deadlinetatmusthave
been invoked at or aftef, and becaust was chosen to be the earliéiste at which a
taskinvocation misses a deadline, timgplies that ndaskinvocation misses a deadline at
or beforet,, which contradicts the assumption.

Thus | have shown that &l cases, if Conditions 1 and 2 hold fotask sett, then the
EDF/DDM scheduling discipline il succeed in schedulirtge tasks it so that access to
resources isnutually exclusiveand so that tasks adys execute to completion prior to
their deadlines. |

3.6 Feasibility Test

While Theorem 3.3 givesufficient conditionsfor the feasibility of a task set, the
requirement that Condition 1 hold fall L >0 implies that itcannot be usedirectly as
the basis of a practicdeasibility test. However, for most taglystems, it is possible to
bound the values df at which Condition 1 must be evaluated.

The achievable processor utilizatio(or utilization) of atask system is defined as an
upper bound on the fraction of processione that is required byhe tasks over an
arbitrarily long interval. Thechievableprocesautilization of atasksystemt is precisely
expressed as:

65

Theorem 3.5hows that for taskystems with achievabf@ocessoutilization strictlyless
than one, the feasibility conditions need only be applied to a bounded set valtebs ito
guarantee that the taskstem is feasible. Asrasult, Theorem 3.5 can be used as the
basis of a practical feasibility test.

Before presenting Theorem 3.5, | fimbve alemmaneeded for the proof. Thetuition
behind thislemma is simple: the function &, (t) only changes at values ofwhich are

multiples of the minimum interarrival time of some application task.

Lemma 3.4: Let Q={kp+ d|k=001< i< nt0{0}. Lett andt' be anytwo elements
of Q such that <t' and there doesotexist anr JQ, t <r <t'. Lete be an integer such
that O<e<t'-t. Foralli, 1<i<n, d,(t) =9 (t+¢).

Proof: There are two cases to be considered.

Casel: Assume that<d,. By the choice of, it is the case that <d and therefore
thatt+e<d. Thus,, (t+¢€) =9 (t)=0.

Case2: Assume that>d. Letk be the largest integer such thatkp + d. Recallthat
9, (t) is defined as

0 ift<d
o(1)= 1+{119¢ if t>d

Thus

t-d

aa):1+{ J:k+1

By the choice of', it is the case that<(k+1)p + d. Thus, by the choice @f it is the
case that+e<(k+1)p +d. Thus

66

5.(t+g) =1+

t+s—qJ
L P

14 t—diJ
L P

SRRIEL

Y

and,

6i(t+s)=1+r+£_d‘J

t+e-d
+
Y
<1+ k+Dp+d-d
P

<1

<k+2

Thus,d,(t+€) =96, (t) =k +1. In either case), (t+€) =9, (t). This proves the lemmall

I am now ready to prove Theorem 3.9his theorem issimilar to Theorem 3.3, but
restricts the set of points at which the feasibility conditions must be tested. In particular, it
shows that if Condition 1 holds asat of pointdefined bythe multiples ofthe minimum
interarrival times of eactask and bounded bywalue B, then Condition 1 must hold at

all L.

Theorem 3.5: Lett be a tasksystem withm interrupthandlers {¢, a), ..., €,, a,)},
n applicationtasks {¢, U,, d,, p), ..., €, U,, d, p,)} andr resourcesR,, R, ... R}
defined such tha#_ <1. Let

D WCED I

' -y

and let P={kp+ d|kp+ d< BO k0O01< k& §O{0}. 1 will be feasible if the

following two conditions hold.

67

1) [OLLOP
L-f(L)=2Y 8 (L)

2) DOid<i<n,0OL,D <L<d
L-f(L)zg+3 3 (L-DIg
=1

Proof: To prove the theorem, it sufficient to show that thewo conditions of this
theoremimply thetwo conditions of Theorem 3.3. Condition 2 is identical to condition 2
in Theorem 3.3. Thus, ftemains toshow that Condition 1 of this theorem iiep
Condition 1 of Theorem 3.3.

Assume Condition 1 holds for a task setThat is,(0L, L OP

L—f(L)ziéi(L)m (3.11)

Equation (3.11) isdentical tothe equatiorgiven in Condition 1 ofTheorem 3.3. The
difference is inthe range ofL at whichthe condition must be checked. | shdvat
Condition 1 of this theorermplies Condition 1 of Theorem 3.3 by showing tivathen
equation (3.11) holds for all OP, it must hold for alL greater than or equal to O.

There ara@wo parts to the proof. First, | show that if (3.X1iblds for certairvalues ofL,
then it holds foevery value ot.. Second, | show that if (3.1hplds forall L < B, then

it holds for allL.

Let Q={kp + d|k=001< i< 0{0}. Choose,t [Q, t<t such that there does not
exist anr 0Q, t<r <t. Lete be an integer such thak® <t —-t. By Lemma 3.4, it is
the case that faall i, o,(t) =9, (t+€). Moreoversince atmoste time units can be spent
executing interrupbhandlers irtheinterval f, t+¢€], it is the case thaf(t+¢) < f(t) +¢.

If (3.11) is satisfied at for =t, then

68

t= ()2 35,00

t= ()2 38 (t+e)le

v

s ||M3 ||'M3 ||'M3

t+e—(f(t)+¢) 6(t+s)m;

t+s—f(t+s)>lzé(t+s)m;

Therefore, if (3.11) holds for all elements@fit holds for allL.

Next, consider the function

g(L)=3 8,(L) + (1)
Equation (3.11) can be restatedgd$) < O.

Leth(L)=(U, -1)0+y"e+5",c.

Noting that for allL > 0, 8,(L) <1+| L/p | andf(L) < E[L/q]e, it is the case that
i=1

L m
o Z[HLOJ J)C +le{a we B
< j:l[1+p£j)0j +§1[;Lj+1)ej -L

n C. m e m
<yGrly tely—t+se-L

=1 IEYY i=1q =1
<(U, -1+ zej +§q
=1 =1
<h(L)

Thush(L) boundsg(L) from above.h(L) is a linear function i with slopeU(t)-1 and
anL-intercept at the point

n

ELRD AL
1-y

T

L:BI:

69

SinceW¥, <1, h(L) has negative slope and thus &IrL > B, g(L)<h(L)<0. Hence if
(3.11) holds for alL < B_, then it holds for all.

The sefP is the intersection of the sBtand the set adill L <B.. Thus, if equation (3.11)

holds L, L OP, then it holds forall L greater than oequal to 0. Thigproves the
theorem. 0O

3.7 Summary

In this chapter, | have defined an abstract model of real-time systemsithgiermentable
usingthe programming model of YARTOSFor this alstract model, | have developed a
practical feasibility test thatcan be used to shothat, when scheduled according to a
variant of the Earliest-Deadline First scheduling discipline, applictagks in a YARTOS
application always execute to completion prior tdeadline and that accessrgsources
by tasks isnutually exclusive. Irthe next chapter, | W apply thesefeasibility conditions
to a specification of the workstation-based videoconferencing application.

70

Chapter IV
Feasibility Analysis of the Acquisition-Side

4.1 Introduction

In Chapter 3, | derived teasibility test for an abstrachodel of real-time systenthat
matched the programming model of YARTOS. In tthepter, | us¢his feasibility test to

show that theapplicationtaskscomprisingthe acquisition-side othe workstation-based
video conferencing application described in Chapter 2 always execute to completion prior
to their deadlines and thé#tte tasks that share resources adhere to the requutechl
exclusion constraints. I8&hapter 5, the properties showrtlims chapter vil be included

as axioms in an axiomatic specificationtioé application from which | derivéhe fact that

the delays experienced by video frames on the acquisition-side are bounded.

As described in Chapter 2, the videmnferencing application consists aéet of interrupt
handlers, aset of applicationtasks, and a@et of resources that execute top of the
YARTOS kernel. To use theasibility test, Imust represent these as a tag&temt as
defined inSection 3.2.This requires that | provide valués each of the parametetisat
characterize interrupt handlers and tasks in the formal model:

+ the maximum execution cost of each interrupt handler and application task.
+ the minimum interarrival time for each interrupt handler and application task.
+ the relative deadline of each application task.

+ the set of resources used by each application task.

In this chapter,emphasis is placed on determinimgnimum interarrival timesfor each
interrupthandler and applicatiotask. In Section 4.2, begin with a discussion of the
hardware interrupts generated during execution and the difficulties involved in determining
the minimum separation between occurrences of each interrupt and thusirtiimeum
interarrival time ofthe interrupthandlers. In Section 4.3, | develogoamal method that
addresses thesi#ficulties. InSection 4.4, | discugbe techniques used tietermine the

minimum interarrival time of application tasks. Finally, in Section 4dytlit all together,
present the description of tla@plication in terms ofhe formal model, ancgresent the
results of the feasibility test.

In theformal modelpresented in Chapter 8me isdiscrete. Thus, an atomigne unit
must be chosen tgpecifythe executiortosts,minimuminterarrival timesgetc.,needed to
represent thapplication in terms ofhe formal model. Throughout theanalysis in this
chaptertime will be measured iticks. The duration of a tick idefined bythe hardware
timer on the PS/2; there are 1,193,180 ticks per second.

4.2 Modeling Hardware Interrupts

Each interrupthandler inthe application executes in response to a particular hardware
interrupt. Furthermoregvery applicationtask except thenitiate_send task
executes in response to messages sent by an inteangier oranotherapplicationtask

that executeglirectly or indirectly, iresponse to a hardware interrupt. Thusaradysis

of the tasks and interruiandlers inthe application must begin with amnalysis of the
four hardware interrupts listed in Figure 2-1.

The interrupthandlerfor the first of these interrupts, IRQ0.€., the PS/2 timer)fits
directly intothe formal model. Thisnterrupt is raisegberiodically at aate of 18.2imes

per second and is therefore referred to geermodic interrupt Because it is periodic,
successive occurrences tife IRQO interrupt are separated byfiged interval of
approximately 55 ms. Thuthe TIMER interrupthandler has a well-defineshinimum
interarrival time. In general, interruptandlers that execute in response to periodic
interrupts can bencluded in @asksystent as follows: if a handler has an executimst

of e, and the period of the associated periodic interrupt ghen an interruphandler

(e, a) is included irr.

The other hardware interrupts, IRQ9, IRQ10e.(the two interrupts from the
ActionMediaadapter) and IRQ15.¢., the interrupfrom the network adapter) do not fit
directly into the formal model. One reason is that each of these interrupts can be raised by
the hardware in response to an operatiotiated by an applicatiotask. Consider the

IRQ10 interrupt that is raised by thactionMedia adapter immediately after an
audio_acquire operation is executed by theudio task (see Section 2.5.10).
Because this interrupt is generated in response to an operation executegpplication

task, it is referred to asraquest-responsaterrupt.

72

The reason that request-response interrupts do not fit directly infiartted model ighat
the minimum time between successiweterrupts can be quitemall. Even though the
audio task is invoked periodically, thtene at whichthe audio_acquire operation is
executed by thaudio task depends on where in tiderval between its invocation and
its deadlineghe task executes. tifvo successive invocations tfe audio task execute,
the first completing near its deadline, atlde second startingnmediately after it is
invoked, thelength of the minimum interval betweenthe two audio_acquire
operations (and thus between tia® IRQ10 interrupts) can beearlyzero. Figure 4-1
illustrates this. In the figure, theudio task isinvoked at times, stp, s+2p, etc., and
the gray boxes indicate the time at which the invocations execute. The arrows indicate the
times at which the IRQ10 interrupts occur.

Interarrival
Time
~—
e o - b |
Task
S s+p s+2p s+3p s+4p

Figure 4-1: Successive Executions of the Audio Task

As a result, the DVI2 interrugtandlercannot bancluded inthe formal model using its
true minimum interarrival timeAnalysisbased on a nearerominimuminterarrival time

would conclude that the processor could speedrly all ofits time executing the
interrupt handler. Suchnalysiswould be extremelpessimistic inthat, overtime, the

fraction of processotime spent executing thhandler vill be equal to thecost of the

handler divided by the period of thedio task.

However, | canmake use of a sipte observation inorder to incorporate interrupt
handlers that execute in responseréquest-response interrupts into fbemal model.
Consider four successive invocations ofdlielio task. In the worst case, tead of the
first invocation andhe start of thehird invocation are separated by at least the period of
the audio task. This is illustrated in Figure 4-2. THBVI2 interrupt handler can be
modeled as a pair of interrupt handlers, one represeatidgiumbered invocations of
DVI2, and theother representing even numbered invocations. In general, if we can
determine a lower bound athe time betweenthe i and thei+nt request-response
interrupt, then interrugtandlers that execute in responséh® interrupt can becluded

in a task system as follows: if a handler has an executmmst ofe, and the lower bound

on the time between the and tha+n® interrupt isc (i.e, t.,, —t = c for some constart

1+n

73

wheret is thetime at whichthe i*" interrupt occurs), then identicalinterrupthandlers
(e,c) are included irt. A method for determining such bounds is given in the next section.

Interarrival
Time

"
e | bl = = |

S s+p s+2p s+3p s+4p

Figure 4-2: Interval Between Odd/Even Pairs of Audio Tasks

Another reasomvhy some hardware interrupts dot fit directly into the formal model is
illustrated by the IRQ9 and IRQ15 interrupts. These interrupts are each raisedeia
reasons. Such interrupts are referred t@\asloaded interrupts Consider the IRQ9
interrupt. This interrupt is raised by tAetionMedia hardware fowo reasons: tsignal
the start of avertical blanking intervali(e., the VBIlogical interrupt) and to signal that a
compression operation has completee.,(the CClogical interrupt). Because these two
eventsmay occur simultaneouslythe length ofthe minimum interval between successive
occurrences of the IRQ9 interrupt can riEarly zero. Thus, asvith request-response
interrupts, an interrugtandlerfor an overloaded interrupt cannot ineluded directly in
the formal model using its truainimuminterarrival time. Rather, an interrugtandler for
each logicalinterrupt can bencluded inthe model. In general, interrupandlersthat
execute in response to overloaded interrupténaheded in atasksystenm as follows: if
the handler has an executi@ost ofe, and theminimum interarrival times othe logical
interrupts area,,a,, ..., a,, thenn interrupthandlers ¢, a)), (e, a,), ..., € a,) areincluded
inT.

4.3 Reasoning about Request-Response Interrupts

In the previous section, | described request-response interrupts and illustrated the
difficulty that would arise if such interrupts weirecluded directly in a formal model of an
application. 1 also described a method based on the determination of a lower bound on the
time between the occurrences of thand tha+n® interrupt that could be used itlude

such interrupthandlers in atask system. In this section, | develop a technique for
determining this lower bound.

| begin with a formal definition of a request-response interrupt.T bet a task thahakes
requests to a hardwadevice to perform aoperation. The hardwamespondsto the

74

request by generating an interrdptvhen the requested operation is completé.is
referred to as a request-response interrupt. The task#kasthe request is referred to
as making aequest for I The time requiredor the hardwarelevice to complete the
operation is referred to as thesponse timef|. Let

p be the minimum interarrival time 4t

d be the relative deadline &t

a be a lower bound on the response timé of
W be an upper bound on the response time of
re be the time at which the¢" request fof occurs.
t, be the time at which thi¢" instance of occurs.

Sincel is raised in response to each requeatle byT, thek® occurrence of interrugt
occurs in response to tkeé request made by. If requests are processsehuentially and
in order (.e., servicing ofthe k+1st request islelayed untilthe k" requestfinishes), then
the earliest thé™ interrupt canoccur isa time unitsafter the later of: théme the kh
request occurred or theme the k-1t request completesThis property is expressed by
equation (4.1).

r+a ifk=1 41
> .
b2 max(r, +o f,, +a) ifk>1 (4.1)

Similarly, the latest thé®" interrupt caroccur isw time unitsafter the later of theme the
kth request occurred or thene the previous request1st completes. Thigroperty is
expressed by equation (4.2).

rn+w ifk=1
L S (4.2)

max(r, +wt,, +w) ifk>1
As shown in the next theorem, equatigasl) and(4.2) can be used to derivesample

lower bound on théime betweeroccurrences of theé" and thei+n" request-response
interrupt.

75

Theorem 4.1: Let| be a request-response interrupt that occurs in response to requests
made by invocations of an applicatiask T. Assume that each invocation bimakes at
most one request. Then for ia# 0 and for alh > 0

t,,—t=na (4.3)

Proof: By induction om.

Basis: Assume that=1. By equation (4.1)

ti+1 2 max(ri+1+a Ii +G)
>t +a

sot,, -t =a. Thus, equation (4.3) holds for=1.

Induction step: Assume equatiorf4.3) holds for n=k. By equation (4.1)and the
inductive hypothesis

i 62 max(ri+k+1+a L +G)_ti
2t ~t+a
>ka +a
>(k+1)a

Thus, equation (4.3) holds far= k+1. This proves the theorem. O

In practice, the boundiven byTheorem 4.1 isiot alwaysuseful because is quitesmall

for manyrequest-response interrupts. However, therediffiaulty in obtaining alarger

bound. If themaximumresponsdime of | is greater than thenaximumrate atwhich
requests areade {.e., if w> p), then it is possibléor an unboundedumber ofrequests

to be queued awaiting service. In this case, the lower bound determined in Theorem 4.1 is
a true lower bound. If the low&oundgiven byTheorem 4.1 is to be improved, one of

two constraints must be imposed: either the maximum response time must be less than the
period of the task thanakesthe requestsi.e., w< p), or thenumber of outstanding
requests must be bounded. Thesk ve referred to aounded-time interruptsind
bounded-request interruptsspectively.

The next theorem improvéise boundgiven inTheorem 4.1 for bounded-time interrupts.
Before proving the theorem however, | prowveo lemmas. Lemma 4.8hows that

76

bounded-time request-response interruptagdwccurwithin d + w ticks of the request.
Lemma 4.3usesLemma 4.2 to derive bbwer bound on thénterval betweenequest-
response interruptgrinally, Theorem 4.4 combindbe boundyiven inTheorem 4.1 with
the bound given in Lemma 4.3.

Lemma 4.2: Letl be a bounded-time interrupt that occurs in response to regquasées
by invocations of an applicatidaskT. Assume that each invocation©imakes at most
one request. Leg be the time atvhichthe invocation ofl that makeshei® request fol
occurs. Then for ail> 0

tiS$+d+00 (44)

Proof: By induction on.

Basis: Assume =1. The firstrequest ismade at time, by an invocation off that
occurred attime s,. Sincethe request must occur before tbeadline ofthe task
invocation, r, <s, +d. By equation (4.2)t, <r,+w. Thus,t;<s+d+w. Thus,
equation (4.4) holds far=1.

Induction step:Assume equatio(4.4) holds fori =k. Thek+1strequest foll is made by
an invocation ofl that occurred @imes,,, sor,,, <s,,, +d. Because each invocation of

T makes at mosine request, thi" request fol must have been made by an invocation
of T occurring prior tos,,,. Becausd is sporadic, this invocation must havecurred at

or befores,, — p. Thus,s, <s,,— p Because is a bounded-time interrupghy< p. By
the inductive hypothesis
t <s +d+w

S(SK'HI__ p)+ d+w
S§,— Pptd+p
S§.,t+d

and thus by equation (4.2),

tk+1 < max(rk+1+wlk +0L))
<max(s,, + d+®,§,,+ t+w)
S§, tdtw

Thus, equation (4.4) holds fork +1. This proves the theorem. a

77

The next lemma uses Lemma 4.2 to derive a lower bourideonterval betweemequest-
response interrupts.

Lemma 4.3: Letl be a bounded-time interrupt that occurs in response to regquagés
by invocations of an applicatidaskT. Assume that each invocation©imakes at most
one request. Then for al> 0 and for alh >0

t,, —t=np-d-(w-a)

Proof: Assume thathe it request foll is made by an invocation af that occurs as.
By Lemma 4.2, t, <5 +d+9d,,. Becausel is sporadic, forall n>0, s,, =25+ np
Thus, by equation (4.1),

ti+n 2 max(rim +a Ii+n—1 +G)

2ri+n +a
2§, td
25 +npta
Thus,
ti+n _ti 2(5 + np+0()—($+ d+00)
>np-d-(w-a)
This proves the lemma. a

Theorem 4.4 combingbe boundgiven inTheorem 4.1 with the bourglven in Lemma
4.3.

Theorem 4.4: Letl be a bounded-time interrupt that occurs in response to reaoades
by invocations of an applicatidaskT. Assume that each invocation ©imakes at most
one request. Then for al> 0 and for alh > 0

t. —t >maxnp-d-(w-a),m)
Proof: The proof is a combination of Theorem 4.1 and Lemma 4.3. By Theorem 4.1,
t,,—t >na

By Lemma 4.3,

78

t,, —t=np-d-(w-a)
Thust, -t =maxnp-d-(w-a),m). O

The next theorem improvethe boundgiven in Theorem 4.1 for bounded-request
interrupts. Let b be an upper bound on thmumber of outstandingequests for an
interrupt! where atany given timethe number of outstandingequests islefined as the
difference betweernthe number ofrequests thahave been made arttie number of
interrupts that have beegenerated. If theaumber of outstandingequests forl is
bounded by, then for alli, r,, >t,.

Before proving the theorem, | provelemma. This lemmahows that thanterval
between bounded-request interrupts is bounded. TheorecomlEineshe lower bound
given in Theorem 4.1 with the lower bound given in Lemma 4.5.

Lemma 4.5: Let| be a bounded-request interrupt that occurs in response to requests
made by invocations of an applicatitaskT. Letb be the upper bound on thamber of
outstanding requests for Assume that each invocation Dimakes at mosine request.

Then for alli > 0 and for alim> 0

t —-t,2mp- d+a

i+b+m

Proof: Letk=i+b+ m and assume th#te k" request foll is made by an invocation of
T that occurred aime s. Becausd is sporadic, foall m>0, s,,, = S,,., *(m-1) p
Thus by equation (4.1)

ti+b+m 2 max(ri+b+m+a Ii+b+m-l+a)
=T +a

i+b+m

2 S+b+m +a

2S+b+1+(m_1) pta (45)

Also, becausd is sporadics,, < S,,., — P Since bythe definition of abounded-request
interruptr,, >t

tisri+b
<SS, td

= Sipsr ~ PT d (46)

79

Combining equations (4.5) and (4.6)

ti+b+m _ti 2(S|+b+1+(m_1) p-i_a)_($+b+1_ pl_ d
>mp- d+a

This proves the lemma. a

Theorem 4.6: Letl be a bounded-request interrupt that occurs in response to requests
made by invocations of an applicatitaskT. Letb be the upper bound on thamber of
outstanding requests for Assume that each invocation Dimakes at mosine request.

Then for alli > 0 and for alh> b

ti+n _ti 2 maX((n— b) p_ d+a ,m)

Proof: By Theorem 4.1,

Substitutingn—b for min Lemma 4.5,
L2 (n_ b) pP= d+a

Thust, -t =max(n-b)p- d+a,m). O

4.4 Determining the Minimum Interarrival Time of Application Tasks

Previously in thischapter, Ihave discussethe problem of determininghe minimum
interarrival time of eacinterrupthandler inthe application. Irthis section, | discuss the
problem of determininghe minimum interarrival time of each othe applicationtasks.
There are threelasses of applicatiotasks: thosenvoked by interrupt handlers, those
invoked by other application tasks, and thosenvoked by the YARTOSperiodic
invocation mechanismThe problem of determininginimum interarrival timesfor each
of these classes is discussed below.

4.4.1 Application Tasks Invoked by Interrupt Handlers

Consider an applicatiotask that isnvoked by a message sent frontogical interrupt
handler. As described in Chapter 2, tingt activity performed by amterrupthandler is

80

to determine the currefime; this time definethelogical time at which messagase sent
from that interrupt handler. Thuhe minimuminterarrival time ofthe applicationtask is
determined by thaminimum interval betweenthe time measurements by successive
executions of thégical interrupt handler. Figure 4-3 illustrates the situation teéines
the minimuminterarrival time ofthe applicationtask. Inthis figure,the dark graypboxes
represent the execution of the interrupt handlerligine gray boxrepresents an interrupt
handler that is delayea.g, by executions of higher priorityiterrupts), and the arrows
indicate thelogical arrival time of a messagent to the task. Thus, theo logical
interrupts are separated by th@imuminterarrival time ofthe interrupt, execution of the
first interrupthandler is delayede(g, by executions of higher prioritynterrupts), and
execution of the second interrupt handler occurs immediately.

Minimum Interarrival Time
of Application Task Invocations
——

— T\ \T |
[« J
-~
Minimum Interarrival Time
of the Interrupt

Figure 4-3: Minimum Interarrival Time of Application Task Invocations

Thus, to determinthe minimuminterarrival time of an applicatioiask that isnvoked by
a message from a logicakterrupt handler, it is necessarykoow themaximumtime for

which aninterrupthandler can be delayed before it completes execukon.an interrupt
handlerl, this time wvill be denotedE,. Thus, ifl is an interruptiandler with aminimum

interarrival time ofa that sends a message to an applicatak, that task iV have a
minimum interarrival time o - E,.

The problem of determininghe maximumtime for which aninterrupt handler can be
delayed before it completes executiosimilar to that of determining ampper bound on
the completiontime of task invocations in aset of sporadic tasks that execuwtéh
arbitrary fixed priorities. In [12], HarbourKlein, and Lehoczky discushe problem of
determining this boundor sets of periodic tasks with arbitrafijxed priorities$.

6The authors actuallgiscuss a more general problem, in which a task consists of phases, each of which
can have a differeriixed priority and an individual deadlineFor my purposes herephly require tasks

with a single phase. Thus, | am simplifying the results presented by the authors by coneidetimg

special case.

81

Fortunately, theianalysis ofthe completiortime of taskinvocations doesot depend on
the periodicity of tasks. Thus, we can apply their analysis framewaork in our problem.

To use this framework, we must determine several vdbresach interrupt handler. For
an interrupt handldr, let

MP, be the set of interrupt handlers with priority greater than thiat of
B, be the “blocking term”

The MP term is used to determirtbe amount oftime the execution of an interrupt
handler can be delayed by the execution of higher-priority interrupt handlers. These delays
includeboth thedelayadded by the interrupt controller trdelays delivery of an interrupt

until all higher-priority interrupts have been serviced, dathysadded when execution of

the interrupt handler is preempted by a higher-priority interrupt handler.

The blocking term is a value theaptures thenaximumtime thatthe start of an interrupt
handler can be delayddr reasons other than tlexecution of higher priority interrupt
handlers. As described in Chapter 2, several thotigsr tharhigher-priority handlers can
delaythe start of an interrugtandler. First, the YARTOSernel uses a CPtlag to
disable allinterrupts. Alogical interrupthandler can be delayddr another reason: it
cannotbegin executing untiany outstandinglogical interrupts overloaded on tleame
interrupt are serviced

The maximum delayincurred by an interrupbhandlerdue todisabledinterrupts occurs
when interruptaredisabledonetime unit beforeghe interrupt occurs and remaiisabled
for themaximumpossible time. Thenaximum delayncurred due to the execution of an
overloaded interruphandleroccurswhenthe overloadedhandler begins execution one
time unit before the interrupt and executes for a time equal to its maximum exeostion
However, an interrupbandler can be delayed either becatlseinterrupt occurs knle
interrupts aralisabled, or becaugke interrupt occura/hile another overloaded interrupt
is being serviced. Itannot bedelayed byboth. Thus, if thefollowing terms represent
these values:

"There is an additional reason an interrupt hanaiay be delayed, namethat anapplication can use
the interrupt controller to mask individual interruptélowever,this mechanism is natsed on the
acquisition-side, so | do not consider it here.

82

kernel the maximum time interrupts are continuously disabled
overload the maximum cost of interrupt handlers overloaded on the same interrupt

then the blocking term is given by

B, = max(kernel-1,overload - 1,0)

With the blocking term defined, | can determittee upper bound on tteme required to
complete execution of the interrupandler usinghe Harbour, et al., results. For an
interrupt handlet with execution cosg, this is given by

£ :min[t>0((a + 3 Tyaler %: ﬂ

The upper bound odelay given byequation (4.7)can now be used tdetermine the
minimum interarrival time of an applicatiotask that isinvoked by a message from a
logical interrupt handler. If is an interrupthandler with aminimuminterarrival time ofa

that sends a message to an application task, then that task can be included in a task system
T with a minimum interarrival time ci— E, .

4.7)

4.4.2 Application Tasks Invoked by Other Tasks

Next, | address thproblem of determininghe minimuminterarrival time of a&ask that is
invoked by a message sent framotherapplicationtask. An observatiomade byJeffay
in [23] is helpful in simplifyingthis problem. Consider task invocation, called the
receiver that is invoked by a message sent to it faomther tasknvocation, called the
sender If it is notpossiblefor the receiver to preempt the sender, theridbieal arrival
time of the receiver can bget to theogical arrival time ofthe sender.This isthe rule
used to determine logical arrival times (and thus deadlines) in YARTOS.

Thus, in theanalysisperformed in thischapter, theminimum interarrival time of a
receivingtask {.e., a lower bound on thiength oftheinterval between successilagical
arrival times ofthe task) isdefined bythe minimum interarrival time ofthe sendingtask.
Assumethe sendingtaskhas aminimuminterarrival time ofp. If the sendingtasksends a
message to the receiving task each time it executes, then the receiving taskchulée
in a tasksystemt with a minimum interarrival time ofp. More generally, ifthe sending

83

task sends a message eva@ryime it executes, then the receiving task can be included in a
task system with a minimum interarrival time afp.

4.4.3 YARTOS Periodic Invocations

Next, | address thproblem of determininghe minimuminterarrival time of g&ask that is
invoked by messages sedirectly from YARTOS. As described in Chapter 2, an
applicationtask declaratiomanspecify thatY ARTOS shouldperiodically send messages
directly to the task €.g, the initiate_send task described in Sectior2.5.8).
Abstractly, these messaga® generatederiodically. In practicéhowever, thanessages
are only approximately periodic.

Consider an applicatioiask T that is to be periodically invoked MARTOS with period

p. Assume thathe first message generated by YARTOS is sent tat timet. In this
case, the YARTOS will attempt to generate a messageatosoon apossibleaftertimes
t+kp for k=1. If the processor is idle.€., there are no tasks or interrutndlers ready

for execution), the YARTOSernel continuously checks to see if a new message should
be generated; if so a message is sent t@therwise, each time anterrupthandler or
application task completes execution, the YARTK@8hel checks to see if a new message
should be generated.

Thus, theminimuminterval between successive invocationd efill be somewhatmaller
than the period, depending orthe maximumtime that can elapse betweére time
YARTOS should have generated a message thadime it actuallydoes generate a
message. However, if each invocationTag assigned a logical arrival time equal to the
time at which it should have receivédte message, then tirgerval betweerthe logical
arrival times of successive invocationslofill be exactly equal tp.

Assume that YARTOS should hagent a message totask T at timet, but isunable to
send themessage until timé¢’ due to the fact that processor wagt idle and no
applicationtask or interrupthandler completed execution the interval |t, t']. If it is
assumed thathe scheduling disciplinewould not have chosen t@xecute the task
invocation anywhere itheinterval [t, t'], then thedelay in actually sendinthe message
will have no effect orthe execution of theystem. Thus, if this assumption can be
enforced, then the taskvocation can be assigned a logical arrival timet efithout
affecting the feasibility of theasksystem. One method for enforcing this assumption is to
ensure that thapplicationtask shares amdividual resource with eactask in the task

84

system. As a result, undéme YARTOS scheduling discipline, it can nevereempt
another application task, thus ensuring that it would not have executed]in [

Thus, if an applicatiotask thateceives messages periodically frdfARTOS at a period
p shares a resource with eaetsk in a tasksystemt , then theapplicationtask can be
included int with aminimuminterarrival time ofp. This isthe approach thatilvbe used
to includethe initiate_send task in theanalysisperformed in theemainder of the
chapter.

4.5 Feasibility of the Application

In Chapter 2, Figure 2-20 illustrated the software architecture of the eaiderencing
application, showinghe various hardware interrupts, interrapndlers, applicatiotasks,
and resources as well as the resource usage otaskchnd thenessage passing channels
between interrupbandlers andasks(or between tasks and taskdfigure 4-4 illustrates
an alternative view othe architecturef the application. It showsgical interrupts and
message channels, as welldevice requestthat indicate that a task dandler executes
an operation that leads to a request-resporiserupt. Logical interruptsarelabeled by
either a periodjndicating thatthe logical interrupt is generategeriodically, or by a
response timandicating thatthe logical interrupt is a request-response interrupt with the
indicated constraints on its resportgee (e.g, the CC logical interrupt is a request-
response interrupt with a lower bound on respdinse of 22 ms., and ampper bound on
responsetime of 28 ms.). Some message passithgnnelsare labeled with arate,
indicating that messag@se sent along thathannel lout of everyN timesthe sender is
executed; a channel without an indicated rate is assumed to have a rate of 1/1.

In the remainder of this section, | ugbke principles laidout earlier inthe chapter to
determine executiortosts and minimum interarrival timesfor each of the interrupt
handlers and application tasks in the system. From these vabwestiuct a taskystem

T as defined in Section 3.2. | then illustrate the resulépplyingthe feasibility testgiven
by Theorem 3.5to the resulting task system.

85

Video
Hardware

DVI
(VBI)

Periodic: 60 per sec.

|
Compressio
Hardware

Response: 22 - 28 ms.

DVI
(CC)

==

Hardware Device

|:| Interrupt Handler
O Application Task
—p Interrupt
——» Message

- - - » Device Request

|
Audio
Hardware

Response: < 1.0 ms.

DVI2

PS/2 Timer

Timer

Rate: 1/9

Rate: 1/4

Screen
Output

YARTOS

Periodic: 30 per seg.

Network
Hardware

Response: < 1.0 ms.

Network
(misc)

v
Network
Hardware

or

l Response: <1.0 m

Network
(transfer)

Packet
Transfer

I
Periodic: 18.2 per sec. v

Network
Hardware

l Response: > 1.0 mg

Network
(TC)

Transmit
Complete

Figure 4-4: An Alternative View of the Acquisition-Side Architecture

86

4.5.1 Estimating Execution Costs

| begin by estimating aopper bound on executidime for each interruptandler and
applicationtask in thesystem. In general, obtaining a reasonaipiper bound on these
costs is avery difficult problem. One approach used by Park and Shaw [39] used a
modified compiler to instrumertasks in order t@rovide data for an analytic approach
defined by Shaw in [48]Such efforts arbeyondthe scope of the dissertation. However,
the set of tasksnd interrupthandlers inthe videoconferencing applicatiomare quite
simple. Whenthe application is executinghormally (.e., successfully acquiring and
transmitting every frame)nost tasks execute fxed sequence of instructions.€., to
move buffers between shargdeues and to control hardware operations). Furthermore,
this sequence of instructions is the longest path through the task.

Task or Handler Type Execution Cost (ticks) Average Cost

(ticks)

DVI Handler 398 278

DVI2 Handler 218 177
TIMER Handler 303 235
NETWORK Handler 464 296

VBI Task 472 364

VBIO Task 1213 720

VBI1 Task 904 820
Audio Task 1102 1010

CC Task 603 464
Transmit Complete Task 279 210

Packet Transfer Task 10262 9614

Initiate Send Task 1004 918
User Tick Task 212 126
Keyboard Check Task 800 634
Screen Output Task 206 189

Figure 4-5: Execution Costs (1193 ticks per ms.)

Thus, for each of thapplicationtasks and interruphandlers inthe application, it is
reasonable to usempirical measurements die performance of thepplication under
normal conditions to obtain an estimate of an upper bound on exetnt@nTosupport
measurement of executia@osts, the YARTOXernel has been instrumented record

87

execution time statistics. For eachtask and interruptandler, YARTOSrecords a
histogram of execution times along witihe minimum, maximumand average execution
times. To obtairthe upper bounds on executioostused here, | ran theonferencing
application for 10minutes {.e., processing 36000 auditames andl8000 videdrames)
and chose thmaximumrecorded executiotime for eachtask and interruptandler. The
resulting estimates of executionst are presented kgure 4-5. For comparison, | also
provide the average executionst foreachtask and interruphandler; inmost cases the
average and the maximum cost are quite similar.

In the execution of theonferencing application, | also determineeb other values.
First, | determined an upper bound on lgmgth of an interval in whicthe processor can
execute continuously with interruptissabled; duringhe run, the longeshterval during
which the processor executed continuously with interrupts disabled was 160.8ckbe
value ofkernelused in calculating block termslivbe 160). | alsodetermined the actual
processorutilization of the system, defined athe fraction of thetime during which
interrupt handlers and applicatiotasks were executed; theesulting utilization
measurement was approximately 47%.

4.5.2 Estimating Minimum Interarrival Times

The next step in thdevelopment of thédormal model is touse theprinciples laid out
earlier inthe chapter tadetermineminimum interarrival timesfor each of thelogical
interrupthandlers and applicatiaasks in thesystem. Becauste minimum interarrival
times oftasks andchandlers often depend d@hoseassigned tmther tasks ohandlers, |
proceed by traversing the graglven in Figure 4-4 inopologicalorder beginning with
the high-priority periodic interrupts (see Section 2.3for each hardware interrupt, |
determine thenaximumtime required to complete executiontbé interrupt handler. For
eachtask andogical interrupthandler inthe graph, Idetermine itaminimum interarrival
time. Foreach request-response interrupt in the grapletérminethe number of copies
of the interrupthandler that must be includedtime formal model. Mte that throughout
this discussion, time Wwbe measured in ticks (recall thétere are 1,193,180 ticks per
second).

« TIMER . IRQO is a periodic interrupt raiseyery 65,536 ticks. Thus,
the minimum interarrival time of thEIMER interrupt handler is

aryen = 65, 536

88

IRQO is the highest priority interrupt and is not overloaded. Thus

Brwer = kernel-1=159
MPTlMER =0

Therefore, themaximum time required to complete execution of the
interrupt hander is given by equation (4.7)
ETIMER = mln(t > O| BFIMER + q’IMER = t)
=min(t > 0159+ 303=t)
=462

user_tick. Thistask isinvoked by messages frothe TIMER interrupt
handler. Thus, its minimum interarrival time is

Puser_iick = Briver ~ Ermer =65, 074

keyboard_check This task is invoked every 9 execution of the
user_tick task. Thus, its minimum interarrival time is

pkeyboard _check: 9 p user_tick: 585 666

screen_output This task is invoked every # execution of the
keyboard_check task. Thus, its minimum interarrival time is

4 p keyboard _checf 2’ 342 664

pscreen _output™

DVI/VBI . The VBllogical interrupt is a periodic interrupt raised by the
ActionMedia hardware everd,886time units(60 timesper sec.). Thus,
the minimum interarrival time of the logical interrupt handler is

Boyve = 19,886

The VBI logical interrupt corresponds to the IRQ9 hardware interrupt,
which is anoverloaded hardware interrupt raised in response to both VBI
logical interrupts and Cdogical interrupts. IRQ9 is lower priority than
IRQO. Thus

overload, s = B, =398
Boviver = max(kernel—1,over|oag\,,,\,3I —1) = 397
MPyive ={TIMER}

89

Therefore, themaximum time required to complete execution of the
interrupt hander is given by equation (4.7)

. t
EDVI/VBI =min [t >0 Eé)vuvm +|7——‘eTIMER + &v = t)

TIMER

= min| t >0{397+| —_"
65,53

6—‘3O3+ 398= t)

=1,098

« VBI. This task isinvoked by messages froithe DVI/VBI logical
interrupt handler. Thus, its minimum interarrival time is

Pvar = &viver ~ Buve =18 788

« VBIO. This task is invoked everyd®xecution of th&Bl task. Thus, its
minimum interarrival time is

Pusio = 2Py = 37,576

« DVI/CC. The CClogical interrupt is a bounded-time request-response
interrupt requested by the VBIO task. Lowaerd upper bounds on the
responsetiime of requests for CC interrupts weggven in Figure 4-4.
Converted to ticks, these bounds are:

Occ =26,250

W =33 408
Theorem 4.4 can now be used to deterrtir@eninimuminterarrival time.
For all n>1, this theorendefines alower bound on thdength of the
interval betweenhe it andi+nt occurrences of the interrupt. Choosmg
to be the smllest possible valudor which the resulting minimum

interarrival time is reasonable, in this casel, theminimuminterarrival
time of the interrupt handler is

Qoviice = Pugio ~ C1/B|0 _(wcc _acc) =12,520

By definition, eacloverloaded interrupbtandler hashe same completion
time, so

Eovirce = Epviver =1,098

90

CC. This task isinvoked by messages frotie DVI/CC interrupt
handler. Thus, its minimum interarrival time is

Pec = @viice ~ Epwviree =11 422

VBI1. This task is invoked everydxecution of th&/Bl task. Thus, its
minimum interarrival time is

Pven = 2R = 37,576

audio. This task is invoked by théBI task every time it executes. Thus,
its minimum interarrival time is given by

Paudio = Pve =18, 788

DVI2. The DVI2 interrupt is a bounded-time request-response interrupt
requested by thaudio task. Lowerand upper bounds on the response
time of requests for DVI2 interrupts were given in Figure 4-4:

Oy, =0

Wpy2 ::L193
Again, choosing tha in Theorem 4.4 to be the smallesssible value for

which the resulting minimum interarrival time is reasonable, in this case
n =2, the minimum interarrival time of the interrupt handler is

Aoviz = 2 Paudio ~ daudio_(w pviz ~ & DVI2) =18 485

Because thisninimum interarrival time is based otthe choice ofn=2,
two copies of the DVI2 interruphandlerare included inthe formal
model. As a result, DVI2 is an overloaded interruyt,(each of the two
copies is overloaded with thether). Becausehis interrupthandler
executes in response to the IRQ10 hardware interrugtast lower
priority than TIMER, DVI/VBI and DVI/CC. Thus
overload,,, = §,,, =218
B,.., = max kernel-1,overload,,, —-1) = 217

MP,,,, = {Timer, DVI/VBI, DVI/CC}

Therefore, the completion time is given by

91

EDVI2

) t t t
=min| t>0 + +| — + +g,, =t
[vz |7aTIMER —‘enMER |7a'DVI/VBI —‘eDVI |7a'DVI/CC —‘eDVI Ve)

—min| t>0217+| — ' [303+| — ' |398+| ' |398+ 218=t
65,536 19,886 12,520

=1,534

initiate_send This task isinvoked periodically byYARTOS with a
period of 39,773 ticks.This task shares a resouragh each application
task, so its minimum interarrival time is simply

=39, 773

pinitiate _send

NETWORK/MISC . This logicalinterrupt is a bounded-time request-
response interrupt requested by ihidate_send task. Lower and
upper bounds on the responsee of requests forthis interrupt were
given in Figure 4-4:

Aysc =0

Wyisc = :L193
Again, choosing tha in Theorem 4.4 to be the smallesssible value for

which the resulting minimum interarrival time is reasonable, in this case
n =2, the minimum interarrival time of the interrupt handler is

Anerwork/misc = 2 Phitiate send ™ dinitiate_send_(wMISC -a MISC) =54, 489

Because thisninimum interarrival time is based otte choice ofn=2,
two copies of the NETWORK/MISC interrupandlerareincluded in the
formal model. As aesult, NETWORK/MISC is an overloaded interrupt.
Because this interruphandler executes in response ftioe IRQ15
hardware interrupt, it has lower priority than TIMER, DVI/VBI, DVI/CC,
and DVI2. Thus

overloaderwork msc = Rerwork = 464

Buerworkmisc = max(kernel_1’0Ver|oaqlETWORK/MISC - 1) =463
MP crwork misc ={Timer, DVI/VBI, DVI/CC,DVI2}

Therefore, the completion time is given by

92

t t
BNETWORK/MISC + ’V—-\GTIMER + |V—‘\GDV| +
: AR Aoy el
Exerworkmisc = Min| t>0 t t
{%vucc ‘\eow * 2’7 vz -\eowz ¥ Gierwork =
t t
463+| ——— |303+| ——— [398+
. 65,536 19, 886
=min|t>0
U laggr 4t |o1a+ 464t
12,520 18, 485
=2,462

« NETWORK/XFER . This logicalinterrupt is a bounded-time request-
response interrupt requested by the NETWORK/MISC inteinaptler.
I have not yet addressed the question déterminingthe minimum
interarrival time of such amterrupt. However, because an upper bound
on the completionime of the NETWORK/MISChandler is known, the
minimuminterarrival time otthe NETWORK/XFER interruphandler can
be determined using a technigsieilar to thatused to determine the
minimum interarrival time of atask invoked by an interruphandler in
Section 4.4.1.

The minimum interval between successive NETWORK/XFER interrupts
occurswhen two NETWORK/MISC interrupts are separated their
minimum interarrival timethe first makesthe requesimmediatelybefore

it completes execution, and the secondkesthe requesimmediately.
Lower and upper bounds on the respotisee of requests for the
NETWORK/XFER interrupt were given in Figure 4-4:

Oyeer =0

Wyrer = 1,193

Again, choosing tha in Theorem 4.4 to be the smallesssible value for
which the resulting minimum interarrival time is reasonable, in this case
n =1, the minimum interarrival time of the interrupt handler is

a‘NETWORK/XFER = aNETWORKMISC - ENETWORK/MISC _(wXFER —a XFER) = 50’ 834

Also, sincetwo copies of the NETWORK/MISC interrugtandler are
included inthe formal model,two copies of the NETWORK/XFER
interrupt handler must also be included in the formal model.

By definition, eacloverloaded interrupbandler hashe same completion
time, so

93

ENETWORK/XFER = ENETWORKMISC = 2’ 462

« packet_transfer. This task is invoked by messages from the

NETWORK/XFER interrupt handler. Thus, itgnimuminterarrival time
[S

Ppacket_transter— & NETWORKXFER ~ ENETWORK /XFER = 48 372

Also, sincetwo copies of the NETWORK/XFER interrugtandler are
included inthe formal model,two copies of thepacket_transfer
task must also be included in the formal model.

NETWORK/TC . This logicalinterrupt is a bounded-request request-
response interrupt that isdirectly requested by thenitiate_send

task. Because thimitiate send does notinitiate a newnetwork
transmission untilhe previougransmission completethe task enforces a
bound of one outstanding transmit request. A lower bound on the
response time of requests for this interrupt was given in Figure 4-4. Thus,

b=1
0. =1,193

Because this is a bounded-requieserrupt, Theorem 4.6 can now be
used to determinghe minimum interarrival time. Choosinghe n in the
theorem to be the satflest possible valur which the resultingminimum
interarrival time is reasonable, in this case 3, theminimuminterarrival
time of the interrupt handler is

a‘NETWORK/TC = (3_ b) pinitiate_send_ d initiate_send_ a TC: 56’ 875

Because thisninimum interarrival time is based ottne choice ofn=3,
three copies of the NETWORK/TC interrupandlerare included in the
formal model.

By definition, eacloverloaded interrupbandler hashe same completion
time, so

ENETWORK/TC = ENETWORKMISC = 2’ 462

transmit_complete This task is invoked by messages from the
NETWORKI/TC interrupt handler. Thus, its minimum interarrival time is

Pransmit_complete— & NETWORK/TE E NETWORK/TE 0% 413

94

Also, sincethree copies of the NETWORK/TC interrupendler are
included in the formal model, three copies of the
transmit_complete task must also be included in the formal model.

4.5.3 Using the Feasibility Test

Figure 4-6 summarizebe costandminimuminterarrival timedor eachlogical interrupt
handler inthe system, as well athe number of copies that should be included in the
model, and the upper bound on completion time determined above.

Name Cost Interarrival Copies Completion
Time Time

TIMER 303 65,536 1 462
DVI/VBI 398 19,886 1 1,098
DVI/CC 398 12,520 1 1,098
DVI2 218 18,485 2 1,534
NETWORK/MISC 464 54,489 2 2,462
NETWORK/XFER 464 50,834 2 2,462
NETWORK/TC 464 56,875 3 2,462

Figure 4-6: Summary of Interrupt Handlers (time in ticks)

Figure 4-7 summarizebe costsaandminimuminterarrival timedor each applicatiotask
in the system, as well athe number of copies that should be includedhie model, the

relative deadline othe task,and theminimum deadline amongll the tasks that share a
resource with the task (labeled “minimum deadline”).

Name Cost Interarrival Relative Minimum Copies
Time Deadline Deadline
user tick 212 65,074 39,773 23,864 1
keyboard 800 585,666 39,773 23,864 1
screen output 206 2,342,664 39,773 23,864 1
VBI 472 18,788 17,898 17,898 1
VBIO 1,213 37,576 17,898 9,545 1
CcC 603 11,422 9,545 9,545 1
VBI1 904 37,576 17,898 17,898 1
audio 1,102 18,788 17,898 17,898 1
initiate send 1,004 39,773 23,864 9,545 1
packet transfer 10,262 48,372 39,773 23,864 2
TC 279 54,413 39,773 9,545 3

Figure 4-7: Summary of Application Tasks (time in ticks)

95

The informationgiven in Figures 4-6 and 4-7 caow be used tdefinethe formal model
of the application. Let T be a tasksystem with 12interrupt handlers{l,,...,| ,}, 14
applicationtasks{T,,...,T,,}, and 21 resourcelR,...,R,}. Figures 4-8, 4-9, and 4-10
define each of the interrupt handlers, application tasks, and resources.

Name e a Notes

R 303 65536 TIMER
, 398 19,886 DVI/VBI

464 50,834 NETWORK/XFER (2 copies
0 464 50,834

I 464 56,875 NETWORK/TC (3 copies)

I, 464 56,875

I, 464 56,875

Figure 4-8: Formal Definitions of the Interrupt Handlers

foe]

I

I, 398 12,520 DVI/ICC

l, 218 18,485 DVI2 (2 copies)

I 218 18,485

I 464 54,489 NETWORK/MISC (2 copies
I, 464 54,489

I

I

Name C U d p Notes
T, 212 {R} 39,773 65,074 user tick
T, 800 {R} 39,773 585,666 keyboard check
T, 206 {R} 39,773 2,342,664 screen output
T, 472 {R} 17,898 18,788 VBI
T, 1,213 {R,R,R,R.R, 17,898 37,576 VBIO
T, 603 {R,R.,R.R,} 9,545 11,422 CC
T, 904 {R,RR,J} 17,898 37,576 VBI1
T, 1,102 {R,R,, R} 17,898 18,778 audio
T, 1,004 {R.R,R,R,, 23,864 39,773 initiate send
RS’RG’R7’R8’
Rg’ RlO’ Rn’ RlZ’
R13’ Rw Rzo’ RZl}
T, 10,262 {R} 39,773 48,372 packet transfer (2 copies
T, 10,262 {R 39,773 48,372
T, 279 {R,RuR.,Rg4 39,773 54,413 TC (3 copies)
T 279 {R,,.R.R.R4 39,773 54,413
T, 279 {R,R,R.,R4 39,773 54,413

Figure 4-9: Formal Definitions of the Application Tasks

96

Name Notes
R, -R,; Implicit resources fomitiate_send
R. transmit_queue
Ris next_digitize queue
R compress_source queue
R, pool of free compress buffers
R compress_sink queue
R pool of free audio buffers
R, transmit_audio queue
R, transmit_video queue

Figure 4-10: Formal Definitions of the Resources

Recall Theorem 3.5. The achievable processor utilization is defined as

l.IJT = Zi+ E
1=1 Mi 1=1 a1
Let
— i:lq + izlq
' 1-y

and let P={kp+ d|kp+ d< BO k001l< k pO{0}. Then, if ¥, <1, T wil be

feasible if the following two conditions hold.
1) OLLOP
L-f(L)=) & (L)[e

2) DOid<i<n,0L,D <L<d
L-f(L)zg+3 8 (L-DIg
=1

For this task system, the achievable processor utilization is:

W =0.8023

and the upper bound for which Condition 1 of the feasibility test must be checked is

B, =165 213

97

The result of checkinghe first condition is shown in Figure 4-11This graphs the
function

(D=L~ ()= 35D

for all 0O<L<B. It is the case that Condition 1 holdsly if C(L) is at least O

throughoutthis interval (although it isufficient totest theconditiononly at multiples of
the minimum interarrival times of tasks).

45000 T
40000 +

35000 +

30000 +

C/(L) 25000 +
20000 +

15000 +

10000 +

5000 +

0 20(')00 40(')00 60C')OO 80600 100'000 120'000 140'000 16C;OOO 18C;OOO
L
Figure 4-11: Graph of Condition D€ L <165 213

Condition 2 must bdested foreach applicatiortask in thesystem. However, for a
number oftasks, theelative deadline ofhe task isequal to theminimum deadline of the
set of tasks ishares resources withg, d = D). As a result, for these tasks, the range

of L in Condition 2 is void, and thus the condition hdlilgally. This isthe case for the
VBI, CC VBI1, andaudio tasks. For theemainingtasks, Figures 4-12 through 4-18
graph the function

C(i,L)=L-f(L)-¢ - 33, (L-DF

forall D, <L<d. Itis the case that Condition 2 holigly if C,(i,L) is always greater
than or equal to O in this interval.

98

25000 1

20000 +
. 15000 ¢+
Cy(i, L)
10000 ¢+
5000 +
0 + + + + + + + J
0 5000 10000 15000 20000 25000 30000 35000 40000

L
Figure 4-12: Graph of Condition 2 for VbiO Task (9 54b< , 17)3898

25000 1

20000 }

_ 15000 ¢
C(i.L)

10000 ¢

5000 +

0 ' ' ' ' ' ' ' '
0 5000 10000 15000 20000 25000 30000 35000 40000

L
Figure 4-13: Graph of Condition 2 for Initiate Send Task (968%x , 23 864

25000 1
20000 }

_ 15000 ¢
C(i.L)

10000

5000

0 5(;00 10600 15600 20600 25600 30600 35600 40600
L
Figure 4-14: Graph of Condition 2 for Packet Transfer Task864< L < 39 773

99

25000 T

20000 +

_ 15000 1
C,(i, L)

10000

5000

0 5C;OO 10600 15600 20600 25600 30600 35600 40600
L
Figure 4-15: Graph of Condition 2 for Transmit Complete Task (<348 , 39 773

25000 1
20000 }

_ 15000 ¢
C(i.L)

10000

5000

0 5C;OO 10600 15600 20600 25600 30600 35600 40600
L
Figure 4-16: Graph of Condition 2 for User Tick Task, (23 8&4< , 39 773

25000 1
20000 ¢t
15000
10000

5000

0 5C;OO 10600 15600 20600 25600 30600 35600 40600
L
Figure 4-17: Graph of Condition 2 for Keyboard Check Task864< L < 39 773

100

25000 -

20000 A

_ 15000
C,(i, L)

10000 -

5000 -

0 50'00 10600 15600 20600 25600 30600 35600 40600
L
Figure 4-18: Graph of Condition 2 for Screen Output Task (23864 , 3P 773

Thus, Conditions 1 and 2 hold for thesk systemt and thus the tasgystem is feasible.
From this, | conclude that invocations of #iggplicationtaskscomprisingthe acquisition-
side ofthe application always execute to completion prior to tkle@dlines and that the
tasks that share resources adhere to the required mutual exclusion constraints.

4.6 Summary

In this chapter, lhave developed a formal model of acquisition-sidehef workstation-
based videoconferencing application. The key problem that was addresssdloping

this formal modelvas that of determininthe minimuminterarrival time of each interrupt
handler and applicatiotask. Tosolve this problem, | developedsat oftechniques for
determiningthe minimum interarrival time ofinterrupts and et ofrules fordetermining

the minimuminterarrival time of applicatiotasks that are invoked lngessages sefrom
interrupt handlers. Finally, | appliedthe feasibility test developed in Chapter 3 to the
formal model in order to demonstrate that the application tasks comprising the acquisition-
side ofthe application always execute to completion prior to tlleadlines and that the
tasks that share resources adhere to the required mutual exclusion constraints.

101

Chapter V
Analysis of the Delay Bound

5.1 Introduction

In Chapter 3 | developedfaasibility test for an abstrachodel of real-time systentbat
matched the programming model of YARTOS.Cinapter 4, | used thigest to show that
the application tasks comprisingthe workstation-based videwonferencing application
described in Chapter 2 asexecute to completion prior to theleadlines and that the
tasks that share resources adhere to the requitgdal exclusion constraints. this
chapter, | present aaxiomatic specification ofhe application in whichthese properties
areincluded as axioms. From this specification, | deriiberem showing thatvery
video frame generated by tAetionMedia hardware is acquired and compresseditaatd
the delay experienced by video frames during processinghenacquisition-side is
bounded.

The acquisition-side delayexperienced by a video frame is precisely defined as the
interval betweentwo events: the VBllogical interrupt that occurs at the start of
digitization of the frame andthe time the frame is placed orthe transmit_video

gueue (see Section 2.5.3). ths chapter, | Wl demonstrate that 10@s. {.e., 6 times

the period of the VBIlogical interrupt) is an upper bound on thequisition-side side
delay experienced by each video frame.

Throughout theaxiomatic specification athe application presented in thchapter, | take
advantage of thdeadline and mutual exclusigmoperties that were shown in Chapter 4.
These properties are used be#plicitly andimplicitly. Explicitly, the fact thatach task
invocation completes execution prior todaadline isused to show that each task
invocation executesvithin a well-defined interval. In additiorthe mutual exclusion
property is used to show that several pairs of operations execute in mutual exclusion.

These assumptions are also useglicitly. The fact that tasks that share resources
execute in mutual exclusion ensures thateffect of ataskinvocation can be modeled in

isolation, without interferencéom other tasks. Iraddition, themodel contains few
assumptionsbout the order iwhich taskinvocations execute: thenly assumptions are
that taskinvocations complete prior to thesleadline and thatsks that share resources
execute in mutual exclusion.

It should benoted that thenodel presented in thishapter is notomplete, in the sense
that theaxioms presented daot representll aspects of thdehavior ofthe system.
Rather,only the axioms thatare necessary to shothe desired properties are presented.
As an example, it W be shown that, in most cases, the statenditions used in
conditional statementsilvalways hold wherthe conditional statement executes. Thus,
for most conditional statementxioms Wl be included inthe model thatrepresent the
effect of executinghe body of the conditional statementyhile axiomsrepresenting the
effect of not executing the body of the statement are omitted.

The axiomatic specification dhe application presented in this chapter usefranal
language developed by Jahanian Brak calledRTL (Real-Time Logic) [22]. In Section
5.2, | describehe RTL notation. In Section 5.3 definethe basicconcepts that il be
used to develop an RTL model of the application. In Section 5.4, | deweilpeoperties

of the application that | would like tashow, frame these properties as a correctness
condition, and present the RTL expression represettiisgcondition. In Section 5.5, |
present RTLaxioms thatrepresent aaumber of basigroperties of the application. In
Section 5.6, | present thexioms that formalizéhe descriptions of thapplication tasks
given in Section 2.5.9. Finally, in Section 5.7, | develop the proof of the correctness
condition from the axiomatic specification presented earlier in the chapter.

5.2 Overview of Real-Time Logic

RTL is aformal languageised to reason about occurrences of eventghidrsection, |
present a subset of RTufficient toreason about the events that ocduring execution
of the workstation-based videmnferencing application and specifythe properties of
the application | wish to demonstrate.

RTL is a first-order logic. As suchprmulas of RTL are formed from constants,
variables, functions, predicatasjiversal and existential quantifiers dinmgdt-orderlogical
connectives. There are three types of constants in RTL: integers, actions, and events.
Variables rangeover integer, action and event constants. Functiociside standard
integer arithmetic functions.¢., addition, subtraction, ed¢c and theoccurrence function

103

(explained below). Predicatasclude standard integer comparison predicates., (
equality, less than, etc.).

Action constantsn an RTLspecification of a systemepresent operations, or groups of
operations, that are performed during execution ofs{fsem. For example, an action
constantmight represent the execution of a particumssignmentstatement or the
execution of a subroutine. Actions can also be composite, in the sense that one action
may beperformed apart of another action. In thepecification ofthe applicationgiven

later in the chapter, the set of action constamtkidesconstants representing both the
execution ofprimitive operations €.g, the execution of digitize operation) and the
execution of entire application taslesd, the execution of th&Bl task).

Event constantg RTL can bealivided intothree types: external evenssartevents, and
stopevents. External events model events generated by processes extdraalystem
being specifiedi(e., an interrupt). An external event constant is den@EdvhereE is
the name ofthe external eventStartandstopevents modelhe events corresponding to
theinitiation and completion of actions. gtartevent for an actiod is denotedA and a
stop event for the action is denoted

Time is included iNRTL by means ofthe occurrence function Time isrepresented by
positive integergthroughout thespecification in thichapter.time will be represented in
ticks as defined i€hapter 4). The occurrence function isiapping from an event and a
positive integer to a positive integer representing timae of the it" occurrence of the
event. The occurrence function is denotedE®@.

As an example of aRTL specification, consider system that includes a timer interrupt
generated every 10 ticks, andtask that executes in response to tinger interrupt.
Assumethe task is guaranteed to complethin 6 ticks. Let QTIMER be the event
corresponding to thémer interrupt, and leTASK be the action corresponding to the
execution of the task. ThusTASK and .TASK are the startand stop events
corresponding to the start and completion of the task. tifitez interrupt can benodeled
with the axiom

@QTIMER,i) = 10i

That is, the it timer interruptoccurs attime 10. The execution of the tastan be
modeled with the axiom

104

@(1TASK,) =@(QTIMER))
O0@(: TASK,) < @(QTIMER,) + 6

That is, the it invocation of TASK starts execution sometime at or aftee it timer
interrupt and completes execution within 6 ticks afteitttiamer interrupt.

The above description of the RTL subset thiiithe used in theemainder othe chapter
has leftout several concepts presenttire original definition of RTL given by Jahanian
and Mok in [22]. In full RTL, a fourthkind of eventconstant and anothédnd of
predicate areincluded. Transition eventsand state predicatesare used tomodel
assertions about the state dfygtem during an intervak-or my purposes, these concepts
are not necessary and thus have been omitted.

5.3 Basic Concepts
5.3.1 Symbolic Constants

| beginthe specification with a discussion of sevesgmbolicconstants that M be used
throughout theemainder othe chapter. Thesg/mbolicconstants are listed in Figure 5-
1 and represent several values, sudasisminimuminterarrival times antaskdeadlines,
that werespecified inthe task declaratiorgiven inSection 2.5.9 odetermined in Section
4.5.2.

Name Value Explanation
dvi_delay 1,098 Max. completion time of DVI handler
vbi_period 19,886 Period of VBI logical interrupt

vbi_deadline 17,898 Relative deadline of VBI task

vbi0_deadline 17,898 Relative deadline of VBIO task
vbil deadline 17,898 Relative deadline of VBI1 task

cc_deadline 9,545 Relative deadline of CC task
compress_request 33,409 Max. time to complete compression operatjon
digitize_buffers 3 Max. buffers to hold digitized video frames
compress_buffers 10 Max. buffers to hold compressed frames
max_transport 8 Max. buffers in transport system

Figure 5-1: Symbolic Constants

I choose to represent thesaluessymbolically both to clarify the presentation and to
decouple theanalysispresented here frorthe specific deadlinesetc., chosen in earlier
chapters. However, whatilihoe required here is that certain relationships between the
values of the symbolic constants hold. These are listed in Figure 5-2.

105

digitize_buffers> 3
compress_buffers max_transport 2
compress_request2bi_period
dvi_delay+ vbi_deadline< vbi_period
dvi_delay+ vbiO_deadline< vbi_period
dvi_delay+ vbil_deadline< vbi_period
dvi_delay+ cc_deadline< vbi_period

Figure 5-2: Relationships Among Symbolic Constants
5.3.2 Action Constants

There aresix groups of action constants in the RTihodel of the application: task
actions, subtask actions, message actions, queuing actiemgry managemesictions,
and video frame processing actions. Tiask actions represent the execution of
application tasks. The first four represent the tasks thamaslred inthe acquisition and
compression of video frame&/Bl, VBIO, VBI1, andCC(see Section 2.5). The action
names used to represent these tasks are listed in Figure 5-3.

Task Action

VBI vbi_task

VBIO vbiO_task

VBI1 vbil task

CC cc_task
transmit_complete tdask

Figure 5-3: Task Actions

Subtask actions represent the execution gfaup of statementwithin an application
task. In the RTLmodel ofthe applicationpnly the VBI1 task isassumed to contain
subtasks. This task has two subtasks defined biywh&f” statements (see Figure 2-22).
The action names used to represent these subtasks are listed in Figure 5-3.

Task Subtask 1 Subtask 2
vbil_task vbil partl vbil_part2

Figure 5-3: Subtask Actions

The message actions represéim¢ execution ofsend_message system calls(see
Section 2.4.2). Recall that each time an applicationrexskves a message, an invocation
of the task is created amdsigned a logical arrival tinfeee Section 2.4.5). In timeodel,
both the actualarrival time andthe logical arrival time of each message must be

106

represented. Thus, for easbnd_message call in the applicationtwo actions are
included inthe model: asend action and alogical send action The send action
represents the actual execution of eed_message call. Thelogical sendaction is
artificial; it is assumed to hawecurred at théogical arrival time othe messageFigure

5-5 lists the message actions.

Receiving Task Send Action Logical Send Action
vbi_task send_vbi logical_send_vbi
vbiO_task send_vbiO logical_send_vbiO
vbil_task send_vbil logical_send_vbil
cc_task send cc logical_send cc

Figure 5-5: Message Actions

The queuing actions represent the executioms#rt_queue
operations (see Section 2.5.1). Fach queue in thapplication that holds digitize
buffers or compress buffergd,, a video frame)two actions arancluded inthe model:
one that representsserting a buffer orthe queue, and one that represertaoving a
buffer from the queue. The queuing actions are listed in Figure 5-6.

andremove_queue

Queue Insert Queue Action Remove Queue Aclion
next_digitize put_next_digitize get_next_digitize
digitizing put_digitizing get_digitizing
compress_source put_compress_source get_compress_gource
compress_sink put_compress_sink get_compress_sjnk
video_transmit put_transmit get_transmit
Figure 5-6: Queuing Actions
The memory managemerdctions represent the execution alfocate and free
operations fobuffersused to hold videdrames(see Section 2.5.1). For botlgitize

buffers and compress buffets;o actions arencluded inthe model: one representing an

allocate

that kind of buffer. These actions are listed in Figure 5-7.

operation for thakind of buffer, andone representing faece operation for

Data Type

Allocate Action

Free Action

digitize buffers
compress buffers

alloc_digitize
alloc_compress

free_digitize

free_compress

Figure 5-7: Memory Management Actions

107

Video frame processing actionsepresent the execution ofligitize and
start_compress operations (see Section 2.5.1). These operatioiigte the
digitization and compression of video frames the ActionMedia hardware. These
actions are listed in Figure 5-8.

Operation Video Frame Processing Actipn
digitize digitize
start_compress compress

Figure 5-8: Video Frame Processing Actions
5.3.3 Event Constants

The RTL model othe application includes a number of eveonstants. First, th@odel
includes a start event and a stop event for each of the actions listed above. In addition, the
model includeswo external events corresponding to the \iJical interrupt and the CC

logical interrupt. These external events are listed in Figure 5-9.

Logical Interrupt External Event
VBI QVBI
CcC QCC

Figure 5-9: External Events
5.3.4 Frame Numbers

As discussed in Chapter 2, a videame is acquired and digitized ltye ActionMedia
hardware over amterval of approximately 33 ms. In particular, a new frame is acquired
and digitized over an interval betweentwo even-numberedvBI logical interrupts.
Throughout theemainder otthe chapter, | W refer toindividual video frames using a
frame numbethat is defined based on timelex ofthe VBI interrupt corresponding to the
start of theinterval in whichthe frame was acquiredSpecifically, frame numberrefers

to the video frame acquired between timeX@B1,2i) and @QVBI,2i+2).

With the occurrence function, | aable toreason about théme at whichoperations
execute; for example | can compare the time ofttluggitize operation to théime of
the j" compress_start operation. However, | W often wish to reason about the
relationship between several operations performed on a particular framerdeinto
capture the correspondence betwémme numbers anthe operations performed on
those frames, | define a pair of mappings:

108

frame : (action, i) - frame number

index : (action, frame number) Ny

For each queuing action and video frame procesaatgn,frame mapsthe action and a
positive integer to the frame number of the frame operated on bytftbecurrence of the
action. It is often used in expressions of the following form:

frame (actionl,i)=n

0
frame (action2 , i)=n

Thatis, if theit occurrence o&ctionl operated orfiramen, then that occurrence of
action2 also operated on franme

Index is the inverse mapping oframe For each queuing action and viddmme
processing action, it mapgbke action and &ame numbej to i if and only if the it
occurrence of the action was performed onftame with frame numbgr This mapping
is often used in expressions of the following form:

@(action,index(action,n)) <t

Thatis, thetime at whichaction was completed on tifeame with frame number was
less thart.

5.4 Correctness Conditions

In this section, Igive anRTL specification ofthe conditions that must hold forvedeo

frame to be correctly acquired, compressed, and readied for transmission over the network
(see Section 2.5.3). Most of these conditions are constraints on the timing and ordering of
operations €.g, the compression of flame cannotbegin until digitization iscomplete).

If these conditions daot hold, then frames M/be discarded ocorrupted. Imaddition, |

add one more correctness constraint: the procesglay incurred bythe videoframe

must be bounded.

As described in Sectiog.5.3, theActionMedia hardware continuously acquires and
digitizes video frames, and writéise digitized data into adigitize buffer specified by the
application. The applicatiospecifies a new buffer by executingl@itize operation

in response to an odd-numbered VBI interrupt. At the next VBI interrupt, the hardware
begins writing intathe specified buffer.For thevideo frame to be acquiresbrrectly, the

109

ActionMedia hardware must continue to wrilata to thebuffer until the nexteven-
numberedvBI interrupt. Forframei, this istheinterval between @XVBI,2i) and @Q
VBI,2i+2).

Thus, in order teensure that frameis acquired correctly, thapplication must execute
two digitize operations. The first must be executedha interval between @J¥
VBI,2i-1) and @{QVBI,2i) and mustspecifythe digitize buffer into which frameis to be
written. If thedigitize operation is executed earlier, thdata that is not part of
framei will be written to thebuffer; if it is executed later, then sometlbé data foframe

i will be written to a differenbuffer (.e., thebuffer that was passed tbe ActionMedia
hardware by the previouligitize operation). Expressed in RTL, this condition is

@(+digitize, index (digitize,i)) > @(QVBI,2i-1)
O @(. digitize, index (digitize,i)) < @(QVBI,2i)

The secondligitize operation that must be executednder toensure thatramei is
correctly acquired must occur in thrgerval between @JVBI,2i+1) and @QVBI,2i+2)
and must specify a new buffer to hold framé. If thisdigitize operation is executed
any earlier, then some of théata forframei will be written to the newbuffer; if it
executesany later,then some of thelata forframei will be overwritten by datdrom
framei+1. Expressed in RTL, this condition is

O[@(tdigitize,j) > @(QVBI,2i+1)
0 @(. digitize,j) < @(QVBI,2i+2)]

Finally, the applicationmay not executeany other digitize operations in thénterval
between @QVBI,2i-1) and @QVBI,2i+1). If it did, then some of thdata forframei
would be written to the newly specified buffer. Expressed in RTL, this condition is
~0[j #index (digitize,i)
0 @(1digitize,j) > @(QVBI,2i-1)

0 @(. digitize,j) < @(QVBI,2i+1)
]

For aframe to be compressedrrectly, we need to ensure that #tart_compress
operation does not occuntil the digitization is complete.For framei, this condition is
expressed in RTL as

@(compress, index (compress,i)) > @(QVBI,2i+2)

110

Next, aframe shoulchot beplaced on theéransmit_video gueueuntil compression
has finished. For framethis condition is expressed in RTL as

@ put_transmit, index (put_transmit,i)) > @(QCC,index (compress,i))

Finally, the acquisition-side delay of a video frame shouldbeended. Recall that the
acquisition-side delay is defined the length oftheinterval betweertwo events: the VBI
logical interrupt that occurs at the startdgitization ofthe frame andhe time the frame

is placed on th&ransmit queue. In theemainder othe chapter, | W show thatthis

condition can be shown for a bound dlit period For framei, this condition is
expressed in RTL as

@(put_transmit, index (put_transmit,i)) - @(QVBI,2i) < 6 Lkbi_period

Altogether, an RTLspecification otthe conditions that must hold for vidéamei to be
correctly acquired, compressed, and readied for transmission, with bodsldgdis the
conjunction of the above conditions. Th# correctness condition is listed in Figure 5-
10.

@(+digitize, index (digitize,i)) > @(QVBI,2i-1)
O @(. digitize, index (digitize,i)) < @(QVBI,2i)
O O[@(+digitize,j) > @(QVBI,2i+1)
O @(. digitize,j) < @(QVBI,2i+2)]
O~0F[j Zzindex (digitize,i)
O @(+digitize,j) > @(QVBI,2i-1)
O @(. digitize,j) < @(QVBI,2i+1)
]
O@(t1compress, index (compress,i)) > @(QVBI,2i+2)
0 @(+put_transmit, index (put_transmit,i)) > @(QCC,index (compress,i))
O @(« put_transmit, index (put_transmit,i)) - @(QVBI,2i) < 6 Lkbi_period

Figure 5-10: Correctness Condition for a Video Frame

5.5 Basic Axioms and Theorems

In this section, begin presentinghe axioms that modehe behavior ofthe application.

In a number of casetje model ofthe application includes aet ofaxioms that have the
same formbut aredefinedfor different actions. For example, corresponding to each
action in the model, there is ariom thatrepresents the fact that the action starts before
it completes. For thdigitize action, this axiom is

@G digitize,i) < @(Jdigitize, i)

111

To simply the presentation, lillvpresent the set adixioms of this form as aingle
“generic” axiom. Thatis, in the description below, | present th@lowing axiom and
specify that it is defined for each of the actions in Figures 5-3 through 5-8:

@(action)< @(.action i)

The interpretation of this is thatsgt ofaxioms should be included the model, with the
bold-faced namaction instantiated by each specified action.

In addition to theaxiomspresented in this section, | derive several theorems thdiew
used throughout theemainder ofthe chapter. These theorems are also presented as
“generic theorems” that are instantiated for a number of actions.

5.5.1 Actions

The firsttwo generic axioms ithe RTL model ofthe application represerttvo simple
constraints on the execution of each actidxiom 5.1represents the fact that an action
starts before it completesAxiom 5.2 represents the fact that th€lst occurrence of an
action cannostartuntil the it occurrence of the action completes. Thus for each of the
actions in Figures 5-3 through 5-8ioms ofthe following form are included in the
model:

Axiom 5.1
@(action ,i)<@(.action i)

Axiom 5.2
@(action ,i)) < @(raction ,i+1)

From these axioms, now derive a simple theorem thapplies toall actions. Theorem
5.3 shows that for an actigwandall i less than or equal {o theit instance ofA begins
execution at or before the instance oA begins execution, and completes execution at or
before thg™ instance oA completes execution.

112

Theorem 5.3
For each action in Figures 5-3 through 5-8, and farsjl

@(raction i) < @(raction j)
O@(:action ,i) <@(:action ,j)

Proof: By induction or].
Base caseAssumg =i. The theorem holds trivially.

Inductivecase Assume thathe theorem holds fgr< k. By theinductive assumption,
Axiom 5.1,and Axiom 5.2
@(action i) < @(raction k)

< @(:action k)
< @(raction ,k+1) (5.1)

Similarly, by the inductive assumption, Axiom 5.2, and Axiom 5.1

@(action i) <@(.action k)
< @(taction ,k+1)
< @(:action ,k+1) (5.2)

Combining (5.1) and (5.2)

@(raction i) < @(raction ,k+1)
O@(.action ,i) < @(.action ,k+1)

This proves the theorem. a
5.5.2 Frame Numbers

The next group ofixioms deal with frame numbers ath@ rules used to associdtame
numbers with operations. The firstaxiom establishes a&orrespondence between
digitize operationsframe numbers, andBI logical interrupts. Recall that a frame is
acquired by executing digitize operation in response to an odd-numbered VBI
interrupt, and that théctionMedia hardware begins writing a digitizé@me to the
specifiedstarting at the next VBI interrup&ramei is defined ashe frame that is written
starting attime @QVBI,2i). Thus, if thejt digitize completed in thenterval @Q
VBI,2i-1) to @QVBI,2i), then theframe acquired irresponse to thg" digitize
operation must be frame This is the rule represented by Axiom 5.4,

113

Axiom 5.4
[@(.digitize,j) > @(QVBI,2i-1)
0 @(. digitize,j) < @(QVBI,2i)]
0
frame (digitize,j) =i

The next axiom establishes the FIFO property of the queues used in the applicaten. S
gueues are FIFO, theremove_queue operation on a queue retrieves the gatanto

the queue by thi¢" insert_queue operation. For each pair of queuing actions listed in
Figure 5-6, this property is included in the model with an axiom of the following form:

Axiom 5.5
frame (put_queue ,i) = frame (get_queue i)

Finally, recall thathe index mapping isthe inverse mapping oframe To representhis
property, araxiom ofthe following form is included irthe modelfor each queuing action
in Figure 5-6 and video frame processing action in Figure 5-8:

Axiom 5.6
frame (action i) =] - index (action j)=i

5.5.3 Hardware Interrupts

The next group oaixioms modelshe behavior ofthe hardware interrupts and interrupt
handlers involved in the acquisition and compression of video frames. These interrupts are
the VBI logical interrupt and the C@gical interrupt,which are represented in tmeodel

by the external eventQVBI and QCC The VBI logical interrupt is periodic; Iwill

assume thatthe first interrupt occurs attime 0, and successiveterrupts occur
periodically everyvbi_period time units. Thus, thebehavior ofthe VBI interrupt is
captured by the axiom:

Axiom 5.7
@QVBI,i) = (i-1) bi_period

The CClogical interrupt occursvhenthe compression of a viddame is finished. The
compression of a frame is initiated Hye compress action and is assumed fmish
within an interval defined byhe symbolic constantcompress_requegsee Figure 5-1).
Thus, the behavior of the CC logical interrupt is captured by the axiom:

Axiom 5.8

@(QCC,i)) = @(.compress,i)
O@(QCC,i)) < @(:compress,i) + compress_request

114

Both the VBland CC logicainterrupts aréhandled bythe DVI interrupthandler. This
handler determines which logicaiterrupt hasoccurred and then sendsressage to the
appropriate task (either théBl or theCCtask). As shown by thanalysisperformed in
Chapter 4, the DVI interrugtandler completes executeghin an interval defined by the
symbolicconstantvi_delay(see Figure 5-1). Thus, if ti@VI interrupt handler sends a
message, it iv be sentwithin dvi_delayticks after the interrupt. Furthermore, tbgical
arrival time assigned tthe receivingtask wil also be withindvi_delayticks after the
interrupt (see Section 2.4.5).

Axiom 5.9 represents the execution of the DVI interrtypindler in response to a VBI
logical interrupt. The interpretation of this axiom is that two operations, a send action and
a logical sendction, occur in thénterval betweerthe interrupt and the upper bound on
the time it must complete, [@VBI,i), @(QVBI,i) + dvi_delay.

Axiom 5.9
@(rsend_vbi,i) > @(QVBI,i)
O0@(:send_vbi,i) < @(QVBI,i) + avi_delay
0 @(+logical_send_vbi,i) > @(QVBI,i)
0@(:logical_send_vbi,i) < @(QVBI,i) + avi_delay

Axiom 5.10 represents the execution of the DVI interdogdler in response to a CC
logical interrupt. Again, the interpretation othis axiom is thatwo operations, &end
action and dogical sendaction, occur in thénterval betweerthe interrupt and the upper
bound on the time it must complete, [@XC,i), @QCC,i) +dvi_delay.

Axiom 5.10
@(r1send_cc,i) > @(QCC,)
O@(:send_cc,i) <@(QCC,i))+ dvi_delay
O @(+logical_send_cc,i) > @(QCC,)
O @(.logical_send_cc,i) <@(QCC,i))+ dvi_delay

5.5.4 Task Scheduling and Execution

The next group ofxiomsrepresent constraints on the execution of taskcations.
Recall that eaclask invocation executes in response to a message. Furthermore, as a
result of theanalysisperformed in Chapter 4, we know that edabk invocation will
complete execution prior to ieadline. Thus, eadime ataskreceives a message, the
taskinvocation wl begin executiorafter it receives a message, and complete execution
prior to itslogical arrival time plus its relative deadline. Tpi®perty is represented by
Axiom 5.11. Aninstance of this axiom is definddr each triplet ofreceivingtask, send

115

action, andogical sendaction listed in Figure 5-5. The bold-facggnboltask_deadline
should be instantiated with the relative deadline of the receiving task defined in Figure 5-1.

Axiom 5.11
@(treceiving_task i) = @(.send_action i)
O @(. receiving_task i) <@(logical_send_action i) + task_deadline

5.5.5 Subtask Execution

The nextaxiomrepresents constraints on the execution of the subtasks éBthetask.
Recall thathe VBI1 taskhastwo subtaskslefined bythetwo “if” statements in itbody
(see Figure 2-22). Eadime an invocation othe VBI1 task executes, theo subtasks
execute in order. This property is represented by the following axiom:

Axiom 5.12
@(rvbil_task,i) < @(1vbil_partl,i)
O@(vbil_partl,i) < @(1vbil_part2,i)
O@(vbil_part2,i) < @(1vbil_task,i)

5.5.6 Mutual Exclusion

Whentwo tasks share a resource, those tasks are guararaeszjpreempt one another.
Thus, invocations of oniask do nobverlap with invocations of anoth&askwith which
it shares a resource. Thustatkl andtask2 are tasks that share a resource, then the
following property can be asserted about the relationship between invocations of the tasks:
if the it instance oftaskl started execution before the instance oftask2 started
execution, then it must also have completed execution b#fergh instance oftask?2
started execution.This property can bencluded inthe model with an axiom of the
following form:
Axiom 5.13

@(itaskl)< @(rtask2 ,j)

O
@(itaskl)< @(rtask2)

Figure 5-11 lists pairs of tasks for which Axiom 5.18efined.

vbiO_task cc_task
tc_task cc_task

Figure 5-11: Actions Performed in Mutual Exclusion

116

5.5.7 At-Most-Once Actions

The next group of axioms establishes some particularly useful properties of a set of actions
referred to ast-most-oncections. An at-most-once action is an action that is performed

in only one taskor subtask), and is executed at most once during a single invocation of
that task. Figure 5-12ists eachat-most-once action along with ttessk (orsubtask) that
executes that action.

AMO Action Task AMO Action Task
send_vbi0 vbi_task getompress_source vbil_ parntl
logical_send_vbi0 vbi_task put_compress_sink vbiO_task
send_vbil vbi_task get_compress_sink cc_task
logical_send_vbil vbi_task put_transmit cc_task
put_next_digitize vbil_part? alloc_digitize vbil_pait2
get_next_digitize vbiO_task free_digitize vbil_paftl
put_digitizing vbiO_task alloc_compress vbiO_tapk
get_digitizing vbiO_task digitize vbil_part|2
put_compress_source vbi0_tagk compress vbi0_fask

Figure 5-12: At-Most-Once Actions

This property can bencluded inthe RTL model withthree generi@xioms defined for
each pair of AMO actions and tasks in Figure 5-BXiom 5.14 represents the fact that
the it" at-most-once action performed by a task caroegin untilthe start of thet
invocation of the task.

Axiom 5.14
@(amo_action ,i)>@(rtask ,i)

Axiom 5.15 represents the fact that if iffeat-most-once action performed by a task starts
after thej invocation of thetask completes, then it muattually start after thg+1s
invocation of the task begins execution.

Axiom 5.15
@(ramo_action ,i) =@(:task ,j)
O
@(ramo_action ,i)>@(rtask ,j+1)

Finally, Axiom 5.16 represents the fact that if tiffeat-most-once action starts after the
invocation of theask, then the+kh action cannot be performenhtil at leasthe start of
thej+k invocation of the task.

117

Axiom 5.16
@(ramo_action ,i)>@(task ,))
0
@(ramo_action ,i+k) > @(rtask ,j+k)

I now present a pair of simple andeful theoremsor at-most-once actions. Theorem
5.17 shows that if thérst at-most-once actioA executed by a task begins execution
after thejt invocation ofT beginsexecution, and there is sorkeuch that thét instance
of A is performed by thg" invocation ofT, thenk must be one. Theorem 5.18similar;

if the i-1st instance ofA is performed by the-1st invocation ofT, and if there is somk
such that thét instance oA is performed by thgh invocation ofT, thenk must ba.

Theorem 5.17

For each pair of AMO actions and tasks in Figure 5-12,
@(ramo_action ,1)>@(rtask ,j)
O@(ramo_action ,k)>@(itask ,))
O@(:amo_action k)<@(task ,j)

d
k=1

Proof: Assume the |.h.s. of theplication. Sincehe second argument of the occurrence
function is defined to be a positivgeger, it is the case thiat 1. | now show thakk = 1
by contradiction. Assumike>2. By Theorem 5.3

@(tamo_action ,k) = @(ramo_action ,2)
By the |.h.s. of the theorem and Axiom 5.16, fomall
@(tamo_action ,1+n)> @(rtask ,j+n)

Combining these facts yields equation (5.3).

@(tamo_action ,k) = @(ramo_action ,2)
> @(rtask ,j+1) (5.3)

However by Axiom 5.1, the I.h.s. of the theorem, and Axiom 5.2

@(amo_action ,k)<@(1amo_action k)
<@(itask ,j)
< @(rtask ,j+1)

which contradicts (5.3). Thug,<2. This proves the theorem. O

118

Theorem 5.18

For each pair of AMO actions and tasks in Figure 5-12, and>fdr
@(ramo_action ,i-1)>@(rtask)
O@(:ramo_action ,i-1)<@(:task ,j)

O@(ramo_action ,k)>@(rtask ,j+1)
O@(:amo_action k)<@(.task ,j+1)

k=i

Proof: Assume the |.h.s. of the implication. By this assumption, and Axioms 5.2 and 5.1

@(amo_action ,k)>@(rtask ,j+1)

> @(ttask j)
> @ ramo_action ,i-1)
> @(tamo_action ,i-1)

Thus, by the contrapositive of Theorem %3;i—-1 and thuk > 1.

I now show thak =i by contradiction. Assumke>i+1. Then by Theorem 5.3

@(tamo_action ,k) = @(ramo_action ,i+1)

By the |.h.s. of the theorem and Axiom 5.16, fomall

@@amo_action ,i-1+n) > @(rtask ,j+n)

Combining these facts yields equation (5.4)

@(tamo_action ,k) = @(ramo_action ,i+1)
> @(itask ,j+2) (5.4)

However, by Axiom 5.1, the I.h.s. of the theorem, and Axiom 5.2

@(tamo_action k)< @(:amo_action k)< @(itask ,j+1)<@(rtask ,j+2)

which contradicts (5.4). Thuk,<i+1. This proves the theorem. a

5.6 Task Descriptions
5.6.1 Representing Conditional Statements in RTL

In this section, | presettthe axiomsthe represent theffect of executing applicatidiasks.
| begin with a discussion dhe technique used to create an RTL representation of the

119

conditional statements used time applicationtasks. Consider aonditional statement
executed by the invocation of a task.
if (condition) then

action
end if

If the condition is constrained such thatvtdue cannot change between thirt of the
task and the execution of thest,then this statement can be represented in RTL with the
following assertion (assumirgpndition is an RTL representation of an assertion that the
condition holds at the start of the task execution):

condition
O

O[@(raction j)>@(itask ,i)
O@(:action j)<@(task ,i)]

Thatis, a conditional statement is represented asnalication; the left-hand side is an
RTL representation of the condition and the right-hsidd is an expression representing
the execution of the action by the taskpecifically,the expression on the right-haside
can be interpreted as an assertion that for spntke j* instance ofaction started
execution after th&" invocation oftask started executiomnd completed before the
invocation oftask finished execution.

Conditional statements within subtasks can be representedtlisggme techniqueThat
is, if the condition in aconditional statement is constrained such thavatsie cannot
change between thstart of thesubtask and the execution of tesst,then the statement
can be representaging an assertion dhe form givenabove, withsubtask in place of
task.

The tasks and subtaskpecified in thischapter use aumber of conditional statements
that are based ostateconditions. One commostatecondition is that thdéength of a
queue is greater tharero. If the queue ideclared as a resource by edabk that
accesses it, anghychanges to the queue by tiask (orsubtask) in question occur after
the test of the stateondition, then thevalue of the statecondition wil not change
between thdéime an invocation othe task starts execution and tivee it executes the
conditional statement. An RTL expression that represprégse havingnon-zerolength
when that invocation oftask begins execution is:

O[@(.put_queue) <@(rtask ,i)
O@(+1get_queue ,)>@(task ,i)]

120

Thatis, the length ofthe queue is greater than zero attthe the i invocation oftask

begins execution if there is somédor which the j* insert_queue operation on the
gueue has alreadgccurred, and thgh remove_queue on the queuéias not yet

occurred.

A state condition similar to the non-zero length of a queue is the non-empty state of a pool
of free buffers (as tested by theailable operation). Again, if the pool of frdmiffers
is a resource, and the ta@k subtask) in question doest allocate or free buffers before
the test of the stateondition, then thevalue of the statecondition wil not change
between thd@ime an invocation othe task starts execution and tivee it executes the
conditional statement. If it is assumed thatffers is totalnumber of buffers ofype in
the system, then an RTL expression that represents @irfésr of type being available
when that invocation oftask begins execution is:

@(talloc_type , buffers)>@(rtask ,i)

0

On[@(ralloc_type ,m+buffers)>@(rtask ,i)
O@(.free_type .m) < @(rtask ,i)]

Thatis, a buffer is available to kalocated under one t#vo conditions: thenumber of
buffers allocatedprior to the start of the task lsss thanbuffers, or the difference
between theaumber of buffers that have been allocgtedr to the start of the task and
the number of buffers that have been free prior to the start of the task is |essftbiem

5.6.2 RTL Specification of the VBI Task

As shown in Figure 2-21, the VBask alternatesending messages tioe VBI1 and the
VBIO tasks. On odd-numbered executions, it sends a messag&/<héask; thus, the

i message tohe VBI1 task is generated by thé-Pt invocation of thevBI task. On
even-numbered executions it sends a message UBilletask; thus thé" message to the
VBIO task is generated by thé&2nvocation of the/Bl task. Oneotherissue must be
addressed in the specification of Wil task: when ataskinvocation sends a message to
another task, theesultingtaskinvocation is assigned a logical arrival time equal to the
logical arrival time of the sender (see Section 2.4.5). These propertiesvigIthask are
represented in the model by a pair of Axioms, 5.19 and 5.20.

121

Axiom 5.19
@(rsend_vbil,i) > @(1vbi_task,2i-1)
O@(:send_vbil,i) < @(1vbi_task,2i-1)
O @(:logical_send_vbil,i) = @(tlogical_send_vbi,2i-1)

Axiom 5.20
@(r1send_vbi0,i) > @(1vbi_task,2i)
O@(:send_vbi0,i) < @(1vbi_task,?2i)
O @(:logical_send_vbi0,i) = @(tlogical_send_vbi,2i)

5.6.3 RTL Specification of the VBIO Task

As shown in Figure 2-23, théBIO task consists afiwo conditional statements. In the
first conditional, several actiorsge takenf: 1) the digitizing gueue isnot empty,

and 2) a free compress buffer can be allocatedheBe conditions hold, thenbaffer is
removed fronthe digitizing gueue and placed on thbempress_source queue,

a new compress buffer is allocated and placedhercompress_sink queue, and a
start_compress operation is executed on the digitize buffer and the compress buffer.

Axiom 5.21 representthis conditional statement fdine i invocation of thevBIO task.

The left-hand-side aheimplication isthe conjunction of the expressions described above
for representing thetate conditions on theligitizing gueue and the pool dfee
compress buffers. The right-hand-side ofithplicationrepresents the fact that the set of
operations performed in tle®nditionaloccurduring the execution of thi& invocation of

the VBIO task. In addition, theight-hand-side of themplication equates thdrames
numbers associated with each of the operations.

122

Axiom 5.21
O[@(put_digitizing,)) < @(1vbi0_task,i)
O @(rget_digitizing,j) > @(1vbi0_task,i)]

[@(ralloc_compress, compress_buffers) > @(1vbi0_task,i)

On[@(ralloc_compress,m+ compress_buffers)> @(1vbiO_task,i)
O @(:free_compress,m) < @(1vbiO_task,i)]

]

O

(k[@(rget_digitizing,k) > @(1vhi0_task,i)

@(:get_digitizing,k) < @(1vbi0_task,i)
frame (get_digitizing,k) = f

@(rput_compress_source,k) > @(1vbi0_task,i)

@(.put_compress_source,k) < @(1vbiO_task,i)
frame (put_compress_source,k) = f

@(ralloc_compress,k) > @(1vbi0_task,i)

@(.alloc_compress,k) < @(1vbiO_task,i)

@(rput_compress_sink,k) > @(1vbi0_task,i)

@(:put_compress_sink,k) < @(1vbiO_task,i)
frame (put_compress_sink,k) = f

@(rcompress,k) > @(t+vbi0_task,i)

@(.compress,k) < @(1vbi0_task,i)
frame (compress,k) = f]

OoOooooooooooogod

In addition, it wil be necessary to considéne case where thdigitizing queue is
empty whenthe VBIO task be@s execution. In this casehe get digitizing

action and thalloc_compress action (among others) amdt executediuring theit
invocation of thevBIO task; in other wordsgll instances of these actions either complete
prior to the start of the" invocation of thé/BIO task orbeginafter the completion of the

it invocation of the/BIO task. This fact is represented by the following axiom:

Axiom 5.22
~ O[@(put_digitizing,)) < @(1vbi0_task,i)
O @(rget_digitizing,j) > @(1vhi0_task,i)]
O
Ok[@(:get_digitizing,k) < @(1vbiO_task,i)
O @(rget_digitizing,k) > @(1vbi0_task,i)]
O

[@(ralloc_compress,k) < @(1vbi0_task,i)
O @(ralloc_compress,k) > @(1vbi0_task,i)]

In the second part of theéBIO task, abuffer is removed fronthe next_digitizing
gueue and inserted on tHmitizing gueue if thenext_digitizing gueue is not
empty. Axiom 5.23 representthis conditional statement fdhe it" invocation of the

123

VBIO task. Theeft-hand-side othe implication is an expressiarepresenting thetate
condition on thenext_digitizing queue. The right-hand-side of timplication
represents the fact that the set of operations performed @domlgionaloccurduring the
execution of the® invocation of thevBIO task. In addition, theght-hand-side of the
implication associates theframe number of the frame removed from the

next_digitizing queue with theut_digitizing action.
Axiom 5.23
O[@(put_next_digitizing,j) < @(tvbi0_task,i)
O @(+get_next_digitizing,j) > @(1vbi0_task,i)]
O
(k[@(rget_next_digitizing,k) > @(1vbi0_task,i)
O @(:get_next_digitizing,k) < @(1vbi0_task,i)
O frame (get_next_digitizing,k) = f
O @(+put_digitizing,k) > @(1vbiO_task,i)
0 @(« put_digitizing,k) < @(1vbi0_task,i)

O frame (put_digitizing,k) = f]
5.6.4 RTL Specification of the VBI1 Task

As shown in Figure 2-22heVBI1 task consists of two conditional statemer&ce the
test of thesecond conditional statementay depend on the execution of tHiest
conditional statement, tAéBI1 task is divided into the two subtasks listed in Figure 5-3.

In the first subtask, a digitize buffer is removed fromdbepress_source queue and
freedif: 1) thecompress_source queue inotempty, and 2) the compression of the
first frame onthe queuehas completed. lthe pseudo-code shown in Figure 2-22, the
secondest isperformed by comparing the YARTOS eventcount of IGgical interrupts

to db_freed , a variable thatounts thenumber of digitize buffers removed from the
compress_source queue and freed. This test wil succeed if thenumber of
get_compress_source actions occurring prior to thetart of thesubtask idess than
the number of CAnterrupts occurring prior to th&art of the subtask, @quivalently, if
there is somg such that thgh CC interrupt occurred prior to the start of gubtask and
the jth get_compress_source occurs after the start of the subtagkis testcan be
represented in RTL by the following expression:

O[@(rget_compress_source,j) > @(1vbil_partl,i)
O0@(QCC,) < @(rvbil_partl,i)]

124

Axiom 5.24 represents theffect of executinghefirst subtask duringheit invocation of
the VBI1 task. Theleft-hand-side ofthe implication isthe conjunction of the two
conditions (combined intone) and the right-hand-side of tmeplication represents the
fact that the set of operations performed indbeditionaloccurduring the execution of
theit invocation of the subtask.

Axiom 5.24

O[@(1put_compress_source,j) < @(tvbil_partl,i)
O @(1get_compress_source,j) > @(1vbil_partl,i)
D@(QCC,)) < @(trvhil_partl,i)]

O

(k[@(+rget_compress_source,k) > @(1vbil_partl,i)
O@(.get_compress_source,k) < @(1vbil_partl,i)
O @(+free_digitize,k) > @(1vbil_partl,i)
O @(:free_digitize,k) < @(1vbil_partl,i)]

Axiom 5.25 represents thelationship betweeget _compress_source actions and

free_digitize actions. Theget_compress_source action occurs during the
execution of tha™ invocation of theVBI1 task if andonly if the free_digitize
action occurs. Thus, if thg free_digitize occurs after the start of the VBI1

task, then thgt get_compress_source also occurs after thstart of theit VBI1
task.

Axiom 5.25
@(+free_digitize,j) > @(tvbil_task,i)
O
@(rget_compress_source,j) > @(1vbil_task,i)

In the second subtask of tMBI1 task,several actionare taken if a newligitize buffer
can be allocated. Ho,then a buffer is allocated and placedtlo@next_digitizing
gueue and digitize operation is executed on the digitize buffer.

Axiom 5.26 represents theffect of executinghe second subtask during tifanvocation

of theVBI1 task. Thdeft-hand-side otheimplication isthe expression described above
for representing thstatecondition on the pool of fregigitize buffers andhe right-hand-

side of the implication represents the fact that the set of operations performed in the
conditional occur during the execution of thenvocation of the subtask. In addition, the
right-hand-side of thémplication equates thérame numbers associated with each of the
operations.

125

Axiom 5.26

@(ralloc_digitize, digitize_buffers)>@(1vbil_part2,i)
O
On[@(ralloc_digitize,m+ digitize_buffers)>@(1vbil_part2,i)
O @(:free_digitize,m) < @(1vbil_part2,i)]
O

kO[@(ralloc_digitize,k) > @(1vbil_part2,i)
O @(.alloc_digitize,k) < @(1vbil_part2,i)
O @(+digitize,k) > @(1vbil_part2,i)
0 @(. digitize,k) < @(1vbil_part2,i)
O frame (digitize,k) = f
O @(+put_next_digitizing,k) > @(1vbil_part2,i)
O @(« put_next_digitizing,k) < @(1vbil_part2,i)

O frame (put_next_digitizing,k) = f]
5.6.5 RTL Specification of the CC Task

As shown in Figure 2-24, the body of tB€task is a singleonditional statement; several
actions are taken if theompress_sink queue isrxotempty. First, a buffer is removed
from thecompress_sink queue and placed on thansmit_video queue. Then,
a nested conditional statement is executedthafnumber of buffersin the transport
system” exceedsmax_video_transport , then a buffer is removed from the
transmit_video gueue and returned to the pool of free compraffers(see Section
2.5.2 for the discussion of buffers “in the transport system”).

| will usetwo axioms to describéhe behavior ofthe CCtask. Thefirst describes the
execution of theconditional statementexcluding the effect of executingthe nested
conditional. This axiom isepresented in RTL as amplication usingthe techniques
described previously. Thexiom representinthe execution of the nestednditionalwill
also be an implicationthe left-hand-side il be the conjunction of the conditions of the
outer and inner conditionaktatementswhile the right-hand-side W represent the
execution of the body of the nested conditional.

Axiom 5.27 represents the execution of doaditional statement fahe it invocation of

the CCtask,excludingthe effect of executinghe nested conditional. Thight-hand-side

of the implication represents the fact that the set of operations performed in the
conditional occur during the execution of thenvocation of theCCtask. In addition, the
right-hand-side of thenplicationequates th&rames numbers associated with each of the
operations.

126

Axiom 5.27

O[@(:put_compress_sink,j) < @(rcc_task,i)
O @(1get_compress_sink,j) > @(1cc_task,i)]
O
(kK(F[@(tget_compress_sink,k) > @(1cc_task,i)
O@(.get_compress_sink,k) < @(1cc_task,i)
O frame (get_compress_sink,k) = f
O @(+put_transmit,k) > @(1CC_task,i)
O@(:put_transmit,k) < @(1cc_task,i)

O frame (put_transmit,K) = f]

The condition given in the nested conditional statement is thaiutin@er of buffers in the
transportsystem isgreater than oequal tomax_video_transport at thetime the
nested conditional statement is executed. However, bed¢haseestedconditional
statement isonly executed if acompress buffer has beemadded to the
transmit_video gueuesincethe start of the taskivocation, thigest isequivalent to
a test that thenumber of buffers irthe transportsystem isgreater than oequal to
max_video_transport -1 whenthe taskinvocation begingxecution. Thus, during
an invocation of th&€Ctask, thebody ofthe nestedonditional wll be executed if two
conditions hold wherthe taskinvocation begins execution: 1) tlkempress_sink
gqueue imnotempty, and 2) thaumber of buffers ithe transporsystem igyreater than or
equal tomax_video_transport -1.

In the pseudo-code descriptions of th€ andtransmit_complete tasks shown in
Figures 2-24 and 2-27, tivariablevideo_transport Is used to count theumber of
compress buffers ithe transportsystem. This variable is incremented each time a
compress buffer iadded to théransmit_video gueue and decremented ediae a
buffer is removed fronthe transmit_video gueue and returned to the free pool.
Thus, at any given time, the number of compress buffers in the transport system is equal to
the difference betweerthe number of put_transmit actions and thenumber of
free_compress actions that haveccurred up to thatime. An RTL expression
representing the fact thttis isgreater than oequal tomax_video_transport -1 at

the time the i"" invocation of theCC task begins execution miven by the following
expression:

O[@(:put_transmit,j+ max_transport -1) < @(cc_task,i)
O @(+free_compress,j) > @(1cc_task,i)]

Axiom 5.28 represents the execution of the nestedditional statement fothe it
invocation of theCCtask. Thdeft-hand-side othe implication isthe conjunction of the

127

expressions described above for representing the state conditiorcofripeess_sink

qgueue and thetatecondition for thenumber of compress bufferstine transporsystem.
The right-hand-side of thénplication represents the fact that the set of operations
performed in theconditionaloccur during the execution of thig" invocation of theCC
task.

Axiom 5.28
O[@(:put_compress_sink,j) < @(rcc_task,i)
O @(1get_compress_sink,j) > @(1cc_task,i)]
O
O[@(:put_transmit,j+ max_transport -1) < @(cc_task,i)
O @(+free_compress,j) > @(1cc_task,i)]
O
(k[@(1free_compress,k) > @(1cc_task,i)
O@(.free_compress,k) < @(1cc_task,i)]

5.7 Bounded Delay Theorem

In the previous sections,Have presented an axiomasipecification ofthe application.
From this specification, | now develop a proof of the correctness congii@n in Figure
5-10. This proof is developed iseveralstages. The heart of the proof is Theorem 5.40
which will be referred to as th&main theorem” of the chapterThis theorem shows that
the equation in Figure 5-13 holds for iall

Recall thatthe VBI1, VBIO, andCCtasks each consisted oo conditional statements
(in the CCtask, the second was nestgithin the first). The equation in Figure 5-13 is
divided into sixgroups of conjuncts corresponding to theseconditional statements.
Three of these grougsn be interpreted as an assertion thabtiuy ofthe conditional is
executed each time an invocatiortloé task executes €., the condition holds at trstart
of eachtask invocation). Thérst group corresponds to the secarwhditional statement
of the VBI1 task, the second group corresponds to the secomditional statement of
theVBIO task,and the fourtlgroup corresponds to theam conditional statement of the
CCtask (excluding the nested conditional statement).

The interpretation of the thirgroup issimilar to thatfor the first, second, and fourth. In
this case howevethe group ofconjuncts can be interpreted as an assertion théiothe
of thefirst conditional statement ithe VBIO task is executeduring each invocation of
theVBIO task except the first.

128

@(ralloc_digitize,i) > @(
O @(:alloc_digitize,i) < @(
O @(+digitize,i) > @(

O @(. digitize,i) < @(

O @(+put_next_digitizing,i) > @(
O @(« put_next_digitizing,i) < @(
O frame (put_next_digitizing,i) =

O @(1get_next_digitizing,i) > @(
O @(1 get_next_digitizing,i) < @(
0 @(+put_digitizing,i) > @(
O @(« put_digitizing,i) < @(
O frame (put_digitizing,i) =

O @(1get_digitizing,i) > @(

O @(:get_digitizing,i) < @(

O @(+put_compress_source,i) > @(
O @(:put_compress_source,i) < @(
O frame (put_compress_source,i) =
U @(ralloc_compress,i) > @(

O @(:alloc_compress,i) < @(

O @(+put_compress_sink,i) > @(
O@(:put_compress_sink,i) < @(

O frame (put_compress_sink,i) =

O @(rcompress,i) > @(
O @(:compress,i) < @(
O frame (compress,i) = frame
O @(1get_compress_sink,i) > @(
O@(.get_compress_sink,i) < @(
O @(+put_transmit,i) > @(

O @(« put_transmit,i) < @(

O frame (put_transmit,i) =

afi < digitize_buffers
O @(.free_digitize,i-
afi <

max_transport
O @(. free_compress,i-

1vbil_part2,i)
1vbil_part2,i)

1vbi0_task,i+1)
1vbiO_task,i+1)

1cc_task,i)
1cc_task,i)
frame (get_compress_sink,i)

digitize_buffers

max_transport

1vbil_part2,i)
1vbil_part2,i)

1vbil_part2,i)
1vbil_part2,i)
frame (digitize,i)

1vbiO_task,i)
1vbi0_task,i)
1vbiO_task,i)
1vbi0_task,i)
frame (get_next_digitizing,i)

1vbi0_task,i+1)
1vbi0_task,i+1)
1vbiO_task,i+1)
1vbi0_task,i+1)
frame (get_digitizing,i)
1vbi0_task,i+1)
1vbiO_task,i+1)
1vbiO_task,i+1)
1vbiO_task,i+1)
frame (get_digitizing,i)

(get_digitizing,i)

rcc_task,i)
1cc_task,i)

) < @(1vbil_part2,i)]

) < @(:cc_task,i)]

Figure 5-13: Main Theorem

The interpretation of th&fth and sixthgroups of conjuncts islightly different. Thefifth
group corresponds to thest subtask othe VBI1 task. Instead ofisserting that each
invocation of the subtask executes the bodthefconditionalthis group ofconjuncts can
be interpreted as asserting a slightly weaker property: that tiyngatheit invocation of

129

the subtask completes execution, at leadigitize buffersfree_digitize actions
will have occurred.

The sixthgroup ofconjuncts corresponds to the nestexiditional statement ithe CC
task. Howeverunlike the operations in the other groups, the operaf@n®rmed in the
body of this conditional statement may also be performextt®r tasks ,ife., removing a
compress buffer from theansmit_video queue and returning it to the free pool may
be performed by thénitiate_send task and thdransmit_complete task).
Thus, it isnot possible toassert that certain invocations of € task execute thbody

of the nested conditional. Instedtijs group of conjuncts can be interpreted as an
assertion that by théame the i invocation of theCCtask completes execution, at least
max_transporfree_compress actions will have occurred.

The proof of Theorem 5.40 is amduction. Tosupportthis proof, | begin by presenting
several theorems for eatdsk. One defineshe time interval in which each invocation of
the task is executed. Themainder specializthe general axiomsbout the task under
certain assumptionabout the events that occur prior to the execution of the task. In
effect, each theorem serves astep in theinduction proof of the main theorem. The
assumptiongsbout previous events are thgsumptions required from either theuction
hypothesis othe previous steps of theductionproof to ensure that the taSkxecutes
correctly”.

To aid the reader irfollowing the proofs presented here, Figure 5kt the page on
which each axiom and theorem is defined. In addition, it giwd#dintuitive description
for each axiom and theorem in the chapter.

130

Name Page | Intuitive Description

Axm 5.1 112 Actions start before they end

Axm 5.2 112 | Thath action precedes thie1Staction

Thm 5.3 113 | If i <j, then thath action precedes ti# action

Axm 5.4 114 Associates frame numbevith digitize operation

Axm 5.5 114 Queues are FIFO

Axm 5.6 114 | Indexis the inverse mapping &fame

Axm 5.7 114 Period of the VBI logical interrupt

Axm 5.8 114 Relationship betwestart_compress and CC interrupts
Axm 5.9 115 Messages from DVI handlentBl task

Axm 5.10 115 Messages from DVI handlerGG@task

Axm 5.11 116 Tasks execute prior to their deadline

Axm 5.12 116 Subtasks dBI1 task execute in order

Axm 5.13 116 Mutual exclusion

Axm 5.14 117 | Theth AMO action starts after thi#" task invocation

Axm 5.15 117 AMO actions do not occur between task invocations
Axm 5.16 118 At most one AMO action per task invocation

Thmb5.17 118 Which task invocation executes first AMO action?
Thm5.18 119 | Ifi-1StAMO action occurs in one invocatioitf! occurs in next
Axm 5.19 122 Odd-numbered invocations of Y&l task send t&/BI1 task
Axm 5.20 122 Even-numbered invocations of Wi task send t&BIO task
Axm 5.21 123 First conditional statement in ¥BIO task (if executed)
Axm 5.22 123 First conditional statement in ¥BIO task (if not executed)
Axm 5.23 124 Second conditional statement inYB#0 task

Axm 5.24 125 First conditional statement in ¥iBl1 task

Axm 5.25 125 | free_digitize impliesget_compress_source

Axm 5.26 126 Second conditional statement in\tB¢1l task

Axm 5.27 127 Main conditional statement in fB€task

Axm 5.28 128 Nested conditional statement in@t&task

Thmb5.29 132 The/BI task executes in a specific interval

Thm5.30 132 The/BIO task executes in a specific interval

Thmb5.31 133 Second conditional statement inWiB0 task (induction step)
Lem 5.32 135 | Firstget_digitizing executed in secordBIO0 task
Thm5.33 137 First conditional statement in MBIO task (induction step)
Thmb5.34 140 TheV/BI1 task executes in a specific interval

Thmb5.35 141 First conditional statement in ¥MBI1 task (induction step)
Thm5.36 143 Second conditional statement inWiB#1 task (induction step)
Thm5.37 145 TheCCtask executes in a specific interval

Thm5.38 146 Main conditional statement in f8€task (induction step)
Thm5.39 147 Nested conditional statement in@ttask (induction step)
Thmb5.40 149 Main theorem

Thmb5.43 160 Bounded delay and correctness condition

Figure 5-14: Summary of Axioms and Theorems
5.7.1 Theorems for the VBI Task

First, | develop a theorem that uses theoms thatrepresent thdehavior ofthe VBI
logical interrupt along withthose that represent tiseheduling and execution tdsks to

131

definetwo properties of the/Bl task: theinterval within which each invocation of the
task executes, and an upper bound on its logical arrival time.

Theorem 5.29

@(rvbi_task,i) > (i-1) Wbi_period
O@(vbi_task,i) <i bi_period
O @(:logical_send_vbi,i) <(i-1) [kbi_period + dvi_delay

Proof: First, by Axioms5.11, 5.1, 5.9, and 5.7

@(vbi_task,i) > @(:send_vbi,i)

> @(rsend_vbi,i)
> @(QVBI,i)
> (i-1) bi_period (5.5)

Next, by Axiomsb.11, 5.9, 5.7, and the bounddni_periodgiven in Figure 5-2

@(vbi_task,i) < @(tlogical_send_vbi,i) + vbi_deadline
< @(QVBI,i) + avi_delay + vbi_deadline
< (i-1) bi_period + dvi_delay + vbi_deadline
< (i-1) bi_period + vbi_period
<i bi_period (5.6)

Finally, by Axioms 5.9and 5.7

@(logical_send_vbi,i) < @(QVBI,i) + avi_delay
<(-1) [bi_period + dvi_delay (5.7)
Together, (5.5), (5.6), and (5.7) prove the theorem. O

5.7.2 Theorems for the VBIO Task

The next theorendefinesthe interval within which each invocation d@he VBIO task
executes.
Theorem 5.30

@(1vbiO_task,i) > (2i-1) bi_period
O @(+vbiO_task,i) < 2i bi_period

Proof: By Axioms5.11, 5.1, and 5.20, and Theorem 5.29

@(1vbiO_task,i) > @(+send_vhi0,i)
> @(rsend_vbi0,i)
> @(1vbi_task,2i)
> (2i-1) Wbi_period (5.8)

132

By Axioms5.11, 5.20, 5.9, and 5.7, and the boundlainperiodgiven in Figure 5-2

@ vbi0_task,i) < @(logical_send_vbi0,i) + vbi_deadline
<@(logical_send_vbi,2i) + vbi_deadline
< @(QVBI,2i) + avi_delay + vbi_deadline
< (2i-1) bi_period + dvi_delay + vbi_deadline
< 2i bi_period (5.9)
Together (5.8) and (5.9) prove the theorem. O

The nexttwo theorems address tledfect of executing an invocation tie VBIO task
under several assumptioabout the events that preceded #tart of theinvocation.
Each theorem addresses the effect of one of the conditional statements.

The second conditional statementtire VBIO task is represented bfxiom 5.23.
Theorem 5.31specializes this axiorfor an assumption thatvo events haveoccurred
prior to the start of the" invocation of the task:

1. theit put_next_digitizing preceded the start of th invocation
of theVBIO task.

2. unless this isthe first invocation of the VBIO task, the i-1st
get_next_digitizing was performed by thielst invocation of the
VBIO task.

The theorem shows that if these events occur prior tetére of thenvocation, then the
it instance of each dhe operations in thkody ofthe conditional is executed during the
invocation.

Theorem 5.31

@(:put_next_digitizing,i) < @(1vbiO_task,i)
O[i=1
O] @(+rget_next_digitizing,i-1) > @(1vbi0_task,i-1)
O @(1 get_next_digitizing,i-1) < @(1vbi0_task,i-1)]]
O

@(rget_next_digitizing,i) > @(1vbiO_task,i)
O@(.get_next_digitizing,i) < @(1vbiO_task,i)

O @(+put_digitizing,i) > @(1vbi0_task,i)

O @(« put_digitizing,i) < @(1vbiO_task,i)

O frame (put_digitizing,i) = frame (get_next_digitizing,i)

133

Proof: Assume the |.h.s. of the implication. By this assumption and Axiom 5.14

@(1put_next_digitizing,i) < @(1vbiO_task,i)
O @(1get_next_digitizing,i) > @(1vbiO_task,i)

Thus, by Axiom5.23 there exidt andf such that equation (5.10) holds. Choksadf.

@(rget_next_digitizing,k) > @(1vbiO_task,i)
O @(:get_next_digitizing,k) < @(1vbi0_task,i)
O frame (get_next_digitizing,k) = f
0 @(+put_digitizing,k) > @(1vbiO_task,i)
O @(«put_digitizing,k) < @(1vbiO_task,i)
O frame (put_digitizing,k) = f (5.10)

I now show thak =i. There are two cases, depending.on

Case 1 Assume = 1. By Axiom 5.14 and equation (5.10)

@(rget_next_digitizing,1) > @(1vbi0_task,1)
O @(1get_next_digitizing,k) > @(1vbiO_task,1)
O @(:get_next_digitizing,k) < @(1vbiO_task,1)

and thus by Theorem 5.1k = 1.

Case 2 Assume > 1. By the l.h.s. of the theorem and equation (5.10)

@(rget_next_digitizing,i-1) > @(1vbi0_task,i-1)
O @(1 get_next_digitizing,i-1) < @(1vbiO_task,i-1)
O @(1get_next_digitizing,k) > @(1vbiO_task,i)

O @(1 get_next_digitizing,k) < @(1vbiO_task,i)

and thus by Theorem 5.1185= 1.

Thus, in either cas&,=i. Substituting for k in equation (5.10)

@(rget_next_digitizing,i) > @(1vbiO_task,i)
O @(1 get_next_digitizing,i) < @(1vbiO_task,i)
O @(+put_digitizing,i) > @(1vbi0_task,i)
O @(. put_digitizing,i) < @(1vbiO_task,i) (5.11)

Also, in equation (5.10)

frame (put_digitizing,k) =f = frame (get_next_digitizing,k) (5.12)

Together, (5.11) and (5.12) form the r.h.s. of the implication, proving the theorerl

134

The first conditional statement the VBIO task is represented Byiom 5.21. Theorem
5.33 specializes this axiorfor an assumption that several evelmdseoccurred prior to
the start of the+1stinvocation of the task:

1. theit put_digitizing action was performed by the invocation of
theVBIO task.

2. unless this isthe second invocation of th&BIO task, thei-1st
get_digitizing action was performed by thé invocation of the
VBIO task.

3. if the VBIO task has already been executed at leamnpress_buffers
times, then at leastcompress_buffersompress buffers have already been
returned to the free pool.

4. unless this isthe second invocation of th&BIO task, thei-1st
alloc_compress action was performed by thé invocation of the
VBIO task.

The theorem shows that if these events occur prior tetére of thenvocation, then the
it instance of each dhe operations in thkody ofthe conditional is executed during the
i+1stinvocation of the/BIO task.

Before proving Theorem 5.33, | provdeanma. This lemmahows that théirst instance
of theget_digitizing action and the first instance of thkoc_compress action
do not occur until at least the second invocation oMBE) task.

Lemma 5.32
@(rget_digitizing,1) > @(1vbi0_task,2)
O @(ralloc_compress,1) > @(1vbi0_task,2)

Proof: By Theorem 5.3, and Axioms 5.1 ahd 4

@(put_digitizing,j) > @(:put_digitizing,1)
> @(tput_digitizing,1)
> @ tvbi0_task,1)

This can be combined with an arbitrary clause in a disjunction and generalized to form

Oj[@(put_digitizing,j) > @(1vbi0_task,1)
O @(+get_digitizing,j) < @(1vbi0_task,1)]

which is equivalent to

135

~0[@(.put_digitizing,)) < @(tvbiO_task,1)

O @(1get_digitizing,j) > @(1vbiO_task,1)]
By Axiom 5.22
Ok[@(:get_digitizing,k) < @(1vbiO_task,1)
O @(rget_digitizing,k) > @(1vbiO_task,1)] (5.13)

and

Ok[@(alloc_compress,k) < @(1vbi0_task,1)
O @(ralloc_compress,k) > @(1vbiO_task,1)] (5.14)

By Axioms 5.1and 5.14

@(get_digitizing,1) > @(1get_digitizing,1)
> @ tvbi0_task,1)

and thus fork = 1 thefirst disjunct in(5.13) does nohold. Thus, the secordisjunct
holds.

@(rget_digitizing,1) > @(1vbi0_task,1)

and by Axiom5.15

@(get_digitizing,1) > @(1vbi0_task,2) (5.15)

Similarly by Axioms 5.1and 5.14, equation (5.14) and Axiom 5.15

@(ralloc_compress,1) > @(1vbi0_task,2) (5.16)

Together, (5.15) and (5.16) show the lemma. O

136

Theorem 5.33

@(rput_digitizing,i) > @(1vhi0_task,i)
O @(:put_digitizing,i) < @(1vbi0_task,i)
O i=1

O[@(rget_digitizing,i-1) > @(1vhi0_task,i)

O @(:get_digitizing,i-1) < @(1vbi0_task,i)]]

afi < compress_buffers

O @(:free_compress,i- compress_buffers) < @(1vbiO_task,i+1)]
dpi=1

O] @(+ralloc_compress,i-1) > @(1vbi0_task,i)

O@(alloc_compress,i-1) < @(1vbiO_task,i)]]
O

@(rget_digitizing,i) > @(1vbi0_task,i+1)
O @(:get_digitizing,i) < @(1vbi0_task,i+1)
O @(+put_compress_source,i) > @(1vbi0_task,i+1)
O @(:put_compress_source,i) < @(1vbi0_task,i+1)
O frame (put_compress_source,i) = frame (get_digitizing,i)
O @(+alloc_compress,i) > @(1vbi0_task,i+1)
O@(.alloc_compress,i) < @(1vbi0_task,i+1)
O @(+put_compress_sink,i) > @(1vbi0_task,i+1)
O@(:put_compress_sink,i) < @(1vbi0_task,i+1)
O frame (put_compress_sink,i) = frame (get_digitizing,i)

O @(rcompress,i) > @(1vbi0_task,i+1)
O @(:compress,i) < @(1vbi0_task,i+1)
O frame (compress,i) = frame (get_digitizing,i)

Proof: Assumethe |.h.s. of themplication. The proof consists of three steps. In steps 1
and 2, | show that equatior{5.17) and (5.18) can be derived from the l.h.s. of the
theorem. In step 3, | us&xiom 5.21 to show that the right-hand-side of the theorem
holds.

Step 1: | begin by showing that equation (5.17) holds.

Ol @(:put_digitizing,j) < @(1vbi0_task,i+1)
0@(rget_digitizing,j) > @(1vbi0_task,i+1)] (5.17)

By the |.h.s. of the theorem and Axiom 5.2

@(put_digitizing,i) < @(1vbi0_task,i)
< @(1vbi0_task,i+1)
< @(1vbiO_task,i+1)

Next, there are two cases, depending.on

137

Case 1 Assumd =1. By Lemm&b.32

@(rget_digitizing,1) > @(1vbi0_task,2)

Case 2 Assumd > 1. By the l.h.s. of the theorem

@(get_digitizing,i-1) > @(1vbi0_task,i)

and thus by Axion®.16

@(rget_digitizing,i) > @(1vbiQ_task,i+1)
Thus in either case equation (5.17) holds.

Step 2: Next, | show that equation (5.18) holds.
@(tralloc_compress, compress_buffers) > @(1vbi0_task,i+1)
0

On[@(ralloc_compress,m+ compress_buffers)>@(1vbi0_task,i+1)
O @(:free_compress,m) < @(1vbiO_task,i+1)] (5.18)

There are three cases, depending on

Case 1 Assume = 1. By Lemma 5.32

@(ralloc_compress,1) > @(1vbi0_task,2)

Then byAxiom 5.16, the bound onompress_buffergiven in Figure 5-2, and Theorem
5.3

@(ralloc_compress, compress_buffers)> @(1vbiO_task, compress_buffers +1)
> @(1vbi0_task,2)

Case 2 Assume 1 € < compress_buffersBy the |.h.s. of the theorem

@(ralloc_compress,i-1) > @(1vbi0_task,i)

Thus, by Axiom5.16

@(ralloc_compress, compress_buffers)> @(1vbiO_task, compress_buffers +1)
> @ 1vbi0_task,i+1)

Case 3 Assume > compress_buffersBy the I.h.s. of the theorem

@(tralloc_compress,i-1) > @(1vbi0_task,i)
O @(. free_compress,i- compress_buffers) < @(1vbi0_task,i+1)

138

Letm =i - compress_buffersBy Axiom5.16

@(tralloc_compress,m+ compress_buffers)>@(1vbi0O_task,i+1)
O @(.free_compress,m) < @(1vbi0_task,i+1)

Thus in each case equation (5.18) holds.

Step 3: Together, equations (5.1&hd(5.18) are the l.h.s. d&xiom 5.21. Thus, there
existk andf such that equation (5.19) holds. Choksadf.

@(rget_digitizing,k) > @(1vbi0_task,i+1)
O @(:get_digitizing,k) < @(1vbi0_task,i+1)
O frame (get_digitizing,k) = f
O @(+put_compress_source,k) > @(1vbi0_task,i+1)
O@(. put_compress_source,k) < @(1vbi0_task,i+1)
O frame (put_compress_source,k) = f
O @(ralloc_compress,k) > @(1vbi0_task,i+1)
O@(.alloc_compress,k) < @(1vbi0_task,i+1)
O @(+put_compress_sink,k) > @(1vbi0_task,i+1)
O@(. put_compress_sink,k) < @(1vbi0_task,i+1)
O frame (put_compress_sink,k) = f
O@(+compress,k) > @(1vbi0_task,i+1)
O@(.compress,k) < @(1vbi0_task,i+1)
O frame (compress,k) = f (5.19)

There are two cases, depending.on

Case 1 Assume = 1. By Lemma 5.32 and equation (5.19)

@(rget_digitizing,1) > @(1vbi0_task,i+1)
O @(rget_digitizing,k) > @(1vbi0_task,i+1)
O @(:get_digitizing,k) < @(1vbi0_task,i+1)

and thus by Theorem 5.1k = 1.

Case 2 Assuma > 1. By the l.h.s. of the theorem and equation (5.19)

@(rget_digitizing,i-1) > @(1vbi0_task,i)
0@(. get_digitizing,i-1) < @(Lvbi0_task;i)
0@(rget_digitizing,k) > @(1vbi0_task,i+1)
0@(. get_digitizing,k) < @(Lvbi0_task,i+1)

and thus by Theorem 5.18=i. Thus in either cade=1.

Furthermore, in equation (5.19)

139

frame (get_digitizing,k) = frame (put_compress_sink,k)
= frame (compress,k)
frame (put_compress_source,k)

Substitutingi for k and frame (get_digitizing,k) for f in equation (5.19Yyields
the right-hand-side of the theorem. This proves the theorem. O

5.7.3 Theorems for the VBI1 Task

The next theorendefinesthe interval within which each invocation dhe VBI1 task
executes.

Theorem 5.34

@(1vbil_task,i) > (2i-2) [Wbi_period
0@(:vbil_task,i) < (2i-1) [Wbi_period

Proof: By Axioms5.11, 5.1 and 5.19, and Theorem 5.29

@(vbil_task,i) > @(:send_vbil,i)

> @(rsend_vbil,i)
> @(1vbi_task,2i-1)
> (2i-2) Okbi_period (5.20)

By Axioms5.11, 5.19, 5.9, and 5.7, and the boundlainperiodgiven in Figure 5-2

@(vbil_task,i) < @(logical_send_vbil,i) + vbi_deadline
<@(tlogical_send_vbi,2i-1) + vbi_deadline
<@(QVBI,2i-1) + avi_delay + vbi_deadline
< (2i-2) bi_period + dvi_delay + vbi_deadline
< (2i-1) bi_period (5.21)
Together (5.20) and (5.21) prove the theorem. O

The nexttwo theorems address tledfect of executing an invocation tie VBI1 task
under several assumptioabout the events that preceded #tart of theinvocation.
Each theorem address the effect of executing one of the two subtask¥Bfxhtask.

The effect of executinthe first subtask othe VBI1 task is represented Byxiom 5.24.

Theorem 5.3%pecializes this axiorfor an assumption that several everdsdoccurred
prior to the start of thig" invocation of the subtask, wheke= i + digitize_ buffers

1. theit put_compress_source preceded the start of tHiest subtask
of thek" invocation of the/BI1 task.

140

2. the it CC interrupt preceded the start of thest subtask ofthe k
invocation of theVBI1 task.

3. if the VBI1 taskhas already executed at leasgitize buffersl times
prior to the start of the first subtask of #feinvocation of the/BI1 task,
then at least-1 digitize buffers had beeeturned to the free pool prior to
the end of the first subtask of tkdstinvocation of the/BI1 task.

The theorem shows that if these events occur prior tetéreof thekh subtask, then the
it free_digitize action occurs prior to the end of tkiesubtask.

Theorem 5.35

@(:put_compress_source,i) < @(1vbil_partl,i+ digitize_buffers)
O@(QCC,i)) < @(trvbil_partl,i+ digitize_buffers)
O[i=1
O @(:free_digitize,i-1) < @(1vbil_partl,i+ digitize_buffers -1)]
O
@(.free_digitize,i) < @(1vbil_partl,i+ digitize_buffers)

Proof: Assumethe |.h.s. of themplication. There ardwo cases depending on whether
or not thei free_digitize action started prior to the start of the task.

Case 1 Assume

@(free_digitize,i) < @(rvbil_task,i+ digitize_buffers)
By Axiom 5.12
@(free_digitize,i) < @(1vbil_task,i+ digitize_buffers)
< @(1vbil_partl,i+ digitize_buffers)

and thus by the contrapositive of Axiom 5.15 and Theorem 5.3

@(free_digitize,i) < @(1vbil_partl,i+ digitize_buffers -1)
< @(1vbil_partl,i+ digitize_buffers)

Case 2 Assume

@(free_digitize,i) > @(ivbil_task,i+ digitize_buffers)

Thus by Axiomss.25 and 5.12

@(rget_compress_source,i) > @(1vbil_task,i+ digitize_buffers)
> @(1vbil_partl,i+ digitize_buffers)

Combining this with the I.h.s. of the theorem yields

141

@(:put_compress_source,i) < @(1vbil_partl,i+ digitize_buffers)
O @(1get_compress_source,i) > @(1vbil_partl,i+ digitize_buffers)
O@(QCC,i)) < @(1vbil_partl,i+ digitize_buffers)

which isthe |.h.s. ofAxiom 5.24. Thus, byAxiom 5.24, thereexistk andf suchthat
equation (5.22) holds. Chookandf.

@(+free_digitize,k) > @(1vbil_partl,i+ digitize_buffers)
O @(. free_digitize,k) < @(1vbil_partl,i+ digitize_buffers) (5.22)

I now show thak>i. There are two cases, depending.on
Case 2a Assuma = 1. Therk>1.
Case 2b Assumd > 1.

By equation (5.22), Axiom 5.2, the |.h.s. of the theorem, and Axiom 5.1

@(free_digitize,k) > @(1vbil_partl,i+ digitize_buffers)
> @(1vbil_partl,i+ digitize_buffers -1)
> @(free_digitize,i-1)
> @(free_digitize,i-1)

Thus, by the contrapositive of Theorem %33i-1.

Thus in both case 2a and 2z i. By Theorem 5.3 and equation (5.22)

@(free_digitize,i) < @(:free_digitize,k)
< @(vbil_partl,i+ digitize_buffers)

This proves the theorem. a

The effect of executinghe second subtask of théBI1 task is represented byxiam
5.26. Theorem 5.36pecializes this axiorfor an assumption that several evehése
occurred prior to the start of tlifeinvocation of the subtask:

1. if the second subtask of tlite invocation of thevVBI1 taskhas already
executed at leaddigitize bufferstimes, then at leastdigitize_buffers
digitize buffers have already been returned to the free pool.

2. unless this ishe second subtask of tfiest invocation ofthe VBI1 task,
thei-1stalloc_digitize was performed by the second subtask of the
i-1stinvocation of thevBI1 task.

142

The theorem shows that if these events occur prior tetéreof the subtaskhen theit
instance of each dhe operations in thibody ofthe conditional is executed durirthe it
subtask.

Theorem 5.36
[i < digitize_buffers
O @(:free_digitize,i- digitize_buffers) < @(1vbil_part2,i)]
O[i=1
O @(ralloc_digitize,i-1) > @(1vbil_part2,i-1)
O @(:alloc_digitize,i-1) < @(wvbil_part2,i-1)]]

@(ralloc_digitize,i) > @(1vbil_part2,i)

O @(.alloc_digitize,i) < @(1vbil_part2,i)

O @(+digitize,i) > @(1vhil_part2,i)

O @(. digitize,i) < @(1vbil_part2,i)

O @(+put_next_digitizing,i) > @(1vbil_part2,i)

O @(« put_next_digitizing,i) < @(1vbil_part2,i)

O frame (put_next_digitizing,i) = frame (digitize,i)

Proof: Assumehe I.h.s. of themplication. The proof consists divo steps. In thdirst
step, | show that equation (5.28n be derived fronthe |.h.s. of the theorem. In the
second step, | use Axiom 5.26 to show that the right-hand-side of the theorem holds.

Step 1: | begin by showing that equation (5.23) holds.

@(ralloc_digitize, digitize_buffers)>@(1vbil_part2,i)
O
On[@(ralloc_digitize,m+ digitize_buffers) > @(1vbil_part2,i)
0 @(. free_digitize,m) < @(1vbil_part2,i)] (5.23)

There are two cases depending.on

Case 1 Assumd < digitize_buffers By Axiom5.14

(ralloc_digitize,i) > @(1vbil_part2,i)

and thus by Axion®.16 and Theorem 5.3

@(ralloc_digitize, digitize_buffers)>@(rvbil_part2, digitize_buffers)
> @(1vbil_part2,i)

Case2: Assumei > digitize_buffers Letm =i - digitize_buffers By Axiom 5.14 and
the I.h.s. of the theorem

143

@(ralloc_digitize,i) > @(1vbil_part2,i)
O @(:free_compress,i- digitize_buffers) < @(1vbil_part2,i)

which expressed in terms wfis

@(ralloc_digitize,m+ digitize_buffers)>@(1vbil_part2,i)
O @(:free_compress,m) < @(1vbil_part2,i)

Thus in each case (5.23) holds.

Step 2: Equation (5.23) is the l.h.s. #kiom 5.26. Thus, therexistk andf suchthat
equation (5.24) holds. Chookandf.

@(ralloc_digitize,k) > @(1vbil_part2,i)
O @(:alloc_digitize,k) < @(1vbil_part2,i)
O @(+digitize,k) > @(1vbil_part2,i)
0 @(. digitize,k) < @(1vbil_part2,i)
O frame (digitize,k) = f
O @(+put_next_digitizing,k) > @(1vbil_part2,i)
O @(« put_next_digitizing,k) < @(1vbil_part2,i)
O frame (put_next_digitizing,k) = f (5.24)

There are two cases, depending.on

Case 1 Assume = 1. By Axiom 5.14 and equation (5.24)

@(ralloc_digitize,1) > @(1vbil_part2,1)
O @(ralloc_digitize,k) > @(1vbil_part2,1)
O @(:alloc_digitize,k) < @(1vbil_part2,1)

and thus by Theorem 5.1k = 1.

Case 2 Assume > 1. By the l.h.s. of the theorem and equation (5.24)

@(ralloc_digitize,i-1) > @(1vbil_part2,i-1)
O @(.alloc_digitize,i-1) < @(1vbil_part2,i-1)
O @(+alloc_digitize,k) > @(1vbil_part2,i)

O @(.alloc_digitize,k) < @(1vbil_part2,i)

and thus by Theorem 5.18=i. Thus in either cade=1.

Furthermore, in equation (5.24)

frame (put_next_digitizing,k) = frame (digitize k) = f

144

Substituting for k andframe (digitize,k) for f in equation (5.24yieldsthe right-
hand-side of the theorem. This proves the theorem. O

5.7.4 Theorems for the CC Task

The next theorendefinesthe interval within which each invocation dhe CC task
executes.
Theorem 5.37

@(rcc_task,i) > @(Lcompress,i)
O@(.cc_task,i) < @(rcompress,i) + 3 Okbi_period

Proof: By Axioms5.11, 5.1, 5.10, and 5.8

@(rcc_task,i) > @(:send_cc,i)

> @(rsend_cc,i)
> @(QCC,i)
> @(Lcompress,) (5.25)

By Axioms5.11, 5.10 and 5.8, and the boundcompress_requesiven in Figure 5-2

@(cc_task,i) < @(logical_send_cc,i) + cc_deadline
<@ QCC,i)+ dvi delay + cc_deadline
<@ rcompress,i) + compress_request + vbi_period
<@ rcompress,i) + 3 Okbi_period (5.26)
Together (5.25) and (5.26) prove the theorem. O

The nexttwo theorems address tleéfect of executing an invocation tife CCtask under
several assumptionsbout the events that preceded #tart of theinvocation. Each
theorem addresses the effect of one of the conditional statements.

The nmain conditional statement ithe CC task (excluding the nested conditional) is
represented bypxiom 5.27. Theorem 5.38pecializes this axiorfor an assumptiothat
several events have occurred prior to the start afithnvocation of the task:

1. theit put_compress_sink preceded the start of tlteinvocation of
the CCtask.

2. unless this isthe first invocation of the CC task, the i-1st
get_compress_sink was performed by the1st invocation of the
VBIO task.

145

The theorem shows that if these events occur prior tetére of thenvocation, then the

it instance of each dhe operations in thkody ofthe conditional is executed during the
invocation.

Theorem 5.38
@(put_compress_sink,i) < @(rcc_task,i)
O[i=1
O] @(+tget_compress_sink,i-1) > @(1cc_task,i-1)
O@(.get_compress_sink,i-1) < @(1cc_task,i-1)]]

@(tget_compress_sink,i) > @(1cc_task,i)
O@(:get_compress_sink,i) < @(1cc_task,i)

O @(+put_transmit,i) > @(1cc_task,i)

O@(. put_transmit,i) < @(1cc_task,i)

O frame (put_transmit,i) = frame (get_compress_sink,i)

Proof: Assume the |.h.s. of the implication. By this assumption and Axiom 5.14

@(1put_compress_sink,i) < @(rcc_task,i)
O @(1get_compress_sink,i) > @(1cc_task,i)

Thus, by Axiom5.27 there exidt andf such that equation (5.27) holds. Choksadf.

@(rget_compress_sink,k) > @(1cc_task,i)
O@(.get_compress_sink,k) < @(1cc_task,i)
O frame (get_compress_sink,k) = f
O @(+put_transmit,k) > @(1cc_task,i)
O@(:put_transmit,k) < @(1cc_task,i)
O frame (put_transmit,k) = f (5.27)

I now show thak =i. There are two cases, depending.on

Case 1 Assume = 1. By Axiom 5.14 and equation (5.27)

@(rget_compress_sink,1) > @(1cc_task,i)
O @(+get_compress_sink,k) > @(1cc_task,i)
O@(.get_compress_sink,k) < @(1cc_task,i)

and by Theorem 5.1%,=1.

Case 2 Assuma > 1. By the l.h.s. of the theorem and equation (5.27)

@(rget_compress_sink,i-1) > @(1cc_task,i-1)
O@(.get_compress_sink,i-1) < @(1cc_task,i-1)
O @(+get_compress_sink,k) > @(1cc_task,i)
O@(.get_compress_sink,k) < @(1cc_task,i)

146

and thus by Theorem 5.18=i. Thus in either cade=1.

Furthermore, in equation (5.27)

frame (put_transmit,k) = frame (get_compress_sink,k) = f
Substitutingi for k and frame (get_compress_sink,k) for f in equation (5.27)
yields the right-hand-side of the theorem. This proves the theorem. O

The nested conditional statementhie CCtask is represented Bkiom 5.28. Theorem

5.39 specializes this axiorfor an assumption that several evelmdseoccurred prior to
the start of thét" invocation of the task, wheke= i + max_ transport

1. thekh put_compress_sink preceded the start of the invocation of
the CCtask.

2. the ki get_compress_sink occurred after the start of thkh
invocation of theCCtask.

3. thek-1st put_transmit preceded the start of tik invocation of the
CCtask.

4. if the CCtaskhas already executed at leasix_transportimesprior to
the start of the&k" invocation of theCCtask, then ateasti-1 compress
buffers had beemeturned to the free pool prior to the end of kst
invocation of theCCtask.

The theorem shows that if these events occur prior tetéreof thekh subtask, then the
it free_compress action occurs prior to the end of tkiesubtask.

Theorem 5.39

@(.put_compress_sink,i+ max_transport) < @(icc_task,i+ max_transport)
O @(1get_compress_sink,i+ max_transport) > @(+rcc_task,i+ max_transport)
O @(« put_transmit,i+ max_transport -1) < @(1cc_task,i+ max_transport)
O i=1

O @(:free_compress,i-1) < @(:cc_task,i+ max_transport -1)]
O
@(free_compress,i) < @(.cc_task,i+ max_transport)

Proof: Assumethe |.h.s. of themplication. There ardwo cases depending on whether
or not thei free_compress action started prior to the start of the task.

147

Case 1 Assume

@(free_compress,i) < @(tcc_task,i+ max_transport)

There aretwo subcases depending on whethlee it free_compress action was
executed by an invocation of the_task or thetc_task

Case 1a Assume there existg @uch that

@(1free_compress,i) > @(1cc_task,))
O @(:free_compress,i) < @(1cc_task,j)

In this casej < i+max_transport Thus by Theorem 5.3

@(free_compress,i) < @(1cc_task,j)
< @(1cc_task,i+ max_transport)

Case 1b Assume there existg auch that

@(1free_compress,i) > @(1tc_task,j)
O @(:free_compress,i) < @(1tc_task,))

In this case,

@(tc_task,j) < @(1free_compress,i)
<@(1cc_task,i+ max_transport)

and thus by Axiom$.13

@(tc_task,)) < @(1cc_task,i+ max_transport)

Combining these expressions and applying Axiom 5.1 yields

@(free_compress,i) < @(1tc_task,))
<@(1cc_task,i+ max_transport)
<@ tcc_task,i+ max_transport)

Case 2 Assume

@(free_compress,i) > @(1cc_task,i+ max_transport)

Combining this with the I.h.s. of the theorem yields

@(1put_compress_sink,i+ max_transport) < @(icc_task,i+ max_transport)
O @(1get_compress_sink,i+ max_transport) > @(+rcc_task,i+ max_transport)
O @(« put_transmit,i+ max_transport -1) < @(1cc_task,i+ max_transport)

O @(+free_compress,i) > @(rcc_task,i+ max_transport)

148

which is the |.h.s. of Axion®.28. Thus, byAxiom 5.28 thereexists &k such that equation
(5.28) holds.

@(1free_compress,k) > @(1cc_task,i+ max_transport)
O@(.free_compress,k) < @(tcc_task,i+ max_transport) (5.28)

I now show thak>i. There are two cases, depending.on
Case 2a Assuma = 1. Therk>1.
Case 2b Assumd > 1.

By equation (5.28), Axiom 5.2, and the |.h.s. of the theorem, and Axiom 5.1

@(free_compress,k) > @(1cc_task,i+ max_transport)
> @(rcc_task,i+ max_transport -1)
> @(free_compress,i-1)
> @(1free_compress,i-1)

Thus, by the contrapositive of Theorem %33i—1.

Thus in both case 2a and X2 i. By Theorem 5.3 and equation (5.28)

@(free_compress,i) < @(free_compress,k)
< @(.cc_task,i+ max_transport)

This proves the theorem. O
5.7.5 The Main Theorem

| am now ready to develop tipeoof of the main theorem of the chapter. Afescribed
previously,the proof is annduction that usethe six theorems developed above as the
central steps in showing that the six groups of conjuncts in the theorem hold.

Theorem 5.40

@(ralloc_digitize,i) > @(1vbil_part2,i)
O @(:alloc_digitize,i) < @(1vbil_part2,i)
O @(+digitize,i) > @(1vbil_part2,i)
O @(. digitize,i) < @(1vbil_part2,i)
O @(+put_next_digitizing,i) > @(1vbil_part2,i)
O @(« put_next_digitizing,i) < @(1vbil_part2,i)

O frame (put_next_digitizing,i) = frame (digitize,i)

149

O @(1get_next_digitizing,i) > @(
O @(1 get_next_digitizing,i) < @(

0 @(+put_digitizing,i) > @(
O @(« put_digitizing,i) < @(
O frame (put_digitizing,i) =

0 @(rget_digitizing,i) > @(
0 @(:get_digitizing,i) < @(

O @(+put_compress_source,i) > @(
O @(. put_compress_source,i) < @(
O frame (put_compress_source,i) =
U @(ralloc_compress,i) > @(
O @(:alloc_compress,i) < @(
O @(+put_compress_sink,i) > @(
O@(:put_compress_sink,i) < @(
O frame (put_compress_sink,i) =
1vbi0_task,i+1)
1vbiO_task,i+1)

frame (get_digitizing,i)

0 @(rcompress,i) > @(
0 @(:compress,i) < @(
O frame (compress,i) =

O @(1get_compress_sink,i) > @(
O@(:get_compress_sink,i) < @(

0 @(rput_transmit,i) > @(
0 @(+ put_transmit,i) < @(
O frame (put_transmit,i) =

afi < digitize_buffers
O @(.free_digitize,i-

ari < max_transport
O @(. free_compress,i-

1vbiO_task,i)
1vbiO_task,i)
1vbiO_task,i)
1vbi0_task,i)
frame (get_next_digitizing,i)

1vbi0_task,i+1)
1vbiO_task,i+1)
1vbiO_task,i+1)
1vbi0_task,i+1)
frame (get_digitizing,i)
1vbi0_task,i+1)
1vbiO_task,i+1)
1vbiO_task,i+1)
1vbi0_task,i+1)
frame (get_digitizing,i)

1cc_task,i)
1cc_task,i)
1cc_task,i)
1cc_task,i)
frame (get_compress_sink,i)

digitize_buffers

) < @(1vbil_part2,i)]

max_transport) < @(:cc_task,i)]

Proof: By induction. Assume that the proposition halds< N. | will show that it holds
for N. There aresix steps in the proof. In thex steps, | Wl show that thesix equations
(5.29), (5.34), (5.36), (5.39), (5.43nd(5.46) can be derived either frothe induction
hypothesis or from previous steps in the proof.

Step 1: | begin by showing that equation (5.29) holds.

N < digitize_buffers

O @(:free_digitize,N- digitize_buffers) <@(1vbil_part2,N) (5.29)
There are two cases to be considered, dependihg on

Case 1 AssumeN < digitize_buffers Equation (5.29) holds trivially.

150

Case2: AssumeN > digitize_buffers Letm = N-digitize_buffers Thus, equation (5.29)
will hold only if equation (5.30) holds.

@(free_digitize,m) < @(1vbil_part2,N) (5.30)

There are four substeps required to show that equation (5.30) holds. In steps la-1c, |
show that equations (5.31), (5.32nd (5.33) hold. In stedd, | use Theorem 5.35 to
show that equation (5.30) holds.

Step la: | begin by showing that equation (5.31) holds.

@(put_compress_source,m) < @(tvbil_partl,N)
(5.31)

By theinduction hypothesis, Theorem30, the bound odigitize _buffersggiven in Figure
5-2, Theorem 5.34, and Axiom 5.12

@(put_compress_source,m) < @(+vbi0_task,m+1)
< 2(m+1) 0Okbi_period
< 2(N- digitize_buffers +1) Okbi_period
<2(N-2) [Qkbi_period
< (2N-2) [Qkbi_period
< @(1vbil_task,N)
< @(1vbil_partl,N)

Thus equation (5.31) holds.

Step 1b: Next | show that equation (5.32) holds.

@@QCC,m) < @(:vbil_partl,N) (5.32)

By Axiom 5.8,the induction hypothesis, Theorem30, the bound onompress_request
given in Figure 5-2the bound omigitize_bufferggiven in Figure 5-2Theorem 5.34, and
Axiom 5.12

@QCC,m) <@(.compress,m)+ compress_request
< @(:vbi0_task,m+1) + compress_request
<2(m+1) 0Okbi_period + compress request
<2(m+1) 0Okbi_period + 2 [vbi_period
< (2m+4) [QOkbi_period
< (2(N- digitize_buffers)+4) kbi_period
< (2(N-3)+4) Qkbi_period
< (2N-2) [QOkbi_period
< @(1vbil_task,N)
< @(1vbil_partl,N)

151

Thus equation (5.32) holds.

Step 1c: Next | show that equation (5.33) holds.

m=1
O @(:free_digitize,m-1) < @(1vbil_part1,N-1)
(5.33)

If m= 1, then equation (5.38plds trivially. Ifm > 1, then equation (5.38plds by the
induction hypothesis. In either case, equation (5.33) holds.

Step 1d: Together, equations (5.31), (5.3ahd(5.33) are the lIs. of Theorem 5.35.
Applying the theorem far=m

@(free_digitize,m) < @(:vhil_partl,N)

and thus by Axion.12

@(free_digitize,m) < @(1vbil_part2,N)
Thus equation (5.30) holds.
End of Step 1: In both cases, equation (5.29) holds.

Step 2: Next, | show that equation (5.34) holds.

@(ralloc_digitize,N) > @(1vbil_part2,N)
O @(:alloc_digitize,N) < @(1vbil_part2,N)
O @(+digitize,N) > @(1vbil_part2,N)
O @(. digitize,N) < @(1vbil_part2,N)
O @(+put_next_digitizing,N) > @(1vbil_part2,N)
O @(« put_next_digitizing,N) < @(1vbil_part2,N)
O frame (put_next_digitizing,N) = frame (digitize,N) (5.34)

There argwo substeps required to show that equation (5.34) holds. In step 2a, | show
that equation (5.35) holds. In step 2b, | use Theorem 5.36 to show that equation (5.34)
holds.

Step 2a: | begin by showing that equation (5.35) holds.
N=1

O[@(ralloc_digitize,N-1) > @(1vbil_part2,N-1)
D@(.alloc_digitize,N-1) < @(1vbil_part2,N-1)] (5.35)

152

If N =1, then equation (5.3%plds trivially. IfN > 1, then equation (5.3%)plds by the
induction hypothesis. In either case, equation (5.35) holds.

Step 2b: Togetherwith equation(5.29), equation (5.35jorms the |.h.s. of Theorem
5.36. Applying the theorem for= N gives equation (5.34).

End of Step 2: Thus equation (5.34) holds.

Step 3: Next, | show that equation (5.36) holds.

@(rget_next_digitizing,N) > @(1vbi0_task,N)
O @(:get_next_digitizing,N) < @(1vbiO_task,N)
O @(+put_digitizing,N) > @(1vbi0_task,N)
O @(« put_digitizing,N) < @(1vbiO_task,N)
O frame (put_digitizing,N) = frame (get_next_digitizing,N) (5.36)

There are three substeps required to show that equation (5.36) holds. In stegps3Ba
| show that equations (5.37) and (5.38) hold. In step 3c, | use Theorem 5.31 to show that
equation (5.36) holds.

Step 3a: | begin by showing that equation (5.37) holds.

@(put_next_digitizing,N) < @(1vbiO_task,N) (5.37)

By equation (5.34), Axiom 5.12, and Theorems 5.34 and 5.30

@(put_next_digitizing,N) < @(1vbil_part2,N)
< @(1vbil_task,N)
< (2N-1) bi_period
< @(1vbi0_task,N)

Thus equation (5.37) holds.

Step 3b: Next | show that equation (5.38) holds.

N=1
O] @(+rget_next_digitizing,N-1) > @(1vbi0_task,N-1)
O @(get_next_digitizing,N-1) < @(1vbiO_task,N-1)]] (5.38)

If N =1, then equation (5.38plds trivially. IfN > 1, then equation (5.38plds by the
induction hypothesis. In either case, equation (5.38) holds.

Step 3c: Together, equations (5.3dnd(5.38) are the I.h.s. of Theorem 5.3Applying
the theorem for = N gives equation (5.36).

153

End of Step 3: Thus equation (5.36) holds.

Step 4: Next, | show that equation (5.39) holds.

@(rget_digitizing,N) > @(1vbi0_task,N+1)
O@(.get_digitizing,N) < @(1vbi0_task,N+1)
O @(+put_compress_source,N) > @(1vbi0_task,N+1)
O@(:put_compress_source,N) < @(1vbi0_task,N+1)
O frame (put_compress_source,N) = frame (get_digitizing,N)
O @(+alloc_compress,N) > @(1vbi0_task,N+1)
O @(.alloc_compress,N) < @(1vbi0_task,N+1)
O @(+put_compress_sink,N) > @(1vbi0_task,N+1)
O@(:put_compress_sink,N) < @(1vbi0_task,N+1)
O frame (put_compress_sink,N) = frame (get_digitizing,N)

O@(+compress,N) > @(1vbi0_task,N+1)
O@(.compress,N) < @(1vbi0_task,N+1)
O frame (compress,N) = frame (get_digitizing,N) (5.39)

There are four substeps required to show that equation (5.39) holds. In steps 4a-4c, |
show that equations (5.40), (5.44nd (5.42) hold. In stegld, | use Theorem 5.33 to
show that equation (5.39) holds.

Step 4a: | begin by showing that equation (5.40) holds.

N=1
O] @(+rget_digitizing,N-1) > @(1vbi0_task,N)
O @(:get_digitizing,N-1) < @(1vbi0_task,N)] (5.40)

If N =1, then equation (5.40plds trivially. IfN > 1, then equation (5.40plds by the
induction hypothesis. In either case, equation (5.40) holds.

Step 4b: Next, | show that equation (5.41) holds.

N < compress_buffers
O@(:free_compress,N- compress _buffers) < @(1vbiO_task,N+1) (5.41)

There are two cases, depending\bn

Case 1 AssumeN < compress_buffersThen equation (5.41) holds trivially.

Case 2 AssumeN > compress_buffersLetm = N-compress_buffers

By the bound omompress_buffergiven in Figure 5-2the induction hypothesis, Theorem

5.37, the induction hypothesis, and two uses of Theorem 5.30

154

@(free_compress,m) < @(.free_compress,N- compress_buffers)
< @(:free_compress,N- max_transport -2)
< @(:cc_task,N-2)
< @(:compress,N-2) + 3 Okbi_period
< @(1vbi0_task,N-1) + 3 Wbi_period
<2(N-1) [kbi_period +3 [¥bi_period
< (2N+1) [Okbi_period
< (2(N+1)-1) QOkbi_period
< @(1vbi0_task,N+1)

Thus in either case equation (5.41) holds.

Step 4c: Next, | show that equation (5.42) holds.

N=1
O] @(ralloc_compress,N-1) > @(1vbi0_task,N)
O@(ralloc_compress,N-1) < @(1vbi0_task,N)] (5.42)

If N =1, then equation (5.4Rplds trivially. IfN > 1, then equation (5.4Bplds by the
induction hypothesis. In either case, equation (5.42) holds.

Step 4d: Along with equatior(5.36), equations (5.40), (5.4and(5.42) form the |.h.s.
of Theorem 5.33. Applying the theorem for N gives equation (5.39).

End of Step 4: Thus equation (5.39) holds.

Step 5: Next, | show that equation (5.43) holds.
@(rget_compress_sink,N) > @(rcc_task,N)
O@(.get_compress_sink,N) < @(1cc_task,N)
O @(+put_transmit,N) > @(rcc_task,N)
O@(. put_transmit,N) < @(1cc_task,N)
O frame (put_transmit,N) = frame (get_compress_sink,N) (5.43)

There are three substeps required to show that equation (5.43) holds. In stegpHba
| show that equations (5.44) and (5.45) hold. In step 5c, | use Theorem 5.38 to show that
equation (5.43) holds.

Step 5a: | begin by showing that equation (5.44) holds.

@(put_compress_sink,N) < @(tcc_task,N) (5.44)

By Theorem 5.37Axiom 5.1 and equation (5.39)

155

@(rcc_task,N) > @(:compress,N)
> @(rcompress,N)
> @(1vbiO_task,N+1)

and thus by Axion®.13

@(cc_task,N) > @(1vbi0_task,N+1)

Combining this with equation (5.39) yields

@(put_compress_sink,N) < @(1vbi0_task,N+1)
< @(tcc_task,N)

Thus equation (5.44) holds.

Step 5b: Next | shown that equation (5.45) holds.

N=1
O] @(+tget_compress_sink,N-1) > @(rcc_task,N-1)
O@(.get_compress_sink,N-1) < @(1cc_task,N-1)] (5.45)

If N =1, then equation (5.4%plds trivially. IfN > 1, then equation (5.4%)plds by the
induction hypothesis. In either case, equation (5.45) holds.

Step 5c: Together, equations (5.44nd (5.45) form the l.h.s. of Theorem 5.38.
Applying the theorem for= N gives equation (5.43).

End of Step 5: Thus equation (5.43) holds.

Step 6: Next, | show that equation (5.46) holds.

N < max_ transport
O@(.free_compress,N- max_transport) < @(.cc_task,N) (5.46)

There are two cases to be considered, dependihg on
Case 1 AssumelN < max_transport Equation (5.46) holds trivially.

Case2: AssumeN > max_transport Letm = N-max_transport Thus, equation (5.46)
will hold only if equation (5.47) holds.

@(free_compress,m) < @(:cc_task,N) (5.47)

156

There are three substeps required to show that equation (5.47) holds. In stegp6tba
| show that equations (5.48) and (5.49) hold. In step 6c, | use Theorem 5.39 to show that
equation (5.47) holds.

Step 6a: | begin by showing that equation (5.48) holds.

@(put_transmit,m+ max_transport -1) < @(1cc_task,m+ max_transport)
(5.48)

By the induction hypothesis, Axiom 5.2, and the definitiomof

@(put_transmit,m+ max_transport -1) < @(.cc_task,N-1)
< @(tcc_task,N)
< @(tcc_task,m+ max transport)

Thus equation (5.48) holds.

Step 6b: Next | show that equation (5.49) holds.

m=1
O @(.free_compress,m-1) < @(.cc_task,m+ max_ transport -1) (5.49)

If m=1, then equation (5.4%plds trivially. Ifm > 1, then by thénduction hypothesis,
Axiom 5.1,and the definition om

@(free_compress,m-1) < @(:cc_task,N-1)
< @(tcc_task,N-1)
< @(tcc_task,m+ max transport -1)

Thus equation (5.49) holds.

Step 6¢: Togetherwith equation(5.43), equations (5.48nd (5.49) form the l.Is. of
Theorem 5.39. Applying the theorem for m gives equatior(5.47). Thus equation
(5.46) holds.

End of Step 6: Thus in either case equation (5.46) holds.
Together (5.29), (5.34), (5.36), (5.39), (5.43), and (5.46) prove the theorem. O
5.7.6 Proof of the Correctness Condition

I am now ready to develop thproof of the correctness conditigiven in Figure5-10.
Before proving the theorem, | protso lemmas: the first givesthe interval within which

157

theit digitize action occurs in terms of VBI interrupts and the second shows that for
several actions, thé instance of the action processes the frame with frame number

Lemma 5.41
@(tdigitize,i) > @(QVBI,2i-1)
0 @(. digitize,i) < @(QVBI,2i)

Proof: By Theorem 5.40Axiom 5.12, Theorem 5.34, and Axiom 5.7

@(digitize,i) > @(1vbil_part2,i)
> @(1vbil_task,i)
> (2i-2) bi_period
> @(QVBI,2i-1)

Similarly, by Theorenb.40,Axiom 5.12, Theorem 5.34, and Axiom 5.7

@(digitize,i) < @(1vbil_part2,i)
<@ 1vbil_task,i)
< (2i-1) bi_period
<@(QVBI,2i)
Together, these prove the lemma. O
Lemma 5.42

index (digitize,i) =i
O index (compress,i) =i
O index (put_transmit,i) =i

Proof: By Lemmab.41

@(+digitize,i) > @(QVBI,2i-1)
0 @(. digitize,i) < @(QVBI,2i)

and by Axiom 5.1

@(digitize,) > @(rdigitize,i)

so it is the case that

@(. digitize,i) > @(QVBI,2i-1)
0 @(. digitize,i) < @(QVBI,2i)

and thus by Axiom 5.4

frame (digitize,i) = i (5.50)

158

By Theorem 5.40

frame (put_next_digitizing,i) = frame (digitize,i)
O frame (put_digitizing,i) = frame (get_next_digitizing,i)
O frame (compress,i) = frame (get_digitizing,i)
O frame (put_compress_sink,i) = frame (get_digitizing,i)
O frame (put_transmit,i) = frame (get_compress_sink,i) (5.51)

and by Axiom 5.5

frame (get_next_digitizing,i) = frame (put_next_digitizing,i)
O frame (get_digitizing,i) = frame (put_digitizing,i)
O frame (get_compress_sink,i) = frame (put_compress_sink,i) (5.52)

Combining equations (5.50), (5.51), and (5.52) yields

frame (digitize,i) = frame (put_next_digitizing,i)
frame (get_next_digitizing,i)
frame (put_digitizing,i)
frame (get_digitizing,i)
frame (compress,i)

frame (put_compress_sink,i)
frame (get_compress_sink,i)
frame (put_transmit,i)

Thus
frame (digitize,i) =i

O frame (compress,i) =i
O frame (put_transmit,i) =i

and by Axiom 5.6

index (digitize,i) =i
O index (compress,i) =i
O index (put_transmit,i) =i

This proves the lemma.

159

Theorem 5.43

@(+digitize, index (digitize,i)) > @(QVBI,2i-1)
O @(. digitize, index (digitize,i)) < @(QVBI,2i)
O O @(digitize,j) > @(QVBI,2i+1)
O @(. digitize,)) < @(QVBI,2i+2)]
O~07 j #Zindex (digitize,i)
O @(+digitize,j) > @(QVBI,2i-1)
O @(. digitize,)) < @(QVBI,2i+1)
]
O @(+rcompress, index (compress,i)) > @(QVBI,2i+2)
O @(+put_transmit, index (put_transmit,i)) > @(QCC,index (compress,i))
O@(. put_transmit, index (put_transmit,i)) - @(QVBI,2i) <6 wbi_period
Proof:

Step 1: | begin by showing that equation (5.53) holds.

@(+digitize, index (digitize,i)) > @(QVBI,2i-1)
O@(.digitize, index (digitize,i)) < @(QVBI,2i) (5.53)
By Lemma5.41
@(+digitize,i) > @(QVBI,2i-1)
0 @(: digitize,i) < @(QVBI,2i) (5.54)
By Lemma5.42

index (digitize,i) = i
Substitutingindex (digitize,i) fori in equation (5.54) yields equation (5.53).

Step 2: Next | show that equation (5.55) holds.

O[@(rdigitize,j) > @(QVBI,2i+1)
0 @(. digitize,j) < @(QVBI,2i+2)] (5.55)
By Lemma5.41
@(rdigitize,i+1) > @(QVBI,2i+1)
0 @(. digitize,i+1) < @(QVBI,2i+2)

Thus equation (5.55) holds.

160

Step 3: Next | show that equation (5.56) holds.

~G[j zindex (digitize,i)
0 @(digitize,j) > @(QVBI,2i-1)
0 @(. digitize,j) < @(QVBI,2i+1)
] (5.56)

This is equivalent to equation (5.57), so equation (5.56) holds if equation (5.57) holds.

O j= index (digitize, i)
0 @(digitize,)) < @(QVBI,2i-1)
0@(. digitize,j) > @(QVBI,2i+1)
] (5.57)

To show that equation (5.57) holds, there are three cases depengling on
Case 1 Assumg <.

By Axiom 5.1, Lemm&b.41,Axiom 5.7, the assumption abguand Axiom 5.7

@ digitize,j) < @(1 digitize,j)
< @(QVBI,2))
<(2j-1) QOkbi_period
< (2(-1)-1) bi_period
<(2i-2) QOkbi_period
< @(QVBI,2i-1)

Thus equation (5.57) holds.
Case 2 Assumg > 1.

By Axiom 5.1, Lemm&b.41,Axiom 5.7, the assumption abguand Axiom 5.7

@(digitize,j) > @(rdigitize,j)
> @(QVBI,2j-1)
> (2j-2) bi_period
> (2(i+1)-2) bi_period
> (2i) bi_period
> @(QVBI,2i+1)

Thus equation (5.57) holds.

Case 3 Assumg =i. By Lemmab.42

j = index(digitize,)

161

Thus equation (5.57) holds.
In all cases, equation (5.57) holds, so equation (5.56) holds.

Step 4: Next | show that equation (5.58) holds.

@(compress, index (compress,i)) > @(QVBI,2i+2) (5.58)

By Theorems 5.40 and 5.30, and Axiom 5.7

@(compress,i) > @(1vbi0_task,i+1)

> (2i+1) bi_period
> @(QVBI,2i+2) (5.59)
By Lemma5.42

index (compress,i) =i
Substitutingindex (compress,i) fori in equation (5.59) yields equation (5.58).

Step 5: Next | show that equation (5.60) holds.

@ put_transmit, index (put_transmit,i)) > @(QCC,index (compress,i))
(5.60)

By Theorem 5.4@&nd Axioms5.11, 5.1, and 5.10

@ put_transmit,i) > @(1cc_task,i)
> @(1send_cc,i)
> @(rsend_cc,i)
> @(QCC,j) (5.61)

and by Lemm&.42

index (put_transmit,i) =i
Substitutingindex (put_transmit,i) fori in equation (5.61) yields equation (5.60)

Step 6: Finally, | show that equation (5.62) holds.

@(put_transmit, index (put_transmit,i)) - @(QVBI,2i) < 60kbi_period
(5.62)

By Theorems 5.40, 5.37, 5.40, and 5.30

162

@(put_transmit,i) < @(1cc_task,i)

< @(rcompress,i) + 3 bi_period
<@(1vbi0_task,i+1) + 3 Wbi_period
< 2(i+1) Okbi_period + 3 [0Okbi_period
< (2i+5) bi_period

and thus by Axiom 5.7

@(put_transmit,i) - @(QVBI,2i) < (2i+5) Wbi_period - (2i-1) Wbi_period
< 6[¥bi_period

Thus equation (5.62) holds.

Together (5.53), (5.55), (5.56), (5.58), (5.60), and (5.62) show the theorem. O

5.8 A Note on the Lower Bound

Previously in thischapter, Ihave argued that00 ms. is anupper bound on théme
required for a videdrame to be correctly acquired, compressed, and delivered to the
network. Recall that delayitter can be reduced aliminated simply by buffering the
frames toaccount for thelifference betweethe actualdelay experienced by eaflame

and thisupper bound. Howeveynlessthe upper bound iseasonablytight, such a
strategy would lead tartificially high delay. Thus, it isuseful to brieflyconsider the
lower bound.

Recall thathe delay experienced by a video frametbaacquisition-side is defined as the
elapsed time betwedhe VBI logical interrupt that occurs at the start of tiigitization

of theframe andhe time the frame is placed othetransmit queue. Between these
two events, theframe is digitized and compressed. Digitization thg ActionMedia
hardware ahaystakes 33ns. Compression the ActionMedia hardwarg¢akes between
22 and 28 ms. Thus, the frame experiences acquisition-side delay of at leassBipiys.
due to hardware processing. As a resultpB5is an extremely conservative estimate of
the lower bound oacquisition-side delay. Effectively, tHmwer bound holds even under
assumptions that software operatioaise notime, and thatvork is alwaysperformed as
soon aspossible. Under more realistic assumptionigater lower bound could be
determined. Howevegiventhe delayjitter experienced by frames when transmieer
the networks used ithis work, even this conservative lower boundsidficient toshow
that thedelayjitter experienced can be reducedetminatedwithout markedly increasing
the end-to-end delay jitter.

163

5.9 Discussion

In this chapter, 1have presented an axiomatspecification of thatportion of the
acquisition-side ofthe application that is responsibleor acquiring, digitizing, and
compressing video frames. | then used this specificatiome&sonformally about
properties of the acquisition-side. In particular, | showed that each frame that is generated
by the ActionMedia hardware is correctly acquired, compressed, and delivered to the
network, and that théme required to do so is abost 100ms. By proving that the
acquisition-side side delay experienced by video frambeugaded, | have demonstrated
that it is feasible to reduce eliminatethe delayjitter experienced by video frames on the
acquisition-side. Furthermorsince 55 ms. is a conservative estimatéheflower bound

on delay, | havelemonstrated that thdelay jitter experienced by video frames on the
acquisition-side can be reduced or eliminated without introducing artificially high delays.

By taking advantage of thdeadline and mutual exclusigmoperties that were shown in
Chapter 4, havesimplified the analysispresented here ®Bliminatingthe need to reason
aboutdetailed interactions between tasks uralgpossible orderings of eventse effect
of executing aaskinvocation dependednly onthe state of theystem athe time the
task invocationstarted execution. Thus, tledfect of executing a singteask could be
modeled without reference to other tasks.

More importantly, | have enforced a separation of concerns. drg assumption
included in the axiomatic specification about the times at wiaiskinvocations execute is
that tasks execute after thage invoked and prior to theileadline. Thusthe argument
that delay isbounded and that every frame is acquired disglayedcorrectly is free of
detailed assumptiorsbout howlong tasks and actions require to execassumptions
aboutscheduling, and assumptioabout theexistence ofother tasks in theapplication.

As a result, codean be added to taskise(, changingthe cost)and other taskscan be

added to the application without affecting the logical argument presented here.

Having shown thathe delay experienced by video frames the acquisition-side is
bounded, it is straightforward to extend #ralysis toshow that thelelay experienced by
audio frames on thacquisition-side is also boundeAll that is necessary is to extend the
axiomatic specification ahe acquisition-side to include axioms representimgbehavior
of the tasks that process audio; the proof that auaioesaredelivered tathe network in
bounded time is analogous to that for video frames.

164

| can also extend thanalysis toshow that thedelays experienced bgudio and video
frames onthe display-sideare bounded. In general, tkameapproach can be used:
represent the display-side in terms of the formal model, udeabbility test to show that
tasks execute prior to thepplication-defined deadlines, develop an axiomatic
specification, and derivéhe boundedielay property. However, there is omelditional
difficulty that must be addressed: how can thgk that executeshenever a new packet
arrives {.e. the ‘receive_complete " task) be represented in the abstraudel?
There ar@awo problems. Firstsincepacketsmay besent to thelisplayworkstationfrom
many sources, an arbitrary number of packets could potentially arrive in any given interval.
Furthermore, even if we considemly packets sent by thacquisition-side of the
application, sincehe delays experienced tpackets in the network akariable, it isstill
possible for an arbitrary number of packets to arrivanngiven interval.One solution to
this problem is to changle implementationrather than execute a task to process a new
packet whenever it arrives, execut¢éaak periodically toprocessany packets thahave
arrived in the most recent periade(, a polling implementation instead an interrupt-driven
implementation).

Overall, in thesaghree chapters, haveargued that through the use rehl-time systems
design, analysisand implementation techniques, that it is possibledotrol thedelay
jitter experienced by continuowmsedia frameslue to causes other thaansmissiorover
the network. In the nexiwo chapters, | Wl address the question afmeliorating the
effect of the delay jitter than cannot be controlled.

165

Chapter VI
Policies for Managing Delay Jitter

6.1 Introduction

In the previous chapters,hiave demonstrated thdtrough the use afeal-time systems
design, analysisand implementation techniques, it is possible to baimeddelay jitter
experienced by continuousedia frameslue to causes other th&mansmissiorover the
network. Inthis andthe following chapter, | address the question diéplaying CM
frames in the presence of thetentially unboundedelayjitter incurred when transmitting
over the network.

In Chapter 1, | discussed the fdattat, in the pesence of delayitter, there is a
fundamental tradeoff betweeatisplay latencyand gapfrequency;the lower the display
latency, the higher the probability of encountering an end-to-end delay sufficient to cause a
gap. Anapplication that displaysontinuousmedia framesnust manage this tradeoff to
produce a balance between display latency and gaps that results in good quality playout.

It is useful to considethe tradeoff betweedisplay latencyand gapfrequency in the
context of thadealized applicatiofior acquiring, processing armlisplaying frames olive
continuousmedia thatwas illustrated in Figure 1-1. The design of this application is a
distributed pigline that includes aet of buffers placedmmediatelybefore the display
stagecalledthe displayqueue. The tradeoff betwedrsplay latencyand gapfrequency

can be viewed as a tradeoff between a long display queue and a short display queue. If the
display queue containsnanyframes, then gap wil occuronly if a frame incurs a very

long end-to-end delay; however the latigplayqueueimplies that frameareplayed with

high display latency. Ithe displayqueue contains few frames, themachshorterend-

to-end delay may cause a gap, but frames are played with lower display latency.

A policy for managinghe displaygueue can bdefined as a policfor choosing whether
or notnewly arrived framesare inserted into the queughen framegnay be reraved
from the queue to be played, and if and when frames are discarded from the queue without

being played. In effect, a polidgr managinghe displayqueue can be viewed apalicy
for managinghe tradeoff betweedisplay latencyand gap frequency. lilvrefer to such
policies as delay jitter management policies.

In this chapter, | describe thregelay jitter management policiesTwo policies, the I-
policy and the E-policy are takémmom the literature; the thirdjueue monitoringis a new
policy that | have developed. @hapter 7, | evaluate the performance of thpedieies in
an empiricaktudy usinghe workstation-baseddeoconferencing application described in
Chapter 2.

Section 6.2 describethe effect of delayjitter on the display of continuousmedia,
illustrates thebasic principles of managirthe tradeoff betweedisplay latencyand gap
frequency, and defingbe I- and E-policies. Section 6.3 presents the quewatoring

policy.
6.2 Effect of Delay Jitter

In order tosustain continuous playout withoahy gaps, an application muptay every
frame with a fixed display latency thatgeeater than the worst-case end-to-dalhythat
will be encountered during a conference. Theretaedifficulties with thisapproach.
First, when framesare transmitted over the networks consideretthiswork, the worst-
casedelay maynot beknown. Second, it igot clear that theprimary goal should be
playout with no gapsDisplay latencyand gaps arenly some of the important factors in
determining the perceived quality of the playout [21]. It is likely that in many applications,
as long as gapsccur infrequently, playout with low latency and some gapk be
preferable to playout withigh latencyand no gaps. Therefore, if an applicataways
plays frames with a display latengyeater than the worst-cadelay and ithe worst-case
delay is rarely oferved in practice, then mdsames vill be displayed with latency higher
than necessary to support good quality playout.

If the worst-casealelay isnot known, or if an application chooses ptay frameswith a

display latency lesthan the worst-case end-to-edédlay, then gaps ithe playout may

occur. If so, then the application must address two issues. First, gapsvbeatinere is

no new frameavailable to be played; vat should theapplication play instead? The
workstation-based video conferencing application described in Chapter 2 sseple
strategy: gaps in the video stream are covered by replaying the previous frame and gaps in
the audio stream are covered by playing silence.

167

The second issue that must be addressed wheragapsssible ishe question of what
should be done with lamewhose late arrival resulted in a gaphere argwo choices:
either the latdrame can be discarded or it can be displayed. These chigfies two
delay jitter management policies that Naylor and Kleinr@al the I-Policy and theE-
Policy [37]. Under the I-policyall framesare displayed at a fixed display latency; each
frame that arrives with aand-to-enddelay greater tharthis latency is discarded. The
particulardisplay latency is @arameter of theolicy. Underthe E-policy, the latérame

is displayed.

Acquisition Time
b c d g h
1 1 1 1 1 1 1
\\\
2 3 4 7 8
Display Initiation Time

(@) Delay Jitter

v

A\ 4

Display Queue Length Display Queue Length
3 3
Queue 2 Queue 2
Length Length
Tolnmomomm
0 0
2 3 4 5 7 8 9 10 2 3 4 5 6 7 8 9 10
Display Initiation Time Display Initiation Time
Display Latency Display Latency
b c d e f g
3 3
2 a
Time Time
(in frames)l (in frames)
0
3 4 5 6 7 8 9 10
Dlsplay Inmanon T|me Display Initiation Time
(b) [-Policy (2 frame times) (c) E-Policy

Figure 6-1: I-Policy and E-Policy with Persistent Delay Jitter

Figure 6-1 illustrates theehavior ofthe |- and E-policies in response to ldtames.
Figure 6-1a shows thecquisition andlisplay timedor eight frames. Tick marks on the
upper tineline indicateacquisition timesthe times at which new framesre acquired.

168

Tick marks on the lower timeline indicatigsplay initiation timesthetimes at which the

new framesaredisplayed. (In theapplication described in ChaptertBe acquisition time

of a video frame is defined #se time at whichthe \WiO logicalinterrupt thatdefines the

start of theframeoccurs on thecquisition-side ofhe application; display initiation times

are defined by the times at which the Vbi0 interrupts that result in the display of new video
frames occur on the display-side.) Each diagonal arrow represents the endiétag ol

an individual framegxtending fromthe time at which itwas acquired to théme it is
placed in thedisplayqueue. Throughout theggamplesthe acquisition time of a frame

(i.e. pointsa, b, c, etc.) is used to refer to individual frames.

Figure 6-1b shows theffect of executinghe I-Policy on a sequence of frames arriving at
the displayqueue with the end-to-erdklays shown in Figure 6-1a. In this example, the
display latencyparameter of thd-Policy is two frame times. (For simplicity in the
examples, time is represented as multiples ofithe to acquire odisplay aframe). Each
frame that arrives with an end-to-etelay lesghantwo frame times is held ithe display
queueuntil it is played with a display latency tko frame times. Each frame that arrives
with an end-to-end delay greater than two frame times is discarded.

The top graph in Figure 6-1b shows tliisplay queue length at eadtisplay initiation
time. Thebottom graph shows thdisplay latency othe frame being displayed at each
display initiation time. Iraddition, each latency barlabeled withthe acquisition time of
theframe that is displayed at that display initiation time. In this example, frianadesand

f arrive with end-to-endelays longethantwo frame times andre discarded. Thus, use
of the I-pdicy results inthree gaps occurring in the playoutdsplay initiation timest,6,
and 8.

Figure 6-1c shows theffect of executinghe E-policy. Where the I-fioy held frames in
the queueauntil theycould beplayed with a particuladisplay latencythe E-policy plays a
new frame at eachlisplay initiation time as long athe display queue isnot empty.
Furthermore framesare never discarded; eaffame that arrives iput into the display
queue. Thusframea is played atthe first display initiation timeafter it arrives ice.,
display initiation time 3). A gap occurs at display initiation time 4 because frdras not
yet arrived. Wiien frameb does arrive, it iplaced in thalisplayqueue and igventually
played at display initiation time 5. Asrasult, it isplayed with a display latency of 3
frame times.Furthermore, each succeediingme is also played with display latency of

169

3 frame times. As long as frames continue to arrive witarahto-enddelay lesghan 3
frame times, there will be no gaps.

The example shown in Figure 6-1 illustratesadvantage of the E-policy. Tlepolicy
starts playing framesvith the lowestpossible initial display latencend then adjusts
display latencyupward in response telayjitter. The overall effect ofhe E-policy is to
find a display latency that is sufficient to play frameghout gaps bydynamically
adjusting the latency to be higher than any end-to-end delay yet observed.

Acquisition Time

ARG

Display Initiation Time

(@) Delay Jitter

Display Queue Length Display Queue Length
3 3
Queue 2 Queue 2
Length Length
1 1
0 0
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Display Initiation Time Display Initiation Time
Display Latency Display Latency

[d e f g

3 3

Time 2 Time 2

(in frames)l (in frames)l a b
0 0
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Display Initiation Time Display Initiation Time
(b) [-Policy (1 frame time) (c) E-Policy

Figure 6-2: I-Policy and E-Policy with Occasional Delay Jitter

Figure 6-2 illustrates a situation which the I-policy performs better than tlepolicy.
In this example, the display latency parameter of the I-policy is one frameAilinkeames
exceptframesc andd arrive with an end-to-endelay of lesshan oneframe time and

170

experiencenegligible delayjitter. Framesc andd arrive late because of some temporary
increase in network activity. Each policy results in gagspiay initiation times 4nd 5.
However, the I-policyplays framesfter the gap with lovatency whilethe E-policy plays
framesafter the gap witlnigher latency. Undedhe E-policy, a single “burst” ddctivity

on the network that causedeav frames to arrive late results in a permanent increase in
display latency.

Overallthen, theeffect ofboth the I-pticy andthe E-policy is tochoose alisplay latency
at which to play frames, either explicitly in the case of the I-policypplicitly in the case
of the E-policy. A good choice falisplay latency Wi depend ommanyfactors. First, the
acceptablaate of gapsand the acceptabldisplay latencymay vary depending on the
application é.g, the transnssion of speechmay have differentgap and latency
requirements than the transsion of music) andhe current requirements of the user
(e.g, a surgeorviewing anoperation Wl have different requirements than viewers of a
televised lecture) Second, thelisplay latencyequired tomaintain amacceptable gap-rate
will depend on the expectézlel of delayjitter, which will vary as a result of congestion
in the network. Thelynamicnature of these factors motivates tesign of a delay jitter
management policy thaynamicallychanges display latency &alapt to newequirements
and conditions.

6.3 Queue Monitoring

Consider an oracle that has perfect knowledgth@fend-to-endielays offuture frames
and hence can choose the best display latency at whathyteach frame. Such an oracle
can adjustlisplay latency imesponse to changesdslayjitter (perhaps due to changes in
network congestion) in order axhievethe bespossible balance betwedrsplay latency
and gaps.Display latencycan be adjusted upward hbytificially introducing a gapi.,
delayingthe playout of the nexframe) and can be adjusted downwarddugcarding
frames.

If it is assumed thathe delayjitter in the near future can be predicteddiserving the
delayjitter in the recent past, it |gossible toconstructdelay jitter managemenpolicies
that are approximations of the oracl€lThis is analogous tthe working set concept of
page replacement in virtuelemory management.Jhe Naylor and Kleinroclpolicy for
choosing aisplay latency that is described@apter 1 is onexample of such a policy.

171

This policy, however, isdifficult to implementbecause accurately measuregd-to-end
delays at runtime requires synchronized clocks.

Instead ofmeasuringend-to-enddelays, it is possible to directly meastine impact of
delayjitter at a receiver by observirthe length ofthe display queue ovetime. Once
every frame time, a frame is removed frdm displayqueue to belayed €.g, for video
frames displayed at 30 frames per second, a frame is removed every 33 ms.jrafiese
are also acquired and transmitted onceffzene time,on averageoneframe wil arrive
and be placed in thdisplayqueue and onframe wil be removed fronthe displayqueue
during each frame time. #&nd-to-enddelaysare constant, the quelength measured at
eachdisplay initiation timeshould be constant (as it was betwdeplay initiation times 6
and 10 in the example shown in Figure 6-2c). If delay jitter results in a frame arriving with
a longer end-to-endelay, then it is possible that no new framalt arrive between
successive display initiation times. In thase, theength of the display queue will
decrease by orfeame €.g, display initiation time 6 in Figure 6e) If delayjitter results
in a frame arriving with &horter end-to-endelay, then more thaone framemay arrive
between successivéisplay initiation times,and thelength of the display queue will
increase€.g, display initiation time 6 in Figure 6-2c).

Over time,thelength ofthedisplayqueue Wl vary depending othe range of end-to-end
delays encountered by frames. If the level of delay jitter in the near futlbe ¥he same
as thelevel inthe recent past, thamhile end-to-enddelays mayvary, they vill not vary
outside the range thagas been observed recently. Tihplies that inthe near future, the
length ofthe display queue Wl remain atleast as long as thaminimum length that has
been observed in the recent past.

The assumption thatelayjitter in the near future W be about thesame as that in the
recent pastan be used to determine iframe can be discarded frdime displayqueue in
order to reducelisplay latencywithout causing more gaps. As long tag displayqueue
contains at least one frame at each display initiation time, thikteewo more gaps in the
playout. If theminimumdisplayqueue length observed recently was at leastframes,
then it can be assumed that after discarding a frimeninimum queue length observed
in the near future iV be atleast one. Thus, lame can be discardesithout causing
additional gaps.

A policy for decreasinglisplay latencyased on observing queue lengths has been used to
govern thebehavior ofthe audiodisplay queue in the Pandosystem [28]. Whenever

172

frames are added to the display queue (calledlt#véback buffey, the length of the queue
is checked against &@argetvalue. Inthe Pandorasystem,the target is Zrames (in
Pandora, each auditame corresponds to 2ns. of audiodata). If thelength of the
display queue is greater thathis target for asufficiently long interval (8 seconds),
incoming audio frames are discarded. Because thithbaas$fect of shorteninghe display
queue, audio data that arrives after this time will be played with a lower display latency.

var
threshold : array of integer;
above : array of integer;

for i := max_queue_length downto 2 do
if length(display_queue) > i then
aboveli] := above[i] + 1
else
aboveli] :=0
end if;

if above[i] >= threshold[i] then
buffer := remove_queue(display_queue);

free(buffer);
for j := 2 to max_queue_length do
aboveli] :=0
end for;
exit loop
end if

end for

Figure 6-3: Queue Monitoring Procedure

| propose aisplayqueue managemepblicy calledqueue monitoringhat is avariation

of the policy used in Pandora. In this policyheeshold values definedfor eachpossible
display queue length. The threshoigilue for queue lengthn specifies aduration
(measured in frame timesjfter which, if the display queue has continuously contained
more thann frames, it vill be concluded thadisplay latencycan be reduced without
increasingthe frequency ofgaps. Since | am makindghe natural assumption thktrge
variations in end-to-endelayare expected to occurfrequently, andsmall variations are
expected to occunuchmore frequently, threshold valués long queue lengthspecify
short durations while those for short queue lengpegify longdurations (this assumption
is validated by the histograms of delay jitter given in Figures 7-2, 7-4, and 7-6).

In theimplementation ofjueue monitoring, an array of counters and threshalides is
associated with théisplay queue. Eachdisplay initiation time,the queuemonitoring
procedure illustrated iRigure 6-3 is performed. First, whéme displayqueue hatength

173

m, counters 2 througm-1 areincremented andll other counters are reset. Then, if any
counter exceeds its associated threshalde, all the counters are reset and the oldest
frame is discarded frorthe display queue. Once the queue monitoripgpcedure has

been performed, the oldest remaining frame is removed from the display queue and played.

An importantprinciple in this implementation is thdte thresholding operationilivnever
discard frames unles$se displayqueue contains more thamo frames. The last frame in
the display queue should never be discarded because there musdtdreeaavailable for
display after the thresholding operation completes. Similarly, if the second-to-last frame in
the displayqueue were discarded, themen minute delajtter could potentially cause a
gap. Forexample, this canccur in a situation wherefeame arrivesmmediatelybefore
the thresholding operation and results idisplay queue with length 2. If one of those
frames is discarded artde other igdisplayed, therthe queue would be empty. Then, if
the nextframe has aslightly larger end-to-endielay, it mightnot arrive in time to be
displayed. Therefore, lonly consider queue monitoringpolicies with thresholdslefined
for queue lengths greater than two.

6.4 Summary

In this chapter, lhave described several policiEss managingthe tradeoff between the
display ofcontinuousmedia withlow display latencyand thedisplay ofcontinuousmedia
with few gaps. | began by asserting thmlicies for managing thigradeoff could be
implemented as policie®r managingthe display queue. | then describeevo queue
management policies frothe literature, the I-policy and the E-policy, and illustrated the
effect of thesepolicies with several exampledrinally, | defined aqueuemanagement
policy calledgqueue monitoring that was designedctmnbinethe advantages of the |- and
the E-policies. In the next chapter, | evaluate riflative performance of these three
policies.

174

Chapter VII
Evaluation of Delay Jitter Management Policies

7.1 Introduction

This chapter presents ampiricalstudy of the set opolicies described i€hapter 6 for
managinghe displayqueue in the presence ddlayjitter. In the study, the workstation-

based video conferencing application described in Chapter 2 waswmber of times in

several different network environments. During execution, traces of the end-delaysl
experienced by frames were recorded. These traces were then used as input to a simulator
which determined the effect that applying each policy would have had guodtlig of the
conference.

The goal of the study was to gauge #fiectiveness othe set ofdelayjitter management
policies in campus-sizethternetworks. In principle, theffectiveness of eacpolicy
should be independent of the particular type of continunedia data onwhich it
operates. In practice howevelifferences in continuoumedia data typesaffect the
behavior ofthe policies. Themost importantifference is frameate; datadisplayed at a
high framerate is moresensitive to delayitter than datadisplayed at dow framerate.
For example, undeany policy, @200 ms. variation irthe end-to-endlelays experienced
by frames Wi have little effect when frameare displayed at aate of one per second.
However,when framesre displayed at aate of 60framesper second, then a 200 ms.
variation in delay has a mudreatereffect; underthe queue monitoringolicy, such a
variation in delay could cause the length of the display queue to decrease by 13 frames. In
the workstation-based videonferencing application, audiodssplayed at a higher frame
ratethan video; thus audio is mosensitive to delayitter. As a result, | have chosen to
study theeffect of the I-policy, the E-policy, and the queue monitorpalicy on the
display of audio frames.

To evaluate the performance of thaiciesover a range of networks, | performedest
suite in three different network environments. The first was the internetwosksting of
16Mb TokenRings and 10MlEthernets that serves as thaimmetwork supporting the

Computer Science department tae University of North Carolina. Theother two

network envionmentswere located on the cgmus of IBM in Research Triangleark,

North Carolina. First, the test suite was performed on a 4 Mb Token Ring sesmgiea
floor of a building. Next, the testsuite was repeatedsing two 4 Mb floor rings

connected by a 16 Mb Tokd®Ring serving ashe backbone network fall the buildings

on the IBM-RTP campus.

In Section 7.2, lbegin by describindhe study in detail. In Section 7.3discuss the
metrics Ipropose forevaluatingthe performance of théelayjitter managemenpolicies

and theproblems inherent in formulating such metrics. In Section 7.4, | compare the
performance of queue monitoring to that of the I- ando@icies. In Section 7.5, |
explore the effect of the threshold parameter of the queue monitoring policy.

7.2 Description of the Study

In this section, | present a detailed description oftdéta collected in the study, aell as
a description of the network enemments in whiclthe study was conducted. é&ach
network environment, | executethe workstation-basestideoconferencing application
several times; each complete executiomeferred to as aun. During each run, the
application acquired, transmitted, and displayed 60 frames per second audiofia@mle30
per second video and recordettace of theacquisition time andhe arrival time of each
audio frame asvell asthetime of eachVBI logical interrupt at thelisplay (.e., thetimes
at which newaudio framesveredisplayed). Audio framesere transmitted imdividual
packets and videframeswere broken into fragmentghich would fit into a singlepacket
on an ethernei.€., 1350 bytes of video data per fragment).

After each run, theresulting trace was adjusted to account for tlaek of clock
synchronization. The adjustment was basedvem values. First, before each run |
executed a simple protocol toeasure thelifference betweethe time atthe acquisition
machineand thetime atthe display machine.Second, | measured the ratio between the
clock rates at the acquisition and disphagchines in &eparate experimengor each pair

of machines, thisatio was found to beearly fixed €.g, the ratio of the clock rates for
the pair ofmachinesused in the UNGexperiments wa®$.999987). Thus, th&éame
generation timeswhich were measuredising the clock on theacquisition-side, were
converted tadisplay-side times by multiplying bghe ratio of the clock rates ardiding

the initial difference in clock times.

176

Each trace was also adjusted to account for packets lost in the nefwnyrkudioframe

that never arrived was assumed to have been genet&6d of a second after the
preceding audio frame and to have arrived at the display at the same time as the next audio
frame that arrivedi ., if frame N wadost, then it wasassumed to have been generated

one frame timeafter frame N-1 and tohave arrived athe display atthe same time as
frameN+1). This adjustment wassed in order texaminethe delayjitter encountered in
real-world networks insolation fromthe loss encountered in real-world networks; the
choice that a losframe is assumed to arrive withe nextframe reflects an assumption

that a forward error correction scheme would be used to correct errors.

Finally, the adjusted traces were used as input to a trace-diiveitation ofthe display-
side of a conferencel-or agiven displayqueue managemepblicy andthe sequence of
arrivals anddisplay initiation times irthe trace, thesimulator determined whiclrame
would have beedisplayed at which display initiation timelhe output of thesimulator
was the averagédisplay latencyand average gamte that wouldhave resultedrom
applying the policy during the run.

7.2.1 Description of the UNC Network Environment

The firstset of runs was performeasing the main network supporting the Computer
Science department #te University of North Carolina. Thisnetwork consists a$everal

10 Mb Ethernets and 16 Mtwoken rings interconnected by bridges anouters. It
supportsapproximatelyd00 UNIX workstations and Macintosh personal computers. The
workstations share a commalesystem using anix of NFS and AFS and run awverall
application mix that should be typical of most acadesnimputerscience departments. In

this set of runsgach packet wauted across a lightlypadedtokenring to a gateway,
through a segment of the departmental ethernet to a bridge, through a second segment of
the departmental ethernet to another gateway, and back acressngtekenring to the

display machine.

Twenty-four runs, eaclasting 10 minutesyere performed over the course ofyaical
day (between 6am and 5pm) coverligiptly andheavilyloaded periods. Fowdditional
runs were performed duringightly backups (betweemidnight andlam). Figure 7-1
gives some basidata on thevariability in end-to-enddelaysencountered by audimames
during the 28 runs.“Time of Day” is the time the run wasinitiated. Average and
maximum delaysre calculatedrom the end-to-endlelays experienced gudio frames
(recall thatend-to-enddelay is defined athe elapsedime between acquisition of the

177

frame and its arrival ahe displayqueue). Lostind duplicate frameare counts of lost
and duplicated packetshich contained an audio frame. Nt of orderpackets were
observed.

Run Timeof Avg.Delay Max. Delay Lost Duplicate
Day ms. ms. Frames Frames
1 06:03 38 76 1 0
2 06:25 38 88 3 0
3 06:36 37 171 5 0
4 06:47 37 105 1 0
5 08:03 38 115 1 0
6 08:14 37 73 2 0
7 08:25 38 184 7 0
8 08:36 39 157 1 0
9 10:02 41 186 23 0
10 10:16 40 124 4 0
11 10:31 41 213 7 0
12 10:49 40 140 6 0
13 11:57 39 110 5 0
14 12:08 41 138 5 0
15 12:19 41 133 3 0
16 12:34 40 187 11 0
17 14:02 41 189 11 0
18 14:13 42 141 3 0
19 14:42 39 107 4 0
20 14:54 40 131 12 0
21 16:01 39 171 9 0
22 16:21 39 128 2 0
23 16:33 39 86 2 1
24 16:55 42 242 14 1
25 00:05 38 80 4 0
26 00:16 38 128 0 0
27 00:27 38 134 8 0
28 00:38 38 83 2 0

Figure 7-1: Basic Data (UNC Network)

1000000 T
100000
10000

1000

Number of Frames

100 ‘
10 ‘

1

0
0 50 100 150 200 250 300 350 400
Variation in end-to-end delay (ms.)

Figure 7-2: Distribution of End-to-End Delay Jitter (UNC Network)

178

Figure 7-2 provides a more detailed look at the 28 ruibis figure illustrates the
distribution of end-to-endlelay jitter experienced by audio framed-or each run, the

delay jitter of an audio frame islefined by subtractinghe minimum end-to-enddelay
observed during the run from the end-to-end delay of the frame. The y-axis shows a count
plotted on a logcale ofthe number of frames with delgitter within each 5 ms. interval

(e.g, a count offrames withend-to-enddelayjitter of 0 ms. - 5 ms., 5 ms. - 10 ms., 10

ms. -15 ms., etc.).

7.2.2 Description of the IBM-RTP Floor Network

The next set of runs was performesingthe network that supports a floor of afiice
building on the IBM campus in Research Triangle Park, North Carolina. This network is a
single 4 Mb TokerRing, connected toéhe rest of the campus network by a bridge. It
supportsapproximately 50PS/2 workstations. Ithis set of runseach packet wasmply

sent fromthe acquisition machine tehe display machineacrossthis one ring. Fteen

runs, eachasting 5 minutesyere performed othis network. These runs weperformed
between 9am and 5paover several days. Figure 7-3 gives some bdsia foreach run

and Figure 7-4 illustrates the distribution of end-to-detayjitter experienced by audio
frames during each run.

7.2.3 Description of the IBM-RTP Campus Network

The third set of runs was performadingthe canpus internetwork atBM-RTP. This
network consists of a 16 Mb Tok&ing which serves ahe backbone and is connected
by bridges to 4 Ml okenRingssupporting single floors of each campuslding. In this
set of runseach packet wamuted across #oor ring to a bridgethrough the backbone
to another bridge, and through a second ftoay to the display machine. Nineteenns,
each lasting 5 minutesyere performed orthis network. These runs wengerformed
between 9am and 5Spover several days. Figure 7-5 gives some bdsi@a oneach run
and Figure 7-6 illustrates the distribution of end-to-detayjitter experienced by audio
frames during each run.

7.2.4 Summary of the Three Network Environments

The three network enanments used heexhibit somewhat different characteristics. On
the UNC departmental network, mosames arrive with very little delayitter, but
variation in delay of as much @20 ms. was encountered. QGme IBM floor network,

179

more frames experienced delgifter in the 30 to 6ams. rangeput the largesvariation
encountered wasnly in the range of 11@ns. Finally, onthe IBM campus network, the
largest variation irdelay encountered was in the range of 408. Furthermore, ke
little data was lost in the UNC departmental netwarld none was lost in the IBM floor
network, data loss in the IBM campus network was significant.

Run Timeof Avg.Delay Max. Delay Lost Duplicate

Day ms. ms. Frames Frames
1 11:57 38 116 0 0
2 14:23 36 110 0 0
3 15:23 38 101 0 0
4 16:04 41 99 0 0
5 09:48 40 93 0 0
6 15:05 43 104 0 0
7 17:16 52 100 0 0
8 11:22 44 101 0 0
9 10:22 45 111 0 0
10 09:58 48 135 0 0
11 15:46 46 112 0 0
12 10:07 38 92 0 0
13 12:49 50 103 0 0
14 13:23 58 120 0 0
15 14:46 56 105 0 0

Figure 7-3: Basic Data (IBM-RTP Floor)

1000000 T
100000 T _
10000 -+ H[II

1000

100

Number of Frames

10

A

0 50 100 150 200 250 300 350 400
Variation in end-to-end delay (ms.)

Figure 7-4: Distribution of End-to-End Delay Jitter (IBM-RTP Floor)

180

Run Timeof Avg.Delay Max. Delay Lost Duplicate
Day ms. ms. Frames Frames
1 13:31 39 367 113 0
2 14:15 46 179 0 0
3 15:22 44 368 107 0
4 13:47 42 87 0 0
5 14:26 48 334 105 0
6 15:25 46 175 8 0
7 10:08 69 429 765 0
8 10:50 45 131 0 0
9 12:31 44 181 12 0
10 14:42 62 367 204 0
11 16:07 71 364 333 0
12 10:23 45 160 3 0
13 10:58 69 255 2 0
14 12:47 42 161 0 0
15 13:49 51 314 94 0
16 14:44 38 200 21 0
17 15:41 48 245 19 0
18 10:12 67 350 43 0
19 12:25 42 130 0 0

Figure 7-5: Basic Data (IBM-RTP Campus)

1000000
100000
10000

1000

Number of Frames

10

100

1

0
0 50 100 150 200 250 300 350 400
Variation in end-to-end delay (ms.)

Figure 7-6: Distribution of End-to-End Delay Jitter (IBM-RTP Campus)

7.3 Evaluating Delay Jitter Management Policies

In the remainder of thischapter, | evaluate theffectiveness othe I-, E-,and queue
monitoring policies at managinipe effect of delayjitter on thequality of audio in a
workstation-based videoconferendeor each policy and eadlun, | usesimulation based
on the traces described in Section 7.2d&germine which framesvould havebeen
discarded and thdisplay latency at whickach remaining frameould have beeplayed
assuminghe policy had been applied during than. From this, | determinine average

181

display latencyand gaprate foreach policy on eactun. Before these results can be used
to compare theelative performance dhe threepolicies,two issues must be addressed:
what is the precisdefinition of agap, and what etric should be used to determine if one
policy has performed better than another?

7.3.5 Gaps

In Chapter 1, a gap wafined aghe event that occumshen an application is unable to
play the nextframe wherthe display ofthe precedindrame is complete. Such an event
can occur forseveral reasons. In [11], Gruber and Strawczydskde gaps in the
playout of audio intdwo types: open and closed. Apen gapoccurswhen frameN is
played, followed by a frame time of silence, followed by fraf€®. Thus, the gaps
encountered when using the I-policy are open gapsloged gapoccurswhen frameN is
played immediatelyollowed by frameN+2. Thus, the gaps encountergldenthe queue
monitoring policyreduces latency by discardifiggmesare closed gaps. A third type of
gap,which | will refer to as alelaygap, is encounteraghen usinghe E-policy and the
gueue monitoringpolicy. A delay gapoccurswhen frameN is played, followed by a
frame time of silence, followed by frane-1.

Through informal observation, | have concluded that both open gapelaygaps cause

a reduction in the perceiveglality of audio. For open gaps, a study by Gruber and
Strawczynski confirms this conclusfonin my study, both open gaps atelaygaps are
counted as gaps.

In contrast, | do not courmlosed gapsWhile Gruber and Strawczynski's studges not
address theffect of closed gaps oquality at a frameate of 60framesper second, it
does provide data on closed gaps atfrhfnesper second; a gamate of 3.6 gaps per
minutedoes notesult in a noticeable decrease in quality. From this result, and supported
by informal observations, | have concluded tliat the rate atwhich queue monitoring
reduces latency in my experimerfeg most 6framesper minute inthe QM-600policy
defined below), the closed gaps introduced by queue monitoring should be undetectable.

8participants in thetudy were asked tate the quality of audiplayout on a scale of 1 to 5. For a frame
rate of 60 frames aecond, playout without gaps resulted in a quakityng of 4.1,while a gap rate of
14.1 gaps per minute resulted in a rating of 3.5, a decrease in perceived quality of 15%.

182

7.3.6 Comparison Rule

To evaluate theffectiveness of a delgitter management policy, it would be useful to
have a metric that determingéide display quality of aconference performed usirtbat
policy. Clearly, if policyA results in lower display latency and less gaps than pBlidyis
performing better. However, if polidk results in a lower display latency and a higher gap
rate as compared with poli&; which has performed better?

In their study of the I-dacy and the E-policy [37], Naylor and Kleinrock answehis

question using a straightforward comparison rule. Tgrepose auality metric inwhich

display quality isthe normalized Euclidean distance frotine origin in the DG plane,
whereD is thedisplay latencyG is the gap rateand D and G are normalized by two
constantsd andg. These twanormalizationconstants are intended to be threshalldies
of display latency and gap rate, above which quality degrades rapidly.

Unfortunately, this comparison ruttbes notaddressmany ofthe factors thaaffect the
quality ofaudio and videdlisplay. Theséactorsincludenot only the display latency and
the gap rate, budlso the resolution of thdisplay,the user’s particular requirements for
audio and video, the distribution of gaps throughountkasurement intervahe number
of display latencychanges, and the distribution of periodshigih and lowdisplay latency
throughout theinterval. A better standard for comparipglicies would takeeach of
these factors into account.

More importantly, theNaylor and Kleinrock comparison rule is based on an assumption
that there is a direct tradeoff between gap ratedaspday latency.Any conclusionsabout

the relative effect oftwo policies derived using this comparison ruleuld beextremely
sensitive to the validity of this assumption and to the particular choice nbthmlization
constants.Since these assumptioase notnecessarily justified, conclusiodsawn using

this comparison rul@re potentially misleading. Nevertheless,arder toprovide some
insight intothe data, it isiseful toadoptsome standard of comparison. Thereforeave
adopted asimple, conservative and arbitrary comparison fiole the analysis in this
chapter.

My comparison rule is based two measurements: averadesplay latencyand average
gap rate. lassume that differences in display latency of fkas 16.5ms. {.e., a single
audio frame time) and differencesgap rate ofess thamoneevery 15 seconds.¢., 4

gaps peminute)are not sigificant. My comparison rule declares poligyto have done

183

better tharpolicy B if it is better in onedimension andhe same or btter in the other
dimension. Two policiesare declared tthavedoneequally well if theyare thesame in
both dimensions andire declared to bencomparable if each hadone better in one
dimension.

Given this comparisorule, | can evaluate and compare éfiectiveness of policiefr a
particular run. However, it istill difficult to compare results of ritiple runs. One
fundamental difficulty arises because the video hardware that acquires fraheserder
is not synchronized wittthe display atthe receiver. To illustrate theffect this has on
display latency, assuntkere is no end-to-erdklay (.e., acquisition and arrival dfames
are simultaneous). Despithis fact, an application must waiintil the next display
initiation time {.e., the next VBIlogical interrupt) todisplayeach new frame. Depending
on thesynchronization difference betwe#me video hardwaracquiringthe frames and
the display, each framenay have to wait up tamne frame time before being displayed.
This synchronization time is a random variable and viwedaeen runs. Thereforehen
comparing results of nftiple runs,differences in latency of as much as a frame time are
not significant.

The secondiifficulty in comparing multipleuns arises from my workindefinition of the
I-policy. As described in Chapter 6, the llipg shouldplay frames at @onstant display
latency. However this would require thtite clocks at theacquisition and display
workstations besynchronized. In mywork, | only assume synchronizeclocks for
measurement purposdase(, | do notuse synchronized clocks to guittee execution of
the system). Therefore, | cannot implement the I-policy. Insteablément a variant of
the I-pdicy which buffersthe first frame for a fixed number of frame times before
displaying itand thendisplays allsubsequent frames withe same display latency. The
effect of this definition is to makéhe display latency efiorced by a particular I-policy
during a run a function dhe end-to-endlelay ofthe first frame that is received.¢., a
random variable).

The goal of the study presenteditliis chapter is to determinghich of several policies
results in the begjuality playoutover a range of network conditions. Because of the
difficulties involved in comparinghe results of nitiple runs, and because my comparison
rule determines relativeather than absolute performance, | restrict direct comparisons to
determiningthe relative performance divo policies on a singleun. This allows me to
conclude only that one policy outperforms another on a particular run. To show that one

184

policy outperforms another in general, | must show that it performs better on some runs
and as well or better on all runs. This method of pairwise comparison is the basis of the
performance evaluations presented in the remainder of the chapter.

7.4 Comparison of Queue Monitoring to the I- and E- Policies

In this section, | comparéhe performance of the queue monitoripglicy with the
performance of the I- and E-policies. The E-policy used here is exactly as it was described
in Chapter 6. The I-pigy and the queue monitoringolicy used here require further
elaboration.

As described in Chapter 6, the Ilipg is parameterizable; it playdl frames at a specified
display latency.However, as mentioned above, becahsemplementatiordoes notely
on synchronized clockshe application caronly approximate the I-policy. Thus | use a
variant of the I-pbicy in which the display latencyparametespecifies a number of frame
times for which the first frame is bufferedafter it arrives at thelisplay; all subsequent
frames are played with the same display latency.

For eachnetworkenvironment, | have arbitrarily choséme parameter of the I-poy to

reflect a desired average gagie of lesgshan 4 gaps peninuté. To setthis parameter

for a particular environment, | determintgee value of delayjitter for which, over all the
measurements of end-to-end delay jitter taken in that environment, lessdbtinfévery

3600 frames arrived withgreaterdelay jitter (note thatthis means that on some runs,
significantly more than 4 gaps per minute will be encountered using this value). This value
was 60 ms. fothe UNC departmental network, #s. forthe IBM-RTP floor network,

and 305ms. forthe IBM-RTP camusnetwork. Thus tachieve an averaggmp rate of

less than 4gaps peminute in thesenetwork environmentsthe I-pdicy should have a
parameter of 4, 5, and Ifame times respectivelyi.¢., [60/16 5= 4 [7516 5= §

[305/16 5= 19. These are the values used for the analysis in this section.

9This is aconservative choice for a desirgep rate. Neverthelessthe resultingdisplay latency is
relatively smallfor boththe UNC departmental networind thelBM-RTP floor network. However,this
desired gap rate leads tovery large display latencfor the IBM-RTP campus networkThis showsthat
there istoo muchdelayjitter in theIBM-RTP campus network to support display at a fixed latency with
few gaps.

185

The queue monitoringolicy is also parameterizabléreshold times must be specified for
each queue length. In this section, | compare @lsiqueue monitoringpolicy to the |-
and E-policies. Each queue lengghheater thawo isassigned a threshold of 10 seconds
(600 frame times). The effect dhese threshold settings is to reduaitgplay latency by
one audidrame time(16.5 ms.)whenever thalisplayqueue contains more than 2 audio
frames for 600 continuous frame times (10 seconds).

Figure 7-7 shows theimulation result$or each of the 28 runs on the UNC departmental
network. In the table, thedolicy is labeled I-4the E-policy is labeled E anthe queue
monitoring policy is labeled)M-600. Foreach policy,the table shows theesulting
averagdlisplay latency (iims.) and the average gegte (in gaps/minute).For each run,
the rightmostolumnsshow the comparison between the queue monitqatgy and the
other policies (usingthe comparison rulelefined inSection 7.3). A ‘+’ indicateshat
gueue monitoring dithetter, &0’ meansthe two were equivalent, a ‘4neans thatjueue
monitoring didworse, and arx’ meansthe two policieswere incomparable. The total
number of runsfor which QM was better,equivalent, worse, or incomparable is
summarized at the bottom of the table.

The results in Figure 7-7 shathat, with respect to my comparison rule, the QM-600
policy performs as well or better thaoth the I-policy and thE-policy on everyun. On
several runsthe difference is striking.For instance, on run 3, queue monitoring resulted
in a display latencyt00 ms. less than thairoduced by thé&-policy while producing the
same gap rate. From thisurmise thatun 3 is probably aexample othe poorbehavior

of theE-policy that was abstractly illustrated in Figure 6-2. OnZdinqueuamonitoring
resulted in aisplay latency comparable to thabduced by thé-policy, but with a gap
rate 4times smaller. From this, | surmise thapartion of run 24exhibitedthe poor
behavior of the I-policy illustrated in Figure 6-1.

From the results in Figure 7-7, | conclude that over the rangeetwiork conditions
observed in the UNC departmental network, the use of goeungtoring as thelelay
jitter managemenpolicy was moreeffective than eithethe I-policy or theE-policy.
Figure 7-8 shows that queue monitoring also performed better than theylgmalthe E-
policy over the range of network conditions observed on the IBM-RTP floor network.

186

Run | I-Policy (I-4) E-Policy QM-600 QM QM
Latency Gaps| Latency Gaps| Latency Gaps VS.
ms. /min. ms. /min. ms. /min.
114 0.0 80 0.2 73 0.2
108 0.0 80 0.3 70 04
102 15 178 0.9 76 0.9
99 0.1 104 0.5 69 0.5
104 0.1 97 0.5 73 0.5
103 0.0 83 0.3 70 0.3
107 0.8 134 0.9 83 1.4
96 15 106 0.8 83 0.9
114 5.8 192 0.9 111 3.4
10 104 1.0 130 0.6 90 1.3
11 99 3.4 150 1.1 102 2.9
12 104 1.3 137 0.7 87 1.6
13 101 0.4 102 0.5 85 1.q
14 105 1.1 110 0.6 94 1.5
15 109 0.7 120 0.6 89 1.4
16 101 4.5 145 1.0 104 2.5
17 110 6.6 177 0.9 109 3.1
18 110 1.6 139 0.6 103 2.2
19 99 0.1 92 0.5 85 0.7
20 106 0.8 129 0.6 91 1.3
21 104 3.0 177 0.9 89 1.7
22 112 0.1 103 0.5 81 0.7
23 108 0.0 87 0.3 74 0.4
24 110 7.7 132 1.2 102 1.9
25 98 0.0 81 0.3 77 0.4
26 98 0.3 122 0.6 79 0.9
27 104 15 125 0.6 84 2.4
28 109 0.0 88 0.3 74 0.3

T <
O
m

OCoO~NOOOUTDAWNPER

O

O++0+0+++0++++0+++++++O0+++00

ool b6
NP+ ++++++000000+00+0000 + + + + + + +

QM Better 20
QM Equivalent 8
QM Worse 0
Incomparable 0

Figure 7-7: Comparison of I, E, and QM Policies (UNC Network)

Figure 7-9 shows the results for the IBM-RTP pasnetwork. Onthis network, queue
monitoring never performedorse, andusually performed aswvell or beter than the I-
policy. On several runsowever, my comparison rule judged the queue monitqahgy

to be incomparable witthe I-policy. Thus, | cannot concludleat, with respect to my
comparison rule, queue monitoring performed better than the I-policy over the range of
observed network conditions. Howevkrpking deeper at theacomparableruns, it is

clear that on most, queue monitoripgoduced amuch lower display latencyand a
somewhat highegap rate. On four of thieve incomparableuns, thedifference in gap

rate produced by queumonitoring and by the I-gicy wasless tharv.8 gaps peminute,

while the difference in display latenayas asnuch a219ms. Onthe fifth incomparable

187

run, queue monitoringroduced aslightly higher display l&ncy,but 89 fewer gaps per
minute. Thus, even otine incomparableruns, queue monitoring resulted in reasonable
behaviorthat, intuitively, is probably bettethan and almost certainlyot worsethan that

produced by the I-policy.

With respect to the E-policy, queue monitoring performed@bor better inthe results

for the IBM-RTP campus network on all but run 1; on that run, queue monitoring resulted

in a display latency 46 ms. legan that produced by thepolicy, but also resulted in 4.2

more gaps per minute. So again, even on the incomparable run, queue monitoring resulted
in reasonable behavior that is probably better than, and almost certaimtyrs®than that

produced by the E-policy.

Run | I-Policy (I-5) E-Policy QM-600 QM QM
Latency Gaps| Latency Gaps| Latency Gaps| vs. | vs.

ms. /min. ms. /min. ms. /min.| I-5 E
1 106 4.2 120 1.2 116 2.(0 0
2 108 0.0 96 1.0 72 1.0 + +
3 104 0.0 103 1.0 75 1.4 + +
4 115 0.0 93 0.8 72 0.8 + +
5 113 0.0 90 0.8 82 2.2 + 0
6 103 0.4 97 1.2 85 2.0 + 0
7 108 0.0 104 1.0 95 1.6 0 0
8 107 0.0 98 1.0 88 1.6 + 0
9 114 0.0 104 1.0 88 2. + 0
10 106 5.8 139 1.4 109 2.6 0 +
11 108 0.2 120 1.2 100 2.6 0 +
12 108 0.0 93 1.0 80 2.2 + 0
13 107 0.0 85 1.0 82 1.7 + 0
14 116 0.2 132 1.2 104 1.6 0 +
15 102 0.2 104 1.2 102 1.4 0 0
QM Better 9 6

QM Equivalent 6 9

QM Worse 0 0

Incomparable 0 0

Figure 7-8: Comparison of I, E, and QM Policies (IBM-RTP Floor)

188

Run | [-Policy (1-19) E-Policy QM-600 QM QM
Latency Gaps| Latency Gaps| Latency Gaps| vs. | vs.

ms. /min. ms. /min. ms. /min.| I-19 | E

1 343 4.8 283 5.0 237 9.7 X X
2 350 0.0 136 1.8 114 3.4 + +
3 339 7.4 188 4.6 162 5.6 + +
4 352 0.0 94 0.8 89 1.0 + 0
5 340 2.0 157 4.4 144 5.0 + 0
6 346 0.0 231 2.6 128 3.4 + +
7 336 95.6 447 5.2 359 6.4 X +
8 343 0.0 126 1.4 105 3. + +
9 347 0.0 152 2.2 128 4.2 X +
10 337 2.4 349 4.2 302 7.4 X +
11 346 6.8 430 5.0 352 9.4 0 +
12 349 0.0 144 1.6 120 2.4 + +
13 344 0.0 234 2.8 180 4.(+ +
14 344 0.0 144 1.6 89 24 + +
15 339 0.4 264 4.2 209 8.2 X +
16 327 0.0 127 2.6 108 4.(+ +
17 340 0.0 203 2.8 147 4.(+ +
18 338 2.6 174 4.8 148 5.4 + +
19 348 0.0 112 1.4 100 2.4 + 0
QM Better 13 15

QM Equivalent 1 3

QM Worse 0 0

Incomparable 5 1

Figure 7-9: Comparison of |, E, and QM Policies (IBM-RTP Campus)

Overallthen, | conclude that the queue monitonpaicy performed better than either the
I- or the E-policiesover the wide range ofnetwork conditions observed in the three
environments. In particular, queue monitoring always resulted in Idisplay latency
than that produced by the E-policy, and only rarely resulted in display latencies higher than
that produced by thépolicy. Quite often, queue monitoring resultednmuch lower
display latencieshan either or both of the othpolicies. And yetthe gap rate produced
by queue monitoring was less th&il gaps peminute onthe UNC departmental
network, and less than 9.2 gaps per minute on the IBM-RTP campus ngivestknably
an acceptable gajate. Thus, queusonitoring appears to haweiccessfullyadapted to
the delayjitter encountered in a wide rangeratworkconditions to produce low display
latency and an acceptable gap ¥ate

10Note howevethat for the IBM-RTP campus network, these results depend heaviltherassumption
that there was no data loss in the network; with the loss that was encountered in that network, the true gap
rate would be much greater.

189

7.5 Effect of the Threshold Parameter

In this section, | investigatine effect ofthe threshold parameter on tefectiveness of
the queue monitoringolicy. Inthe previous section, | looked at one quewmnitoring
policy with a singlethreshold i(e., 10 secondsjlefinedfor all queue lengthgreaterthan
two. The effect of using a single threshold is to redligglay latency byne audidrame
time whenevethe display queue contains more thawo audio frames continuously for
the specified number of frame times. In tlsisction, Ibegin by looking at severglueue
monitoring policies which define a single threshold for all queue lengths.

7.5.7 Results for QM Policies With a Single Threshold

For each run in the threeetworkenvironments, | simulatetthe queue monitoringolicy

with three thresholds: 12@ame timeq1/2 second), 60@ame timeq10 seconds), and
3600frame timeg60 seconds).Figures 7-10, 7-11, and 7-B2mmarizehe results. As

would be expected, on each run the use of a range of threshold parameters resulted in a
range of results; since it discarded frafasgtest, a threshold of 1Z2Gme timegroduced

the lowestdisplay latencyand highest gapate, while athreshold of 360Grame times
produced the higheslisplay latencyand the lowest gafate. Thusthresholds seem to be

a useful tunabl@arameter for an application to seledbalance betweedisplay latency

and gaps that reflects its requirements.

Looking at the three queue monitorimgplicies in the context of each network
environment, it is clear that a single threshold valugoisnecessarily optimahcross all
networkenvironments. In general, QM-600 performed somewateibthan QM-3600,
although in the IBM-RTP floor networkperformance was equivalent onost runs.
However, the performance of QM-60@lative to QM-120 variecdbver the network
environments. Othe UNC departmental network, QM-120 performedvali or better
than QM-600 onevery run. On the IBM-RTP floor network, QM-120 produced
equivalent results taQM-600 on most runsslightly better onone run, and was
incomparable omne run. On the IBM-RTP cgusnetwork, QM-120 performed better
on several runsyjorse on one run, and wasomparable omost runs. However, on
most of theancomparable runs ibhoth IBM-RTP networks, QM-120 resultedvary high
gap rates.

190

Run QM-120 QM-600 QM-3600 QM-600 QM-6Q0
Latency Gaps| Latency Gaps| Latency Gaps| vs. VS.
ms. /min. ms. /min. ms. /min.| QM-120|QM-360Q
66 0.2 73 0.2 80 0.2
69 0.4 70 0.4 74 0.3
69 0.9 76 0.9 115 0.9
66 0.5 69 0.5 83 0.5
71 0.5 73 0.5 83 0.5
70 0.3 70 0.3 81 0.3
74 1.4 83 1.4 119 1.1
75 1.2 83 0.9 97 0.9
90 5.8 111 3.4 161 1.1
10 79 3.6 90 1.3 110 0.6
11 84 4.4 102 2.9 140 1.1
12 77 2.3 87 1.6 113 0.9
13 73 1.7 85 1.0 96 0.7
14 80 3.4 94 15 104 0.7
15 79 2.6 89 1.4 106 0.9
16 82 5.9 104 2.5 130 1.7
17 89 6.7 109 3.1 148 1.4
18 86 4.7 103 2.2 126 0.9
19 74 1.6 85 0.7 91 0.5
20 77 2.7 91 1.3 105 0.8
21 76 2.7 89 1.7 130 1.0
22 79 1.0 81 0.7 92 0.6
23 74 0.4 74 0.4 81 0.3
24 88 4.2 102 1.9 128 1.7
25 66 0.4 77 0.4 81 0.3
26 69 15 79 0.9 94 0.6
27 74 3.0 84 2.4 108 0.9
28 74 0.3 74 0.3 75 0.3
QM-600 Better
QM-600 Equivalent
QM-600 Worse

Incomparable 0

Figure 7-10: QM Policies with Varying Thresholds (UNC Network)

O©COoO~NOOOUTDAWNEPER

H
OWoO+00+00+00++++00++++0+000+ 00

ok

o N o
WPl loo000cO00O0O0O T T CO0O0O I 0O OO0OO0O0O0OO

Therefore, it appears thathile noone threshold setting performs best &tirnetwork
environments, it is possible that an optimal threshold exwmtseach environment.
Furthermore, QM-600 produces reasonable results ineragtonment. Thus, aowverall
delay jitter managemenpolicy could begin by usingqueue monitoring with a threshold
setting that alays poduces reasonable behavior. Then dirae the threshold setting
could be adjusted to reflect long-term observationsetivork conditions. Furthermore,
such a policycould be used to adapt to long-teamanges imetwork conditions €.g.
changes due to network reconfiguration).

191

Run QM-120 QM-600 QM-3600 QM-600 QM-6Q0
Latency Gaps| Latency Gaps| Latency Gaps| vs. VS.
ms. /min. ms. /min. ms. /min.| QM-120|QM-360Q
94 21.4 116 2.0 120 1.2
71 1.0 72 1.0 82 1.0
73 1.0 75 1.0 85 1.0
71 1.2 72 0.8 85 0.8
73 4.4 82 2.2 90 0.8
78 3.2 85 2.0 97 1.2
88 3.6 95 1.6 104 1.0
80 4.6 88 1.6 97 1.0
81 2.8 88 2.0 101 1.2
10 91 6.4 109 2.6 130 1.4
11 87 6.4 100 2.6 120 1.7
12 75 2.4 80 2.2 91 1.2
13 80 1.6 82 1.2 85 1.0
14 94 4.8 104 1.6 119 1.7
15 93 2.4 102 1.4 104 1.2
QM-600 Better
QM-600 Equivalent
QM-600 Worse
Incomparable

Figure 7-11: QM Policies with Varying Thresholds (IBM-RTP Floor)

O©COoO~NOOOUTDAWNEPER

H

PP O°Plooc0oo0o: cocooocoooo o x
=N

©CPwNloocoo+ +o0ococo0o0co0oo

Run QM-120 QM-600 QM-3600 QM-600 QM-6Q0
Latency Gaps| Latency Gaps| Latency Gaps| vs. VS.

ms. /min. ms. /min. ms. /min.| QM-120|QM-360Q
1 136 14.8 237 9.2 280 5.4 X +
2 95 5.8 114 3.4 134 2.0 - +
3 112 7.8 162 5.6 186 4.9 - +
4 85 1.0 89 1.0 94 0.8 0 0
5 118 8.0 144 5.0 154 4.6 - 0
6 93 8.0 128 3.4 207 2.6 X +
7 256 18.2 359 6.4 427 5.2 X +
8 87 6.8 105 3.0 123 1.4 - +
9 105 11.6 128 4.2 148 2.4 X +
10 225 26.2 302 7.6 342 4.4 X +
11 285 28.6 352 9.0 410 5.2 X +
12 102 10.8 120 2.8 140 1.8 X +
13 143 14.2 180 4.0 228 2.8 X +
14 80 2.8 89 2.4 126 1.8 0 +
15 133 17.0 209 8.2 253 4.8 X +
16 88 6.2 108 4.0 126 2.9 - +
17 116 11.6 147 4.0 196 2.8 X +
18 133 7.8 148 5.8 165 5.2 0 +
19 88 6.8 100 2.4 112 1.4 + 0
QM-600 Better 1 16
QM-600 Equivalent 3 3
QM-600 Worse 5 0
Incomparable 10 0

Figure 7-12: QM Policies with Varying Thresholds (IBM-RTP Campus)

192

7.5.8 Results for QM Policies With Varying Thresholds

In the queue monitoringolicies investigated so far, display latervegs decreased if the
length of the display queue was continuouslgreater thantwo for a specified time;
otherwise thebehavior of thesepolicies was not dependent on the queudength.
However, thegeneral queue monitoringplicy described irSection 6.3 was designed to
reduce latency quickly when the displgyeue was long. In Section 7.2 it was shokat

in the network environments used in this study frames do siguificant delayjitter; thus
long display queues can be encountered.

For example, consider the histogram of delay jitter given in Figure 7-6; some frames arrive
with an end-to-endelay410ms.greater than theninimumend-to-enddelayencountered
during thesamerun. If the queue monitoringolicy (or the E-policy) were used during a

run with thatlevel of delayjitter, then at some point during a run teagth ofthe display
gueue would be at least 25 framddore interesting is the observation that in each of the
histograms of delayitter (Figures 7-2, 7-4, and 7-6) tmmber of frames incurring a
particular level of delay jitter decreasesrapidly as delayjitter increases(up to
approximatelyl50 ms.). This observation motivatéke use of a queue monitoripglicy

in which decreasing thresholds are defined for increasing queue lengths.

Thus, in this section éxaminethe performance of thgeneral queue monitoringplicy in
which individualthresholds arelefinedfor each queue length. These thresholds can be
arbitrary, but for purposes dhis study, | havelefined a particular rulér setting the
threshold values. This rule hago parameters: a threshold valioe a queue of length 3
measured in frame times, referred totlas base thresholdand a decayactor which
specifies arate atwhich the thresholds decrease wiiticreasingqueue length. For
example, queue monitoringpolicy with a basé¢hreshold of 3600 and a dectactor of 2
would havethe thresholdralues: 3600 for queues of length 3, 1800 for queuekeigth

4, 900 for queues déngth 5, etc.i(e., the threshold fotength 5 means that a display
latency is decreased the display queue contains Hramesfor at least 15 seconds).
Figures 7-13, 7-14 and 7-15 summarize the results.

193

Run QM-3600 QM-3600,2 QM-3600,3| QM-3600 QM-3600

Latency Gaps| Latency Gaps| Latency Gaps VS. VS.
ms. /min. ms. /min. ms. /min.|QM-3600,2QM-3600,3

1 80 0.2 80 0.2 80 0.2 0 0
2 74 0.3 74 0.3 74 0.3 0 0
3 115 0.9 80 0.9 75 0.9 - -
4 83 0.5 82 0.5 81 0.5 0 0
5 83 0.5 76 0.5 75 0.5 0 0
6 81 0.3 81 0.3 81 0.3 0 0
7 119 1.1 93 1.2 89 1.2 - -
8 97 0.9 89 0.9 86 0.9 0 0
9 161 1.1 127 1.8 118 2.1 - -
10 110 0.6 108 0.6 97 0.9 0 0
11 140 1.1 114 1.7 106 1.4 - -
12 113 0.8 101 0.9 95 1.4 0 -
13 96 0.7 96 0.7 96 0.7 0 0
14 104 0.7 104 0.7 101 0.9 0 0
15 106 0.9 101 1.0 97 1. 0 0
16 130 1.2 114 1.8 105 2.2 0 -
17 148 1.4 122 2.2 111 3.2 - -
18 126 0.8 122 0.9 117 1.2 0 0
19 91 0.5 88 0.5 88 0.5 0 0
20 105 0.8 100 0.8 99 0.9 0 0
21 130 1.0 102 1.1 98 1.1 - -
22 92 0.6 88 0.7 87 0.7 0 0
23 81 0.3 81 0.3 81 0.3 0 0
24 128 1.2 110 1.2 102 2.(- -
25 81 0.3 81 0.3 81 0.3 0 0
26 94 0.6 89 0.6 89 0.6 0 0
27 108 0.9 98 1.2 94 1.2 0 0
28 75 0.3 75 0.3 75 0.3 0 0
QM-3600 Better 0 0
QM-3600 Equivalent 21 19
QM-3600 Worse 7 9
Incomparable 0 0

Figure 7-13: QM Policies with Multiple Thresholds (UNC Network)

194

Run QM-3600 QM-3600,2 QM-3600,3| QM-3600 QM-3600

Latency Gaps| Latency Gaps| Latency Gaps VS. VS.
ms. /min. ms. /min. ms. /min. |QM-3600,20QM-3600,3

1 120 1.2 119 1.4 118 1.4 0 0
2 82 1.0 77 1.0 76 1.0 0 0
3 85 1.0 85 1.0 84 1.0 0 0
4 85 0.8 84 0.8 83 0.8 0 0
5 90 0.8 90 0.8 90 0.8 0 0
6 97 1.2 97 1.2 94 1.2 0 0
7 104 1.0 104 1.0 104 1.4 0 0
8 97 1.0 95 1.0 95 1.0 0 0
9 101 1.2 98 1.4 96 1.6 0 0
10 130 1.4 127 1.6 120 1.6 0 0
11 120 1.2 117 1.2 107 1.2 0 0
12 91 1.2 89 1.4 89 1.4 0 0
13 85 1.0 85 1.0 85 1.0 0 0
14 119 1.2 119 1.2 119 1.2 0 0
15 104 1.2 104 1.2 104 1.2 0 0
QM-3600 Better 0 0
QM-3600 Equivalent 15 15
QM-3600 Worse 0 0
Incomparable 0 0

Figure 7-14: QM Policies with Multiple Thresholds (IBM-RTP Floor)

For each run in the threeetworkenvironments, | simulatetthe queue monitoringolicy
with a base threshold of 36@@&me times and with decdgctors of onefwo and three.
Again, on each run using a range of parameters resulted in a range of redattay a
factor of 1 produced thieighest display latencgnd lowest gapate,and a decafactor of

3 produced the loweslisplay latencyand thehighest gapate. Thus, the use efmaller
thresholds for longer queue lengteeems to be a useful tunalp@arameter for an
application to select a balance betwedisplay latencyand gaps that reflects its
requirements.

Again, looking atthe three queue monitoringplicies inthe context of each network
environment, it is clear that a single dedagtor is notnecessarily optimaacross all
networkenvironments. In generddM-(3600,2) and QM-(3600,3) performed somewhat
better than QM-3600, although in the IBM-RTP floor netwoperformance was
equivalent on everyun. However, on the IBM-RTP campus network, QM-(3600,3)
resulted inhigh gap rates. Thus it appears thatdezayfactor isoptimal forall network
environments. However, astlse case with the base threshold, it appears thaveuall
delay jitter managementpolicy could adjust thedecay factor to reflect long-term
observations of network conditions.

195

Run QM-3600 QM-3600,2 QM-3600,3| QM-3600 QM-3600

Latency Gaps| Latency Gaps| Latency Gaps VS. VS.
ms. /min. ms. /min. ms. /min.|QM-3600,2QM-3600,3

1 280 54 229 9.2 162 116 - X
2 134 2.0 123 2.6 117 2.6 0 -
3 186 4.8 165 54 134 6.2 - -
4 94 0.8 94 0.8 94 0.8 0 0
5 154 4.6 148 4.8 135 6.2 0 -
6 207 2.6 137 2.8 122 3.2 - -
7 427 5.2 353 6.8 272 14.4 - X
8 123 1.4 119 1.4 115 1.9 0 0
9 148 2.4 139 3.0 122 5.6 0 -
10 342 4.4 299 8.6 236 20.8 X X
11 410 5.2 348 8.6 294 23.6 - X
12 140 1.8 127 2.2 120 3.4 0 -
13 228 2.8 190 3.2 166 4.4 - -
14 126 1.8 106 2.0 101 2.(- -
15 253 4.8 199 9.2 158 124 X X
16 126 2.8 119 3.2 110 3.4 0 0
17 196 2.8 162 3.4 140 5.4 - -
18 165 5.2 161 5.4 153 5.4 0 0
19 112 1.4 112 1.4 110 1.4 0 0
QM-3600 Better 0 0
QM-3600 Equivalent 9 5
QM-3600 Worse 8 9
Incomparable 2 5

Figure 7-15: QM Policies with Multiple Thresholds (IBM-RTP Campus)

7.6 Discussion and Summary

In this chapter, Ihave presentethe results of arempirical study of thedelay jitter
management policiepresented in Chapter 6Overall, the study showed that queue
monitoring performed better than either the I-policy or Eapolicy over the range of
observed network conditions. Furthermore, the study showed that themaei@ring
policy was flexible and tunable; a range of threshold paramepecsluced a range of
results.

While the study of queue monitoring and thiler policieswas performeanly for audio,
thesepolicies apply equally to videand othertypes of continuous media. In addition,
while thesepolicies have beepresented as operating on itisplay queue, theyare not
restricted to the display queue. In particular, they can be applad/ tpueue fromwhich
frames are removedperiodically. Thus inthe workstation-based&ideoconferencing
application, queue monitoring &pplied tothe queue of viderames which have arrived
at the display workstation and are waiting to be decompressed.

196

However, there arevo reasonawhy it shouldnot beassumed thagood settings for the
parameters of the queue monitoripglicy for video can be based @ood settings for

audio. First, because tlsze of audio and video frames differs, theyl wxperience

different levels of delayitter. Second, because tframerate atwhich video frames are
displayed differs fromthe frame rate atwhich audio framesare displayed, it requires
greater delay jitter to cause a change in queue length.

197

Chapter VIl
Conclusions and Contributions

8.1 Thesis Summary

Distributed applications that acquire adidplay live continuousmediadata €.g, audio
and video) are subject tseveral timingconstraints: operations on continucugdia
frames musbften be executedithin a narrow window oftime, andthe elapsedime
between acquisition andisplay of framesnust be reasonablshort. Delay jitter (i.e.,
variation in thetime required to acquirg@rocess, and transnfitames) causedifficulties

in adhering to these constraints. Tharetwo complementary approaches to addressing
thesedifficulties. First, an applicatiormay reduce oreliminate delayitter by carefully
managingthe process ofacquiring, processing, transmitting, amibplaying frames;
however, thismay require services fronthe operatingsystem andnetwork transport
system that are not usually provided in general-purpose computing environments. Second,
an applicatiormay adapt to the@emaining delayitter by playing frames at a sufficiently
high display latencyhowever,high display latencynay detractfrom the quality of the
resulting playout.

The thesis of this dissertation is that a combination of these approachesfisctinve
solution to theproblem of displayingontinuousmedia inthe presence alelayjitter. In

the dissertation, first demonstrated that it [gossible toreducedelayjitter by designing,
analyzing, andimplementing the software at workstations that acquire or display
continuousmedia as a real-time system walkrict performance requirements. | then
proposed and evaluated a policy calipetue monitoring thatynamicallyadjusts display
latency to accommodatie remaining delayitter. In this dissertation, | have evaluated
this combinedapproachusing aworkstation-based videoconferencing applicattbat
acquires audio and video at one workstation, transfers it avetwaork, andlisplays it at

a second workstation.

The firstpart of thedissertation addressed the reductiondayjitter through the use of
hard-real-time design, analys#)d implementation techniqueSpecifically, itwas shown

that on theacquisition-side othe workstation-baseddeoconferencing application, each
video frame is acquired, digitized, compressed, and delivereédetmetwork transport
system in bounded time. This was showromr steps. First, | described an operating
system kernelor the IBM PS/2called YARTOS;the application executes aiwp of this
kernel. Next, ldefined anabstract model of real-time systems that waglementable
using the programming model of YARTOSfor this alstract model, | developed a
feasibility test todetermine ifthe tasks that compriseraal-time system always execute
prior to application-defined deadlines and within application defined mutual exclusion
constraints. In the third step, | develogedhniques for representing thgplication in
terms of the abstrachodel; this allowed me to ugbe feasibility test to show that the
deadline and mutual exclusioproperties hold. Finally, | developed an axiomatic
specification of that portion of the acquisition-side of the applicaétiahisresponsible for
acquiring, digitizing, and compressing video frames; from this specification, | derived the
fact that each video frame is deliveredthe network in boundetime. In addition, |
argued that this analysould be extended to show bounded-delay properties for audio
frames on the acquisition-side and audio and video frames on the display-side.

The secongart of thedissertation addressed tpheblem of accommodating delay jitter
through the use opolicies that managéhe display queue Ke., the queue oframes
waiting to be displayed). Thregmlicieswere consideredwo from the literature and a
new policy calledqueue monitoring. The queue monitorpglicy operates bybserving
thelength ofthe displayqueue ovetime; changes igqueue lengtlare a measure alelay
jitter that is used to choose tlisplay latency at whicleach frame is played. The
performance of thesgolicies was compared in arempirical study that used the
workstation-based videoconferencing application record the end-to-endlelays
experienced by audio frames transmitid IP protocols over ethernets atmkenrings.
The resultingtraces were used as input tosianulator that determinethe effect that
applying each policyould have had othe quality of the audio playout.Overall, it was
shown that queue monitoring cowddccessfullyadapt to thelelayjitter incurred by audio
frames in a wide range ofetwork conditions. Furthermore, it was shown that the
parameters of the queue monitoripglicy provide aflexible method of tuning the
performance of the policy to account for long-term changes in network conditions.

199

8.2 Conclusions

From this research, | conclude that techniques developedesigning, analyzing, and
implementing hard-real-time systems can be successfully applied to applicatians
support continuousnedia. This allowghe designers of distributeapplicationsthat
support continuousnedia to assume thate only unbounded source dafelay jitter is
transmissionover the network. Furthermore, | conclude that quewaitoring is an
effective policyfor amelioratingthe effect ofthe delayjitter encountered in campus-sized
networks on thalisplay ofcontinuous media. In particulamyer the range of network
conditions encountered in my study, the use of queue monitoring resulted in the lowest
latency and fewest gaps of any of the policies studied.

8.3 Contributions

This dissertation makes contributions in sevarabs. First, have expandethe toolkit

of analysigechniquesvailable tothe designers of hard-real-tirsgstems by developing a
new formal model of real-time systems tlatdressedimitations found in traditional
formal models. In previous modelswasdifficult to represent théehavior of hardware
and software designed to be used in general-purpose environments. In particular, my
model can represent interrupts, interrupt controllers, interrupt handlers, and
synchronization primitives, as well alse sporadic (and/or periodic) taskaditionally
used to model real-time systems. Furthermore, my model allows designassign
arbitrary deadlines ttasks. These properties amecessary if a formal model of real-time
systems is to be useful the designanalysis,and implementation of applicatiortbat
support continuous media, which must often use hardware and software tligsigasd

to be used in general-purpose environments.

Secondthis dissertation provides a case-studyhef designanalysisand implementation
of a significant real-time systenilhe design and implementation tbk application show
that it is possible t@reatesignificant real-time systemshose correctness can be shown
throughanalysis. The separation of concerns enforced bydivesion of the analysisinto
theanalysis of timing behaviand theanalysis of logicatorrectness decouples reasoning
about the architecture of @al-time system from assumptioabout low-level details
about howlong tasks and actions require to execute, assumgiomstscheduling, and
assumptionsbout theexistence ofother tasks in thapplication. Thigproperty of the
analysisshows that aimilar analysiscould be performed in a practical settingwhich

200

thoselow-level detailsare subject to change over the course of the development of the
system. Thusthe case-study presented here can contribute to the wider acceptance of
formal techniques for designing and analyzing hard-real-time systems.

Third, the dissertation introduces queue monitoringplecy for amelioratingthe effect of

delayjitter on thedisplay ofcontinuousmedia frames.Queue monitoring iflexible and

general policy that can be applied in applications thaiport avariety of continuous
media data types in the presence of delay jitter.

Fourth, the dissertation provides real-world data ord#iayjitter that is experienced by
continuousmediadata incampus-sizechetworks. In particularsincethe software that
acquired, transmitted, and received tfa@a wasmplemented as a real-time system, the
data ondelayjitter was recorded withouhterference from arbitrary behavior oétwork
and operating system software.

Finally, the dissertation provides a case study of diesign of a continuousnedia
application in an environment consisting of today’s persomatkstations, today’s
commercially available audio/vidémrdware, and today’s networksd, ethernets, token
rings, etc). This design relies on few assumpticaisout the speed gfrocessing or
transmitting frames, o@bout the ordering of events. Thusgan be applied to a variety
of continuous media data types in a variety of environments.

In particular, this researchiivremain relevant in environments witfaster machines,
faster video compression technologies, and higher-spatadnetworks.Although faster
hardware may be sufficient tosupport a single stream ofideo data in today’s
applications,tomorrow’s applications W include more streams peapplication €.g.,
hundreds of participants in a video teleconference), much higher resgigiores €.g.,
HDTV), and fasteframerates €.g9.,60 framesper sec.). In additiornwhile high-speed
networks arebecoming widelyused as backbones, today’stalled network basewill
continue to be used upportcommunication within buildingand campuses. Thus for
the foreseeable future, continuousedia applications W need to be supported in the
presence of delay jitter.

8.4 Future Work

The research presented in this dissertation suggests several issues that should be addressed
in the future. Thesanclude issues inthe areas ofreal-time systems, delay jitter

201

management policies, and ovenaditwork and operatingystemsupport for continuous
media.

8.4.1 Real-time Systems

In thiswork, | used aeal-time operating systesupport a continuousiedia application

that was designed to procesames with bounded delayEqually powerful real-time
services Wl be necessary tsupport continuousnedia applications igeneral-purpose
computing environmentgjeally, such services could be integrated iakisting operating
systems. In generdhe problem that must be addressed is that of ensuring that non-real-
time workloads (.e., work that does nagpecifyits performance requirements and does
notreceive performance guarantees) recémecbest performangeossible consistent with

the real-time workload receiving guaranteed performance.

Another issue that has bekighlighted in this research is that neitkiee periodionor the
sporadic model of real-time workloadapture the properties of tmeal-time workloads
generated in an application thetpports continuousiedia. Fundamentallyhe average

rate at which work must be performed is based on the frateee.g, frames arrive at the
display workstation at an averagate equal to theframe rate). However, over short
intervals, tasksare often invoked at higherrate €.g, because of congestioseveral
frames arrive athe displayworkstation in a burst). Thus, the workloadchet periodic.
Furthermore, an assumption that such a workload is sporadic is extremely conservative. A
new model of real-time workload is necessary.

8.4.2 Evaluation of Delay Jitter Management Policies

The most important outstandirigsue inthe development oflelay jitter management
policies is that of quality measures. In thisrk, | have comparegolicies using average
display latencyand average gagate and a simle comparison rule. However, there are
manyother factors thataninfluenceperceived quality includinghe distribution of gaps
throughout a conference, timber of display latencghanges, and the distribution of
periods ofhigh and lowdisplay latencythroughout a conferencePolicies thatadapt to
current conditions cannot be developed or tuned withoality measurethatallow fine-
grained distinctions of perceived quality.

As an example, considéne problem of choosingiood threshold valuesor the queue
monitoring policy. Simulation using a variety of threshold values indicates that large

202

changes in threshold values may only produce small changes in average display latency and
average gapate. Assuch,work on choosing threshold valuesilwinvolve making
tradeoffs that result ismall changes to display laten@nd gaprate. While a simple
measure of qualitynay be sufficient tevaluate the gross performance characteristics of
threshold setting, it will not be sufficient to properly evaluate these small changes.

Another issue that should be addressethés extent towhich the queuemonitoring
technique scales. The study presented invibik usedaudio and videalata transmitted
over acampus-sizesetwork. Future worlshould r@eat the study of queuronitoring
and delayjitter for a succession of largaetworks. Such a studyilivhelp to identify the
types of networks invhich delayjitter is low enough that continuousedia applications
can besupported without resorting to netwas&rvices with specializeslipport forreal-
time communications.

8.4.3 Network and Operating System Support for Continuous Media

The emphasis in thisork has been on managitige effect of delayjitter on thedisplay of
continuous media. A related issue is that of preventing or minimizing data loss. This must
be addressed in both the operatsygtem andhe network transporsystem. On the
operating system side, this dissertation has already shown that it is possible tolpssvent
through the use akal-time systems desiganalysisand implementation techniques. On

the network side, possibilities include traditional techniques suchtie®outs with
retransmission and forward error correction (FEC). However, the fact that recovering lost
frames requires timanplies that frames W experiencegreaterdelay jitter (presumably

FEC will result in less delay jitter than the use of timeouts). As a resu#ffdet oferror
correctionmechanisms omueue monitoring andther delay jitter managemenpolicies

must be investigated.

Another issue that should be addressed is dontrol. Throughouthis work, it has been
assumed that applicatiossipport continuousnedia that isacquired and displayed at a
fixed framerate and at afixed resolution. Under this assumption, continugnedia
applications require a certain commitmentre$ources such agetwork bandwidth and
processotime. Flow controimechanismgould be used to change tliamerate or the
resolution in response to changeswailableresources. Suamechanismsvould help an
application todynamically adapt tochanges in its environment. Furthermosech
mechanismswould help to alleviate transienbverload conditions such as network
congestion.

203

Overall, the fundamental question that must dddressed if continuousedia is to be
supported in general-purpose computing emrments is: Wwat are theservice
abstractions that should be provided by general-purpose operating systenetveodk
transportsystems that iV effectively support bothraditionaldataand continuousnedia?
| believe that thiglissertation has made a substantial contribut@rardsanswering this
guestion.

204

References

[1] Anderson,D.P., Tzou, S.-Y.,Wahbe, R., Govindan, R., Andrews, M., 1990.
Support for Continuous Media in the DASystem Proc. Tenthintl. Conf. on
Distributed Computing Systems, Paris, France, (May), pp. 54-61.

[2] Anderson, D.P., Herrtwich, R.G.,Schaefer,C., 1990. SRP: A Resource
Reservation Protocol for Guaranteed Performance Communication in the Internet
University of California BerkeleyDept. of Electrical Eng. and Comput&cience
Technical Report, TR-90-006, (February).

[3] Azuma,R., Bishop,G., 1994. Improving Static and Dynamic Registration in an
Optical See-through HMD Proceedings of SIGGRAPH ‘94, Orlando, Buly 24-
29, 1994, pp. 197-204.

[4] Baruah,S., Mok, A.,Rosier, L., 1990.Preemptively Scheduling Hard-Real-Time
Sporadic Tasks with One ProcessdProceedings of theReal-Time Systems
Symposium, IEEE, (December), pp. 182-190.

[5] Dupuy, S., Tawbi, W., Horlait, E. 1992. Protocols for High-Speed Multimedia
Communication Networks Computer Communications, Vol.l5, No. 6,
(July/August), pp. 349-358.

[6] Ferrari, D., 1990. Client Requirements for Real-Time Communicat8ervices
IEEE Communications, (November), pp. 65-72.

[7] Ferrari,D., Banerjea, A., Zhang{., 1992. Network Supporfor Multimedia, A
Discussion of the Tenet Approadiniversity of California at Berkeley, TR-92-072.

[8] Ferrari, D., 1992. Delay Jitter Control Scheme For Packet-Switching
Internetworks Computer Communications, Vol. 15, No. 6, (Jul/Aug), pp. 367-373.

[9] Fisher, T., 1992. Real-Time Scheduling Support in Ultrix-4.2 for Multimedia
Communication Proc. of theThird International Workshop omNetwork and
Operating SysterBupport forDigital Audio andVideo, San Diego, CA, November
1992, V. Ringan(ed.), Lecture Notes in Comput8cience, Springer-Verlag, Vol.
712, pp. 321-327.

[10] Govindan, R., Anderson,D.P., 1991. Scheduling and IPC Mechanisms for
Continuous Media Proc. ACM Symp. on Operating Systems Principles, ACM
Operating Systems Review, Vol. 25, No. 5, (October), pp. 68-80.

[11] Gruber, J. G.StrawczynskilL., 1985. Subjective Effects of Variable Delay and
Speech Clipping in Dynamically Managed Voice Systeii&E Transactions on
Communications, Vol. COM-33, (August), pp. 801-808.

[12] Harbour, M. Klein, M., Lehoczky,J., 1991. Fixed Priority Scheduling of Periodic
Tasks with Varying Execution Priorjt 2" IEEE Real-Time Systems Symp., San
Antonio, TX, December 1991, pp. 116-128.

[13] Hehmann, D., Herrtwich, R.G.,Shulz, W., Shitt, T., Steinmetz, R., 1992.
Implementing HeiTS Architecture and Implementation Strategy of the Heidelberg
High-Speed Transport SysterRroc. of the Seconthternational Workshop on
Network and Operating Systei®upport forDigital Audio andVideo, Heidelberg,
Germany, November 1991, R. Herrtwich (Ed.), Lecture Notes in Computer Science,
Springer-Verlag, Vol. 614, pp. 33-44.

[14] Herrtwich, R.G., Nagarajan,R., Vogt, C., 1991. Guaranteed Performance
Multimedia Communication Using ST-Il Over Token RifAgchnicaReport, IBM
European Networking Center.

[15] Herrtwich, R.G.DelgrossiL., 1992. Beyond ST-II: Fulfilling the Requirements
of Multimedia CommunicationProc. of theThird International Workshop on
Network and Operating Syste@upport forDigital Audio andVideo, San Diego,
CA, November 1992, V. &gan(Ed.), Lecture Notes in Computescience,
Springer-Verlag, Vol. 712, pp. 25-31.

[16] Hopper, A., 1990.Pandora An Experimental System for Multimedia Applications
ACM Operating Systems Review, vol. 24, no. 2, (April), pp. 19-34.

[17] Intel, 1990. ActionMedia 750 Software Library Overviglmtel Corporation.

[18] Intel, 1990. ActionMedia 750 Software Library Referentrgel Corporation.

[19] Intel, 1993. Intel ProShare Personal Conferencing Video System 200tel
Corporation.

[20] IBM, 1990. Local Area Network Technical Referent®M Corporation, # Ed.

[21] IssacsE., Tang, J.C., 1993What Video Can and Can’'t Do for CollaboratiomA
Case StudyProc. of ACM Multimedia, pp. 199-205.

[22] JahanianF., Mok, A., 1986. Safety Analysis of Timing Properties in Real-Time
Systems IEEE Transactions on Softwar&ngineering, Vol. SE-12, No. 9,
(September), pp. 890-904.

[23] Jeffay, K., 1989. The Real-Time Producer/Consumer Paradigmlowards
Verifiable Real-Time Computationd®h.D. Thesis,University of Washington,
Department of Computer Science, Technical Report #89-09-15.

[24] Jeffay,K., Stone, D.L.Smith,F.D., 1992. Kernel Support for Live Digital Audio
and Videg Computer Communications, Vol. 15, No. 6, (Jul/Aug), pp. 388-395.

206

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Jeffay,K., 1992. Scheduling Sporadic Tasks with Shared Resources in Hard-Real-
Time Systemdroc. 18 IEEE Real-Time Systems Symp., Phoenix, AZ, December
1992, pp. 89-99.

Jeffay, K., Stone, D.L., 1993Accounting for Interrupt Handlin@osts in Dynamic
Priority Task System#$roc. 14 IEEE Real-Time Systems Symp., Raleigh-Durham,
NC, December 1993, pp. 212-221.

Jeffay,K., Stone, D.L.Smith,F.D., 1994. Transport and Display Mechanisms for
Multimedia Conferencing Across Packet-Switcinetworks Computer Networks
and ISDN Systems, Vol. 26, No. 10 (July), pp. 1281-1304.

Jones, A., Hopper, A., 1993 andling Audio and Video Streams in a Distributed
Environment Proc. ACM Symp. on Operating Systems Principlésheville, NC,
December 1993, Operating Systems Review, Vol. 27, No. 5, pp. 231-243.
Kessler, G., 1991Inside FDDI-Il, LAN Magazine, (March), pp. 117-125.

Le Boudec, Jean-Yves, 199The Asynchronous Transfer Mode: A Tutqrl&M
Research Report RZ 2133, (May).

Liu, C.L., Layland,J.W., 1973. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environmendournal of the ACM, Vol20, No. 1,(January), pp.
46-61.

Luther, A.C., 1991.Digital Video in the PC EnvironmenMcGraw-Hill, Second
Ed.

Mauthe, A., Schulz, W., SteinmetR,, 1992. Inside the Heidelberg Multimedia
Operating System SupporiReal-Time Processing of Continuous Media in QS/2
IBM ENC Technical Report No. 43.9214, (September).

Mercer, C., SavageS., Tokuda, H., 1994. Processor Capacity Reserves
Operating System Support for Multimedia Applicatiodf&oc. of thdnternational
Conference on Multimedia Computing and Systems, Boston, MA, May 14-19, 1994,
IEEE Computer Society Press, pp. 90-99.

Minzer, S., 1989. Broadband ISDN and Asynchronous Transfer Mode (ATM)
IEEE Communications, (September), pp. 17-24.

Montgomery, W.A., 1983. Techniques for Packet-Voice SyncronizatibBEE
Journal on Selected Areas in Comm., Vol. SAOND, 6, (December), pp. 1022-
1028.

Naylor, W.E., Kleinrock, L., 1982. Stream Traffic Communication in Packet-
Switched Networks Destination Buffering ConsiderationdEEE Trans. on
Communications, Vol. COM-30, No. 12, (December), pp. 2527-2534.

207

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

Nieh, J., Hanko, J., Northcutt, DWall, G., 1993. SVR4 UNIX Scheduler
Unacceptable for Multimedia Applications Proc. of the Fourtinternational
Workshop on Networland Operating Systeupport forDigital Audio and Video,
Lancaster, U.K., Decembek993, D. Shepherd al. (Eds.), Lecture Notes in
Computer Science, Springer-Verlag, Vol. 846, pp. 41-53.

Park, C.Y., Shaw, A.C., 199CExperiments with a Prograifiming Tool Based on
Source-LevelTiming Schema,Proc. of theEleventh IEEE Real-Time Systems
Symposium, Lake Buena Vista, FL, December 1990, pp. 72-81.

RamanathanS., Rangan,P.V., 1992. Continuous Media Synchronization in
Distributed Multimedia System$roc. of theThird International Workshop on
Network and Operating Systeupport forDigital Audio andVideo, San Diego,
CA, November 1992, V. &gan(Ed.), Lecture Notes in Computescience,
Springer-Verlag, Vol. 712, pp. 328-335.

Rangan,P.V., Vin, H.M., 1991. Designing File Systems for Digital Video and
Audio, Proc. ACM Symp. on Operating Systems Principles, ACM Operating
Systems Review, Vol. 25, No. 5, (October), pp. 81-94.

Reed, D.P.,Kanodia, R.K., 1979. Synchronization with Eventcounts and
SequencerLComm. of the ACM, Vol. 22, No. 2, (February), pp. 115-123.

Ross, F., 1989.An Overview of FDDI The Fiber Distributed Data Interface
IEEE Trans. orSelected Areas in Comm., Vol. Ko. 7, (September), pp. 1043-
1051.

Schulzrinne,H., 1992. Voice Communication Across the Internet: A Network
Voice TerminglTechnical Report, Univ. of Massachusetts.

Schulzrinne H., 1993. Issues in Designing a Transport Protocol for Audio and
Video Conferences and other Multiparticipant Real-Time Applicatiohgernet
Engineering Task Force, Internet Draft, (October).

Schulzrinne,H., Casner,S., 1993. RTP. A Transport Protocol for Real-Time
Applications, Internet Engineering Task Force, Internet Draft, (October).
Shankar, A.U., 1993.Reasoning Assertionally about Real-Time Syst&SsTR-
3047, University of Maryland.

Shaw, A.C., 1989.Reasoning About Time in Higher-Level Language Software
IEEE Trans. on Soft. Eng., Vol. SE-15, No. 7, (July), pp. 875-889.

Smith, F.D., 1991. Personal communication.

Terry, D.B., Swinehart, D.C., 1988Managing Stored Voice in the Etherphone
SystemACM Trans. on Computer Systems, Vol. 6, No. 1, (February), pp. 3-27.

208

[51] Tokuda, H.,Kitayama, T., 1993. Dynamic QOS Control Based on Real-Time
Threads Proc. of the Fourtlinternational Workshop oietwork and Operating
SystemSupport forDigital Audio andVideo, Lancaster, U.K., Decemb#993, D.
Shepherd et alEds.), Lecture Notes in Comput8cience, Springer-Verlag, Vol.
846, pp. 114-123.

[52] Topolocic, C., 1990. Experimental Internet Stream Protocol, Versior(ST-lI).
Internet Network Working Group, RFC 1190, (October).

[53] Turner, CharlesJ., Petersonlarry L., 1992. Image Transfer An End-to-End
Design Comp. Comm. Review, Vol. 22, No. 4, (October), pp. 258-268.

209

