
RSVP and Integrated Services in the Internet

Dilip Kandlur � Ashish Mehra y Debanjan Saha z

Abstract

This paper presents the design and implementation of a quality of service architecture for the Internet. The
architecture is based on the emerging standards for resource reservation in the Internet, namely the RSVP protocol
and the associated service speci�cations de�ned by the Internet Engineering Task Force (IETF). Our architecture
represents a major functional enhancement to the traditional sockets based communication subsystem, while
preserving application programming interface and binary compatibility with existing applications. It is scalable
and supports a wide variety of network interfaces ranging from legacy LAN interfaces, such as Token Ring and
Ethernet, to high-speed ATM interfaces.

1 Introduction

As audio and video annotations become common features on Web pages and as applications like InternetPhone,
NetRadio, and WebTV become ubiquitous on the Internet, the need for "better than best e�ort" network connec-
tivity will become inevitable. To address this, the Internet Engineering Task Force (IETF) is developing a set of
protocols and standards for Integrated Services on the Internet [3, 6, 2, 5]. In the IETF's vision, and one that we
share, applications can request and reserve resources in the network and at the hosts using an end-to-end Resource
ReSerVation Protocol (RSVP) [7, 4]. Resource management is performed via per-
ow tra�c shaping and scheduling
for various classes of service [3].

In order to support integrated services on the Internet, the network routers as well as end hosts need to be
enhanced to perform classi�cation of tra�c on a per-
ow basis, create and maintain 
ow speci�c reservation soft
states, and handle data packets from di�erent 
ows in accordance with their service requirements. In this paper we
focus on resource management, protocol stack extensions, and device support required at the end hosts to enable
RSVP-based quality of service (QoS) infrastructure in the Internet. More speci�cally, we concentrate on the design

and implementation of QoS support on Unix-like1 Internet servers, which are the typical source of multimedia data
on the Internet.

The heart of our quality of service architecture is a new kernel module called QoS Manager. It is entrusted
with managing communication related system resources at the end-hosts. Applications or their designated agents
can request reservations on a network session to the QoS Manager. Typically, applications would use the RSVP
application interface for reserving network resources along the path of the data 
ow and the RSVP agent would
act as the designated agent to request local resource reservations from the QoS Manager. We have extended the
socket API and created a new protocol family for applications to avail the services of the QoS Manager. In response
to a reservation request, the QoS Manager, in cooperation with the network device driver, memory allocator, and
the network interface handlers (IFNETs), performs local checks on the availability of system resources. If adequate
resources are available, the QoS manager establishes a local reservation state for the session. It also annotes the
the datapath with a session handle for the session speci�c handling of data packets commensurate with their service
requirements. Note that the data and the control paths are completely separate. This separation of control and
data paths enables us to provide sophisticated control functions without sacri�cing data path performance. Besides
acting as the resource manager and the admission controller, the QoS Manager is also responsible for forwarding
any network related control information, such as changes in reservation state, from the network to the application
concerned. This is done via asynchronous messages posted to the application.

The QoS Manager and the supporting modules have been implemented on the IBM AIX platform. We have

1more speci�cally, those that support a sockets based communication system

1



extended the socket interface to provide an API to the QoS Manager. We have enhanced the memory allocator for
session speci�c management of system bu�ers. The mbuf structure itself has been modi�ed to act as the conduit for
session speci�c information for e�cient data handling. We have taken care to ensure that the mbuf modi�cations
maintain object code level backward compatibility to accommodate third party network interfaces. We have also
enhanced the architecture for the network interface layer and network device drivers for e�cient packet classi�cation
and session speci�c packet handling. For example, we have modi�ed the IFATM (network interface layer for classical
IP over ATM) to establish separate ATM virtual channels (VCs) with appropriate QoS parameters for each RSVP
session. We have also enhanced legacy LAN (token ring) drivers to support a service class based queuing structure.

The rest of this paper we brie
y review design requirements that have guided our work and building blocks that
comprise our QoS support architecture. The operational details of various components and performance results are
reported in [1].

2 System Overview

Figure 1 shows an RSVP based quality of service architecture. In this example, S1 and S2 are sources, and D1,D2,
and D3 are destinations of data. The sources, S1 and S2, as well as the destinations, D1,D2, and D3, run RSVP
daemons that participate in RSVP protocol and exchange RSVP messages on behalf of their hosts. There are two
basic types of RSVP messages { PATH and RESV. PATH messages are sent by the source and is associated with
a data 
ow. PATH messages are encapsulated in IP or UDP datagrams. As PATH messages travel through the
network towards the destination(s) they are intercepted by RSVP enabled IP routers on the path. The routers
setup a soft state for the PATH messages they intercept. A PATH state block includes the previous and next hops
of the 
ow and its tra�c characteristics. When a PATH message reaches its intended receiver(s), it is processed
by the RSVP daemon running there. If the receiver wants to make a reservation for the particular RSVP 
ow, it
responds with a RESV message. The RESV message traverses the reverse path back to the sender. On the way to
the sender, it is intercepted by RSVP enabled routers. If su�cient resources are available, a reservation soft state is
established in the routers. Otherwise, a RESV ERRORmessage is issued and is sent back to the receiver. The RESV
ERROR message is also intercepted by RSVP enabled routers and the reservation states are deleted. An end-to-end
reservation is successfully established when the RESV message reaches the sender and is successfully processed by
the RSVP daemon on the sender.

Reservation can also be made on a multicast session. In this case the sender sends PATH messages to a multicast
group address. As in the case of unicast, the path messages travel through the network to all the members of the
multicast group and PATH state blocks are established at all RSVP enabled routers in the multicast tree. When
PATH messages reach the receivers, each receiver independently decides if it wants to request a reservation for the
session. Each receiver can potentially request for di�erent reservations for the same session. As the RESV messages
from the receivers traverse upstream to the sender, they are merged by the routers at the merging points. Eventually,
a reservation tree is established with the sender as the root and the receivers requesting reservations as the leaves.

In the example shown in Figure 1 D1,D2, and D3 are the members of the same multicast group, and S1 and S2
are the senders sending PATH messages to the multicast group address. As shown in the �gure, each of D1,D2, and
D3 receives two sets of PATH messages. The receiver D1 intends to make reservation on both the 
ows originating
from S1 and S2, and sends RESV messages RESV1 and RESV2 in response to PATH messages PATH1 and PATH2,
respectively. The receiver D2 want to make reservation only on the 
ow originating at S1 and sends RESV messages
RESV1. The receiver D3 on the other hand decides not to make any reservation and does not send any RESV
messages in response to the PATH messages from S1 and S2. The RESV messages are merged at the routers
reservation trees are established as shown in the �gure.

The classes of service to be supported in the Internet are currently under standardization. Two of the most
important classes of service that are being considered are (1) guaranteed service, and (2) controlled loads service.
Guaranteed service guarantees that datagrams will arrive within the guaranteed delivery time and will not be
discarded due to queue over
ows, provided the 
ow's tra�c stays within its speci�ed tra�c parameters. This service
is intended for applications which need �rm guarantees on loss-less on time delivery of datagrams. Some of the
interactive audio and video applications, and applications with hard real-time requirements fall in this category. The
end-to-end behavior provided to an application by controlled load service closely approximates the behavior visible

2



S1

D1

D2
R1

R2

D3R3

S2

PATH1

PATH2 PATH2

PATH2

PATH2

PATH2

PATH1

PATH1

PATH1

PATH1

RESV1
RESV1

RESV1

RESV1
RESV1

RESV2

RESV2

RESV2

PATH1

Figure 1: PATH and RESV message 
ows in RSVP.

to applications receiving best e�ort service under unloaded network conditions. That is to say, (1) a very high
percentage of transmitted packets will be successfully delivered by the network to the receiving end-nodes, and (2)
the transit delay experienced by a very high percentage of delivered packets will not greatly exceed the minimum
transit delay experienced by any successfully delivered packet. Clearly, the de�nition of controlled load service is less
precise than that of guaranteed service. It is intended for the broad class of applications which have been developed
for use in today's Internet, but are sensitive to overload conditions. Some of the important members of this class are
the adaptive real-time applications such as vic,vat,nevot etc.

3 Architectural Building Blocks

Figure 2 shows our software architecture of an RSVP enabled host. In this example, a number of applications are
using RSVP signaling for resource reservation. The applications use the RSVP API (RAPI) library to communicate
with the user level RSVP daemon running on the host. The RSVP daemon is responsible for translating the RAPI
calls into RSVP signaling messages and local resource management function calls. For local resource management,
the RSVP daemon interacts with the QoS Manager over an enhanced socket application programming interface.

The protocol stack in the kernel consists of a control plane and a data plane. The control plane is responsible
for creating, managing, and removing reservations associated with di�erent data 
ows. The data plane is involved
in moving data from the application to the network and vice versa. The QoS Manager is the key component in
the control plane of the protocol stack. It is entrusted with managing network related resources, such as network
interface bu�ers and link bandwidth. It is also responsible for maintaining reservation states of di�erent 
ows and
the association between the 
ows and their reservations. Additionly, it performs tra�c policing and shaping unless
the network interface adapters perform these functions in hardware.

The QoS Manager is responsible for (1) allocating and managing network bu�ers, (2) policing and shaping of
network bound tra�c, and (2) maintaining reservation state of QoS connections. It is implemented as a separate
protocol module and is accessed through the socket interface. Applications can access the services provided by the
QoS Manager directly through the socket interface or via the RSVP daemon. For example, in order to set up new
QoS connection, an application can use the RAPI interface to the RSVP daemon and communicate the end points of
the connection and the tra�c speci�cation for the 
ow. The RSVP daemon uses the socket interface to communicate
this information to the QoS Manager. It also prepares and sends appropriate RSVP signaling messages (PATH

3



SOCKET

TCP UDP

QOSMGR
IP

IFNET

NDD

K
E
R
N
E
L

U
S
E
R

Applications

RSVP Daemon

Control Path Data Path

Figure 2: Protocol stack architecture and extensions.

and/or RESV) to the network. The QoS Manager sets up a reservation state for the connection. This include
pre-allocating network interface bu�ers, initialization of reservation state, and performing admission control checks.
It also annotates the data socket with the appropriate session handle. Similarly, the QoS Manager also gets involved
when the application decides to modify the reservation level or to remove the reservation all together. It is also
responsible for policing 
ows for Tspec compliance and blocking them when appropriate. In that sense it also has a
part to play in the data plane.

The socket layer has been extended to support a new protocol family PF QOS. Sockets with protocol family PF QOS

interfaces with the QoS Manager. PF QOS sockets are also referred to as control sockets. Control sockets are used
to avail services o�ered by the QoS Manager, speci�cally to create, modify, and delete reservations made on data
connections. An alternative way of extending the socket interface would have been to extend the getsockoption

and setsockoption kernel services. We chose to use the control socket mechanism over that of socket options
because of its 
exibility and architectural richness. Unlike socket options, control sockets interface can be used
for (1) asynchronous upward control 
ow, (2) third party control on data 
ows, (3) sharing of reservation between
multiple data sockets.

The network interface layer is responsible for implementing link-layer adaptation functions for di�erent subnetwork
types such as Ethernets, Token-ring, ATM, etc. We have extended this layer to provide local reservation services for
a subnetwork. The local reservation services are provided as control path functions to higher layers (QoS Manager)
through the I/O control (ioctl) interface. Although this control interface is common across all interface types, the
capabilities of speci�c interfaces may di�er substantially based on the characteristics of the network and the level of
sophistication of the network interface device. The QoS Manager is cognizant of these levels of service and makes
appropriate reservation and 
ow control decisions.

4 Summary

We have described the design and architecture of a framework for communication resource management for providing
QoS support on Unix-like Internet servers, these being the typical source of multimedia data on the Internet. The
heart of our architecture, which embraces emerging Internet standards for end-to-end resource reservations, is a
new kernel module called QoS Manager. This module controls several important network-related resources, namely

4



bandwidth and transmission priorities on network interfaces and kernel bu�er space (mbufs). We have also augmented
the sockets layer to enable session speci�c handling of data packets. The QoS Manager and the sockets layer together
provide a novel combination of bu�er management and tra�c shaping to provide a synchronous feedback mechanism
for applications. These extensions preserve binary and API compatibility for sockets applications, while providing
signi�cant new functionality.

We have developed a prototype implementation of this architecture for the IBM AIX platform. We have imple-
mented the QoS Manager and network interface support for ATM and token ring networks. This implementation is
one of the �rst implementations of the RSVP protocol over an ATM network. When operating on an ATM network,
our implementation provides QoS guarantees for TCP/UDP/IP applications with minimal increase in the pathlength,
thereby achieving our goal for e�ciency.

At the time of writing this paper, we have completed all aspects of the implementation for both the ATM and
the Token Ring network interfaces. We are currently in the process of measuring and pro�ling the cost of providing
QoS support for LAN interfaces. Also, we are integrating our implementation with the HTTP server to allow us to
experiment with video and audio streaming over QoS-enabled RSVP connections.

References

[1] T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise. Design and Implementation of an RSVP Based Quality
of Service Architecture for Integrated Services Internet. IBM Research Report RC20618, October 1996.

[2] M. Borden, E. Crawley, B. Davie, and S. Batsell. Integration of real-time services in an IP-ATM network
architecture. Request for Comments RFC 1821, August 1995. Bay Networks, Bellcore, NRL.

[3] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet architecture: An overview. Request for
Comments RFC 1633, July 1994. Xerox PARC.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP) - version 1
functional speci�cation. Internet Draft draft-ietf-rsvp-spec-13.txt, May 1996. ISI/PARC/USC.

[5] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet networks. IEEE/ACM
Trans. Networking, 3(4), August 1995.

[6] M. Perez, F. Liaw, A. Mankin, E. Ho�man, D. Grossman, and A. Malis. ATM signaling support for IP over
ATM. Request for Comments RFC 1755, February 1995. ISI, Fore, Motoral Codex, Ascom Timeplex.

[7] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource ReSerVation Protocol.
IEEE Network, pages 8{18, September 1993.

5


