
Simple Input/Output Streaming

in the Roadrunner Operating System�

Frank Miller, George Apostolopoulos, and Satish Tripathi

Mobile Computing and Multimedia Laboratory

Department of Computer Science

University of Maryland

College Park, MD 20742

ffwmiller, georgeap, tripathig@cs.umd.edu

November 13, 1996

1 Introduction

On-demand multimedia applications can impose
Quality-of-Service (QoS) parameters on stream-
ing data transfers performed by operating sys-
tems. For multimedia servers, high performance
in the form of low latency and high through-
put are also necessary. This work seeks to im-
prove the performance of simple data streaming
between hardware devices with QoS in the con-
text of general-purpose operating systems. Sim-
ple streaming refers to moving data from one de-
vice to another without transforming (e. g. com-
pressing) the data during the transfer.
A transfer model originates data at a source

device, traverses a transfer path, and delivers
data to a destination device. In this work, we
our interested in sources that are �les on a mass
storage device being served to a destination net-
work adapter. For these transfers, the path must
necessarily include the �le system and network
protocol stack.
Streams are partitioned into burst and periodic

streams. Burst streams transfer data from source
to destination as quickly as possible, one packet
after another. FTP and HTTP �le transfers fall
into this category. There are typically no QoS
parameters associated with this type of stream
but they will be present in a general-purpose en-
vironment. Periodic streams transfer data based
on some frequency, e. g. a frame rate for video.
These streams impose Quality-of-Service (QoS)

parameters like bounded delay and delay vari-
ance (i. e. jitter).

In traditional operating systems such as
4.4BSD [1], input/output (I/O) subsystems im-
plement an environment that supports streaming
through applications. System calls are provided
to allow user applications to read data from and
write data to devices. When an application pro-
gram executes a read() system call on a �le, data
is transferred from the disk to a bu�er in the ker-
nel and then to the application. A subsequent
write() system call to a network socket results
in data being copied to an mbuf in the kernel
and then to an network device. For applications
that stream data using read() and write() in suc-
cession, such as FTP and web servers and more
recently, on-demand audio and video servers, the
cross domain data copies and number of system
calls reduce potential performance.

A new operating system kernel and in-
put/output subsystem have been designed and
implemented to address simple streaming appli-
cations. The speci�c aim of the Roadrunner op-
erating system is to support high-performance,
concurrent, simple data streaming in the context
of a general-purpose operating system environ-
ment. This goal is addressed with the stream()
system call which allows 
exible control over ker-
nel data streaming.

Section 2 discusses the design and implemen-
tation of the Roadrunner operating system and

1



the stream() system call. Section 3 presents
comparative measurements for a simple stream-
ing application executing on Roadrunner (in its
current form) and BSD. Section 4 presents con-
clusions and future work.

2 RoadrunnerDesign and Im-

plementation

Roadrunner is designed around the need to add
support for simple kernel streams to the general
purpose operating system environment. In order
to support concurrent, deterministic streaming,
the following design elements have been incorpo-
rated.

Multi-threaded The kernel is multi-threaded
to support scheduled concurrent activity
within the kernel. Currently, each stream
has a thread allocated to perform data
transfers, however, a necessary optimization
will unify stream processing under a single
thread.

Real-time To support threads that delay and
jitter constraints, a fully preemptable, stat-
ically prioritized kernel design is imple-
mented. General-purpose computing loads
are supported on a time available basis us-
ing lower priority values.

Uni�ed I/O Programming Interface While
the stream() system call could be designed
to explicitly handle endpoints with di�erent
programming interfaces, such as sockets [5],
a more elegant design uni�es the interface to
all the endpoints using the �le system name
space.

Uni�ed Bu�er Pool In order to avoid data
copies between di�erent bu�er pool types,
a uni�ed bu�er pool to be used by block de-
vice drivers, �le systems, and the protocol
stack will be utilized.

2.1 I/O Subsystem Architecture

Access to all I/O elements, �les, device drivers,
and network protocols is through the global �le
system interface using �le system path name con-
ventions. Underlying this interface are speci�c

�le system and network protocol implementa-
tions and direct access to the device drivers. Fig-
ure 1 illustrates the key architectural di�erences
between BSD and Roadrunner .
When a path name is presented to the Road-

runner �le system, the mount table is consulted
to determine on which �le system the path cor-
responds. The pre�x is then stripped o� and the
remaining path is passed to the speci�c �le sys-
tem implementation. Table 1 describes how the
udpfs �le system implementation utilizes path
name conventions to provide access to protocol
communications endpoints.
Speci�c �le systems and network protocols uti-

lize a common bu�er pool. The aim is to allow
the stream() system call to pass references to
bu�ers between speci�c �le system implementa-
tions, reducing the number of data copies. This
portion of the work requires signi�cant e�ort to
rework the use of bu�ers in the speci�c �le sys-
tem implementations, including the network pro-
tocols. This e�ort is under way.

2.2 Implementation Status

Roadrunner currently
runs on IBM PC-compatibles. The kernel, sev-
eral device drivers, the generic �le system inter-
face, and a DOS-compatible speci�c �le system
implementation have been written from scratch
and are up and running. The DEC Tulip PCI
Ethernet adapter device driver has been ported
from FreeBSD. The UDP/IP/ICMP/ARP pro-
tocol stack has been ported from XINU [2]. A
simple text based, virtual console user interface
has been developed and is in place to allow sys-
tem monitoring and debugging.
The network device driver and protocol stacks

have been recently ported and still have some mi-
nor bugs that have prevented measurements un-
der load at the time of this writing. However,
Roadrunner is capable of streaming data from
the hard disk to the ethernet. The next section
describes our initial observations of the system's
performance.

3 Performance

The focus of performance measurements is to de-
termine the supported concurrent streaming load

2



BSD

Process

User

DOS UDP/IP

IDE Ethernet

Device Drivers

Kernel

Buffer Cache

File System Sockets

mbufs

Roadrunner

Process

DOS UDP/IP

IDE Ethernet

File System

Buffer Cache

Device Drivers

Thread
Kernel

User

Figure 1: The I/O Architectures for BSD and Roadrunner

Table 1: UDP File Name Conventions

File Mode File Name (/net/udp) Description

O RDONLY /4000 Open local port 4000 for reading

O WRONLY /2592 Open port 2592 on local host
(ip address = 127.0.0.1) for writing

/128.8.130.115/2592 Open port 2592 on foreign host with
ip address = 128.8.130.115 for writing

O RDWR /2592 Open port 2592 on local host
(ip address = 127.0.0.1) for writing
and pick an arbitrary local port number
for reading

/4000/2592 Open port 2592 on on local host
(ip address = 127.0.0.1) for writing
and local port 4000 for reading

/128.8.130.115/2592 Open port 2592 on foreign host with
ip address = 128.8.130.115 for writing
and pick an arbitrary local port number
for reading

/4000/128.8.130.115/2592 Open port 2592 on foreign host with
ip address = 128.8.130.115 for writing
and local port 4000 for reading

3



for a given hardware platform. Measurements
would span burst only loads to periodic only
loads to a mixture of burst and periodic loads.

While a large set of measurements has been
taken for BSD, the stability of our current im-
plementation has not allowed us to complete the
same set of measurements for Roadrunner at this
time. However, Roadrunner is capable of stream-
ing data from the hard disk to the ethernet. Fig-
ure 2 presents an initial set of comparison mea-
surements for BSD and Roadrunner .

BSDi, version 2.1 and Roadrunner were used
as servers with a BSDi, version 2.1 platform serv-
ing as client for both streaming tests. Both
servers were run on an IBM PC/350 with 75Mhz
Pentium, 16 Mbytes main memory, 256 Kbyte
second level cache, 810 Mbyte EIDE hard drive
and SMC Etherpower 10 BaseT PCI Ethernet
Adapter. A 110 Mbyte MPEG-1 encoded video 1

resident on a DOS �le system partition was used
as the source �le for all streams.

Each server ran a single periodic stream that
read a 1 Kbyte packet from the �le just de-
scribed and wrote the packet to a UDP port at
a rate of 30 packets per second (i. e. a period
of approximately 33,333 microseconds). Such a
stream models the transmission of a small (per-
haps 320x200) MPEG video. Figure 2 gives the
latency of each of the �rst 10,000 (of approxi-
mately 106,000) packets. Latency was measured
from the beginning of each period to the end of
the UDP write.

There are two points to observe. First, the
BSD �gures display a set of diagonal patterns
of points due to di�culty implementing the real-
time loop. The usleep() call used to implement
the delay required to wait for the beginning of
the next period is highly inaccurate. This is not
suprising, BSD is not intended to be a real-time
system.

Second, the Roadrunner DOS �le system im-
plementation does not currently use a bu�er
cache. Each open �le descriptor stores a single
cluster from the disk and when it is exhausted,
reads the next cluster. Despite this implemen-
tation de�ciency, the system displays remarkably
good raw performance.

1This video is an MPEG-1 encoding of approxi-
mately the �rst 20 minutes of the James Bond move,
\Live and Let Die".

4 Related Work

The design of the stream() system call was
heavily in
uenced by Kevin Fall's work at UCSD
[3, 4]. The splice() system call was pro-
posed for addition to the UNIX I/O subsystem.
The idea was to supplement what was termed a
memory-oriented I/O (MIO) model with a ker-
nel based peer-to-peer I/O (PPIO) model. These
terms are equivalent to the push-pull and stream
models, respectively, described in this work. The
UCSD work demonstrated that signi�cant per-
formance improvements can be achieved when
cross-address space data copies and system calls
are reduced. Our work seeks to improve on this
result by supporting QoS parameters.

5 Conclusion

While a signi�cant amount of work has been done
already, much remains. Most important is the de-
sign and development of the uni�ed bu�er cache.
There are a number of issues to be addressed.

� What policy should be used for 
ushing
bu�ers from the cache?

Some global information about which
bu�ers (being used by di�erent speci�c �le
systems) can be freed and reused will be nec-
essary.

� How are di�ering bu�er size needs handled?

Di�erent speci�c �le system implementa-
tions will have di�erent optimal bu�er sizes.
For example, the BSD FFS implementation
transfers data from disk in blocks of 2048
bytes, ethernet packets used in Internet pro-
tocol stacks are limited to 1500 bytes, ATM
cells are only 53 bytes. Some investigation
into how to manage bu�ers with respect to
these di�erent bu�er size needs is necessary.

� How is prepending of data to a bu�er han-
dled without data copies?

BSD mbufs handle this problem quite well.
A similar approach may be necessary for
Roadrunner bu�ers as well.

There is a need for more determinism in
the end system operating systems performing
streaming data transfers due to impending QoS
requirements. With this in mind, this work

4



BSD

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000

P
ac

ke
t L

at
en

cy
 (

m
ic

ro
se

co
nd

s)

Packet Number

Roadrunner

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000

P
ac

ke
t L

at
en

cy
 (

m
ic

ro
se

co
nd

s)

Packet Number

Figure 2: Sample Stream Transmission Traces

attempts to provide improved QoS under load
for streaming applications running in a general-
purpose operating system environment.
Comparisons to BSD are relevant since it is

used heavily in the current Internet environment.
It appears from the scant initial measurements
presented here and those we have taken that were
not presented, that more attention to QoS pa-
rameters will be required if multimedia applica-
tions like on-demand audio and video are to be
supported e�ciently.

References

[1] McKusick, M., Bostic, K., Karels, M., and
Quarterman, J., The Design and Implementa-
tion of the 4.4BSD Operating System, Addison-
Wesley, 1996.

[2] Comer, D. and Stevens, D., Internetworking
with TCP/IP: Volume II, Prentice-Hall, 1994.

[3] Fall, K. and Pasquale, J.,
\Improving Continuous-Media Playback Perfor-
mance With In-Kernel Data Paths", Proceed-
ings of the IEEE International Conference on
Multimedia Computing and Systems (ICMCS),
pp. 100-109, 1994.

[4] Fall, K., A Peer-to-Peer I/O System in Support
of I/O Intensive Workloads, Ph. D. Thesis, Uni-
versity of California/San Diego, 1994.

[5] Stevens, W. R., TCP/IP Illustrated, Volume 2
- The Implementation, Addison-Wesley, 1994.

5


