
- Page 1 -

A Resource-Centric Approach To Multimedia Operating
Systems

Shuichi Oikawa Ragunathan Rajkumar
Real-Time and Multimedia Laboratory

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
{shui+,raj+}@cs.cmu.edu

1. Introduction
Resource management is central to real-time and multimedia systems. Currently deployed real-
time and multimedia systems employ off-line mechanisms to ensure that sufficient resources are
available to various tasks comprising the system. Firstly. in almost all these cases, given that the
characteristics of the system are defined a priori, the demands of the system are mapped to a
rather static design. 1 As a result, the system is not dynamic and cannot adapt itself to any
changes in
• the system environment which cannot always be under the control of the application

designer,
• changes in the system itself due to failures of resources and components and
• changes in the needs of the end-user.
Secondly, more often than not, these systems treat processor scheduling as the dominant resource
scheduling problem, since a wide range of scheduling algorithms ranging from timeline
scheduling, non-preemptive scheduling to priority-driven preemptive scheduling is available to
perform processor scheduling. However, many resource types other than the processor are
always needed for these applications. For example, data buffers and virtual memory pages are
often statically allocated or wired down such that no dynamic decisions need to be made. Other
resource needs such as the need for communication protocol processing and disk scheduling are
often ignored or not used. These fundamental drawbacks of the static pre-defined approach have
led to the recent advocacy of dynamic, adaptive system designs which can dynamically adapt the
Quality of Service (QoS) guarantees available to the system user.

1.1. Distributed Video-Based Decision-Making Example
Consider a distributed video-conferencing application with support for group-collaborative
decision making and whiteboarding. One would prefer
R1. A tight end-to-end audio delay (typically less than 100ms) that facilitates a normal voice

conversation between participants,
R2. A reasonable video frame rate (> 12 frames/sec),

1 The system may operate in one of many possible modes, but these modes are also pre-defined
and enumerated.

- Page 2 -

R3. The whiteboarding feature should allow the conferencing participants to share and view a
common workspace (such as the trajectory of a moving object being tracked).

1.1.1. System Resources
Requirements R3 through R6 impose demands on systems resources like the audio/video
input/output devices, CPU processing bandwidth, protocol processing bandwidth, network
bandwidth, the network interface on each participating node and connecting links. It must be
possible to translate application level QoS demands from end-user-specific needs (e.g. high
quality audio) to system demands (e.g. 16KHz sampling with 512 byte buffering, 12 frames per
second at 1/4 of a screen) to node demands (e.g. 5% of a Pentium 120 Mhz and 2% of a 10Mbps
link). Similarly, a medium quality video stream at the user-level can imply a 12 frame per second
(at 1/4 screen and 8-bits per pixel) demand at the system level, and 30% of a Pentium 120 and
20% of a 10Mbps link.

1.1.2. Concurrency Management
It is also desirable in this conferencing application that the following requirements are met.
R4. Allow other real-time applications such as sensor data fusion and target tracking to be

running concurrently and with their QoS guarantees,
R5. If the system resources are overloaded, maintaining the audio stream quality and latency

is often more important than maintaining a high quality video stream.
R6. Any other application which misbehaves or demands more resources must not be allowed

to compromise the quality of the conferencing application.

Requirements R4 through R6 imply that a set of mechanisms must be available
(i) to allow a concurrent mix of real-time, multimedia, soft real-time and non-real-time

applications each with (some level of) QoS guarantees,
(ii) to track system load conditions,
(iii) to trade off among conflicting resource demands to best meet the application-level

requirements, and
(iv) to isolate each application from the resource demands/misbehavior of other applications.

1.1.3. Networking
The collaborative conferencing application may also be using both wired and wireless networks
(such as ATM/FDDI within a ship and NTDS across vessels). It is desirable under this scenario
that the application framework and its OS interfaces are consistent and uniform across these
wired/wireless links and high bandwidth/low bandwidth distinctions. The microkernel-based
run-time system must export mechanisms from within the kernel such that the available
bandwidth, signal strength, and noise sensitivity can be obtained for any and all of the underlying
network links. The performance metrics in networking to be optimized include the latency in
obtaining information about any given network, and the latency in detecting possible
bandwidth/signal strength problems.

2. Key Requirements of Future Multimedia Kernels
With the advent of time-sensitive data types, namely audio, video and speech, into mainstream
computing (vis-a-vis desktop computing, intranet computing and internet computing), we believe
that future microkernels by necessity must provide primitives and abstractions that multimedia

- Page 3 -

applications with real-time applications to be run concurrently with conventional non-real-time
desktop applications. We propose that the following requirements must be satisfied by such
kernels:
• Flexible and dynamic real-time support: This requirement, while it sounds basic, has many

profound implications. First and foremost, usage of all resources types in the system must be
specifiable, controllable and observable. Secondly, some applications would require
guaranteed timing behavior, others just acceptable (soft) timing behavior and still others
would not demand any well-specified timing behavior, and all these applications must co-
exist on the same machine. Thirdly, the dynamic nature of the application environment will
require that resource usage and allocation must be dynamic and relatively quick [Lee96a].

• Enforced and secure resource usage: Just as address space has (albeit slowly) migrated to
real-time operating systems, we expect that enforcement in the temporal domain will be both
useful and necessary for future real-time and multimedia kernels. This will not only enable
peaceful co-existence of applications developed by different vendors/organizations but also
enable untrusted applications to be executed within well-protected virtual firewalls on a
machine.

• Real-time-aware protocol processing: High-bandwidth switches such as ATM and Fast
Ethernet switches use custom ASICs to support the high-speed switching of bits to higher and
higher bandwidths. However, when these bits arrive at a network end-point, the number of
software layers in the system (e.g. interrupt handlers, drivers, and packet filters) and the
protocol stack (e.g. OSI) become significant bottlenecks and the potential for uncontrolled
priority inversion is also enormous. Protocol stack layers, in particular, due to the
disproportionate amount of time spent in them, must be real-time aware and must be able to
discriminate between packets with different timing constraints and process them in
appropriate order [Lee96b].

• High performance: The dramatic increases in processor speeds and network bandwidths
notwithstanding, real-time and multimedia kernels must also provide high-performance inter-
process communications, synchronization primitives and memory management support.
Traditional microkernels such as Mach extract a heavy price for optimizations such as copy-
on-write, which are completely unnecessary for real-time environments. A lean and mean
infrastructure for IPC and memory management will make real-time applicaitons be more
efficient without compromising the other benefits of microkernels such as extensibility, OS
emulation capability and smaller overall size.

3. Processor Reservation in RT-Mach and Lessons Learned
Real-time and multimedia operating systems must provide new primitives and abstractions to
support the dynamic range of real-time multimedia applications that is becoming possible. The
Real-Time Mach operating system being developed at Carnegie Mellon University has
introduced the notion of OS resource reservation to provide temporal protection in real-
time/multimedia systems analogous to spatial (address space) protection in general-purpose
systems [Mercer93, Mercer95]. A simple version of a “CPU reserve” abstraction has been
studied in depth in this context and has given us valuable insight into what is useful and what
needs to be extended. In particular, we have learned the following lessons:

• The simple {C,T} (computation time per specified time interval) 2-tuple of the CPU
reservation model is useful but also limiting. For example, it does not permit the usage of
reserves for threads with a tight jitter requirement. The reservation application programming

- Page 4 -

interface exported to the programmer must be modified to be extensible and relatively
insensitive to future changes in the parametric model used by a reserve model.

• Resources other than the CPU such as disk bandwidth and network bandwidth must also be
reserved, and there needs to be mechanisms to group together different reserves for the sake
of consistency, efficiency and convenience.

• The enforced behavior of the resource reservation scheme is very powerful and if its power
can be exercised uniformly across all resources, then it can be exploited to satisfy other needs
such as security in the context of untrusted applications and requests.

• The admission control mechanism used was based on relatively simple assumptions which
forced the timing behavior of a thread to be possibly dependent upon the blocking behavior
of a different thread with a higher priority reservation. It can couple the timing semantics of
a reserve to the coding structure of a thread, when the two would be orthogonal in an ideal
setting. When this coupling happens, the semantics of the reservation can lead to
unpredictable timing behavior.

• When a reserved client thread invokes a service offered by a server (such as X11), the server
must either employ its own reservation (analogous to the priority ceiling protocol) or inherit
the priority of the reservation of the highest priority client waiting for its service. This
approach addresses the priority inversion problem. However, cleaner mechanisms are
needed to make such “reservation inheritance” be done more naturally and easily for
arbitrary services.

• Flexible options are needed when CPU reservations expire. Currently, a thread whose
reservation expires will always be inserted back into the time-sharing queue and continue to
consume some cycles. Also, the thread will receive no notification when its reservation has
expired.

• The constant setting and re-setting of timers can be inefficient if access to the hardware timer
itself can be relatively expensive. This was indeed the case in our implementation which
uses an high-resolution timer card on the ISA bus.

We are currently actively addressing these limitations of the processor reserve mechanism. As an
illustration, we next present new kernel primitives that we are in the process of adding to RT-
Mach to address some of the problems described above.

4. New Kernel Primitives for Resource Reservation and
Management

4.1. Resource Set
A resource set is a kernel entity representing a set of resources, where resources include CPU
time, physical memory pages, bandwidth of devices (network, disk, and so on). Since a resource
set is a first-class kernel entity, it can be passed around in the kernel. While user-space
programs can send a reserve set to one another, a resource set cannot be counterfeited and will be
enforced by the kernel. Usually, a virtual processor is an abstraction of a CPU. A resource set is
an abstraction which represents all the system resources that are accessible to the program(s)
bound to the resource set. Assurance and security can be enforced, for example, by making
available only a subset of resources for some applications.

- Page 5 -

Threads on a resource set are scheduled and dispatched by it. The relationship between a
resource set and threads is like the one between a virtual processor and user-level threads. As a
result, different resource scheduling policies can be applied to the same physical resource used in
two different resource sets. For instance, a set of threads bound to one resource set can be using
a fixed priority CPU scheduling policy, while another set of threads bound to another resource
set can be using a time-sharing CPU policy or the earliest deadline processor policy. Base-level
schedulers will determine which resource set (and therefore which scheduling policy) will be
active at any given time.

The typical usage of a resource set will be for an appropriately privileged application to create a
resource set and use it globally across all threads/tasks in that application or created by that
application. In its implementation, if the same resource set is being used by two threads in two
different tasks comprising an activity, the context switch between the two tasks will be efficient.

In summary, a resource set is a specialized “virtual machine” which only contains a part of the
resources that are actually provided by a hardware platform. If, for example, “disk bandwidth is
not one of the resources in the resource set”, this means that “the maximum amount of disk
bandwidth which is available to applications using this resource set is 0%'”. If the CPU resource
in the resource set uses the time-sharing policy, the maximum CPU cycles available to
applications using the resource set is the maximum (of 100%) and the minimum guaranteed is
0%.

This notion of resource set as defined would be most useful in non-real-time systems as well as in
real-time systems which do not provide any support for resource reservation. Since some
resources can be selectively restricted from access, high assurance/security concerns can still be
addressed and enforced.

4.2. Hard, Firm and Soft Resource Reservation
Many options are possible while allocating a resource between unreserved threads and threads
with expired reservations. The RT-Mach CPU reservation mechanism currently allows a
reserved thread to consume more cycles from a time-sharing queue after its reservation has
expired. We refer to this as “soft resource reservation”. Its usage is rather flexible but
uncontrolled once the reservation expires. At the other end of the spectrum lies the notion of
“hard” resource reservation. Under hard resource reservation, a thread cannot obtain more than
its specified reservation independent of whether the resource is fully used or not. As a result,
even if the resource is idle, a ready-to-run thread whose reservation has expired will not be
allocated the resource. An intermediate option is “firm resource reservation”, under which a
thread whose reservation has expired can use the resource only if no other unreserved thread is
ready to use the resource. A reserve using hard, firm or soft resource reservation is called a hard
reserve, a firm reserve and a soft reserve respectively.

The net result of the various “shades” of resource reservation is that
(a) threads with unexpired reservations have priority over all other threads in using a resource,
(b) if no threads with unexpired reservations are ready to use a resource, the resource can be

used by threads with soft reserves or no reserves, and
(c) if no other eligible threads are ready to use a resource (as per the above two rules), the

resource can be used by threads with expired firm reserves.

- Page 6 -

Tighter resource usage semantics such as hard reserves, available as an option on each
reservation, can force an application to consume no more than its specified reservation. Such
tight usage of resources, when applied globally across reservations of multiple resource types,
can form the basis of virtual firewalls within which untrusted applications can be executed
without fear of damage.

4.3. Reserve Set
A reserve set is a kernel entity representing a set of reserved resources, where resources include
CPU time, physical memory pages, bandwidth of devices (network, disk, and so on). In other
words, a reserve set is similar to the resource set except that some well-defined portion of each
resource in the set is explicitly allocated and guaranteed to be available to the threads bound to
the reserve set2. For example, a CPU reserve of 20ms CPU time every 100ms, a disk bandwidth
reserve of 100KB every 500ms and a network bandwidth of 100Kb every 100 ms can be the
reserved resources in a reserve set. Each reserve in a reserve set can be hard, firm or soft.

4.4. Reserve Ownership and Usage Rights
A reserve must be created by an appropriately privileged thread, and is then owned by the task
containing that thread. In other words, the creating task retains ownership of the reserve.
Reserve rights can be shared by all threads within a task and are also owned by one task. But
rights of usage can be passed by threads in this task to other threads. Rights to use a reserve can
be passed by the owner of a reserve to other threads. These rights are called “reserve usage
rights”.

5. Discussion

5.1. Binding Scope of Reserves
The “binding scope” of a reserve defines the kernel entities that can be bound to a reserve. A
thread can bind itself to the CPU reserve such that its timing behavior is controlled by the
parameters of the CPU reserve. Thus, the binding scope of the CPU reserve is said to be threads.
However, a Mach (and RT-Mach) task owns the address space which is shared by all the threads
in the task. Consider the reasonable proposition that a fixed number of physical pages be
allocated to a VM reserve, which can then be assigned to threads such that they can control their
own paging behavior. It is logical to expect that a real-time thread be bound to this VM reserve
such that its paging behavior is strictly predictable and under its own control. However, since all
the pages in the task are normally shared by all the threads in it, how would (or should) the
behavior of other threads in the task affect the real-time thread? In other words, what is the
binding scope of the VM reserve? There are two alternatives:

• Suppose that the binding scope of the VM reserve is considered to be tasks, so that all the
threads within a task share the same VM reserve. This is advantageous in the sense that a
task with multiple threads still controls its overall timing behavior independent of other tasks

2 No such guarantees of resource availability is explicit in the resource set.

- Page 7 -

and their threads. However, this binding scope is different from that of CPU reserves and
therefore can introduce other side-effects3.

• Suppose that the binding scope of the VM reserve is considered to be threads such that there
can be multiple threads from the same task which are running on different VM reserves.
When a thread needs to allocate a memory region for its activity, physical memory pages
reserved for the activity should be used for the region. Who supplies physical memory pages
for memory regions of common program text and its local data becomes very tricky.
Specifically, if a physical page from one VM reserve contains a function used by two threads
bound to two different VM reserves, can one VM reserve page out the physical page
containing that function because it no longer needs it? The pageout can unfortunately affect
the other thread. Duplicating the code segment for either reserve (as read-only) may be
feasible but results in wastage of memory resources. Also, this cannot be easily done for data
segments with read-write semantics and the semantics of sharing.

Given the problems with the second approach of keeping the binding scope of a VM reserve to be
threads, we prefer the first approach of making the binding scope of a VM reserve to be tasks. In
general, it appears that the binding scope of a resource should remain the same as it was in the
absence of resource reservation. In the case of VM reserves, the underlying address space is
shared among all threads of a task, and we choose retain that model.

5.2. Enforcement of Reservation and Counting Resource Usage
Enforcing the reservation of resources requires the kernel to monitor and enforce resource usage.
Since reserved resources are bound to a reserved set, and it directly represents the execution of an
activity in our software architecture, counting resource usage can be performed efficiently. The
kernel can charge the use of resources to the currently active reserve set. It is unnecessary to
switch or pass reserved resources, for example, when an IPC occurs between two threads on
different tasks using the same reserve set.

5.3. Optimization of IPC Path
A reserve set, in typical usage, will be bound to an activity4, and IPC is a means to connect
activity threads to servers which actually perform work for the activity. Thus, the IPC path
between a client and its server becomes easy to infer. A client thread can simply imply/pass its
resource context to the waiting thread of its server if both threads are to use the same reserve set.
In this case, IPC may require no scheduling of threads. Since scheduling threads depends on the
policy of the corresponding reserve set, this fast path can be used to obtain low latencies in terms
of both lower context switching and IPC costs.

6. Concluding Remarks
Resources such as CPU, disk bandwidth, memory pages and network bandwidth represent the
fundamental system entities used and scheduled by operating systems to meet the needs of real-
time and multimedia applications. Real-time and multimedia operating systems must be able to

3 One such side-effect is the need to think about the binding scope of a new reserved resource
type!
4 An activity comprises a set of multiple threads and tasks which coordinate to fulfill a common
application goal.

- Page 8 -

support end-to-end resource management, as well as dynamic quality degradation/upgrading
based on changing needs and resources. In order to meet these requirements, we argued in this
paper that multimedia operating systems must provide a rich set of resource-centric primitives
and abstractions that enable applications to specify, monitor and control their resource usage and
thereby their timing behavior. In addition, multimedia operating systems must support enforced
and secure resource usage, time-aware communication protocol processing and high-performance
mechanisms for synchronization. The CPU reservation mechanism of RT-Mach [Mercer94] was
a first significant step in this direction. However, we have also come to realize that it was also
the first step in “learning to walk”, and generalizations and extensions to the mechanism are
sorely needed to make resource management schemes flexible and easy to use in practice. We
have proposed new abstractions such as a resource set, a reserve set and resource usage that act
as organizing principles for real-time and multimedia microkernels. Our new concepts of hard,
firm and soft reserves as well as the binding scope of reserves offer new insights into how
resource reservation in a microkernel should be structured in order to retain conceptual control,
maximum flexibility, and efficient implementation of resource allocation and management.

References
[Bershad90] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight Remote

Procedure Call. ACM Transactions on Computer System, Vol. 8, No. 1,
February 1990.

[Ford94] B. Ford and J. Lepreau. Evolving Mach3.0 to a Migrating Thread Model. In
Proceedings of the Winter USENIX Conference, January 1994.

[Lee96a] C. Lee, R. Rajkumar and C. W. Mercer, Experiences with Processor
Reservation and Dynamic QoS in Real-Time Mach, In Proceedings of
Multimedia Japan, March 1996.

[Lee96b] C. Lee, K. Yoshida, C. Mercer and R. Rajkumar, Predictable
Communication Protocol Processing in Real-Time Mach, In Proceedings of
IEEE Real-time Technology and Applications Symposium, June 1996.

[Liedtke93] J. Liedtke. Improving IPC by Kernel Design. In Proceedings of 14th ACM
Symposium on Operating System Principles, December 1993.

[Liedtke95] J. Liedtke. On u-Kernel Construction. In Proceedings of 15th ACM
Symposium on Operating System Principles, December 1995.

[Mercer93] C. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves for
Multimedia Operating Systems. Technical Report CMU-CS-93-157, School
of Computer Science Carnegie Mellon University, May 1993.

[Nakajima93] T. Nakajima, T. Kitayama, H. Arakawa, and H. Tokuda. Integrated
Management of Priority Inversion in Real-Time Mach. In Proceedings of
IEEE Real-Time Systems Symposium, December 1993

[Tokuda90] H. Tokuda, T. Nakajima and P. Rao. Real-Time Mach: Towards a
Predictable Real-Time System. In Proceedings of USENIX Mach
Workshop, October 1990.

