
4

with a picture group pattern ofIBBPBBPBBPBB.
(MPEG encodings contain three types of frames, I, P, and
B, that vary in size and importance.) The pattern
100000000000 requests that only the I-frames be
prefetched. The pattern100100100100 requests both I-
frames and P-frames. Patterns can be of arbitrary length.
For example,100100100100100100100000 requests all I-
frames and five of every six P-frames.

Finally the fifth argument topf_start is the rate at
which the frames will be accessed. This is in frames per
second with a negative number indicating that the
frames will be read in a backwards direction.

If a feasible prefetching plan can be constructed then
pf_start sets it into action and returns a descriptor.
The application uses the descriptor to refer to the plan in
the future to modify or stop it. It is possible to initiate
several prefetching sequences for the same file.

pf_start fails and returns zero if the prefetcher
determines that given available resources there is not a
feasible prefetching plan that will satisfy the request.

pf_modify() changes an executing prefetching
plan. This might be used, for example, when a user
pushes the fast-forward button in a VCR application.
The frame argument is taken to indicate the applica-
tion’s current position in accessing the data file and the
revised prefetching plan will begin from that point. Pat-
tern and rate have the same meaning as for the
pf_start call.

pf_stop terminates the execution of a prefetching
plan.

5 Related Work
Prefetching has been studied extensively in a number of
different contexts.

Patterson,et al, advocate hints that disclose an appli-
cation’s future reference behavior and makes some sug-
gestions about what the form of those hints might be.
They also present a cost-benefit analysis for prefetching
decisions [Patterson95]. Effective prefetching algo-
rithms when full advance knowledge is available are
described by Kimbrel,et al [Kimbrel96].

Maier,et al, present a storage system architecture for
a multimedia database system which provides ‘con-
strained-latency storage access’ to continuous media
data on high-latency storage devices [Maier93].

6 Conclusions and Future Work
We have described an architecture for flexible prefetch-
ing and we believe that it will be an important compo-
nent of effective and device-independent multimedia
systems. By implementing and using a prefetcher based
on this architecture we hope to gain experience with the
ways in which a prefetcher can interact with both appli-
cations and the underlying system.

In the future we plan to investigate how our architec-
ture can be extended to support a distributed networked
multimedia environment. We will also be investige a
more expressive meta-interface that will allow applica-
tions to express their prefetching requests at a higher
level (e.g. through content specifications or scripts).

References
[[Freitag71] R. J. Freitag and E. I. Organisk. “The Multics

Input/Output System”, inProceedings of the 3rd Sympo-
sium on Operating Systems Principles, pages 35-41, 1971.

[Kimbrel96] Tracy Kimbrel, Andrew Tomkins, R. Hugo
Patterson, Brian Bershad, Pei Cao, Edward W. Felton,
Garth A. Gibson, Anna R. Karlin, and Kai Li. “A Trace-
Driven Comparison of Algorithms for Parallel Prefetching
and Caching”, inProceedings of the 2nd Symposium on
Operating Systems Design and Implementation,pp 19-34,
October 1996.

[Koster96] Rainer Koster. “Design of a Multimedia Player
with Advanced QoS Control”, Master’s thesis, Department
of Computer Science & Engineering, Oregon Graduate
Institute of Science & Technology, 1996.

[McKusick84] Marshall K. McKusick, William N. Joy, Sam-
uel J. Leffler, and Robert S. Fabry. “A Fast File System for
UNIX”. ACM Transactions on Computer Systems,
2(3):181-197, August 1984.

[McNamee96] Dylan James McNamee. “Virtual Memory
Alternatives for Transaction Buffer Management in a Sin-
gle-Level Store”, Phd. thesis, Department of Computer
Science, University of Washington, 1996

[Maier93] David Maier, Jonathan Walpole and Richard Stae-
hli. “Storage System Architectures for Continuous Media
Data”, in Foundations of Data Organization and Algo-
rithms, FODO ‘93 Proceedings, Lecture Notes in Com-
puter Science, Vol. 730, 1993, Springer-Verlag, Editor
David B. Lomet, pp. 1-18.

[Patterson95] R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka. “Informed Prefetching and
Caching”, in Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, pages 79-95,
December 1995

3

even though the data is stored on a high latency second-
ary storage device.

The prefetcher executes a plan by issuing a stream of
non-blocking load requests to the filesystem. The load
requests have the effect of ‘warming-up’ the data in file-
system’s buffer cache by fetching it from secondary
storage, but the data is not made available to the applica-
tion until it is explicitly read through the traditional file-
system interface.

The prefetcher uses the following equation to decide
how far in advance to issue load requests in order to
meet the application’s stated requirements:

Prefetch_Depth = I/O_Latency * Display_Rate *ρ

I/O_Latency is an estimate of the amount of time
which will elapse between when the request is issued
and when the data is available in memory.Display_Rate
is the rate of access disclosed by the application.ρ is a
value >= 1 makingPrefetch_Depth slightly larger to
allow for fluctuations in actual I/O latency.

The prefetcher requires the assistance of the operat-
ing system in order to accurately estimate and predict
current and future I/O latency. In turn, the prefetcher can
assist with the operating system’s efforts to minimize I/
O costs by issuing load requests in batches that may, for
example, be reordered by a disk scheduler.

4 Implementation
Our initial implementation provides the application API
shown in Figure 2. This API is limited and focuses on

the requirements of a particular multimedia player han-
dling real-time MPEG video and audio streams
[Koster96]. In the future, we plan to develop a more
flexible and expressive API that will accept complex
multimedia content specifications.

Thepf_start() call initiates a prefetching
sequence by requesting the prefetcher to create and exe-
cute a prefetching plan.pf_modify() is used to
change the access pattern and rate of an existing plan.
pf_stop() terminates a currently executing plan.

Thepf_start call takes five arguments. First, a
file descriptor specifying the file containing the data to
be prefetched. The application needs to open the data
file before initiating a prefetching plan. Once a prefetch-
ing plan has been started the application simply uses the
traditionalread() call to access the data. Closing a file
terminates any outstanding prefetching plans.

The second argument topf_start is a count of the
number of frames to be prefetched. This is used to keep
the prefetcher from overrunning the end of a prefetch
sequence. It is also used as a starting point for sequences
that are accessed in a backwards order (see rate below).
Note that ‘frame’ is used here to refer to a unit of appli-
cation data, this might well be a video frame, an audio
slice or some other object.

The third argument topf_start is a vector
describing the location of each frame in the data file and
its size. This is basically an index. Note that the pattern
and rate arguments are used to avoid having to generate
a new index to describe each possible access pattern.

The fourth argument topf_start is the pattern in
which frames will be accessed. This is implemented as a
bit vector representing a repeating pattern of selected
frames. Consider a video player reading an MPEG video

Kernel

Figure 1. Prefetching architecture

Multimedia
Application

Prefetcher

Storage

access
pattern

timed
loads latency

feedback

device
independent
I/O interface

I/O
queues

Buffer
Cache

10001000

Figure 2. Prefetcher meta-interface

typedef struct frame {
off_t offset;
size_t length;

} frame;

typedef struct pattern {
int size;
byte *bits

} pattern;
typedef int rate;

int pf_start(int fd, int n_frames,
frame *frames, pattern *pattern,
rate rate);

int pf_modify(int pd, int frame,
pattern *pattern, rate rate);

int pf_stop(int pd);

2

2 Motivation
Multimedia applications require real-time access to
large amounts of data on secondary storage (magnetic
disks, optical disks, etc.). Many storage devices avail-
able today can sustain the bandwidth required by multi-
media applications. The latency of accessing data on
these devices, however, presents the very real problem
that data may arrive too late. I/O latency can be hidden
by prefetching data into memory before it is needed by
the application. But, fetching data too soon can also
cause problems by increasing the amount of memory
needed to buffer data. The ideal is to have prefetched
data streaming into memory so that it is available ‘just in
time’ as it is needed by the application [Maier93]. We
propose that the best way to approach this ideal is to
base prefetching decisions on information from several
sources:

• meta data describing framing and timing of the con-
tinuous media data,

• application specific playback rates and access pat-
terns, and

• global resource allocation and usage information.

Many filesystems recognize when a file is being
accessed sequentially and do heuristic prefetching
[Freitag71][McKusick84]. Some even use stochastic
techniques to adjust the depth of prefetching depending
on the rate at which the data is being accessed. This
approach takes advantage of an access pattern that can
be easily inferred to provide the latency hiding benefits
of prefetching, while limiting the amount of memory
used to buffer prefetched data. The problem with using
heuristic prefetching for multimedia applications is that
it is reactive. There is inevitably a delay between the
time when an application starts accessing data (or
changes the rate at which it is being accessed) and when
the system adjusts to the new behavior. Further, when
data is accessed in a non-sequential pattern, for example
fast-forward, then no prefetching at all will occur.

Without system support for prefetching, multimedia
applications must address the associated problems of
latency, synchronization, and resource allocation on an
ad hoc basis. An application that handles prefetching
explicitly can take advantage of specific knowledge of
what data is likely to be needed in the future and the rate
at which it needs to become available. This means that
the application is no longer I/O device-independent,
instead it must explicitly consider on which device the
data is located and how long it will take to fetch it into
memory. There are short-cuts which might be taken (e.g.
greedy prefetching or estimating I/O latency) but these
are at best inefficient and potentially unreliable.

The operating system cannot distinguish application
prefetch requests from data requests. The operating sys-
tem attempts to optimize I/O by scheduling data
requests. When prefetch requests are intermingled, the
operating system’s schedule can be inefficient. Individ-
ual applications, however, possess valuable information
for data prefetching, but they are ill-equipped to address
global resource scheduling issues. Providing the operat-
ing system with knowledge of application needs allows
the OS to make reasonable global resource allocation
decisions [McNamee].

In our design we propose a meta-interface that
allows an application to describe the pattern and timing
of future data accesses to the prefetcher. After providing
this description the application can proceed to use a tra-
ditional device independent interface to access its data
with the promise from the system that the data will be in
memory when it is needed.

The prefetcher translates the application’s descrip-
tion into a scheduled stream of prefetch requests that
satisfies the application’s access requirements and
makes efficient use of system resources. We expect that
this will improve the performance of individual multi-
media applications and also make them easier to write.
Our goal is to define an architecture for prefetching, to
construct a prefetcher, and to develop an understanding
of the interactions between applications, the prefetcher
and the operating system.

3 Architecture
Figure 1 shows our overall architecture for flexible
prefetching. There are three basic components: the mul-
timedia application, the prefetcher and the operating
system. The multimedia application wants low-latency
access to data on the storage managed by the operating
system. To achieve low-latency access, the application
tells the prefetcher what data it want to access and when
it wants to be able to access it. The prefetcher then for-
mulates and executes a prefetching plan that will meet
the application’s requirements. The operating system
cooperates with the prefetcher by providing it with cur-
rent latency and scheduling information.

The prefetcher provides applications with a meta-
interface. We call the prefetcher’s interface a meta-inter-
face because it does not change the semantics of the file-
system’s I/O interface, but rather it changes the way I/O
requests are serviced. Specifically, an application uses
the prefetcher’s interface to describe the pattern and tim-
ing of its anticipated data accesses. In response, the
prefetcher tries to make sure that the data will be in
memory at the required time. With the information pro-
vided by the application, the prefetcher is able to pro-
vide the application with low-latency access to its data

1

Abstract

Increasing CPU speed and I/O bandwidth have enabled the
development of multimedia systems that handle continuous
media data in real-time. Real time constraints of multimedia
make the schedule with which data is delivered to main
memory critical to application performance. Data must be
prefetched from secondary storage into main memory in
order to hide I/O latency.

We propose an architecture for flexible prefetching. In
order to be effective the prefetcher must know in advance
what data will be accessed and when it must be available in
memory. In addition, it must have information about the sys-
tem on which it is running: the amount of I/O latency and the
availablity of I/O bandwidth and main memory.

Our prefetching architecture will simplify the task of pro-
gramming multimedia applications and it will be useful for
constructing complex distributed multimedia systems.

1 Introduction
Increasing CPU speed and I/O bandwidth have enabled
the development of multimedia systems that handle con-
tinuous media data in real-time. The high volume of
continuous media data relative to main memory size
makes it necessary to store this data on secondary stor-
age devices and to stream it into memory when it is
needed. The real time constraints of multimedia make
the schedule with which data is delivered to main mem-
ory critical to application performance. Data must be
requested before it is needed in order to arrive in mem-
ory on time. This is the familiar concept of prefetching.

Prefetching hides the I/O latency of accessing sec-
ondary storage. Many filesystems prefetch data auto-
matically for files that are being accessed sequentially.
But, because continuous media data may be accessed
non-sequentially (e.g. fast-forward), multimedia appli-

cations are currently forced to assume the responsibility
for prefetching data explicitly. To correctly prefetch in a
multimedia application entails taking into account the
data access pattern and timing, as well as device specific
attributes, such as latency and bandwidth. We feel mak-
ing applications be explicitly responsible for their
prefetching a bad idea for several reasons:

• it adds to the burden of programming multimedia
applications,

• it eliminates the device independence of the I/O
interface, and

• it places the responsibility for scheduling and
resource allocation decisions on the application
which does not have the information or control
needed to make these decisions effectively.

We propose an architecture for prefetching in which
a seperate flexible prefetching component is responsible
for the scheduling and resource allocation decisions
necessary to have data in memory when it is needed. In
order to be effective the prefetcher must know in
advance what data will be accessed and when it must be
available in memory. In addition, it must have informa-
tion about the system on which it is running: the amount
of I/O latency and the availablity of I/O bandwidth and
main memory. I/O latency and bandwidth determine
how far in advance data must be requested. Finally, the
availability of main memory determines how much
prefetched data can be buffered in anticipation of future
accesses by the application.

This project is supported in part by grants from DARPA and the National Science Foundation,and donations from Tektronix, Hewlett-Packard and
the Portland Trail Blazers.

An Architecture for Flexible Multimedia Prefetching

Dan Revel, Crispin Cowan, Dylan McNamee, Calton Pu and Jonathan Walpole
{ revel, crispin, dylan, calton, walpole}@cse.ogi.edu

Department of Computer Science & Engineering
Oregon Graduate Institute of Science & Technology

20000 N.W. Walker Rd., P.O. Box 91000
Portland, OR 97291-1000

November 20, 1996

