LiquiMedia — A dynamically extensible cyclic
executive

Robert Kroeger, William Cowan
November 21, 1996

Because it involves theoretical latencies that are unbounded, and practical
latencies that are large, dynamic resource allocation poses difficult problems
for all real-time systems. Control applications, where the task environment
and range of possible computations are both highly constrained, can solve this
problem using static allocation, with all allocation occurring outside of the real-
time constraints. This simple and reliable strategy is unsuited to multimedia
systems, however, because they must operate successfully in extremely variable
computational environments.

The solution is to create a version of dynamic allocation that retains the
essence of the static solution, while taking advantage of characteristics unique
to multimedia. This paper discusses using this strategy for allocation of com-
putation and communication. CPU cycles and network bandwidth are the most
basic resources used in any computation. We believe that a clean abstraction
that is successful with these resources will certainly extend to other resources
such as input and output devices.

We believe that current operating systems designed for multimedia cannot
allocate computational resources at a sufficiently small granularity. Current gen-
eral purpose operating systems allocate a processor’s time with threads. Even
on the fastest systems, context switches result in delays of tens of microseconds.
As a result, using the processor efficiently requires task durations a millisecond
or longer. Common tasks for a multimedia operating system such as synthesiz-
ing positionalized sound or animating sprites take far less than a millisecond for
each iteration. Consequently, a multimedia operating system must provide an
alternative to threads for the allocation of processor time.

We call our alternative performers. Performers discard the overhead of con-
text switching by abandonning preemption. They must always yield the proces-
sor voluntarily. Forcing programmers to statically divide the application into
groups of performers makes the same tradeoff as a cyclic executive: additional
development work in exchange for no runtime resource allocation overhead.

This tradeoff engenders a new problem. Unlike a traditional fixed-functionality
cyclic executive, a multimedia operating system needs the capability of dynam-
ically altering which performers it’s executing. Maintaining realtime execution
of performers requires that the operating system attempt to execute only per-

formers which can complete their execution within a specified interval. Here
lies the fundamental resource allocation problem underlying a cyclic executive
style of multimedia operating system: how to determine the elapsed duration
of a randomly selected group of performers before actually executing them.

Before presenting our solution to this resource allocation problem, we will
further justify our rejection of threads. Obviously, context switching between
threads can take significant time on conventional architectures. We obtained
the following experimental results for context switch times for realtime threads
running on various SPARC processors under Solaris2.5.1

Processor Average delay Lower bound
UltraSparc, 140MHz 17pus 4us
MicroSparc2, 110MHz. 52 8us
SuperSparc, 50MHz 29us 4ps
SparcStation 1, 20MHz 500us 14ps

Table 1: Context Switch Times

While this does not represent the apex of realtime responsiveness, it does
reflect average context switch times in a state of the art general purpose oper-
ating system. The above table also contains an estimate of the context switch
delay. This shows that while an operating system specifically designed for real-
time will do better, it cannot achieve more than a factor of four improvement
when running on contemporary hardware. While hardware architecture changes
may provide hardware-assisted context switching,? making efficient use of cur-
rent hardware under a threaded multimedia operating system imposes severe
restrictions on the rate of thread activation.

At first glance, this may seem overly pessimistic. After all, even under
Solaris, it takes almost six thousand context switches per second to consume a
tenth of second of processor time and it’s hard to believe that running a handful
of multimedia applications needs thousands of threads.

However, the problem with threads in a multimedia operating system is
that these six thousand context switches actually represent very few threads. A
multimedia operating system must be capable of providing streams of evolving
media to its user. These streams, while discretized by the nature of computing,
must present their constituent sample streams sufficiently quickly so that they
appear continuous to a human user.3

For rendering graphics or displaying video, 60Hz frame rates provide a con-
vincing illusion of continuity. Future multimedia systems may require even

LSPARC, Solaris and the workstation or processor names listed in Table are the property
of Sun Microsystems. All other trademarks mentioned are the property of their respective
owners.

2For example, MicroUnity’s media processor provides multiple register sets on chip and
hardware-assisted threading.[Mic96] This is however a very scarce resource.

3 Abadi and Lamport observe in [AL92] that providing the illusion of continuous time in a
discrete environment is the fundamental problem underlying realtime computing.

higher sampling rates. For example, processing audio streams to provide cor-
rect positional cues may require adjustment of the audio stream at 8kHz rates
in order to provide a consistent illusion of HRTF-filtered sound bound to head-
movements.[Blag83]

Maintaining a 60Hz frame rate requires that the rendering threads in each
multimedia application have a chance to run in a basic period of 17millisec-
onds. Less than a hundred threads will consume more than a tenth of second
of processor time just in context switching!

Perhaps this still seems like far too many threads for supporting a hand-
ful of multimedia applications. However, providing a high-degree of multipro-
gramming in an interactive application, particularly a multimedia application,
has significant user interface advantages. Trestle [Man92], NeWS [GRA89] and
HotJava [Sun95] all demonstrate the usability advantages of extensively multi-
programmed systems. For example, we can easily envisage a single video con-
ferencing application consuming thirty to forty threads. The authors’ preferred
web browser, Sun’s HotJava, averages more than twenty separate live execu-
tion threads during normal usage. A game might use a thread to compute the
behaviour of each sprite.

The skeptic will observe that applications don’t need to be such large forests
of threads. Programs such as the NeWS window system server quite success-
fully provided the illusion of multi-threading without any underlying operating
system thread support[SK95]. Instead, programmers can carefully divide the
application into small fragments, each of which voluntarily relinquishes the pro-
cessor upon completion. The application’s core contains code which dispatches
these fragments successively to produce the illusion of multi-threading. In this
fashion, a complex application may efliciently provide multiprogramming sup-
port while using only one operating system thread.

We take this concept to its logical limit, noting how that these small frag-
ments are 1dentical to our concept of performers. They’re small fragments of
code. They relinquish the processor voluntarily. They must be executed repeat-
edly. Why should we force each application to replicate the performer dispatch
code when the operating system can do this for all applications? Instead, we
can simplify applications and improve system performance by centralizing this
dispatch loop in the operating system. Clearly, this is an efficient alternative to
extensive threading for allocating processor resources in a multimedia operating
system.

This returns us to the difficult problem of computing the total execution time
needed by all the performers. An easy solution is to fix the set of performers
that the multimedia operating system will execute in advance. This limitation
prevents the operating system from extending its functionality at runtime but
does mean that all system components can be scheduled at design time. Es-
sentially, this solution turns the multimedia operating system into a traditional
cyclic executive. In fact, it’s easy to see how a multimedia operating system
is a special case of traditional realtime control application. After all, just like
a multimedia application, a flight controller must process in many incoming
streams of information and produce many separate streams of output. That

these inputs come from gyroscopes and pitot tubes and outputs go to aileron
and rudder actuators is only a change of medium. The resource allocation issues
remain the same.

While possibly appropriate for dedicated multimedia coprocessors such as
the NV1[NVi95], statically fixing the functionality of the system takes away one
of the most valuable features of a multimedia operating system. Being able
to add performers to the system at runtime is essential to resolving another of
the most difficult resource allocation problems facing a multimedia operating
system: controlling network bandwidth and latency.

X-terminals clearly demonstrate a method of implementing distributed ap-
plications which, despite having having no support for dynamically extending
the operating system local to the user, remain quite successful. Despite this
success, the static nature of the X11 wire protocol makes intolerant of network
latency.

Should we desire a distributed application which can tolerate a wider range of
network latencies than demonstrated by X11 applications, the operating system
for the user-local station must be able to run application code fragments. Soon,
the Internet may use satellite linkages resulting in a minimum latency of several
seconds. X11 becomes extremely unwieldy in these circumstances. Instead, an
application must be able to push functionality into either the client or server in
a similar fashion to the down-loadable content popularized by Java[Sun95].

Permitting applications to deposit fragments of their functionality into a
multimedia operating system executing local to the user has another advantage
besides mitigating the effects of network latency. It permits adaptation. A
fragment of down-loaded code can easily measure its own execution time and
adapt its needs to reflect the computation power of its host. Across a static
protocol, where asynchrony is necessary to provide even a poor attempt at
limiting latency, feedback control is much more difficult{AN90]. With the trend
towards ubiquitous mobile computing, a multimedia operating system should
provide a clean mechanism for performers to adjust their computational needs.

Since a modern operating system should be capable of concurrently exe-
cuting multiple applications, it must have a technique of sharing the processor
amongst each application’s down-loaded executable fragments. The traditional
sharing technique provides each application with a separate thread of execu-
tion. However, above we already argued how threads are either too costly to
context switch or used sparingly as each application divides itself internally into
performers.

Hence we return to the fundamental problem of resource allocation in an
operating system providing performers: deducing in advance the execution time
required for invoking an arbitrary set of performers.

We are implementing an operating system called LiquiMedia that attempts
to resolve this problem with a technique we call statistical scheduling. Clearly,
an operating system can easily determine the total processor time needed to
execute an arbitrary group of performers if it knows how long each one of them
takes to execute. Unfortunately, no automatic mechanism can determine each
performer’s execution time in advance. However, an operating system can mea-

sure the actual duration of a performer every time it’s executed. Over many
invocations, once for each basic period, the operating system can compute the
mean and variance for a performer’s execution duration.

Provided that future invocations of a performer exhibit similar execution
behaviour as previous invocations, these statistics let the operating system com-
pute the probability of some set of performers running to completion in a known
time interval. Making this assumption has enormous ramifications on the de-
sign of LiquiMedia. Clearly, not all algorithms or applications are appropriately
implemented as performers. However, we believe that the interactive portions
of multimedia applications are, in fact, ideally implemented in this fashion. In
the interests of system reliability, we are currently investigating heuristic tech-
niques to evaluate if code is likely to exhibit similar execution duration between
invocations.

LiquiMedia does not need to verify a performer schedule as part of the per-
former dispatch cycle. Instead, it performs this computation and other mainte-
nance activities during any free time remaining between the end of invoking all
the performers and the end of each basic period.

Statistical scheduling operates in the following fashion. An application wish-
ing to have the operating system invoke new performers requests that perform-
ers, be added to the schedule. Using stored statistical profiles of the perform-
ers, LiquiMedia computes the probability that a schedule including them will
complete within one basic period. If the computed probability is less than a
user-specified tolerance, the new performers are rejected and the application
may request an operating-system mediated negotiation for a redistribution of
computational resources.

Since any schedule verified in this fashion retains a finite probability of going
overtime, LiquiMedia must successfully address the issue of failure detection and
recovery. LiquiMedia’s central dispatch loop handles the basic period’s timer
interrupt. The dispatcher can detect a schedule failure by examining its stack
for evidence that it has been re-entered. If it has, it must attempt to recover.
We are currently exploring different recovery strategies.

In our LiquiMedia prototype, performers have provided a useful alternative
to threads for the allocation of processor time because discarding preemption
obviates expensive context switches. Freed of this overhead, typically tens of
microseconds per context switch on modern hardware, test performers in Liqui-
Media have shown the high rates of function dispatch needed in a multimedia
operating system. Furthermore, discarding preemption offers both a simpler
architecture and considerable efficiency gains. Unfortunately, using performers
to allocate computational resources exchanges the run-time overhead of threads
for the problem of forecasting the run-time of an arbitrary set of performers.

Preliminary results show that statistical scheduling offers a useful mecha-
nism for resolving this dilemma. We are developing a number of multimedia
applications and expect the constituent performers to exhibit similar execution
profiles across invocations. So far, coding performers in this fashion been an
easy price to pay for the efficiency of a cyclic-executive style of operating sys-
tem and freedom from expensive context switches. Consequently, we expect to

demonstrate that statistically scheduled performers are a useful way of providing
fine-grain allocation of processor time in a multimedia operating system.

References

[AL92] Martin Abadi and Leslie Lamport. An old-fashioned recipe for real
time. Technical Report 91, Digital SRC, Palo Alto, California, 1992.

[AN90] Susan Angebranndt and Todd D. Newman. The sample X11 server
architecture. The Digital Technical Journal, 2(3), 1990.

[Bla83] J. Blauert. Spatial Hearing: The Psychophysics of Human Sound Lo-
calization. MIT Press, Cambridge, 1983.

[GRA89] James Gosling, David S.H. Rosenthal, and Michelle Arden. The
NeWS Book, An Introduction to the Network/extensible Window Sys-
tem. Springer-Verlag, New York City, 1989.

[Man92] Mark Manasse. Trestle tutorial. Technical Report 69, Digital, Systems
Research Centre, Palo Alto, California, 1992.

[Mic96] MicroUnity Inc. MicroUnity home page. http://www.microunity.com/,
November 19 1996.

[NVi95] NVidia, Sunnyvale, California. Product Quverview: NV1, 1995.

[SK95] Josh Siegel and Robert Kroeger. RBuss: a public domain NeWS clone.
http://tenebre.uwaterloo.ca/NeWS /rbuss.html, October 1995.

[Sun95] Sun Microsystems Inc. HotJava home page.
http://java.sun.com/documentation.html, September 19 1995.

