
Resource control in RT-Linux

(A short position paper)

Victor Yodaiken
Department of Computer Science

New Mexico Institute of Technology
Socorro, NM

yodaiken@cs.nmt.edu

http://luz.nmt.edu/~rtlinux

RT-Linux is an operating system in which a small real-time kernel coexists
with the Posix-like Linux kernel. It is enormously convenient to have a sin-
gle machine that supports both hard-real-time tasks and all the services of a
standard operating system. In fact, over the last decade, several of the most
widely used real-time operating systems such as QNX and Vxworks, have
added servers or modules to provide everything from TCP/IP to sophisti-
cated GUIs. An alternative approach leads one to add real-time schedulers,
page-locking, and other real-time facilities to an existing operating system.
RT-Linux uses a third method. RT-Linux runs Linux as a task under a small
real-time executive. Linux still provides operating system services to ordi-
nary, non-real-time processes and still directly manages most system devices
| such as the disk drives and video hardware. But Linux is prevented from
disabling interrupts. All interrupts are initially handled by the Real-Time
kernel and are passed to Linux only when there are no real-time tasks to run.
To minimize changes in the Linux kernel, it is provided with an emulation
of the interrupt control hardware. Thus, when Linux has \disabled" inter-
rupts, the emulation software will queue interrupts that have been passed
on by the Real-Time kernel. In the current version of the system, real-time
tasks communicate with Linux processes via a lock-free queues.

In practice, the RT-Linux approach has proven to be very successful.
One user reports that hisRT-Linux application was able to poll an A/D
board reliably at a rate 30% faster than a commercial program was able to
do on the same hardware under DOS | an operating system that imposes
no overhead at all. In both experiments, the polled data was logged to
disk and displayed. In the RT-Linux case the display was through Motif.

1



This di�erence in speeds is consistent with other reports: at the worst,
we see no performance penalty. While some of the di�erence may come
from more e�cient operation of the low-level code, we believe that much
of the di�erence can be attributed to performance on the data logging and
display due to the average-case e�ciencies of the Linux OS with its quite
sophisticated �le bu�ering, memory management, and I/O handling.

Real-time tasks under RT-Linux are relatively primitive. These tasks
have statically allocated memory, rely on a simple pre-emptive scheduler
with �xed priorities, and have no connection to more sophisticated services
except via the statically allocated lock-free �fo channels. The Linux OS
takes care of all but the time-critical OS functions. The real-time tasks and
the real-time scheduler are even loaded into memory by Linux as loadable
kernel modules. Indeed, our reliance on loadable kernel modules allows us
to experiment with di�erent task sets and schedulers without interrupting
non-real-time operations.

Although we plan to develop alternative schedulers and replace the �fo-
channels with a more exible interface, our intention is to keep the real-time
components simple, fast, and potentially veri�able, by pushing all complex
resource allocation issues into the non-real-time system. In particular, we
hope to be able to factor QOS problems into hard real-time components that
collect or distribute time sensitive data, and Linux processes or threads that
monitor data rates, negotiate for process time, and adjust algorithms.

2


