
In: Proc. of the 1993 ACM/SIGAPP Symposium on Applied Computing, Indianapolis, IN, February, 1993, pp.796-804.

The Real-Time Producer/Consumer Paradigm: A paradigm for the
construction of efficient, predictable real-time systems*

Kevin Jeffay
University of North Carolina at Chapel Hill

Abstract: A concurrent programming system for
constructing hard-real-time applications is described. The
system is based on a novel semantics of inter-process
communication called the real-time producer/consumer
(RTP/C) paradigm. Process interactions are modeled as
producer/ consumer systems with a timing constraint on
the rate at which the consumer must service the producer.
The RTP/C paradigm provides a framework both for
expressing processor-time-dependent computations and for
reasoning about the real-time behavior of programs. A
formal model of processor and resource allocation is used to
determine necessary and sufficient conditions for realizing
the RTP/C semantics of a program. The design of an
interactive graphics system illustrates the use of the
system.

Introduction

Real-time computer systems are loosely defined as the class
of computer systems that must perform computations and
I/O operations in a time-frame defined by processes in the
environment external to the computer. Real-time systems
differ from more traditional multiprogrammed systems in
that real-time systems have a dual notion of correctness. In
addition to being logically correct, i.e., producing the
correct outputs, real-time systems must also be temporally
correct, i.e., produce the correct output at the correct time.
This paper describes a programming system for the
construction and analysis of real-time systems. The initial
focus is on the problem of designing and constructing hard-
real-time systems. Hard-real-time systems are real-time
systems that require deterministic guarantees of temporal
correctness. These are systems in which the cost of failing
to interact with the external environment in real-time is
high. Cost can be measured in monetary terms (e.g.,
inefficient use of raw materials in a process control
system), aesthetic terms (e.g., unrealistic output from a
computer music or computer animation system), or
possibly in human or environmental terms (e.g., an
accident due to untimely control in a nuclear power plant or
fly-by-wire avionics system).

* Supported by a grant from the National Science Foundation
(number CCR-9110938).

A programming language for hard-real-time systems must
provide a means for specifying the real-time response re-
quirements of processes as well as a means for predicting
the real-time behavior of a program. We describe a concur-
rent programming system with a novel semantics of inter-
process communication that captures the real-time response
requirements of processes. The semantics, called the real-
time producer/consumer (RTP/C) paradigm, models process
interactions as producer/consumer systems with a timing
constraint on the rate at which the consumer must service
the producer. The RTP/C paradigm provides a framework
both for expressing processor-time-dependent computations
and for reasoning about the real-time behavior of programs.

Introducing response times into the semantics of a pro-
gramming language, makes it possible to write programs
that cannot be implemented. For a given implementation of
the programming language there may not exist sufficient
processing resources to ensure that the response time re-
quirements of a program will be met in all cases. Whether
or not the implementation can realize the real-time seman-
tics of a program will depend on factors such as the rate(s)
at which events are generated in the external environment,
the resources required to respond to an event (e.g., buffers),
and the cost (in terms of required execution time) of
algorithms employed in a program. A RTP/C program is
modeled formally as a set of sporadic tasks that share a set
of serially reusable single unit resources. The conditions
under which it will be possible to correctly implement an
arbitrary RTP/C program have been reported in [8]. This
allows a programmer to easily test if the desired real-time
behavior of a program will be realized at run-time.

The RPT/C paradigm is not a panacea for the problems of
real-time computing. However, our thesis is that the
RTP/C paradigm applies to a wide variety of interesting
and important real-time applications where real-time data-
flow is paramount –– applications wherein all data arriving
from sensors and devices must be input and processed in
real-time. We provide evidence by way of example that the
RTP/C paradigm yields a flexible methodology for
constructing, and predicting the performance of, data-flow
applications and hence represents an advance over existing
methods such as cyclic executives [3]. To date, the RTP/C
paradigm has been used as the basis for the design and
construction of three real-time applications: an interactive
3-D graphics system, a HiPPI data-link interface, and a
distributed workstation-based conferencing system using
digital audio and video [7]. In each case the real-time
processing requirements of the application were concisely
represented using the RTP/C paradigm. The design of the

2

process Producer
 loop
 < produce data >
 Buffer.Deposit(data)
 end loop
end Producer

process Consumer
 loop
 data := Buffer.Remove
 < consume data >
 end loop
end Consumer

monitor Buffer
 var full, empty : boolean
 var notEmpty,
 notFull : condition

 procedure Deposit(d : int)
 if (full) then
 wait(notFull)
 endif
 < fill a buffer >
 signal(notEmpty)
 end Deposit

 function Remove : int
 if (empty) then
 wait(notEmpty)
 endif
 < empty a buffer >
 signal(notFull)
 end Remove
end Buffer

Figure 2.1

graphics system will be presented in the following section
as an example of the use of the RTP/C paradigm.

The following section describes the RTP/C paradigm and
presents a message passing programming discipline for
hard-real-time systems. Next, we briefly discuss the formal
implementation model and describe the design of a run-time
system that efficiently implements the RTP/C paradigm.
The following section discusses how the real-time behavior
of RTP/C programs may be analyzed. Lastly, we discuss
the use of the RTP/C paradigm and some of the implica-
tions of adding real-time communications primitives to a
programming language. We conclude with a discussion of
some related work.

The RTP/C Paradigm
A Semantics of Interprocess Communication

In traditional multiprogramming systems, a standard
paradigm of process interaction is the producer/consumer
paradigm. The crux of a producer/consumer systems is to
synchronize a producer and consumer so that no data is lost,
i.e., so that all data objects produced by the producer are
ultimately consumed by the consumer. For example, a
canonical solution is to impose a circularly linked list of
buffers between the two processes and synchronize access to
the buffers by a monitor and pair of condition variables as
outlined (in an abbreviated form) in Figure 2.1 [1]. In this
scenario the producer will wait for the consumer when all
the buffers are full. Similarly, the consumer will wait for
the producer if the buffers are all empty. In this manner, all
data objects deposited by the producer are eventually
removed and consumed by the consumer. The semantics of
the synchronization primitives, and a description of the
algorithms used in the deposit and remove routines, are
sufficient for reaching this conclusion. In particular, the
correctness of the monitor-based implementation will not
be dependent on the number of data objects that the
producer produces, the number of buffers present in the
monitor, or on the relative speeds at which the processes
make progress.

In real-time systems soft-
ware processes interact
with processes in the ex-
ternal world. Abstractly,
we can model these inter-
actions as in the pro-
ducer/consumer scenario
with one fundamental
modification. In Figure
2.1, the producer was
forced to wait for the
consumer if the con-
sumer ever lagged too far
behind. If the producer is
a process external to the
computer then, as the ex-
ternal process may not be
under the control of the
computer, it may not be
possible to force the pro-

cess to wait for the consumer. In this case we must ensure
that all data produced by the producer is consumed by the
consumer in the absence of the wait statement in the
Deposit routine in the monitor in Figure 2.1 [14]. Now, if
the consumer is not “fast enough,” data from this external
producer will be lost. In this case, knowledge of the seman-
tics of synchronization, and the buffering algorithms in the
monitor, are no longer sufficient to determine if all data de-
posited will be consumed. In order to determine the correct-
ness of this system, one will need information on the im-
plementation of the consumer and on the real-time behavior
of the producer process in the external environment. At a
minimum we will need to know the rate at which the
producer produces data objects and how much time, in the
worst case, it takes the consumer to process a data object.
The correctness of this producer/consumer system now has
a temporal component. We call such a producer/consumer
system a real-time producer/consumer (RTP/C) system.

If we ignore the specifics of the monitor-based implementa-
tion of a producer/consumer system, we identify the follow-
ing salient features of a RTP/C system. Abstractly, there
are two processes, a producer and a consumer that are con-
nected via a unidirectional communication channel. The
channel is unidirectional, from the producer to the con-
sumer, since the consumer cannot communicate with, or
control the producer. We will assume that this communica-
tion channel imposes a bounded delay on the flow of units
of information from the producer to the consumer. When
the producer produces a data object, the producer sends the
data object to the consumer on the channel. Let r be the
maximum rate at which data objects travel on the channel
from the producer to the consumer. If the rate r is realizable
over an arbitrarily long interval of time and if the consumer
does not consume data objects at rate r, then there is no
amount of buffering that can be imposed between the pro-
ducer and the consumer that will ensure every data object
produced by the producer is consumed by the consumer. To
guarantee the correctness of the system under all conditions,
it is necessary for the consumer to consume data objects at
the rate at which they are produced. This is the essence of a

RTP/C system.

For hard-real-time sys-
tems it is appropriate to
entertain worst case as-
sumptions about the op-
eration of the system and
the behavior of the ex-
ternal environment. We
therefore, define rate as
the reciprocal of the min-
imum inter-arrival time
of data objects at the
consumer. For this defi-
nition of rate, the real-
time producer/consumer
paradigm is defined as a
paradigm of process in-
teraction wherein the ith

output of the producer
must be consumed by

3

the consumer before the (i+1)st output is produced.

The RTP/C paradigm stipulates that a consumer must
process information in a time frame defined by its producer.
Abstractly, a producer defines a discrete time domain for a
channel. The emission of messages on this channel
corresponds to the “ticks” of a discrete time clock. If a pair
of interconnected processes adheres to the RTP/C paradigm,
then, relative to the channel’s discrete time clock, a
producer cannot tell the difference between a consumer that
is infinitely fast and one that simply obeys the RTP/C
paradigm. In this manner the RTP/C paradigm allows one
to specify one form of real-time constraints: data-flow
constraints wherein all data arriving from external sensors
must be processed in real-time. An example of a system
with such constraints is given below.

A Message Passing Programming System

The RTP/C paradigm forms the semantic basis of a
message passing programming discipline. In brief, a
program is expressed as a directed graph (called a process
graph) where vertices represent processes and edges
represent unidirectional communication channels. Processes
exchange messages along communication channels.
Processes may be either sequential programs that execute
on a single processor or physical processes in the
environment external to the processor that communicate
with internal processes via interrupts. In the latter case,
processes are simply stubs (i.e., non-executable code) that
specify the real-time characteristics of the external processes
they represent. A message is typed collection of data. A
simplified conceptual schema for an internal process is

process P
 loop
 Accept(in_mesg)
 <compute>
 Emit(out_mesg, channel1)
 <compute>
 Emit(out_mesg, channel2)
 :
 :
 end loop
end P1

Communication and synchronization in our system are
based on the client/server paradigm of message passing [1].
A process has a single input port and a set of output ports.
A process repeatedly accepts a message on its input port,
processes the message –– possibly emitting messages to
other processes –– and then attempts to accept another
input message. Message passing is asynchronous. The
Emit statement is always non-blocking while the Accept
statement is potentially blocking. If a message is not
available for a process that executes an Accept statement
then the process is blocked until a message is available.

Each channel in a process graph defines a pro-
ducer/consumer relationship between two processes. The
novel abstraction in our programming system is that all in-
terconnected pairs of processes adhere to the RTP/C
paradigm. When a message is sent on a channel it will be
received and processed before the next message is sent on
that channel. For example, if a process P acts as a server

for another process P′, then P will consume each message
from P′ before P′ sends its next message. More precisely,
for each output port of a process we define a transmission
rate function. This function relates the maximum rate at
which messages can be produced on an output channel to
the rate at which messages arrive at the process. This rate is
defined in terms of the worst case minimum interarrival
time of messages. For this message passing system it can
be shown that the transmission rate functions have the
form ƒ(r) = (1/x)r, where r is the rate at which messages
arrive at the process and x is a positive, non-zero integer.
For a given transmission rate function the value of x will
depend on the logic within a process. Conceptually, a
process is modeled as a finite state machine in which state
transitions occur upon the receipt of a message. The
parameter x in the transmission rate function is simply the
minimum number of state transitions that separate two
states in which a message is emitted on the output channel
in question. Currently the value of x is specified by a
programmer as they develop the code for each process.

Source nodes in the process graph (those with no input
edges) represent processes in the external environment (i.e.,
devices). The output channels of these nodes are labeled
with constants (symbolic or numeric) that indicate the
maximum message transmission rate on the channel. For
example, a rate might indicate the maximum rate with
which a particular type of interrupt is expected to arrive.
The remaining edges in a process graph can be labeled with
a transmission rate in the obvious manner. Starting from
the source nodes, the transmission rate functions can be
evaluated in topological order and each edge in the process
graph can be labeled with an actual transmission rate. This
rate will be either a numeric value or an expression
containing symbolic constants. The precise semantics of
message passing are defined in terms of this rate. If a
process accepts messages from a channel with a
transmission rate r, then the message must be consumed
within 1/r time units of its arrival. Since in general a
consumer has no knowledge as to when its producer will
send its next message, these semantics are required to
ensure the RTP/C paradigm is adhered to under all
circumstances.

Processes that receive messages from multiple producers are
treated as multiple instances of processes that receive
messages from a single producer. For example, if a process
P acts as a server for multiple processes, then P will
consume a message from each client P′ before P′ sends its
next message. Logically, if process P receives messages
from n producers then P is logically treated as a set of n
identical copies of process P. Each copy of P receives
messages from a single producer and defines a RTP/C
relationship with its message producer. The key point is
that the RTP/C paradigm applies separately to each
communication channel in a process graph. The rate at
which a process P consumes messages from a producer A
depends only on the rate at which A produces messages;
independent of whether or not process P receives messages
from producers other than A. From the point of view of a
message producer, the rate at which a process gets serviced
depends only on the rate at which it emits messages.

4

Tracker
Int.

Handler

Position
Processor

Timer
Int.

Handler
Transform
Coords.

Update
Display

List

Compute
Image

Display

Head
Position

Hand
Position

Timer

Tracking
HW

Display

ƒ(r) = 1
10 r

ƒ(r) = r ƒ(r) = r ƒ(r) = r ƒ(r) = r ƒ(r) = r

r =
1

7ms

r =
1

33ms

Figure 2.2

Processes that receive messages from multiple producers
do, however, introduce additional constraints on the
implementation of the RTP/C paradigm. If a process P
receives messages from multiple producers, then to ensure
the consistency of the function that process P performs, the
consumption of a message by P from a producer may not
be interrupted by processing of any other message at P.

For many applications, the temporal coupling of message
senders and receivers is unnecessary and often undesirable.
(An example of such an application will be presented in the
next section.) Our programming system provides a facility
for non-time constrained communication based on shared
memory. Shared memory is referred to syntactically as a
data repository. A data repository encapsulates shared data
and exports a set of entry routines for accessing and
manipulating the data. Processes invoke these routines via
a procedure call. Like a monitor, data repositories provide
mutually exclusive access to the data they encapsulate. Data
repositories are also useful for sending large messages
efficiently. Rather than sending a large structure in a
message, a programmer may create a data repository to
store the contents of such messages. Sending and receiving
processes then may (safely) operate on the same copy of the
data. In this case the physical message that is sent from a
sender to a receiver is simply a synchronization signal.
This style of interaction can eliminate the need for copying
large amounts of data from a sender to a receiver.

Using the RTP/C Paradigm

The following example illustrates the use of the RTP/C
programming system. We have used a prototype of the
programming system to re-implement an interactive graph-
ics system used for research in virtual worlds [5]. The
graphics system is a head-mounted display system consist-
ing of a helmet with miniature television monitors embed-
ded in it, and tracking hardware for the helmet and for a
hand-held pointing device. A computer generated image of a
3-dimensional “virtual world” is displayed in the helmet.
The goal of the system is to track the user’s head and point-
ing device in real-time and to update the image displayed in
the helmet so as to maintain the illusion that the user is
immersed in an artificial world. There are two separate real-
time concerns in this application. First, the system must
update the display at a rate sufficient for ensuring that ani-
mate objects displayed in the helmet move in a smooth and
realistic manner. An update rate of 30 updates per second is
ideal. Second, as the user moves their head or pointing de-

vice, the displayed image must appear to move with the
user’s movements. For example, if the users turns their
head to the left, the image must be shifted to the right in
concert with the user’s movement. A lag of 50ms. was
desired.

The process graph for the head-mounted display system ––
augmented with data repositories –– is shown in Figure
2.2. Circles represent processes and double circles represent
data repositories. Bold circles represent external processes
(devices). The process graph consists of two disconnected
components (data repositories are not considered part of the
process graph). One component (the processes labeled
Tracking HW, Tracker Int. Handler, and Position Processor)
reads data from the tracking hardware, the other disconnected
component periodically computes and displays the virtual
world. Both tracking and display subgraphs are organized as
simple pipelines. The two disconnected components in the
process graph communicate through data repositories that
store the current position of the user’s head and hand. The
Position Processor process calls a “write” routine in the
Head and Hand data repositories to update the current posi-
tion of the user. The Transform Coordinates process calls a
“read” routine in the data repositories to acquire the current
position. The semantics of a data repository ensure that
read/write operations on the same data repository do not
interfere.

Figure 2.2 also shows the transmission rate functions for
each channel. With the exception of the channel between
the Tracker Interrupt Handler and Position Processor pro-
cesses, all channels have the identity transmission rate
function. This means that in the worst case, every time a
process such as the Timer Interrupt Handler process receives
a message, it will emit a message on its output channel.
The Tracker Interrupt Handler process will always wait for
the arrival of at least 10 messages before it will emit a
message on its output channel. That is, at least ten mes-
sages are received from the tracking hardware before a new
position report is generated.

The channels from the external world are labeled with rate
constants. For this application, the numeric value of these
constants have been determined empirically. Had this not
been the case then these channels would have been
annotated with a symbolic constant. Given these constants
and the transmission rate functions, the maximum rates at
which messages will be emitted on each channel can be
easily calculated. The maximum rates at which messages

5

Tracker
Int.

Handler

Position
Processor

Trans-
form

Coords.

Update
Display

List

Compute
Image

Display
Tracking

HW Display

ƒ(r) =
1
 5 r ƒ(r) = r ƒ(r) = r ƒ(r) = r ƒ(r) = rr =

1
7ms

ƒ(r) = r

Figure 2.3

will be transmitted between display processes will be one
message every 33 ms. Between the two tracking processes,
messages will be produced every 70 ms.

The RTP/C paradigm provides a framework for both
expressing processor-time-dependent computations and for
reasoning about the real-time behavior of programs. For the
head-mounted display system, the process graph in Figure
2.2 completely specifies the real-time behavior of the
application. At a low-level, the RTP/C paradigm specifies
an upper bound on the time to process each message. For
example, messages from the Timer Interrupt Handler to the
first Display process will be consumed (received and
processed) within 33 ms. Messages from the Tracker
Interrupt Handler to the Position Processor process will be
consumed within 70 ms. At a higher-level, the RTP/C
paradigm allows a designer to reason about the time
required for a message, or more precisely a sequence of
messages, to traverse a particular path through a graph. For
example, for a particular implementation of our
programming system (described next), we can demonstrate:

• the maximum time between the arrival of a timer inter-
rupt and the generation of the commands to display an
image is 33 ms,

• the maximum time between the arrival of a complete
head and hand position report and the display of an image
based on the new position information is 103 ms.

The derivation of these figures is discussed below. The lat-
ter result illustrated a flaw in our initial design. By using
data repositories for communication between the tracking
and display generation processes, there was no explicit
temporal coupling between these processes. This had lead
to an unacceptable worst case lag time between the arrival
of a position report and the display of an image However,
by eliminating the data repositories and restructuring the
process graph as a simple pipeline as shown in Figure 2.3
and making minor modifications to the position processor
process, we were able –– in the space of about 15 minutes
–– to reduce the second performance guarantee to approxi-
mately 35 ms. Previously the tracker interrupt handler pro-
cess emitted messages containing data for the current head
and hand position. The data arrives serially at the tracker
process; first the data for the head position arrives followed
by the data for the head position. The primary insight was
to have the Tracker Interrupt Handler emit messages when-
ever it received a complete head or hand position report.
This halved the tracker process’s output transmission rate
and led to the optimization. While this is was a simple in-
sight, we conjecture that it was made possible by the ex-
pressing the of program as a directed graph and the use of
the RTP/C paradigm. For example, the original program-
mer of this system never saw this optimization.

Realizing the RTP/C
Theory

In order to correctly implement a process graph we must
guarantee that all interconnected pairs of processes adhere to
the RTP/C paradigm. For a given process graph, our
ability to realize the RTP/C semantics of inter-process
communication will be a function of: (1) the topology of
the process graph, (2) the rates at which messages arrive at
the system from the external world, (3) the transmission
rate functions on communication channels, and (4) the cost
(measured in execution time) of processing each message
type. The topology of a process graph is a factor only if it
contains a cycle. For simplicity, in the following we
consider only acyclic process graphs.

Our approach to implementing process graphs is to treat
each graph as an instance of a real-time processor schedul-
ing and resource allocation problem. A process graph is
modeled as a set of sporadic tasks. A sporadic task is a se-
quential program that is invoked repeatedly, with a lower
bound on the inter-invocation time, and with a deadline for
the completion of each invocation. A sporadic task is a
generalization of the more commonly studied periodic task
[11]. Informally, a task corresponds to a process. If a pro-
cess receives messages from n producers then we associate
n (identical) tasks with the process. Tasks are invoked
whenever a message is produced on a channel connected to
the process corresponding to the task. An execution of a
task corresponds to the execution of the code required to
consume a message sent on a channel. For example, the
head-mounted display system shown in Figure 2.2 is im-
plemented as 7 tasks; 2 for tracking and 5 for generating
and displaying image. When a message is sent from the
Tracker Interrupt Handler to the Position Processor process,
the task corresponding to the channel is invoked. When the
task is scheduled it will execute the code of the Position
Processor process and consume the message.

Each task has a deadline for completion of each of its
executions. The deadline is used to guarantee that
communication adheres to the RTP/C paradigm in all
cases. If messages are sent on a channel with (worst case)
rate r, then the task that will process messages sent on that
channel will be required to complete execution within 1/r
time units of each invocation. For example, the task that is
invoked to process messages sent from the Tracker Interrupt
Handler to the Position Processor process will have a
deadline of 70 ms. In addition to deadlines, tasks may have
constraints on their execution due to the presence of critical
sections. There are two types of critical sections to
consider: operations on data repositories that are shared
between processes in a process graph are critical sections,
and the execution of tasks that derive from a common
process (i.e., tasks derived from a process that receives

6

messages from multiple producers). For example, since the
processing of a message from the Tracker process in Figure
2.2 requires an operation on a shared data repository (a write
operation to update the current position), the task that is
invoked to process messages sent from the Tracker Interrupt
Handler will have critical sections.

We choose to model processes with sporadic tasks as there
exists a lower bound on the time between the emission of
messages on a channel (but no upper bound). With respect
to the sporadic tasking model, we have developed an
optimal algorithm for sequencing sporadic tasks on a single
processor [8]. The algorithm is optimal in the sense that it
can schedule a set of tasks in such a manner that (1) all
invocations of all tasks will complete execution before
their respective deadlines whenever it is possible to do so
and (2) no two tasks ever execute in a critical section at the
same time. The algorithm is a variation of the well-known
earliest deadline first (EDF) scheduling algorithm; a
preemptive priority driven scheduling algorithm with
dynamic priority assignment [11].

Although the scheduling policy used is optimal, it is still
quite possible to write a program which, when compiled
into a set of tasks, cannot be scheduled (i.e., the tasks
cannot be guaranteed to meet their deadlines). We have
developed an efficient decision procedure for deciding when
a set of sporadic tasks can be scheduled. Let r1, r2, ..., rn be
the rates at which message are emitted on channels, sorted
in non-increasing order. Let C 1 , C 2 , ..., C n be the
maximum execution times required to process a message on
each channel. The processing of a message sent on channel
i may require some number of operations on shared data
repositories. Let ni be this number for channel i and let cij

be the maximum execution time required for the jth data
repository operation. Let ci0 be the maximum execution
time required to execute the non-data repository code
(sequential code in the process that consumes message on
channel i). Hence Ci = ci0 + ci1 + ci2 + ... + cini

. A set of

tasks can be scheduled on a single processor if:1

1) ∑
i=1

n

�Ci ri ≤ 1,

2) ∀i, 1 < i ≤ n; ∀k, 1 ≤ k ≤ ni; ∀L, 1/r1 < L < 1/ri :

L ≥ cik + ∑
j=1

i–1

�(L – 1) rjCj ,

The product Ci ri is the fraction of the processor that must
be allocated to processing messages on channel i. The first
condition stipulates that the processor not be overloaded.
Condition (2) applies to tasks that require access to shared
data repositories (tasks for which ni > 0). It assesses the
contention that may occur when accessing shared data
repositories. Loosely speaking, the right hand side of
condition (2) condition is an upper bound on the time that a
task will be delayed while waiting to gain access to a
critical section when scheduled according to an optimal

1 Necessary and sufficient conditions are proved in [11]. A
simpler formulation is presented here for brevity.

discipline. Under all circumstances this bound must be less
than or equal to the inter-arrival time (or a fraction thereof)
of messages on channel i. A set of tasks can be tested
against these conditions in time O (n/rn) (i.e., in time
proportional to the largest message inter-arrival time times
the number of channels).

These results demonstrate that (1) the RTP/C paradigm can,
in theory, be realized between sets of processes and (2) one
can efficiently determine whether or not a process graph can
be implemented on a uniprocessor. These results are applied
as follows. A process graph is constructed and annotated
with transmission rate functions following the methodol-
ogy outlined in the previous section. Given a specification
of the arrival rates of messages from the external world, the
transmission rate functions are solved to yield a set of rate
constants. Next the execution time of each process is mea-
sured. For a given process the measurement consists of the
execution times of all operations on data repositories called
by the process as well as the sequential code of the process
itself. Measurements are currently done by hand although
we anticipate that automated tools will be available to aid
in this process (e.g., [12]). The rates and execution times of
processes are tested against the schedulability conditions
listed above. If the parameters satisfy the conditions then
we are guaranteed that (1) all messages can be consumed ac-
cording to the RTP/C paradigm, and (2) all operations on
shared data repositories can be executed in a mutually
exclusive manner.

If any of the rate constants are symbolic constants then the
schedulability conditions can be used to derive maximum
input rates that can be sustained by a process graph (on a
given processor). If it is believed that an external process
may emit messages at a rate greater than the specified rate
then the programmer will have to use a buffering scheme
(as described below) to ensure that the ill-behaved device
does not saturate the system.

Implementation

The programming system we have described is currently
implemented as a set of extensions to the C programming
language. A run-time system that implements both our
process model and scheduling discipline has been
constructed [6]. The run-time system is a bare machine
operating system kernel (or “micro-kernel”) that executes
on IBM PS/2 computers. The kernel, contains routines to
create processes, data repositories, and communication
channels, bind ports of processes to channels, send and
receive messages, and invoke operations on data
repositories. Processes and data repositories are
implemented as C functions. When a message is sent to a
process the appropriate C function is placed on a run-queue
to be logically forked (dispatched). Once forked, a process
executes to completion. When a process accesses a data
repository, the access is performed indirectly through the
kernel (to ensure mutual exclusion).

The kernel is functionally similar to those for other mes-
sage-passing systems. The major distinctions of our kernel
are the processor and resource allocation policies used and
the implementation of tasks. The scheduling algorithm we

7

P2
r1

P1 P3
ƒ(r) =

1
x1

 r ƒ(r) =
1
x2

 r

r2 r 3
Pk

ƒ(r) =
1
x3

 r

rk

Figure 4.1

have developed affords
us an extremely efficient
implementation of pro-
cesses. Our variant of
the EDF scheduling dis-
cipline has the follow-
ing two useful proper-
ties. First, whenever a
process P enters a critical section, the process has its prior-
ity elevated in such a manner that for the duration of the
critical section, no other process that requires access to the
same critical section will be able to preempt the resident
process [8]. This is similar to the concept of a priority ceil-
ing in priority inheritance protocols [13]. Because of this
fact, the kernel need not provide any special locking facili-
ties for critical sections. The second property is that if a
process P is preempted, it is the case that any process that
executes while P is preempted, is guaranteed to complete
execution before P is resumed. Since processes execute to
completion, we may execute all processes on a single run-
time stack. This greatly improves memory utilization and
reduces context switching overhead. This is similar to
Baker’s stack allocation policy [2].

Analyzing RTP/C Programs

The RTP/C paradigm enables two types of analysis of real-
time behaviors: assessments real-time latency, and real-time
throughput. Real-time throughput is inherent in the RTP/C
model. Latency refers to the time required for sequences of
messages to propagate through a process graph. In order to
assess the latency of message propagation, we must assume
processes are well-behaved in the sense that they emit
messages at some minimal rate. (This is easy to enforce by
associating a timer and an “exception” process with each
process. The timer and the exception process simply are
another pair of processes that adhere to the RTP/C
paradigm.) In what follows, we derive upper bounds on
propagation latency for the (best) case where all processes
emit messages at their maximum rate. The analysis for
minimum emission rates is analogous.

We distinguish between two types of latency: direct
message propagation delay and indirect message
propagation delay. Direct message propagation delay refers
to the time required for a message (more precisely a
sequence of messages) to propagate from a source node to a
sink node in a process graph. For example, in Figure 2.4,
the time that may elapse between a timer interrupt and the
generation of commands to update the display is a direct
message propagation delay. Indirect message propagation
delay refers to the time required for information (messages
and the effect of data repository operations) to propagate
from a source node in one disconnected component of a
process graph, to a sink node in a different component in
the graph. For example, in Figure 2.4, the time that may
elapse between the arrival of the a message at the Tracker
Interrupt Handler that completes a position report, and the
generation of commands to update the display based on this
position report is an indirect message propagation delay.
For brevity we consider only the problem of assessing
direct message propagation delay.

The determination of di-
rect message propaga-
tion time through a se-
quence of processes de-
pends on the rates at
which messages are
emitted and the slopes
of the transmission rate

functions for the channels the messages traverse. Let pro-
cesses P1...Pk be processes on an acyclic path through a
process graph as shown in Figure 4.1. For this path, let ri

be the rate at which the ith process Pi receives messages on
the ith channel on the path and let xi be the denominator of
the coefficient of process Pi’s transmission rate function for
its output channel. Consider process P1 in Figure 4.1.
When a message arrives at P1, the message must be con-
sumed sometime within 1/r1 time units of its arrival. In ad-
dition, when process P1 receives a message, it will wait for
the arrival of at most x1 – 1 additional messages before it
must emit a message (assuming P1 emits messages at its
maximum rate). Therefore, when process P1 receives a mes-
sage, P1 will delay for at most x1/r1 time units before emit-
ting a message. For a sequence of k processes, the maxi-
mum delay between the arrival of a message at process P1,
and the emission of a message from process Pk can be at
most ∑i=1

k
�xi/ri time units. This corresponds to a point in

time when processes P1...Pk are “least synchronized.” That
is, while each process is emitting messages at its maxi-
mum rate, each process waits for the largest possible num-
ber of message arrivals before emitting a message. A more
optimistic scenario occurs when processes P1...Pk are all
synchronized. That is, each process emits a message when
it receives a message. In this case, the arrival of a message
at process P1 will directly cause a message to be emitted by
process Pk. Hence the maximum propagation delay for such
a message will be at most ∑i=1

k
�1/ri time units. If all pro-

cesses in the sequence have identity transmission rate func-
tions then the previous two summations are identical. Note
that if all processes emit messages at their maximum rate,
then in any sequence of x1·x2·...·xk message arrivals at pro-
cess P1, there will always be messages whose propagation
delay is bounded from above by these summations.

This result is not surprising as it corresponds well with our
notion of propagation through a pipeline. Each stage of the
pipeline introduces a delay of at least 1/ri time units and at
most xi/ri time units (again assuming a maximum message
emission rate). However, with knowledge of the
implementation of the RTP/C (e.g., the fact the EDF
scheduling is used) one can substantially improve these
bounds. To see how this can be achieved requires a closer
look at the scheduling model.

The decision procedure used for deciding whether or not it
will be possible to faithfully execute a process graph is
based on a formal model of the processing requirements im-
plied by a process graph. While an affirmative output
indeed guarantees correct execution, a negative output does
not imply the opposite. There are several reasons for this.

8

The scheduling analysis uses no topological information.
As such, the analysis of contention for shared resources as-
sumes that all possible interleavings of message arrivals are
possible. By incorporating topological information into the
scheduling model it is likely that we may be able to per-
form a less pessimistic analysis. The primary reason for ig-
noring the structure of a process graph for analysis
purposes is that it allows us to optimize the scheduling of
messages transmitted along path in a graph to reduce the
overall latency for a sequence of messages to traverse that
path.

For example, assume that process A sends a message to
process B and that both processes must consume messages
within 1/r time units of their arrival (i.e., the input channel
to each process has the same transmission rate). One can
easily show that processes A and B can never be consuming
messages simultaneously when implemented on a single
processor. If the decision procedure indicates that this
process graph is schedulable, then processes A and B will
be schedulable even if they were to consume messages
simultaneously. At run-time, a scheduler can use the fact
that A sends messages to B to schedule (i.e., insert into the
run-queue) A and B simultaneously whenever A receives a
message. Process B is scheduled even though there is no
message for it to consume. If process A is given priority
over process B, process B will have a message to consume
when it is eventually dispatched. This scheduling technique
improves the response time that we can guarantee for a
sequence of messages to propagate through processes A and
B. It is this technique that allows us to claim, for example,
that in the head mounted display system of Figure 2.2, the
maximum time between the arrival of a timer interrupt and
the display of an image is 33 ms (and similarly, that the
corresponding bound for Figure 2.3 is 35 ms.). In Figure
2.4, when a timer interrupt occurs, all display tasks are
simultaneously scheduled. If the set of tasks are schedulable
then all display tasks are guaranteed to complete execution
within 33 ms of each invocation.

This use of topological information at run-time effectively
executes a pair (or sequence) of processes (with identical
arrival rates) as a single process that contains the
concatenation of the code of the processes. In this manner,
a programmer may use freely use processes as a structuring
mechanism in a program, i.e., to decompose a process into
a sequence of processes, without incurring a performance
penalty due to lengthening a pipeline.

Discussion and Related Work

The RTP/C paradigm provides a framework both for
expressing processor-time-dependent computations and for
reasoning about the real-time behavior of programs. In
modeling real-time computations as producer/consumer
interactions, our emphasis has been on constraining the
behavior of the consumer process. That is, we have
considered only the problem of performing input operations
in real-time. It is our thesis that this emphasis is sufficient
for specifying time constrained output operations as well.
Abstractly, an output constraint specifies that an output
operation be performed during a particular interval of real-

time. The endpoints of the interval may be specified
relative to the occurrence of other events in the system or
to events in the external environment. In order to ensure
that an output constraint is adhered to, the system must be
able to measure the passage of time in the units of time in
which the constraint is specified. For example, if a
computer music system must generate a note on the sixth
beat of a measure, the system must be able to measure the
passage of beats. The system need not measure beats
directly but it must have available some reference stream of
inputs from which it can accurately infer the passage of
beats in real-time. A constraint on output can therefore be
mapped into a constraint on the processing of the input
reference stream.

The RTP/C paradigm requires that a consumer process
messages at the rate at which they are produced. Our
particular definition of rate in essence requires that
producer/consumer systems work correctly with zero
buffers. This is not meant to imply that buffers have no
utility in a hard-real-time system. We assume that a
specification of the minimum inter-arrival time of message
from the external world is provided as part of a program. If
we cannot control an external process then we surely cannot
be guaranteed that the specified minimum inter-arrival time
will be respected. If a minimum inter-arrival time is likely
not to be respected then inputs can be buffered in a data
repository and polled at the desired rate by a process driven
by an external timer.

Numerous programming languages and systems have been
proposed for the development of real-time systems. Most of
these language, most notably languages such as Ada, do
not deal with time in any fundamental manner. Notable
exceptions include languages such as Real-Time Euclid [9],
Concord/FLEX [10], and ESTEREL [4]. Real-Time Euclid
is an extension of Concurrent Euclid that adds the ability to
specify periodic and event driven timing constraints as well
as exception handling mechanisms. FLEX is a language for
specifying “imprecise” computations; a computation that is
described by a monotonically increasing value function (of
time). The more processing time that is allocated to a
process, the more “precise” the result it produces. This is
well-suited to softer real-time domains than those we
consider as it assumes that applications are processing
resource limited. FLEX provides a good framework for
trading off processing accuracy for real-time response.
Signal and ESTEREL are examples of languages from the
“synchronous” programming school of thought. Our
conceptual framework, specifically the notion that
consumers process messages in “no time,” is borrowed
from the strong synchrony hypothesis of ESTEREL. We
view our work as applying the strong synchrony
hypothesis to more realistic implementation environments.
Our emphasis on scheduling allows us to deal with
program artifacts such as critical sections in a more
fundamental manner. Unlike languages such as Real-Time
Euclid we have an efficient procedure for deciding when
programs can be correctly implemented; albeit at expense of
a less expressive programming discipline.

9

Summary

It is our thesis that real-time interactions can be effectively
modeled as producer/consumer systems. We have developed
the concept of a producer/consumer system in which the
consumer is constrained to process information produced by
a producer at the rate at which the information is produced.
A programming system has been developed that support
this paradigm of interaction.

Our definition of rate in terms of inter-arrival time has been
motivated by the desire to provide minimal guarantees of
response time for sequences of messages. To date, this has
been appropriate for the systems we have studied. The
preciseness of the RTP/C semantics follows from our
desire to understand the cost, in terms of off-line analysis
and run-time overhead, of hard-real-time computing. We
believe we have been successful in this endeavor. We are
currently investigating the impact on the programming and
scheduling models of adopting a definition of rate based on
aggregate process behavior. Such research is aimed at
accommodating the “softer” real-time requirements of
systems that cannot be implemented as hard-real-time
systems (e.g., because of an insufficiently powerful
processor) but will function acceptably nonetheless without
hard-real-time guarantees.

Our experience has been that the programming system is
expressive enough to capture the desired real-time
characteristics of actual systems. Moreover, it provides a
framework for the analysis of interesting and important
real-time program behaviors. The system has been applied
to an interactive graphics system, a HiPPI data-link
controller, and is being used in the development of a
computer-based conferencing system using digital audio and
video [7].

References

[1] Andrews, G.R., Schneider, F.B., Concepts and
Notations for Concurrent Programming, Computing
Surveys, 15, 1, (March 1983), pp. 3-43.

[2] Baker, T.P., A Stack-Based Resource Allocation
Policy for Real-Time Processes, Proc. IEEE Real-
Time Systems Symp., Orlando, FL, December 1990,
pp 191-200.

[3] Baker, T.P., Shaw, A.C., The Cyclic Executive
Model and Ada, Real-Time Systems, 1, 1, (June
1989), pp. 7-26.

[4] Berry, G., Cosserat, L., The ESTEREL Synchronous
Programming Language and its Mathematical
Semantics, Lecture Notes in Computer Science, 197,
pp. 389-448.

[5] Chung, J.C., et al., Exploring Virtual Worlds with
Head-Mounted Displays, Non-Holographic True 3-
Dimensional Display Technologies, SPIE
Proceedings, Los Angeles, CA, January 1989.

[6] Jeffay, K. et al., YARTOS: Kernel support for
efficient, predictable real-time systems, in “Real-Time
Programming,” W. Halang and K. Ramamritham,
eds., Pergamon Press, Oxford, UK, 1992.

[7] Jeffay, K., et al., Kernel Support for Live Digital
Audio and Video, Computer Communications, 15, 6,
(July/August 1992) pp. 388-395. .

[8] Jeffay, K., Scheduling Sporadic Tasks With Shared
Resources in Real-Time Systems, Proc. IEEE Real-
Time Sys. Symp., Phoenix, AZ, December 1992, pp.
89-99.

[9] Kligerman, E., Stoyenko, A.D., Real-Time Euclid: A
Language for Reliable Real-Time Systems, IEEE
Trans on Soft. Eng., 12, 9, (September 1986), pp.
941-949.

[10] Lin, K.-J. et al., Concord: A System of Imprecise
Computations, Proc. of the IEEE COMPSAC '87,
Tokyo, Japan, October 1987.

[11] Liu, C.L., Layland, J.W., Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environ-
ment, J. ACM, 20, 1, (January 1973), pp. 46-61.

[12] Park, C., Shaw, A.C., Experiments With a Program
Timing Tool Based On Source-Level Timing Schema,
IEEE Computer, 24, 5, (May 1991), pp. 48-57.

[13] Sha, L. et al., Priority Inheritance Protocols: An
approach to real-time synchronization, IEEE Trans.
on Computers, 39, 9, (September 1990), pp. 1175-
1185.

[14] Wirth, N., Toward a discipline of real-time
programming, Comm. of the ACM, 20, 8 (August
1977), 577-583.

