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Abstract

The workload of a network is usually a heterogeneous aggregate of services and applications, driven by
a large number of users. This complexity makes it challenging to evaluate the performance of network mecha-
nisms and configurations under realistic conditions. We propose a new methodology for transforming anonymized
traces of packet headers into application-neutral models of network traffic. These models are suitable for syn-
thetic traffic generation in simulations and testbeds, preserving the end-to-end nature of network traffic. Our
approach provides a tool for studying and tuning the realism of synthetic traffic.

Introduction

Evaluating the performance of network protocols and
mechanisms generally requires careful experimenta-
tion in simulators and testbed environments. As with
any other performance analysis task, a critical ele-
ment of these experiments is the availability of a re-
alistic workload or set of workloads that can stress
the technology in a manner that is representative of
the deployment conditions. Despite the increasing
availability of measurement results and packet traces
from real networks, there is no accepted method for
constructing realistic workloads, so networking re-
searchers and performance analysts have to rely on
simplistic or incomplete models of network traffic for
their experiments.

One essential difference between network work-
loads and other workloads, such those of storage
systems, is the closed feedback loop created by the
ubiquitous Transport Control Protocol (TCP). This
protocol, responsible for the end-to-end delivery of
the vast majority of the traffic on the Internet, reacts
to network conditions by retransmitting lost packets
and adjusting sending rates to the perceived level of
congestion in the network [2]. As a consequence, we
cannot simply collect a trace of the packets traversing
a network element and replay the trace in our exper-
iments, since the new conditions in the experimen-
tal environment would have had an effect on the be-

havior of TCP that is not present in the packet trace.
In other words, replaying a packet trace breaks the
feedback loop of TCP. For example, it is incorrect to
collect a packet trace in a 1-Gbps link with a mean
load of 650 Mbps and use it to evaluate a router ser-
vicing an OC-12 (622 Mbps) link. It is incorrect be-
cause the replay would not capture the back-off ef-
fect of TCP sources as they detect the congestion
in the overloaded OC-12 link. The analysis of the
results of such an experiment would be completely
misleading, because the traffic represents a set of be-
haviors of TCP sources that can never occur in prac-
tice. For example, the rate of queue overflow would
be much larger in the experiment than in a real de-
ployment where TCP sources would react to conges-
tion and reduce the aggregate sending rate below the
original 650 Mbps (thereby quickly reducing the num-
ber of drops). If we try to estimate a metric related
to response time, for example by looking at the du-
ration of each TCP connection, we would obviously
see virtually no difference between the original trace
and the replay. In reality, the decrease in sending
rate by the TCP sources in the congested scenario
would result in much longer response times. Thus,
valid experiments must preserve the feedback loop in
TCP. Traffic generation must be based on some form
of closed-loop process, and not on simple open-loop
packet-level replays.

The fundamental idea of closed-loop traffic gen-
eration is to characterize the sources of traffic that



drive the behavior of TCP. In this approach, experi-
mentation generally proceeds by simulating the use
of the (simulated or real) network by a given pop-
ulation of users using applications such as ftp or
web browsers. Synthetic workload generators are
therefore used to inject data into the network accord-
ing to a model of how the applications or users be-
have. This paradigm of simulation follows the phi-
losophy of using source-level descriptions of applica-
tions advocated by Floyd and Paxson [15]. The criti-
cal problem in doing network simulations is then gen-
erating application-dependent, network-independent
workloads that correspond to contemporary models
of application or user behavior.

From our experiences performing network simu-
lations, we observe that the networking community
lacks contemporary models of application workloads.
More precisely, we lack validated tools and methods
to go from measurements of network traffic to the
generation of synthetic workloads that are statistically
representative of the applications using the network.
We observe that current workload modeling efforts
tend to focus on one or a few specific applications.

Consider models for web browsing as a case in
point. The status quo today for web workloads is the
set of generators that are based on the web-browsing
measurements by Barford, Crovella et al. [6, 5, 3] that
resulted in the well-known SURGE model and tools.
These were later refined and extended by Feldman et
al. in [8]. While the results of these studies are widely
used today, both were conducted several years ago
and were based on measurements of a rather lim-
ited set of users. They have not been maintained
and updated as uses of the web have evolved. Thus,
even in the case of the most widely-studied applica-
tion, there remains no contemporary model of HTTP
workloads and no model that accounts for protocol
improvements (e.g., the use of persistent connections
in HTTP/v1.1) or newer uses of the web for peer-to-
peer file sharing and remote email access.

The most important limitation of current source-
level modeling approaches is that they construct
application-specific workload models. Given the
complexity inherent in this approach (e.g., the effort
involved in understanding, measuring, and modeling
specific application-layer protocols), it is quite under-
standable that workload models usually consider only
one or a small number of applications. However, few
(if any) networks today carry traffic from only one or
two applications or application classes. Most links
carry traffic from hundreds or perhaps thousands of

applications in proportions that vary widely from link
to link. (In fact simply determining precisely the mix
and traffic volume of applications is a difficult problem
for reasons discussed later.)

This issue of application mixes is a serious con-
cern for networking researchers. For example, if
one wanted to evaluate the amount of buffering in
a router, or a TCP protocol enhancement, etc. ., it
stands to reason they should consider its impact on
the applications that consume the majority of band-
width on the Internet today and that are projected
to do so in the future. It would be natural to con-
sider the performance implications of the scheme on
web usage (e.g., the impact on throughput or request-
response response times), on peer-to-peer applica-
tions, streaming media, other non-interactive applica-
tions such as mail and news, and on the ensemble
of all applications mixed together. As described in
greater detail in Section 2, the majority of previous
work in workload modeling has focused on the de-
velopment of source-level models of single applica-
tions. Because of this, there are no models for mixes
of networked applications. Worse, the use of analytic
(distribution-based) models such as those developed
by Paxson [14], and Barford, Crovella, et al. of spe-
cific TCP applications does not scale to developing
workload models of application mixes comprised of
hundreds of applications. Typically when construct-
ing workload models, the only means of identifying
application-specific traffic in a network is to classify
connections by port numbers. For connections that
use common reserved ports (e.g., port 80) we can,
in theory, infer the application-level protocol in use
(HTTP) and, with knowledge of the operation of the
application level protocol, construct a source-level
model of the workload generated by the application.
However, one problem with this approach for HTTP
is that a number of applications (e.g., SOAP) are es-
sentially using port 80 as an access mechanism to
penetrate firewalls and middleboxes.

A deeper problem with this approach is that a grow-
ing number of applications use port numbers that
have not been registered with the IANA. Worse, many
applications are configured to use port numbers as-
signed to other applications (allegedly) as a means of
hiding their traffic from detection by network admin-
istrators or for passing through firewalls. For exam-
ple, in a study of traffic received from two broadband
ISPs by AT&T in 2003 [9], the source (application)
of 32-48% of the bytes could not be identified. Sim-
ilarly, the analyses of backbone traffic in Sprint and



Internet2 networks [10, 4] do not identify between
25% and 40% of the bytes depending on the stud-
ied link. However, even if all connections observed
on a network could be uniquely associated with an
application, constructing workload models requires
knowledge of the (sometimes proprietary or hidden)
application-level protocol to deconstruct a connection
and understand its behavior. This is a very time-
consuming process, and doing it for hundreds of ap-
plications (or even the top twenty) in network traffic is
a daunting task.

In this paper we present a new method for con-
structing statistically sound workload models from
network packet traces that captures the richness in
the mix of applications using a given link. The general
paradigm of workload modeling and generation we
follow is an empirically-based method. One first takes
(possibly anonymized) packet header traces of traf-
fic found on network links of interest and uses those
traces to construct a model of the applications’ uses
of the network. This first step relies on application-
neutral modeling of the source-level behavior in TCP
connections that can be applied to the entire mix of
application in today’s Internet traffic. The model of the
traffic is then input to a synthetic workload generator
that emulates the behavior of the application(s) in the
network simulation or laboratory experiment.

Our approach provides us with the ability to replay
the application workload from a real network in a sim-
ulation or laboratory network and reproduce critical
properties of the packet-level traffic from the real net-
work. We claim the method is a natural and sub-
stantial step forward: it is simple to describe, inter-
pret, and implement, but flexible enough to accurately
capture a wide variety of existing applications with-
out knowing what those applications are. With our
method and tools, the process of going from packet
traces on a network link to generating a synthetic
TCP workload that is statistically equivalent to that
observed on the measured link can be reduced from
months to hours.

Application-Neutral Modeling of
TCP Sources

The foundation of our approach to modeling TCP
workloads is the observation that, from the perspec-
tive of the network, the vast majority of application-
level protocols are based on a few simple patterns of
data exchanges within a logical connection between
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Figure 1: Network traffic seen at different levels of
abstraction.

the endpoint processes. The idea is illustrated in Fig-
ure 1. The traffic on an Internet link can be seen as
an aggregate of packets from many different connec-
tions. Each connection is driven by an application
running on the two end-points. For example, a web
connection is used to transport requests for URLs
and web objects, such as HTML source code and im-
age files. For TCP applications, arrivals of packets
within a flow is a function of the source-behavior of
the application and the congestion control and win-
dowing mechanisms of the transport protocol. Each
application has a different set of messages and ob-
jects that are exchanged between the two end-points.
However, there exists a level of abstraction at which
all connections are doing nothing more than sending
data back and forth and waiting for application events.
We believe this abstract source-level is the right place
for modeling traffic mixes in a manner that is suitable
for generating closed-loop traffic.

In our models, the two endpoint processes ex-
change data in units defined by their specific
application-level protocol. The sizes of these
application-data units (ADUs) depend only on the ap-
plication protocol and the data objects used in the ap-
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Figure 2: Pattern of ADU Exchange in an HTTP 1.0
connection.
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Figure 3: Pattern of ADU Exchange in three sample connections (from top to bottom: HTTP 1.1, SMTP and
NNTP examples).

plication and, therefore, are (largely) independent of
the sizes of the network-dependent data units em-
ployed at the transport level and below. For example,
the sizes of HTTP requests and responses depend
on the sizes of headers defined by the HTTP protocol
and the sizes of files referenced but not on the sizes
of TCP segments used at the transport layer.

The simplest and most common pattern used by
TCP applications arises from the client-server model
of application structure and consists of a single ADU
exchange. For example, given two endpoints, say a
web server and browser, we can represent their be-
havior over time with the simple diagram in Figure 2.
A browser makes a request to a server that responds
with the requested object. Note that the time inter-
val between the request and the response depends
on network or end-system properties that are not di-
rectly related to (or controlled by) the application (so
it is not shown in the figures).

Another common pattern for TCP connections
arises from application protocols where there are
multiple ADU exchanges between the endpoints of
a logical connection. Figure 3 shows three exam-
ples of this type of pattern. The top connection di-
agram shows a persistent HTTP connection, in which
three web requests are sent from a browser to a web
server and three corresponding web responses (ob-
jects) are sent from the server to the browser (for
a total of six ADUs exchanged). The first two re-

quest/response exchanges correspond to a first doc-
ument (web page) download, while the last exchange
corresponds to a second document download. The
diagram also shows two quiet times in this connec-
tion. The first one is relatively short (120 millisec-
onds) while the second one, between the two doc-
uments, is much longer (3.12 seconds), so it was
probably due to user user think time rather than net-
work conditions. Similarly, the SMTP connection in
Figure 3 illustrates a sample sequence of data units
exchanged by two SMTP servers. Note that in this
case most data units are small and correspond to
application-level control messages (e.g., the host info
message, the initial HELO message, etc. ) rather
than application objects (e.g., the actual email mes-
sage of 22,568 bytes). The last example is an NNTP
connection in which an NNTP reader checks the sta-
tus of a number of newsgroups and, after a quiet time
of 5.02 seconds, requests the content of one article.
It is convenient to model this type of pattern as con-
sisting of one or more epochs, where each epoch
consists of either 0 or 1 ADU from each endpoint fol-
lowed by an inter-epoch time interval (or the end of
the logical connection). Thus we can model a TCP
application as generating a number of time-separated
epochs where each epoch is characterized by ADU
sizes and an inter-epoch time interval.

More formally, we model the source-level behav-
ior in which each TCP connection using a connec-
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Figure 4: Pattern of ADU Exchange in data-concurrent NNTP connection (stream mode).

tion vector Ci = (e1, e2, . . . , en) with n epochs. An
epoch is a triplet of the form ej = (aj , bj , tj) that de-
scribes the data (aj , bj) and quiet time (tj) param-
eters of the j’th exchange in a connection. Each
aj captures the amount of data send from the ini-
tiator of the connection (e.g., a web browser) to
the acceptor (e.g., a web server), and each bj rep-
resents data flowing in the other direction. Using
this model, we can succinctly described the connec-
tion in Figure 2 as ((341, 2555, φ)), where the first
ADU, a1, has a size of 341 bytes, and the second
one, b1 has a size of 2,555 bytes. Similarly, the
SMTP connection in Figure 3 can be represented as
((0, 93, 0), (32, 191, 0), (77, 59, 0), (75, 38, 0), (6, 50, 0),
(22568, 44, φ)). As this last connection vector shows,
application protocols sometimes have a single ADU
in an epoch (e.g., a1 = 0 for SMTP and b1 = 0 for
FTP-data). Given the form of our model, we call it
the a-b-t model of a connection. Our model captures
three essential source-level properties of a TCP con-
nection: data in the “a direction”, data in the “b direc-
tion” and quiet times t between data units.

A final pattern extends the model to allow for ADU
transmissions by the two endpoints to overlap in time
(i.e., to be concurrent). Figure 4 shows an NNTP con-
nection between two NNTP peers (servers) in which
NNTP’s streaming mode is used. As shown in the
diagram, the article in the last data unit of the initia-
tor side (with a size of 15,678 bytes), coexisted with
two data units that were sent from the connector ac-
ceptor (two 438 messages). Therefore this connec-
tion is said to exhibit data exchange concurrency. In
contrast, the connections illustrated in Figures 2 and
3 exchanged data units in a sequential fashion. A
fundamental difference between these two types of
communication is that sequential request/response
exchange always take a minimum of one round-trip
time. Application designers make use of data con-
currency for two primary purposes:

• Keeping the pipe full, by making use of requests

that overlap with uncompleted responses. This
avoids the one round-trip time per epoch price
that any request/response exchange must pay,
so the connection can be fully utilized.

• Supporting natural concurrency, in the sense
that some applications do not need to follow the
traditional request/response paradigm.

Examples of protocols that attempt to keep the pipe
full are the pipelining mode in HTTP, the streaming
mode in NNTP, and the BitTorrent and Rsync proto-
cols. Examples of protocols/applications that support
concurrency are instant messaging and Gnutella (in
which the search messages are simply forwarded to
other peers without any response messsage).

For data-concurrent connection, we use a different
version of our a-b-t model in which the two directions
of the connection are modeled independently by two
separate connection vectors of the form

((a1, ta1), (a2, ta2), . . . , (ana
, tana

))

and
((b1, tb1), (b2, tb2), . . . , (bnb

, tbnb
))

Using two independent vectors does provides
enough detail to capture the two purposes in the last
paragraph, since in the first case, one side of the
connection completely dominates (so only one of the
connection vectors matters), and in the second case,
the two sides are completely independent.

From Packet Traces to a-b-t
Traces

Modeling TCP connections as a pattern of ADU
transmissions provides a unified view of Internet in-
formation exchanges that does not depend on the
specific applications driving each TCP connection.
The first step in the modeling process is to acquire
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empirical data and process that data to produce the
a-b-t model. The basic data acquisition technique
that we use is passive tracing of TCP/IP packet-
headers to capture bidirectional traces. The sample
set of packets in a TCP connection is shown in Figure
5 (the source level representation of this connection
was shown in Figure 2). The sequence numbers (se-
qnos) in each packet provide enough information to
compute ADU sizes. In the example, we observe a
first data packet sent from the initiator to the acceptor
with a sequence number for the last byte in the seg-
ment of 341. In response to this data packet, first a
pure acknowledgment packet (with ackno 342) is sent
from the acceptor, followed by two data packets (with
the same acknowledgment number). This change in
the directionality of data transmission makes it possi-
ble to established a boundary between the first data
unit a1, which was transported using a single packet
and had a size of 341 bytes, and the second data unit
b1, which was transported using two packets and had
a size of 2,555 bytes.

Figure 6 shows a more complicated example, in
which the first data packet of the data unit sent from
the acceptor is lost somewhere in the network, forcing
the acceptor end point to retransmit this packet some
time later. Depending on the location of the monitor
(before or after the point of loss), the analyzed packet
header trace may or may not include the first instance
of the packet with end sequence number 1460. If this
packet is present in the trace, the analysis program
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Figure 6: The exchange in Figure 2 seen at the
packet level (lossy example).

must detect that the third packet is a retransmission,
so it should be ignored and the size of the data should
be 2,555 bytes. If the lost packet is not present in
the trace, the analysis must detect the reordering of
packets using their sequence number and also output
a size for b1 of 2,555 bytes.

We have developed a measurement algorithm that
can measure application-data unit sizes in the pres-
ence of arbitrary reordering and loss. For sequential
connections, our starting point is the observation that,
despite the possibility of loss and reordering, data in
a TCP connection has a unique logical ordering (oth-
erwise, the connection would not be transmitting use-
ful data). For example, the data in the retransmitted
segment in Figure 6 logically preceeds the data in the
previous data packet, since the sequence number of
the retransmitted packet is lower. Using this observa-
tion, we can define a total ordering of packets in any
TCP connection, and develop an algorithm that will
be able to determine ADU sizes using this ordering.
Our algorithm, which does not rely on hashing but
only on insertion in an ordered list of segments, has
a complexity O(n∗W ), where n is the number of pack-
ets and W is the window size of a TCP connection.
The algorithm proceeds by reading packets in arrival
order and inserting a summary of each packet into
a data structure that captures the logical data order-



ing in a TCP connection. Due to the possibility of re-
ordering (that in TCP is constrained to the size of the
TCP window), this insertion step takes O(W ) time.
The algorithm also makes use of the timestamps re-
ported by the trace acquisition tool to compute the
inter-epoch quiet times. The timestamp of the SYN
packet is used to compute the connection start time,
Ti, relative to the beginning of the trace.

The brief description of our measurement algo-
rithm in the previous paragraph does not include any
of the many details that must be addressed to per-
form this type of measurement accurately. For ex-
ample, Figure 5 and 6 shows “beautified” sequence
numbers in order to make the example easier to un-
derstand. In reality, the starting sequence numbers of
a TCP connection are randomized, so we have to use
the sequence numbers of the SYN and FIN packets
to determine the boundaries of the connection. Fur-
thermore, the algorithm must detect sequence num-
ber wrap-arounds, since TCP sequence numbers are
represented using only 32-bits. Another source of dif-
ficulties that must be addressed by the measurement
algorithm is aborted TCP connections and implemen-
tation errors that make TCP behave in non-standard
ways.

The logical data ordering mentioned above is not
present in data-concurrent connections, such as the
one shown in Figure 4. For example, the packet that
carried the last b-type data unit may have been sent
roughly at the same time as another packet carrying
some of the data of the a-type data unit sent from the
other side. Sequence numbers will show that these
two packet do not acknowledge each other, so it can-
not be determined whether the data in one of them
was supposed to logically come before the data in
the other packet. This observation makes it possible
to detect data concurrency.

Formally, the algorithm considers a connection to
be concurrent when there exists at least one pair of
non-empty TCP packets p and q such that p is sent
from the initiator to the acceptor, q is sent from the
acceptor to the initiator, and the following two inequal-
ities are satisfied:

p.seqno > q.ackno

and
q.seqno > p.ackno

If the conversation between the initiator and the ac-
ceptor is sequential, then for every pair of segments
p and q, either p was sent after q reached the initia-
tor, in which case q.seqno = p.ackno, or q was sent

after p reached the acceptor, in which case p.seqno =
q.ackno. Thus, every non-concurrent connection will
be classified as such by our algorithm. Situations in
which all the segments in potentially concurrent data
exchanges are sent sequentially (purely by chance
in sparse, i.e., non-backlogged, connections) are not
detected by our algorithm and the connection is mod-
eled as non-concurrent. Note that we detect concur-
rent exchanges of data and not just concurrent ex-
change of packets in which a data packet and an ac-
knowledgment packet are sent concurrently. In the
latter case, the logical ordering of data inside the con-
nection is never broken. Similarly, the simultaneous
close mechanism in TCP (in which two FIN packets
are sent concurrently) is not considered data concur-
rency by our algorithm.

Workload Modeling and Genera-
tion from a-b-t Traces

Once an a-b-t trace T has been obtained, it may be
used for workload modeling and generation in a va-
riety of ways. If the goal is to simply reproduce the
workload represented by a single packet trace, then
one may simply “replay” T at the socket API with the
same sequence of start times that preserves both the
order and initiation time of the TCP connections. This
is the trace-driven approach we use in this paper. A
tool to generate workloads using this source-level “re-
play” approach is described below.

Another straightforward modeling approach is to
derive the distributions for the key random variables
that characterize applications at the source level
(e.g., distributions of ADU sizes, time values, number
of epochs, etc. ) from values recorded in T . These
distributions can be used to populate analytic or em-
pirical models of the workload in much the same
way as has been done for application-specific mod-
els (e.g., the SURGE model for web browsing). How-
ever, the simple structure of the a-b-t trace makes it a
flexible tool for a broader range of modeling and gen-
eration approaches. For example, if one wanted to
model a “representative” workload for an entire net-
work, traces from several links in the network could
be processed to produce their a-b-t representation
and pooled into a “library” of TCP connection vectors.
From this library, random samples could be drawn to
create a new trace that would model the aggregate
workload. To generate this workload in a simulation,
one could assign start times for each TCP connec-



tion according to some model of connection arrivals
(perhaps derived from the original packet traces).

Another form of modeling one could use is strongly
related to the methods of semi-experiments intro-
duced in [11] but applied at the application level in-
stead of the packet level. For example, one could
replace the recorded start times for TCP connections
with start times randomly selected from a given dis-
tribution of inter-arrival times (e.g., Weibull [7]) in or-
der to study the effects of changes in the connec-
tion arrival process. Other interesting transforms to
consider include replacing the recorded ADU sizes
with sizes drawn from analytic distributions (e.g., log-
normal) with different parameter settings. One might
replace all multi-epoch connections with single-epoch
connections where the new a and b values are the
sums of the original a and b values and the t values
are eliminated (this is similar to using NetFlow data
to model TCP connections). All such transforms pro-
vide researchers with a powerful new tool to use in
simulations for studying the effects of workload char-
acteristics in networks. An open question, which we
are addressing on our current work, is whether the
different transformations of the original trace are still
representative.

Trace-driven replay

A workload generator driven by an a-b-t trace T =
{(Ti, Ci)} will initiate each TCP connection at time Ti,
and send and receive data based on the correspond-
ing connection vector Ci, which models the sources
using that connection. We assume that the environ-
ment in which the program runs has an interface to
the transport layer (e.g., sockets) that can be used to
initiate the (real or simulated) transmission of appli-
cation data. For example, in the ns-2 network simu-
lator, workload generating code accesses the trans-
port layer via Agents. TCP Agents closely mirror the
implementation of stream sockets in actual operating
systems. Workload-generating applications can send
data to, and receive data from, Agents in much the
same manner as they would with sockets.

Workload generators in laboratory or testbed net-
works can use the socket interface in real operat-
ing systems to send streams of bytes. The results
presented in this paper were obtained using a new
workload generating tool, tmix, which implements
the trace replay method in a FreeBSD environment
(see Figure 7). Two instances of this program, each
running on a machine at the edge of a network, can
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Figure 7: Experimental network setup (simplified).

replay an arbitrary a-b-t trace by establishing one
TCP connection for each connection vector Ci in the
trace, with one instance of the program playing the
role of the connection initiator and the other program
the connection acceptor. To begin, the connection ini-
tiator performs a number of socket writes in order to
send the number of bytes specified in the first data
unit a1. The other end point will read as many bytes
as specified in the data unit a1. In addition, this first
data unit, is used to synchronize the two instances
of tmix, by including a 32-bit connection vector id in
the first four bytes of first data unit. Since this id is
part of the content of the first data unit, the acceptor
can uniquely identify the connection vector that is to
be replayed in this new connection. If a1 is less than
4 bytes in length, the connection initiator will open
the connection using a special port number desig-
nated for connections for which the id is provided by
the connection acceptor. This approach guarantees
that the two tmix instances always remain properly
synchronized (i.e., they agree on the Ci they replay
within each TCP connection) even if connection es-
tablishment segments are lost or reordered.

For an example, consider the replay of an a-
b-t trace containing the connection vector, Ci =
((329, 403, 0.12), (403, 25821, 3.12), (356, 1198, φ) that
corresponds to the TCP connection shown on the top
of Figure 3. At time Ti the tmix connection initiator
establishes a new TCP connection to the tmix con-
nection acceptor. The initiator then writes 329 bytes
to its socket and reads 403 bytes. Conversely, the
connection acceptor reads 329 bytes from its socket
and writes 403 bytes. After the initiator has read the
403 bytes, it sleeps for 120 milliseconds and then
writes 403 bytes and reads 25,821 bytes. The accep-
tor reads 403 bytes and writes 25,821 bytes. After
sleeping for 3,120 milliseconds, the third exchange of
data units is handled in the same way and the TCP
connection is terminated.

The sequential replay of connection vectors at pre-
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black and maximum in white).

scribed start times raises a number of implementation
issues and challenges. The scalability issue is par-
ticularly important for laboratory environments where
a relatively small set of hosts (on the order of 100)
is being used to generate traffic corresponding to a
much larger number of active connections (on the
order of 10,000). The first step in trace replay is to
divide a trace into non-overlapping, interleaved sub-
traces. During workload generation, the connections
within a particular subtrace are implemented by a sin-
gle host, so the number of subtraces is equal to the
number of available hosts. The detailed selection of
the subtraces will depend on the load balancing strat-
egy, and the speed of the host machines. Our ex-
perience with the experiments reported in this paper
showed that a simple round-robin assignment of con-
nection vectors to machines performed well.

Case Study: Replay of Abilene
Backbone Traffic

In this section we examine the results of performing
a source-level trace replay of the traffic in a 2-hour
trace from the Abilene backbone (Internet2). This
trace is publicly available from the trace repository at
the National Laboratory of Applied Networking Re-
search (NLANR) [13]. The trace is bidirectional and
was collected on the OC-48 link between Indianapolis
and Cleveland in August, 2002, using a DAG monitor
[16].
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Figure 9: ADU sizes for Abilene Trace (body).

The first step of our approach, after acquiring a
packet header trace, is to obtain a subtrace consist-
ing of all the packets from all the TCP connections
to be included in the workload generation. For the
experiment in this paper, the subtrace includes all
packets from TCP connections where the SYN or
SYN+ACK was present in the trace (so we could ex-
plicitly identify the initiator of the connection), and the
connection was terminated by a FIN or a RST packet.
This eliminates only those connections that were in
progress when the packet trace began and ended. In
the remainder of the paper the phrase Abilene trace
will refer to the subtrace derived according to the
above description. We also refer to this subtrace as
the Abilene original trace, Th. The trace measured
158.2 million packets flowing from Cleveland to In-
dianapolis (128.5 GB of IP data), and 160.5 million
packets flowing in the opposite direction (125.9 GB of
IP data), that were part of 2.44 million TCP connec-
tions.

The second step of our approach is to derive an
a-b-t trace, Tc, from the subtrace of packet headers
using the process described in the third section of
this paper. The result is a collection of a-b-t con-
nection vectors and their start times. We then use
Tc to generated traffic in a laboratory with the trace-
driven generator tmix described in the previous sec-
tion. Instances of the tmix generator are used to
replay the a-b-t connection vectors in a closed-loop
manner. During the experiment, we can use a pair of
monitor machines running tcpdump to collect a new
packet header trace T ∗

h , that we will refer to as the
Abilene replay trace. We can then compare the var-
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Figure 10: ADU sizes for Abilene Trace (tail).

ious properties of Th and T ∗
h , and study the differ-

ences between original and synthetic traffic.
The replay was performed in the laboratory con-

figuration shown in Figure 7. The network consists
of approximately 50 Intel-processor machines run-
ning FreeBSD 4.5. Forty-four of these machines
(22 on each side of the configuration) execute the
trace-driven workload generator, tmix. The gener-
ating machines have 100 Mbps Ethernet interfaces
and are attached to switched VLANs on Gigabit Eth-
ernet switches. At the core of this network are two
1.4 GHz Intel-processor server-class machines (PCI-
X busses) acting as routers (IP-forwarding enabled)
with drop-tail FIFO queues. The router machines
have 1 Gbps interfaces to the Ethernet switches and
a point-to-point Gigabit Ethernet between the routers.
For all the experiments reported here, there is no
congestion on any router or switch interface and no
losses were recorded at these interfaces. We also
verified that it is unlikely that there were any CPU (see
Figure 8) or other resource constraints on generators.

So that we can emulate TCP connections that tra-
verse a longer network path than the one in our lab,
we use a locally-modified version of dummynet [17]
to configure artificial in-bound and out-bound packet
delays on the workload generating machines. These
delays allow us to emulate different round-trip times
on each TCP connection (thus giving per-flow de-
lays). Our version of dummynet delays all packets
from each flow by the same randomly-chosen delay
for that flow. In many of the experiments reported
in this section, the distribution of RTT values across
all TCP connections is an important parameter and
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Figure 11: Throughput (1-minute-bins) on the Cleve-
land to Indianapolis direction.

the values used are described for each experiment.
The version of TCP used in these experiments is New
Reno without selective acknowledgments. 1

Sample Comparison

The comparison of the Abilene original and replay
traces can provide interesting insights on the nature
of synthetic traffic and help validate the traffic gen-
eration approach. An obvious way of comparing the
traces is to study the connection vectors in the orig-
inal trace (i.e., those derived from Th) and those of
the replay trace (i.e., those derived from T ∗

h using
the same measurement tool). Figure 9 compares the
body of the distributions of a and b data unit sizes,
while Figure 10 compares the tails of the same dis-
tributions. One interesting feature of these distribu-
tions is that the distribution of a sizes is considerably
lighter in the body of the distribution than the distri-
bution of b sizes. This confirms our expectation that
a units are more likely to be small because they are
usually requests (e.g., as in HTTP) and the b units
(the responses) are more likely to be larger. The
tail of the distributions appear to be consistent with a
heavy-tailed distribution. Note also that the distribu-
tions measured from the replay are almost identical
to the original ones.

A similar analysis of the distribution of the number

1Other parameters: TCP was configured to use an ssthresh of
4 MB, RFC 1323 was disabled, delayed ACKs (up to 100 millisec-
onds) were enabled, ECN was disabled, send space was 32K and
the receiver maximum window was 17,520 bytes.
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Figure 12: Throughput (1-minute-bins) on the Indi-
anapolis to Cleveland direction.

of epochs (not shown) reveals that 59% of the con-
nections had a single epoch and that only 5% of the
connections had more than 10 epochs. Data trans-
mission connections with more than one epoch tends
to be much more sparse in time than those with a sin-
gle epoch, so these connections stress TCP in a way
that is very different from that of a bulk transfer. The
analysis of the inter-epoch times revels that 35% of
the connections have quiet times longer than 10 sec-
onds. This also contributes to making the arrival of
packet in a TCP connections more sparse and make
congestion control dynamics less important. As in the
previous comparison of data unit sizes, the replay dis-
tributions are almost identical to those of the original
trace, demonstrating the feasibility of generating TCP
workloads using the a-b-t model and the accuracy of
the replay tool (tmix).

In our work, we have also compared original and
replayed traffic at the network level (rather than at
the source-level as in the previous paragraphs). The
most obvious analysis at this level is a plot of the time-
series of throughput values for the duration of the ex-
periment. Figures 11 and 12 show this type of com-
parison for throughput in the original and the replay
of the Abilene trace. For the Cleveland to Indianapo-
lis path, the replay appears to track the fluctuations in
load reasonably well. Notice for example how the re-
play is able to reproduce the sustained burst between
35 and 45 minutes. Similarly, the other direction of
the replay is close to the original, although the replay
is somewhat more bursty. (Note the sharp peaks in
the first 30 minutes of the replay.)

We have studied other properties of the original
and the generated traffic such as:

• The number of simultaneously active connec-
tions per unit interval (any mechanism that re-
quires per-flow state, such as NetFlow monitor-
ing [12], is strongly affected by this property).

• The distribution of packet sizes.

• The distribution of flow durations.

• The distribution of flow rates.

• The arrival process of TCP flows.

• The arrival process of TCP packets and its
long-range dependence (we followed the wavelet
analysis method described in [1] for this part of
our study).

Our results (not presented here for brevity) show
that the source-level trace replay approach can ac-
curately reproduce the properties of real traffic. In
some cases, it is important to derive distributions of
some network parameters (round-trip times, receiver
window sizes, and access capacities) to achieve ac-
curate reproduction. Accordingly, we have extended
our measurement tools to extract these distributions
from the original trace of packet headers.

Summary and Conclusion

Simulation is the dominant method for evaluating
most networking technologies. However, it is well
known that the quality of a simulation is only as good
as the quality of its inputs. In networking, an over-
looked aspect of simulation methodology is the prob-
lem of generating realistic synthetic workloads. We
have developed an empirically-based approach to
synthetic workload generation. Starting from a trace
of TCP/IP headers on a production network, a model
is constructed for all the TCP connections observed
in the network. The model, a set of a-b-t connection
vectors, can be used in workload generators (such
as tmix) to replay the connections and reproduce the
application-level behaviors observed on the original
network.

We believe this approach to source-level modeling,
and the tmix generator, are contributions to the art of
network evaluations, because of their ability to auto-
matically generate valid workload models represent-
ing all of the TCP applications present in a network



with no a priori knowledge of their existence or iden-
tity. Our work therefore serves to demonstrate that re-
searchers and performance analysts need not make
arbitrary decisions when performing simulations such
as deciding the number of flows to generate or the
mix of “long-lived” versus “short-lived” flows. Given
an easily acquired TCP/IP header trace, it is straight-
forward to populate a workload generator and instan-
tiate a generation environment capable of reproduc-
ing a broad spectrum of interesting and important
features of network traffic. For this reason, we be-
lieve this work holds the potential to improve the level
of realism in network simulations and laboratory or
testbed experiments.
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