nesedrci

Dynamic participation in a computer-
based conferencing system

Goopeel Chung*, Kevin Jeffay* and Hussein Abdel-Wahab'

This paper deals with the problem of allowing a participant to
dynamically join and leave a computer-based conference that
is already in progress. A conference is a synchronous
collaboration session where participants at remote locations
are cooperating through identical copies of windows generated
by applications shared by all conference participants. In this
paper, an efficient solution to the problem of accommodating
a latecomer is found by recording the modifications to the
window system’s state implied in the series of commands
generated by the applications, and later imposing these state
modifications on a latecomer’s window system.

Keywords: computer-supported cooperative work, computer-
based conferencing, distributed systems, X protocol, shared
windows

In conventional (i.e. non-computer-based) conferences,
the cast of people interacting may change as the
conference proceeds. An initial group starts the con-
ference, others arrive late, and some may leave early.
Similar behaviour can be expected to occur during a
conference using networked computers. For example,
one or more persons may start a conference to work on
a program. Each conferee would have the same view of
the program displayed on her workstation. At some
point they may encounter a problem debugging a piece
of program. They can ask a ‘guru’ for help by allowing
her to dynamically join their conference even while the
guru is in a remotely located office.

Therefore, it is very important that conference
systems provide facilities to accommodate these kinds

*Department of Computer Stience, University of North Carolina at
Chapel Hill, Sitterson Hall, Chapel Hill, NC 27599, USA
"Department of Computer Science, Old Dominion University,
Norfolk, VA 23529, USA

Paper received: 22 November 1991, revised paper received 12 December
1992

of spontaneous interactions in a conference. Specifi-
cally, allowing a latecomer to join an existing confer-
ence and enabling the new conferee to provide input to
the conference is considered to be a very important
feature of any conference system. The new conferee
should be able to share windows that the shared
applications create. Specifically, she should be able to
see the output of the applications and provide input to
the applications through the window system.

While special-purpose (‘collaboration-aware’) applica-
tions'™ provide the functionalities to accommodate
dynamic joining, single-user (‘collaboration-transpar-
ent’) applications™™® are not designed to provide these
functions. It is the conference system itself that should
provide them.

This paper deals with an efficient method to provide
this functionality in a shared window system; the ability
to enable a latecomer to dynamically join a conference
and share applications used in the conference.

Shared window systems® > consist of application
processes and window systems. Connecting all these
processes in the centre is an additional process called a
conference agent. The conference agent is responsible
for distributing output from applications to window
systems, and for relaying input from window systems to
associated applications. By sharing the output from
applications, the users working at workstations can
share the same copy of windows associated with the
applications. It is also possible for the users to provide
input to the applications.

Applications usually set up their user interface
environments by creating resources they need to inter-
act with the users. For example, they create windows to
draw on, or to take input from the users. Window
systems generally interact with several applications

. simultaneously. Therefore, the resources created by

multiple applications and their attributes form a certain
state the window systems maintain. Applications can be
considered to change the state of the window systems by

Dynamic participation in a computer-based conferencing system: G Chung et al.

creating resources and dynamically modifying the
attributes of these resources.

These state modifications are expressed in the output
generated by each application. If these state modifica-
tions can be projected to a new window system for a
latecomer, the new participant can share the applica-
tions in the conference. Naturally, the best place to
monitor these modifications is in the conference agent,
which handles all traffic between application and
window systems.

This paper describes an efficient method implemented
in the conference agent process to record the state
modifications made by the applications to the window
systems, and to project the modifications to a late-
comer’s window system.

In the next section, some background information is
provided on XTV (X Teleconferencing and Viewing),
on which our solution is based. The section following
discusses how we solved the problem of accommodating
a latecomer. Some performance figures are then pre-
sented to demonstrate the efficiency of our solution, and
finally, our conclusions are drawn.

OVERVIEW OF XTV

We begin by describing some background to the X
Window System, the window system used by XTV.
Then we describe XTV, on which the feature to
accommodate latecomers is based.

X Window System

The X Window System is a window-based User Inter-
face Management System (UIMS) providing capabilities
to easily create graphical interfaces for distributed
applications independent of the architectures on which
the applications will be running'®. X Window System
applications such as terminal emulators and drawing
programs are widely available. Because the X Window
System is standardized and is largely independent of the
host architecture, applications can be compiled and run
on any machine that supports X.

Client/server model
The X Window System is built on a familiar distributed
system model: the client/server model (see Figure I).
The X Window System is a server that accepts
requests to manipulate the display on the computer’s
console while reading input from the console’s keyboard
and mouse devices. An X server’s clients are user
applications such as terminal emulators and editors. X
clients send request messages to the server asking it to
perform operations such as create a window, draw a line
on a window or destroy a window. All output on the
display is generated by the server in response to requests
from clients. Similarlv. all input to X clients is nrovided

Events
S Cli
erver ent
Replies Requests
Errors

Keyboard
Mouse

Figure 1 Client/server model

by the server. The user interacts directly with the server
using keyboard and mouse.

Communication between an X client and an X server
Is via message passing. There are four classes of
messages exchanged between the server and the client:

® Request messages: are sent from a client to a server.
X servers handle a wide variety of requests includ-
ing requests that affect the display (e.g. drawing on
a window), requests that affect internal data
structures (e.g. changing the keyboard mapping),
and requests that return data (e.g. returning the
image contents in a window).

® Reply messages: are sent from a server to a client.
These messages contain information requested by
clients in previous request messages to the server.

e FEvent messages: are sent from a server to a client
whenever there is user input from the keyboard or
mouse that is germane to the client.

o Error messages: sent from a server to a client tell a
client that a previous request was invalid, e.g. the
client specified a window that does not exist in a
request for drawing.

Resources

The X application programming model presents six
basic abstractions: window, cursor, graphics context,
pixmap, colourmap and font. Windows and pixmaps are
referred to collectively as drawables. Instances of these
abstractions are referred to as resources in X. Resources
are created, manipulated and destroyed by the server in
response to requests by clients. The following is a brief
description of these resources.

A Window is like a canvas on which the client may
draw objects by sending pertinent request messages to
the server.

Cursors are small pointers that move on the display
according to movement of the mouse.

Requests to draw graphics such as dots, lines, texts or
images are called graphics requests. Much information
is required to fully specify how a particular graphic
should be drawn. For example, when drawing a line, we
may want to specify its colour, its width or the style (e.g.
solid or dashed) To <imnlifv the snecification Nracecs

ylliallilv paliivipativit J a LUNTTPpULCT~udsuU LUTHTICHIVITTY SYotTill. \a Wiy ©t al.

X provides a Graphics Context (GC), a set of values for
many of the variables. The appearance of everything
that is drawn within a drawable is controlled by a GC
that is specified with each graphics request.

Pixmaps are like windows in that a client can draw on
them using a set of graphics requests similar to those
used for drawing on a window. However, pixmaps
themselves are not visible. The contents of a pixmap
can be seen only when it is copied into a window.
Pixmaps are used for several purposes. For example, a
pixmap can be used as the source or mask of a cursor.
The source of a cursor defines the cursor’s pattern, and
the mask is used to confine the pattern to a certain
shape.

Each pixel in a window is associated with a pixel
value that represents the colour of the pixel. This pixel
value is an index into a list of entries called colourcells.
A colourcell holds three values; one for each RGB (Red,
Green, Blue) value. The list of colourcells constitutes a
colourmap.

Fonts are usually used as an attribute of graphics
contexts. Each text-writing graphics request always
specifies a graphics context with appropriate font set in it.

Most of these resources are created by clients sending
appropriate messages to the server. Some resources are
created by the server by default (e.g. the default
colourmap and the root window). All the resources are
referred to by resource IDs (unique integers).

XTV

Most X applications (clients) have been written to
interact with a single user. When such an application is
used, there is a connection between an X server and a
client through which input and output messages are
exchanged. Most shared window systems are built by
inserting a process in the connection between a server
and a client. This process intercepts all message traffic
and distributes it properly to make window sharing
possible.

XTV is a distributed system for allowing multiple
remote users to view and interact with X applications in
real-time!*. XTV looks like a client from the remote
servers’ points of view, and like an X server from the
shared X applications’ points of view.

In XTV (see Figure 2) a process — called the packet
switch process (PSP) — is responsible for distributing the
output of the shared applications to all of the remote
servers. XTV refers to shared applications as ‘tools’.
The packet switch process opens a connection to the
server for its own interface, and one for each shared
application.

The packet switch process cannot simply distribute
each request message to the remote servers without any
modification to it. Many request messages contain
resource IDs that refer to the resources on the local
server. The ID for a resource on the local server may be

X Client
Packet Packet Packet
Translator Switch Translator
Process Process Process
For For For For For For
PTP Client PSPy Client PTP Client
X Server X Server X Server
Machine Boundaries

Figure 2 XTV architecture

either invalid or refer to a different resource on a remote
server. The resource IDs in a request message destined
for a remote server should be corrected to refer to the
corresponding resource on the remote server. Another
process, called the packet transiator process (PTP), is
run on every remote workstation. The packet switch
process sends the request messages received from the X
applications to these translator processes rather than
directly to the servers. The packet translator process
modifies the messages so that they contain correct
resource IDs, and then sends them to the server. The
packet translator process also opens separate connec-
tions for its own interface and for each shared applica-
tion.

The user Interface to XTV is shown in Figures 3 and

XY Control Paned @ Chiinnan
Chairman is : Goopeel Chung [chungg]

[Participants] In Ssession No: 1

chunggicurrituck konuri
io

[Partician o

[Tools]
=i e

|cet_rloor||(prop_rloor|/Floor_info|

Hew_tool
Message from System

Floor information for tool idraw

Floor Holder is:
lu

Queued participants:
chungg

Figure 3 XTV user interface for the chairman

Dynamic participation in a computer-based conferencing system: G Chung et al.

N KTV Control Panel @ Participant

Chairman is

: Goopeel Chung [chungg]

[Participants] In Session No: 1
m chungglcurritu keonuri@l

M 1urio

|[Participant_infol

[Tools]
idraw xterm

[cet_rloor||Drop_rioor|[Floor_infol
[Few_Tool]| [Join_Tool]
Message from System

Participant Info: konuri@luna
Full name: Srinivas Konuri

konuri has idraw
konuri has xterm

Figure 4 XTV user interface for a participant

4. A vparticipant who starts a new XTV session is
designated as the chairman of that session. A panel
such as that shown in Figure 3 appears in the chairman’s
display. The panel has three main areas:

1. Participants area: the scrollbar window of this area
contains a list of all current participants of the
session. Detailed information about a selected
participant is obtained by pressing on the Par-
ticipant_Info button; a participant is selected
by clicking into her entry in the list. The chairman
has the power to dismiss any participant, for
whatever reason, by pressing on the
Drop.Participant button.

2. Tools area: the scrollbar window of this area
contains a list of the active tools in the session.
Tools are added to the session using the New_Tool
button, and are deleted using the Termi-
nate_Tool button. Two buttons, Get_Flooxr

and Drop_Floor, are provided to control the '

floor (i.e. the ability to provide keyboard and
mouse input) of a selected tool. The chairman may
grab the floor of a selected tool using the
Snatch_Floor button. Detailed information
about the floor status of a selected tool is obtained
using the Floor_Info button.

3. Message area: the scrollbar window of this area
displays all messages produced by XTV, including
those messages produced by the participant and
floor information buttons. To terminate a session,
the chairman uses the Exit XTV button, which

cleans up all active tools and the associated
windows.

A participant may join an ongoing session at any time
by simply knowing the session number and where the
chairman is located. A participant panel such as that
shown in Figure 4 appears in the participant’s work-
station. It is similar to the chairman’s panel of Figure 3
with the following differences:

1. There are no Drop_Participant or
Snatch_Floor buttons in the participant’s panel.
Because of the disruptive nature of these two
buttons, they are available only to the chairman.

2. Unlike the chairman, a participant is provided with
a Join_Tool button in the tools area of the
panel. In the current implementation of XTV, the
chairman is assumed to be an active user of all
created tools, while a participant may dynamically
join or drop a tool at any time. Thus the set of tools
listed on a participant’s panel is a subset of the set of
tools listed on the chairman’s panel.

3. The semantics of the Exit XTV button is different
from that of the chairman. Here it means that a
participant is leaving the session; the chairman and
other participants may continue the session unaf-
fected by her departure.

ACCOMMODATING LATECOMERS
Overview

Consider the case of a user who is late for the
conference that is in progress; that is, all the shared
applications have been in use for quite some time.
Although the latecomer can join the conference by
connecting to the packet switch process, the set of
applications cannot be shared with the latecomer. This
is because the X server on the latecomer’s workstation
does not have any of the resources created by the shared
applications, and hence request messages from the
applications will make no sense to the new server. In
other words, the latecomer’s server is not in a state to
receive requests from the shared applications. The
problem is to change the state of the new server so that
a late arriving participant can share the applications
that have been in use. Currently, there is no direct
method to capture the state of one server and impose it
on a new server. The specification of the X protocol
does not provide a way to do it. Therefore, to change
the state of the new server, we must depend on the
requests that have been sent by the clients; that is, we
can get the new server into the appropriate state by
applying the changes implied by the sequence of
requests that have been sent to the original server.

In addition to distribution and translation of client
request messages, XTV — more specifically, the packet
switch process — must now maintain a record of the

LUynamicC paricipalion in a computer-basea conrerencing system. a vnung et ais.

changes made to the server state by each client. A very
simple solution to this problem is to keep a history log
of all requests that came from the clients, and later
replay the history to a new server (i.e. send each request
to the new server) when a latecomer arrives. However,
this can be very inefficient, since storing all the requests
consumes a large amount of memory space. For
example, a client like idraw'®>, a MacDraw-like X
application, sends about 300,000 bytes of requests for
only 4 minutes after it starts interacting with a server
(see Figure 12). Moreover, it will take proportionally
longer time for a latecomer to catch up on the
conference, depending upon how late she joins the
conference.

The following section describes how we can maintain
the changes made to the server state more efficiently.

Recording modifications to resources

Our approach is to catalogue changes a client can make
to the server state. A client may change the server state
as follows:

e create private resources (e.g. a client can create a set
of windows for its use),

e change attributes of resources (note that the client
can change the attributes of resources it did not
create itself. For example, a client can change the
colour of a window background (a private re-
source), or it can allocate more colourcells in the
default colourmap (a non-private resource)), or

e change other miscellaneous environment properties
such as the list of machines allowed to connect to
the server.

Modifications of the server state can be recorded by
maintaining a list of the resources (private and non-
private) that are handled by the client and ensuring that
the attributes of these resources are kept up-to-date.
When a latecomer joins the conference, the recorded
modifications can be applied to the new server of the
latecomer. Private resources will be created with their
attributes assigned current values. Resources that the
client did not create but has modified must have their
appropriate attributes updated. The miscellaneous
environment properties can be also handled on a per-
property basis.

This approach of concentrating on the modifications
made to resources guarantees that a minimal set of
information is kept about the changes made by the
client to the server state. For example, many resources
are created and then later destroyed by the client.
Consider pop-up menus. Pop-up menus are implemen-
ted as temporary windows. They are created and then
destroyed after the user has selected an item in the
menu. When the window is deleted, we can delete the
data structures holding the information about these
menu windows. Also, by keeping the up-to-date values

for attributes of resources, we can save a lot of memory
space that may otherwise be wasted for saving requests
to change attributes of resources. This is because it is
only the current attribute values of resources that count,
and not the history of the attribute values since the
resource’s creation. Only the current values will be used
when creating resources on a latecomer’s server.

Images in drawables

Some further optimizations on this scheme are possible.
The image attribute of a drawable (windows and
pixmaps) need not be recorded. This attribute is
changed by graphics requests sent by the client. One
would expect that the graphics requests need to be
recorded and replayed to a new server in chronological
order. However, it is the case that it is possible to ignore
all graphics requests. This is because X servers do not
guarantee that the contents of a window will be preserved
when portions of the window become obscured. When
portions of a window become visible, an X server will
send expose event messages to the client that created the
window. Each expose event specifies a rectangular
region inside a window that has become visible. On
receiving these event messages, a client is expected to
send the appropriate graphics requests to draw an up-
to-date image on its window. Given that the client will
refresh the contents of the whole window when expose
events are generated, graphics requests for windows
need not be recorded. This is because the first time a
window is displayed for the latecomer, the X server on
the latecomer’s workstation will send expose events for
the client.

The image in a pixmap cannot be seen unless it is
copied into a window. Hence, there is no concept of an
expose event for pixmaps. There is, however, a way to
make the contents of a pixmap up-to-date other than
recording all of the graphics requests for the pixmap.
The client can obtain the image in a pixmap through a
request message called GetImage. When a new partici-
pant joins the conference, the packet switch process will
send this request to its local server to get the contents of
pixmaps used by the shared applications. The packet
switch can then send a request called Putimage to the
new server. The PutImage request will put the acquired
image into the appropriate pixmap on the latecomer’s
server.

Ignoring the graphics requests greatly reduces the
memory requirements of XTV (see below). This is

. because X clients generally go through two phases in

their lifetime: a set-up phase and an interaction phase.
In the set-up phase, the majority of a client’s resources
are typically created. In the interaction phase, the
majority of requests are for graphics operations to
draw objects on the client windows. Since the interac-
tion phase is generally much longer, the majority of
messages sent from clients to server are requests for
graphics operations.

Dynamic participation in a computer-based conferencing system: G Chung et al.

Maintaining resources

Other than the image attributes of drawables, we have
to keep the attributes of resources up-to-date. Whenever
a new resource is created by a client, data structures
within XTV are created to record the attributes of the
resource. When a client changes the attributes of a
resource, XTV will modify the data structure corre-
sponding to the resource. When a client sends a request
to free (destroy) the resource, XTV deletes its data
structures for the resource. When a client first modifies
attributes of a resource that it did not create, similar
data structures are also created to keep the contents of
changes.

Dependency relationships among resources

A problem arises if we naively apply the method in the
previous section for all resources. For example, in
idraw, a cursor is created using separate pixmaps for
its source and mask. The server will record the shape of
the cursor in its internal data structures. Unless these
pixmaps will be explicitly referred to later on, idraw can
free these resources. If idraw does free those two
pixmaps after the creation of the cursor, the data
structures in XTV for these pixmaps would be deleted.
But this should not be done because for XTV to later
create the cursor on a new participant’s local server, it
has to create the very two pixmaps it no longer has any
information on. The problem is that we need some
method to prevent information on resources that are
explicitly freed by a client from being thrown away
when there are other resources that require this
information.

Creating dependency relationships To represent the
relationships among resources, we define the
dependency relation 1>. A resource 4 depends on a
resource B, written as 4 > B, if the resource A has as
one of its attribute values the resource B. For example,
the CreateCursor request creates a dependency between
a cursor C and two pixmaps P; (a source pixmap) and
P, (a mask pixmap). We can represent dependency
relation > using a directed graph, called a dependency
graph, such as in Figure 5. A node represents a resource
and an edge represents the dependency relationship with
the interpretation that the node on the tail of the edge
depends on the node on the head of the edge. XTV
constructs such dependency relations as requests are
encountered. For example, Figure 6 shows the

R

C

Figure 5 CreateCursor
request B

window
(WINDOW)

pixmap
(PIXMAP)
tile
(PIXMAP)

graphics context

stipple
(PIXMAP)

font

(FONT)

clip-mask
(PIXMAP)

Figure 6 CreateGC (create a graphics context)

dependency graphs that result from the create graphics
context request™.

Dashed edges represent optional attributes whose
values need not be, and typically are not, set at the
time of resource creation. These attributes can be set
after the resource is created using requests such as
Change Window Attributes or ChangeGC. Adjacent edges
annotated with the label OR cannot both appear in any
actual instance of the graph.

The dependency relations among the six resource
types can be summarized with an Entity-Relationship-
like diagram'®, as shown in Figure 7. Note that some
edges have been combined for simplicity into a single
edge with a label representing the number of original
edges.

For any shared application, XTV will create an
instance of the E-R diagram in Figure 7.

Deleting dependency relationships When a request to free
a resource R is encountered, XTV must check to see if
any other resource depends on R. Only when no other

Figure 7 E-R diagram of dependency relationships

*Details of the exact semantics of all requests can be found
elsewhere!*18,

yllaitiiv pal livipativiil 1 a CUITTPULT T "uaosild LUTHTTTHIVIITY oyolLitl. A WIIy ©t ar.

resource depends on R can R’s information be deleted
from XTV’s internal data structures. If there is another
resource that depends on R, R’s data structure should
be marked as freed, but not actually deleted. The data
structures of freed resources will be deleted later when
all their dependency relations have been removed.
Therefore, when a resource 4 removes a dependency
on another resource B, XTV has to make sure that
information on B is deleted if B is marked as freed and
it has no other dependencies. Figure & shows the
recursive depth-first traversal algorithm that is applied
to the node corresponding to the resource that has just
been freed by the client. Note that the algorithm is
applied after the associated node is first marked as
freed.

The algorithm first deletes all the optional edges
leaving the current node. This can be done uncondition-
ally because if a resource has optional attributes, then
any other resource that uses this resource cannot
depend on these attributes being correctly set. Next, all
essential edges are deleted if the node has no edge
coming into it (i.e. no resource depends on the resource
corresponding to this node).

The DeleteNode algorithm works only with acyclic
graphs. However, an examination of our E-R diagram
(Figure 7) reveals that dependency graphs may contain
cycles. The following example illustrates how the
algorithm can fail when the graph contains a cycle.
Consider the graph shown in Figure 9. White nodes

DeleteNode (node)

IF node is marked as freed THEN
FOR each optional edge leaving node
Delete the edge;
Apply DeleteNode to the node at the head of the
edge;
END FOR
IF node has no incoming edges THEN
FOR each essential edge leaving node
Delete the edge;
Apply DeleteNode to the node at the head of the
edge;
END FOR
Remove node
END IF
END IF

Figure 8 DeleteNode algorithm

Figure 9 A cycle

represent non-freed nodes and black nodes represent
freed nodes. If the client sends a request to free the
remaining white node, all the nodes in the graph can be
deleted. However, if we apply the DeleteNode algo-
rithm, it will terminate without taking any action
because each node has an incoming edge. To enhance
the algorithm to deal with cycles, we first observe that
all cycles in Figure 7 must contain a window node. We
introduce a second procedure that is used to delete
window nodes when a Destroy Window or DestroySub-
windows request is encountered. The algorithm shown in
Figure 10 called WindowSpecial works by breaking the
cycle and then applying DeleteNode to a node that the
window was dependent upon. The recursive nature of
DeleteNode will ensure all free nodes in the cycle are
deleted. Note that we do not mark the window node as
free before we apply the WindowSpecial algorithm.

In summary, the problem of maintaining the server
state for a client reduces to a graph maintenance
problem requiring operations to create a new node,
change some attributes of a node, add dependency
relations to the graph, delete a node and delete a
dependency relation.

Modifying the state of a latecomer’s server
When a new participant joins a conference that is
already in progress, we must set up the proper environ-
ment for each shared application in the conference on
the server of the latecomer. The goal is to ensure that
(1) future output requests from a shared application
have the same effect on the latecomer’s display as on the
displays of participants that were already in the
conference, and that (2) any messages from the new
participant’s server will be delivered to the shared
application without errors. In terms of X, the packet
switch process must generate a series of requests to the
latecomer’s server in such a manner that all of the
resources that have been created for each shared
application on the servers of current participants are
also created on the latecomer’s server. Furthermore, all
attributes of each resource must be set correctly.

All of the resources should be created without
violating the dependency relations among them. The
dependency relations may be violated because of the

WindowSpecial (node)

FOR each edge going out of node
/*Thesewill all be optional edges.*/
Delete the edge;
Apply DeleteNode to the node at the head of the
edge
END FOR
Mark node as freed;
IF node has no incoming edges THEN
Remove node;
END IF

Figure 10 wWindowSpecial algorithm

vynamic pariucipation in a computer-based conterencing system: hung et ail.

existence of cycles. The key to the solution of this
problem lies in the characteristics of the optional edges.
The attributes associated with the optional edges do not
have to be set at the time of the resource creation.
(Recall they can be set at a later time using requests like
ChangeWindow Attributes or ChangeGC.) Therefore, we
ignore optional edges going out of window nodes for
now. Without these edges, we have a directed acyclic
graph. We now can generate requests to create each
resource without violating the dependency relations by
traversing the graph in topological order.

After creating all messages resulting from traversing
the dependency graph, each message is sent in order to
the packet translator process on the latecomer’s
machine.

Note that a shared application can generate requests
while the new participant’s server is being brought up-
to-date. These requests are appended to a separate
message queue and will be sent after all the messages
relating to joining the conference have been sent to the
latecomer’s packet translator process. Included in this
message queue will be the graphics requests required to
make the displayed image current (see Chung'® for
implementation details).

PERFORMANCE

Our system for accommodating latecomers contains
approximately 5500 lines of code out of about 20,000
lines of code for the first release of XTV.

In this section, we discuss the performance of our
method for recording the requests sent by each client
that change the state of the server.

Speed

Whenever a request arrives from the client, a function
HandlelncomingClientPacket is invoked from the packet
switch process. This function is responsible for distri-
buting the request message to all packet translator
processes and recording the modifications to the server
state. A function ArchivePacket is invoked from within
HandleIncomingClientPacket to record the modifica-
tions. Figure 11 shows the percentage of the time spent
in ArchivePacket to the time spent in HandleIncoming-
ClientPacket for idraw — a client that generates a large
number of graphics requests. A UNIX system call
getrusage was used to measure the elapsed times.
getrusage system call returns information on how much
time the process used since it started. The call was made
at the beginning (4) and the end (D) of Handlelnco-
mingClient Packet, and at the beginning (B) and the end
(C) of ArchivePacket. The difference between times
measured at 4 and D, and that between times mea-
sured at B and C were calculated to find how long each
function took to execute. The graph in Figure 11 shows
the overhead for a conference with one and four

% of time

6 T) T T 1 1 l ¥ 1

14 F B

12F ¥’*.\ 4
Fo\

10 ¥ \:" i
i
‘, 1 conferee

8H

6 F 4

4 T o
'!\;’N 4 conferees

2+ .

0 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10
Number of requests x 103

Figure 11 Percentage of time spent maintaining resource state
information versus number of client requests in idraw

conferees. The observation interval for idraw was
approximately 3 minutes 30 seconds for one conferee
and 5 minutes for four conferees. Because the time
required to record resource state information is inde-
pendent of the number of conferees, the proportional
cost of the recording function decreases as the number
of conferees increases. Note that the cost of recording is
the highest at the initial stage (the set-up phase) of client
execution. This is because most of the resources are
created at this time and the resource recording function
has to do time-consuming operations such as initializing
data structures, allocating memory space for new
resources, and searching for resources to make depen-
dency relations. In the case of idraw (Figure 11), the
client first sends some query requests to the server to get
information on the server. These are ignored by the
recording routine, thereby creating temporary dips in
the overhead curves. As the client progresses to the
interaction phase (where most of the requests are
graphics-oriented), the overhead percentage approaches
a constant. In this phase, the majority of time is
consumed checking to see if graphics requests are for
pixmaps. Therefore, the more pixmap resources the
client creates, the greater overhead.

If we assume that in practice the number of conferees
is more than three, then in the limit, resource recording
overhead accounts for approximately 2% of the overall
message processing time in the packet switch process;
i.e. it adds an insignificant overhead to performance as
observed by the users.

Memory requirements

Figure 12 illustrates the memory requirements for
maintaining the state of a client’s resources using our
methodology. The dotted lines represent the total
number of bytes of requests sent by the client, while

Dynamic participation in a computer-based conferencing system: G Chung et al.

Number of bytes x 103
300

250 P

200 + |

150

100 F i

e]
Y -

50 - —n

0 2 1 1]) 1
0 2 4 6 8 10 12

Number of requests x 103

Figure 12 Memory usage for recording resource information in
idraw. : Client requests; ——: Resource state

the solid lines represent the number of bytes used for
recording state information. For idraw, after the set-up
phase, the memory required to store the state of client
resources grows at a near zero rate, while the memory
required to store all client requests grows at a super-
linear rate.

As the client progresses, we realize a dramatic saving
of memory (over the approach of saving every request),
considering the small cost (in terms of time) of
processing each request.

Some additional facts about Figure 12 are worth
noting. Idraw creates and later destroys a large number
of resources every time the user pulls down a menu.
This behaviour accounts for the small spikes in the
memory requirement curve. The large spike near request
9000 is due to a latecomer joining the conference. At
that time the packet switch process creates a set of
messages to send to the latecomer’s server containing
the resource information it has recorded. The creation
of these messages accounts for the spike in memory use.
Memory usage continues to increase after all messages
have been created because the packet switch process
appends requests coming from the client while the
latecomer’s server is being updated. The updating
process is completed slightly before the 10,000th
request is received from the client. At this time the
memory used for messages is freed. The slight increase
in the memory usage after the latecomer’s server has
been updated is due to the image contents of pixmaps
that were acquired while the packet switch process was
creating messages for the server. These pixmap images
are kept for future use.

CONCLUSION

We believe that the ability to accommodate latecomers
to a computer-based conference is important as it adds

versatility and flexibility to an otherwise rigid conferen-
cing system. In this paper, an efficient solution to the
problem of accommodating a latecomer in XTV, a
collaborative X window-based conference system devel-
oped at Old Dominion University and the University of
North Carolina at Chapel Hill, and which is available in
the public domain, is presented.

This goal is attained by first recording the environ-
ments that applications used in the conference create
over time on X servers of original participants in the
conference, and then creating these environments on the
latecomer’s X server when she joins the conference. We
have modified XTV to record the current state of a
server by maintaining a list of the resources and their
current attribute values used by each application in the
conference. These lists are updated based on the
contents of request messages sent from conference
applications to the X server.

The technique presented in this paper has been
demonstrated to accommodate a latecomer in a prac-
tical and efficient manner. By keeping the memory
requirements for recording state information to a
minimum, the ability to accommodate a latecomer does
not unduly burden the conference system. Moreover, as
demonstrated in our performance analysis, the execu-
tion time overhead of recording the server state is quite
tolerable for conferences of reasonable size.

We are now in the process of applying the techniques
presented in this paper to allow two or more XTV
conferences to merge into one XTV conference. This
may be useful in situations where a subgroup of
participants wants to work on a subproject, and at
some point in time they want to share their work with
the rest of the group.

Finally, it would be desirable to combine the
capability to accommodate a latecomer into the X
window system itself. This will relieve the conference
agent from the burden of maintaining the modifications
made to the server state for each shared application,
and thereby eliminate the duplication of effort. Instead,
the conference agent should be able to query the
modifications made by an application by sending a
special request message (e.g. ‘GetClientsServerState’) to
the local server. There should also be another special
request message to impose the changes (e.g. ‘Put-
ClientsServerState’) on a second server.

REFERENCES

1 Ellis, C, Gibbs, S J and Rein, G L ‘Design and use of a group
editor’, Proc. Working Conf. on Eng. for Human-Computer
Interaction, IFIP Working Group 2.7 (August 1989)

2 Lantz, K A, Lauwers, J C, Arons, B, Binding, C, Chen, P,
Donahue, J, Joseph, T A, Koo, R, Romanow, A, Schmandt, C
and Yamamoto, W ‘Collaboration technology research at
Olivetti Research Center’, Proc. Groupware Tech. Workshop,
IFIP Working Group 8.4 (August 1989)

3 Sarin, S K and Greif, I ‘Software for interactive on-line
conference’, Proc. 2nd Conf. on Office Infor. Syst., (June 1984)
pp 46-58

gl patiivipativii il - LUlTIPUIS T Uastl LVHITETEIILITNTY osyoleill. \a Liiully Ct af.

4

10

11

Stefik, M, Foster, G, Bobrow, D G, Kahn, K, Lanning, S and
Suchman, L ‘Beyond the chalkboard: Computer support for
collaboration and problem solving in meetings’, Commun. ACM,
Vol 30 No | (January 1987) pp 3247

Patterson, J F ‘The Good, the Bad, and the Ugly of Window
Sharing in X’, Proc. 4th Ann. X Tech. Conf., (January 1990)
Watabe, K, Sakata, S, Maeno, K, Fukuoka, H and Ohmori, T
‘Distributed multiparty desktop conferencing system: MER-
MAID’, Proc. CSCW Conf. on Computer-Supported Cooperative
Work (October 1990)

Ahuja, S R, Ensor, J] R and Lucco, S E ‘A comparison of
application sharing mechanisms in real-time desktop conferen-
cing systems’, Proc. IEEE Conf. on Office Infor. Syst. (April
1990) pp 238-248

Lantz, K A ‘An experiment in integrated multimedia conferen-
cing’, Proc. CSCW Conf. on Computer-Supported Cooperative
Work, MCC Software Technology Program (December 1986) pp
267-275

Crowley, T and Forsdick, H ‘MMConf: The Diamond multi-
media conferencing system’, Proc. Groupware Tech. Workshop,
IFIP Working Group 8.4 (August 1989)

Ensor, J R, Ahuja, S R, Horn, D N and Lucco, S E ‘The
Rapport multimedia conferencing system — a software overview’,
Proc. IEEE Conf. on Computer Workstations, Santa Clara,
(March 1988) pp 52-58

Lauwers, J C, Joseph, T, Lantz, K A and Romanow, A

15

16

17

18

19

‘Replicated architectures for shared window systems: a critique’,
Proc. IEEE Conf. on Office Infor. Syst. (April 1990) pp 249-260
Lauwers, J C and Lantz, K A ‘Collaboration awareness in
support of collaboration transparency: Requirements for the next
generation of shared window systems’, Proc. Conf. on Human
Factors in Computer Syst., ACM (April 1990)

Scheifler, R W and Gettys, J ‘The X window system’, ACM
Trans. Comput. Graphics (May 1986) pp 79-109

Abdel-Wahab, H M and Feit, M A ‘XTV: A framework for
sharing X window clients in remote synchronous collaboration’,
Proc. IEEE Conf. on Commun. Software: Commun. for Distrib-
uted Applic. & Syst., Chapel Hill, NC{(April {1991) pp |159-
167

Linton, M A, Vlissides,] M and Calder, P R ‘Composing user
interfaces with inter-views’, IEEE Computer, Vol 22 No 2
(February 1989) pp 8-22

Chung, G Accommodating latecomers in a system for synchronous
collaboration, MS Thesis, University of North Carolina at
Chapel Hill, NC (August 1991)

Nye, A X Protocol Reference Manual for Version 11, Volume 0,
O’Reilly & Associates, Inc., Sebastopol, CA (1989)

Nye, A Xlib Programming Manual for Version 11, Volume 1,
O’Reilly & Associates, Inc., Sebastopol, CA (1989)

Chen, P ‘The entity relationship model — Toward a unified view
of data’, ACM Trans. Database Syst., Vol 1 No 1 (March 1976)
pp 9-36

