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Abstract: Run-time executivesand operating system kernelfor embedded
systems have longelied exclusively on static priority scheduling of tasks to
ensure timing constraints and other correctness conditions are met. Btatity
scheduling is easy to understaadd support but it suffers from a number of
significant shortcomingssuch as thecomplexity of simultaneouslymapping
timing and importance constraints onto priority valueRate-based resource
allocation schemesw®ffer an attractive alternative to traditional statisriority
scheduling as they offeflexibility in specifying and managing timing and
criticality constraints. This paper presents taxonomy ofrate-based resource
allocation and summarizes the results of some recent experiments evaluating the
real-time performance of threslocation schemefor a suite ofintra-kernel and
application-level scheduling problems encountered sopporting a multimedia
workload on FreeBSD UNIX.

1. Introduction

Run-time executivesand operating system kernels fembeddedsystemshave long
relied on static priority scheduling oftasks toensuretiming constraintsand other
correctnessconditionsare met. In static priority schedulingtasks are assigned an
integer priority value that remairixed for the lifetime of thetask. Whenever gask

is made ready to rure(g, when the arrival of an interrupt releases a waiting task), the
active task with the highest priority commences or resumes execution, preempting the
currently executing task if need be. There is rich literatureahalyzesstatic priority
schedulingand demonstratefiow timing and synchronization constraintsan be met
using static priorityscheduling (se§l4] for a goodsummary discussion). Fdhese

and other reasons virtualiyall commercial real-time operatingystems, including
VxWorks [27], VRTX [17], QNX [22],pSOSystem (pSOS) [21&ndLynxOS [16],
support static priority scheduling.

However, despite the popularignd simplicity of static priority scheduling, the
method has significant shortcomings. As discussed in greater detail in Section 2, static
prlorlty scheduling suffers from a number of problems including:

AnI inability to directly map timing orimportance constraintinto priority

values,

e The problem ofdealingwith tasks whose execution time is either unknown or
may vary over time,

« The problem ofdealingwith tasks whose execution time or executiate
deviates significantly at run-time from the behavior expected at design-time,

. Thde problem ofdegradingsystemperformance gracefully itimes of overload,
an
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e The problem of ensuring full utilization of thprocessor or othesystem
resources in tightly resource constrained systems.

As a solution to thesandother problems, wareinvestigating the use ahte-
based resource allocation methods for real-timéembeddedystems. In aate-based
system a task iguaranteed tomake progressaccording to a well-definedate
specification such a$%rocessx samplesper second,” or “process messages per
second where each message consists of 3-5 consecutive network packets.”

Recently a number ofate-based resourcallocation paradigms havebeen
developed and reported the real-timesystemsand multimedia computing literature.
These include

« The “constant-bandwidth”abstraction for aserver algorithm for executing

aperiodic workloads [2, 23, 24],

e The Lottery [28],SMART[19], SFQ [6], EEVDF [25], andBERT [3] variants
of proportional share real-time resource allocation in UNIX, and
¢ A series ofrate-basedextension to the Liuand Layland theory of real-time

scheduling [5, 7, 9, 29].

This paper summarizes recent developmentsitierbased resouredlocation and
informally demonstratediow rate-basednethods can provide a framework for the
natural specificatiorandrealization oftiming constraints inembeddedand real-time
systems. To structure the discussion, three dimensions of therésmicceallocation
problem are considered:

« The type ofresourceallocation problem. To fully explore theutility of rate-
based resourcallocation three schedulingroblemsare consideredapplication-
level schedulingi(e., scheduling of user programs or tasks/threamgjeduling

the execution of system calls made by applications (“top-half” operating system-

level scheduling),and scheduling asynchronous evergsnerated by devices
(“bottom-half” operating system-level schedulinghis treatment ismotivated
by the logical structure of traditional, monolithic real-tia@d general purpose)
operating systemsand kernels with hardware enforcegbrotection boundaries.
Moreover, this simple taxonomy of scheduling problems emphasizes thesl in
systems one mustonsider issues of intra-kernel resourceallocation and
scheduling as well as application task scheduling.

* The type orclass of rate-basedresourceallocation method We consider three
broadclasses ofate-based resouredlocation paradigms: allocatidrased on a
fluid-flow paradigm, allocatiorbased on golling or periodic server paradigm,
and allocation based on a generalized dd Layland paradigmFor aninstance
of the fluid-flow paradigmthe proportionakhare schedulinglgorithm earliest
eligible virtual deadlindirst (EEVDF) [25] is consideredFor an instance of the
polling server paradigm, schedulifgased onthe constant bandwidth server
(CBS server concept [2] izonsideredFinally, for the generalizedLiu and
Layland paradigm a rate-basedtension to the original Liand Layland task
modelcalledrate-based executiaiRBE) [9] is considered.

¢ The characteristics ofthe workload generated For each rate-basedllocation
scheme above, thikely expectedreal-time performance of armapplication is
considered under a set of execut@vironmentsvherethe applicationexecute
at various rates. Specificalljgasesare consideredvherein the applications
execute at “well-behavedg£onstant rates, at bursty ratesd atuncontrolled
“misbehavedrates. Forwell-behavedworkloads, thethree rate-basedschemes
considered (and indeedrtually any real-timescheduling scheme) can execute a
given workload in real-time. However, theate-basedschemes perfornguite

differently when applications need to be scheduled at bursty or uncontrolled rates.

The goal isdemonstratdnow rate-basednethods naturally solve a variety ksource
allocation problems that traditional static priorggheduling methodare inherently



poorly suited to. However, it will also kerguedthat “one sizedoesnot fit all.” One
rate-based resource allocation scheme does not suffiedl fetheduling problems that
arise within the layers of a realsystem. While onecan construct an execution
environment whereimll of the rate-basedchemesonsidered herperform well, for
more realistic environments thate likely to be encountered irmpractice, the best
results are likely to bachieved byemployingdifferent rate-basedllocationschemes
at different levels in the operating system.

To be surerate-based resour@location methodsrenot apanacea. There are
other schedulingarchitecturesbased onextensions to (olindirect uses of) static
priority scheduling that can also provide effects@utionsfor many of the problems
considered herein (see [14]), however, because of spastraints, in thigpaperonly
rate-based methods are considered.

The following section describes the shortcomings of static prisdheduling in
more detail. Section 3 presents a taxonomyatd-based resouredlocation methods.
Three classes ofrate-based resouraalocation are described anthe strengths and
weaknesses of each approach discussedThe results of someecent experiments
performed toevaluate specific instances cdte-based schedulers are reviewed in
Section 4. Section 5 proposasd evaluates a hybrid schertieat combinedglifferent
forms of rate-based resouraBocation withindifferentlayers of the operating system
andapplication. Section 6 summaries the resatid concludeswith a discussion of
directions for further study in rate-based resource allocation.

2. Traditional Static Priority Scheduling

Traditional models of real-timessourceallocation are based orthe concept of a
discrete but recurring event, such agesiodictimer interrupt, thatauseghe release
of task. The task must eeheduledsuch that it completes executibefore a well-
defineddeadline.For example, mosteal-time models of executioare based on the
Liu and Layland periodic task model [15] or Molsporadictask model[18]. In these
models each execution oftask must completbeforethe next instance of theame
task isreleasedThe challenge is t@assign priority values to tasks such that all
releases ofall tasks are guaranteed t@omplete executiorbefore their respective
deadlineswhen scheduled by apreemptive priority scheduler.Common priority
assignment schemérsclude the rate-monotonicscheme [15] whereitasks thatrecur
at high rates havpriority over taskghat recur atlow rates {.e., a task’s priority is
equal toits recurrenceperiod), and the deadlinemonotonicscheme [13] wherein a
task’s priority isrelated toits responsetime requirement(it's deadline)t In either
case, static assignment of priority values to tasks leads to a number of problems.

2.1.Mapping performance requirements to priorities

Simple timing constraints for tasks thee released imesponse a single evestch
as a responséme requiremenfor a specific interruptcan beeasily specified in a
static priority system. More complex constraiate frequenthquite difficult to map
into priority values. For examplepnsider asignal processing system operating on
video framesthat arrive over aLAN from a remote acquisitiondevice. The
performance requirementay be to process 3@ames/secondndhence it would be
natural to model the processing as a periodic task and trividheduleusing a static

1 Wwe assume throughout that low priority values indicate high scheduling priority.



priority scheduler. However, it isasily thecasethat each video frame arrives at the
processing node in a series of network packes must baeassemblethto avideo
frameand it isnot at all obvious how the networkacketand protocol processing
should bescheduledThat is, whilethere is a natural constraint ftine application-
level processingthere is no natural constraine., no unique responséime
requirement)for the processing of thandividual events that willoccur during the
process of realizing the higher-level constraint. Nonetheless in a static priority
scheduler the processing of these events must be assigned a single priority value.

The problem here is that the systelesignerimplicitly creates aesponsdime
requirement when assigning a priority value to the network processing. tBameeis
no natural unique value for this requirement a conservagixg 6hort response time)
value is typically chosen. Thisonservativeassignment of priority has theffect of
reserving more processing resourcestii@r task than will actuallgver be consumed
andultimately limits theeither the humber or the complexity of tasks tbah be
executed on the processor.

2.2.Managing “misbehaved” tasks

In order to analyze any resource allocation problems, assumptions must be made about
the environment in which the task executes. In particular, in virtuallyealttime
problems the amount aksourcesequiredfor the execution of the tasle.g, the
amount ofprocessotime required toexecutethe task) isassumed to b&nown in
advance. A secongroblem with static priorityresourceallocation occurswhen
assumptions such as themeviolatedand atask “misbehaves” byconsumingmore
resourceghan expectedThe problem is teensurethat a misbehaving tasttoes not
compromise the execution of other “well-behaved” tasks in the system.

An often-touted advantage of static priorlystems is that if a task violates its
executionassumptions, higher priority taslse not affected.While it is true that
higher priority tasksare not affected bymisbehaving lower priority tasks (unless
higher priority tasks shargoftware resourcewith the lower priority tasks), albther
taskshave no protection fronthe misbehaving task. For example, a task that is
released at &igherratethan expectedcanpotentially blockall lower priority tasks
indefinitely.

The issue is that static priority scheduling fundamentally provides no mechanism
for isolating tasks from the ill-effects of other tasks other than the same mechanism
that is used to ensure response time properties. Given that isaatioernsypically
are driven bythe relative importance of tasks.§, a non-critical task shouldever
effect or interferavith the execution of a mission-critical taslgnd importance and
responsdime are often independentoncepts, attempting tmanageboth concerns
with a single mechanism is inappropriate.

2.3.Providing graceful/uniform degradation

Related tothe task isolation problem is that of providiggaceful performance
degradation under transient (or persistent) overload conditions. The probtgacefil
degradation can be consideredemeralization of thésolation problem; a set of tasks
(or the environment that generates work for the tasks) misbehasiéise processing
requirements fothe system as a wholimcrease tothe point where tasks miss
deadlines. Intheseoverloadsituations it is again useful to control whidasks’
performance degrades and by how much.

Static priority scheduling again hasnly a single mechanism famanaging
importanceand responsdime. If the mission-critical tasks aldmavethe smallest
response-time requirements then they will hthee highest priorityandwill continue



to function. However, ifthis is not thecasethenthere is no separateechanism to
control the execution of important tasks. Worse, even if the priority structatehes

the importance structure, ioverloadconditionsunderstatic priority schedulingonly

one form ofdegradegerformance ispossible: high priority taskexecutenormally
while the lowest priority taskexecutes at a diminished rate ifak That is, since a
task with priorityp will alwaysexecute tocompletionbeforeany pendingask with
priority less tharp commences or resumes execution, it is impossible to control how
tasksdegradetheir execution. (Note however, &gquently claimed by advocates of
static priority scheduling, thperformance of aystemunder overloacconditions is
predictable.)

2.4. Achieving full resource utilization

The rate-monotonic priority assignment scheme is well known to be an optimal static
priority assignment. (Optimal in the sense that if a static priority assignment exists
which guarantees periodic tasks have a response time no greater than their period, then
the rate-monotonic priority assignmeuill also provide the sameguarantees.) One
drawback tostatic priority scheduling, however, is that thehievable processor
utilization is restricted. In their seminal paper, Liu and Layland showed that aset of
periodictasks will beschedulable under r@te-monotonic priority assignment if the
processor utilization of a task set does not exe¢2d — 1) [15]. If the utilization of

a task set exceeds this bound then the tasks may or may aschdzkilable. (That is,

this condition is a sufficient but not necessary condition for schedulabNigy)eover,

Liu andLayland showedhat in the limit the utilizationbound approachedn 2 or
approximately0.69. Thus 69% is the leagpper bound orthe processoutilization

that guarantees feasibility. A least upper bohetemeans that this is th@inimum
utilization of all task sets that fully utilize the processor. (A task set fully utilizes the
processor if increasing the cost of any task in the set causes a task todeistire.)

If the utilization of theprocessor by #ask set is less than equal t069% then the
tasks are guaranteed to be schedulable.

Lehoczky, Sha, and Ding formulated an exact text for schedulainittgr a rate-
monotonic priority assignmerdand showedthat ultimately, schedulability is not a
function of processor utilization [12]. However, nonetheless, in practice the utilization
test remains the dominant test for scheduability as it is both a samglanintuitive
test. Given this, a resource allocation schevherein scheduability was more closely
tied to processor utilization (or a similarly intuitive metric) would be highly desirable.

3. A Taxonomy of Rate-Based Resource Allocation Models

The genesis of rate-based resowaltecation schemesan betraced tothe problem of
supporting multimedia computingnd other soft-real-timgroblems. In thisarena it
was observedthat while onecould support theneeds ofthese applications with
traditional real-time scheduling models, these model® not the mostatural ones
to apply [6, 8, 11, 28]. Whereas Liu and Layland models typickdbjtwith response
time guarantees fothe processing operiodic/sporadicevents, therequirements of
multimedia applicationsvere better modeled asaggregateput bounded, processing
rates.

From our perspective three classesaté-based resour@dlocation modeldave
evolved:fluid-flow allocation server-based allocatigrandgeneralized_iu and Layland
style allocation Fluid-flow allocationderiveslargely from the work onfair-share
bandwidthallocation in the networking community. Algorithms such gemeralized



processor sharingGPS) [20],packet-by-packegeneralized processaharing (PGPS)

[20] (better known asweighted fair queuing (WFQ) [4]), were concernedwith
allocating networkbandwidth to connections(“flows”) such that for aparticular
definition of fairness, all connections continuousBceive their fair share of the
bandwidth.Since connectionsvere assumed to beontinually generating packets,
fairness waxpressed irterms of aguaranteedransmissiorrate {.e., somenumber

of bits per second). Thesalocation policiesvere labeled as “fluidlow” allocation
becausesince transmissiorcapacity wascontinuously available to beallocated,
analogies were drawn between conceptually allowing multiple connections to transmit
packets on a link and allowing multiple “streams of fluid” to flow through a “pipe.”

Thesealgorithms stimulatedremendousactivity in both real-time CPU and
network link scheduling. In theCPU scheduling realm numerowdgorithms were
developed, differing largely in the definition and realization of “fair allocation” [19, 25,
28]. Althoughfair/fluid allocation is in principle a distinct concept fromal-time
allocation, it is a powerful building block for realizing real-time services [26].

Server-based allocation derives from the problem of schedaiagodictasks in
a real-timesystem. The salient abstraction is that'sarver process” is invoked
periodically to serviceany requestsfor work that have arrived since the previous
invocation of the server. Theervertypically has &'capacity” for servicing requests
(usually expressed irunits of CPUexecution time) in any given invocatio@nce
this capacity is exhausted, any in-progress worktspendedntil at least thenext
serverinvocation time. Numerouserveralgorithms have appeared irthe literature;
differing largely in the manner in which tleerver is invoke@andhow its capacity is
allocated[2, 23, 24]. Server algorithms are considered to be rate-badedms of
allocation as the execution ofsarver isnot (in general) directly coupleevith the
arrival of a task. Moreover, server-based allocation haeffeet of ensuringaperiodic
processing progresses at a well defined, uniform rate.

Finally, rate-basedjeneralizations of the origindliu andLayland periodictask
model have beedeveloped taallow more flexibility in how ascheduler responds to
events thatarrive at auniform averagerate but unconstrainednstantaneougate.
Representative examplégre includehe (m, k) allocation models thatequiresonly
m out of everyk events beprocessed irreal-time [5], thewindow-based allocation
(DWYQ) method that ensures a minimum number of evargsgprocessed in real-time
within sliding time windows[29], andthe rate-basedexecution(RBE) algorithm that
“reshapes” the deadlines of events that arrive at a highereipactedate to be those
that the events would have had had they arrived at a uniform rate [9].

To illustrate the utility of rate-based resource allocation, one algorithm from the
literature fromeachclass ofrate-basedllocation methodsvill be discussed in more
detail. The choice is motivated bje prior work of the authors, specifically our
experiencamplementingandusing these algorithms iproductionsystems [7, 10].
For an instance of the fluid-flow paradigm the proportional share scheduling algorithm
earliest eligible virtual deadlinérst (EEVDP [25] will be discussedFor aninstance
of the polling server paradigm tleenstantbandwidth serve(CBS server concept [2]
will be discussed.For the generalizedLiu and Layland paradigmthe rate-based
executionRBE model[9] will be discussed. Although specific algorithrage chosen
for discussion, ultimately the results presentedbaieved to holdor eachalgorithm
in the same class as the algorithm discussed.



3.1.Fluid-Flow Resource Allocation: Proportional Share Scheduling

In a proportionalshare PS systemeach shared resourceis allocated indiscrete
guanta of size at mogt. At the beginning ofachtime quantum a task iselected to
use the resourc®ncethe taskacquiresthe resource, itmay use theesourcefor the
entire time quantum, or it magleasethe resource beforéhe timequantum expires.
For a given resource veeightis associated with each task tldetermineghe relative
shareof the resource that thask shouldeceive.Let w; denotethe weight of task,

and letA(t) be the set of all tasks active at tim®efine the (instantaneous) sh&(®

of taski at timet as

L

2 iAW
A share represents a fractiontb resource’s capacityhat is “reserved”for a

task. If the resource can be allocated in arbitrarily ssialdquanta,and if the task’s

share remains constant during any time interyal,], then the task is entitled to use
the resource fort{—t,)f;(t) time units in the interval. As taskse created/destroyed or

blocked/releasedhe membership of\(t) changesand hencethe denominator in (1)
changes. Thus in practice, a task’s share of a given resource will change over time. As
the total weight of tasks in the systdntreasesgachtask’s share ofthe resource
decreases. As the total weight of tasks in the system decreases, each task’s share of the
resource increases. When a task’s share varies over time, the serviSetiatetaski

should receive in any interva [t,], is

S t) = [ i@ dt @)

fi(t) = (1)

time units.

Equations (1)and(2) correspond to an ideal “fluid-flowsystem in which the
resource can be allocatéat arbitrarily small units of time. In such a system tasks
make progress at a uniform rate as if they were executing on a dedicated praibssor
a capacity that i§(t) that of the actual processor. practiceone canimplement only
a discrete approximation to the fluid system. When the resouatiedated indiscrete
time quanta it is not possible for a task to always receive exactly the service time it is
entitled to in alltime intervals. Thalifferencebetweenthe servicetime that a task
should receive at ime t, andthe time it actuallyeceives is callethe servicetime
lag (or simply lag). Let, be the time at which taskbecomes activegndlet 5(t,, t)
be the service time taskeceives in the intervak{, t]. Then if taski is active in the
interval [t,, t], its lag at timet is defined as

lagi(t) = S(t5, t) —si(to, 1). (©)
Since the lag quantifies the allocatiaocuracy, it is used ake primarymetric
for evaluating theperformance ofPS schedulingalgorithms. Previously wédave
shown that one€an schedule aet of tasks in &S system using a “virtualime”
earliestdeadlinefirst rule such that the lag ibounded by eaconstant ovemll time
intervals [25]. By using this algorithntalled earliest eligible virtual deadlinefirst
(EEVDRF), aPSsystem’s deviation from a system with perfectly uniform allocation is
bounded and thus, as explained below, real-time execution is possible.

Scheduling to Minimize Lag

The goal in proportional share scheduling is to minimize the maximum possible lag.
This is done by conceptually tracking the lag of tasks and atrntieof eachquantum,
considering only tasks whose lag is positive [25]. If a task’s lag is positive then it is
“behind schedule” compared to the perfect flsyjgtem — it shouldhaveaccumulated



more time on the CPU than it has up to the current time. If a task’s lag is positive it
is considered eligible to execute. If its lag is negative, then the tasledergsedmore
processor time than it should have up to the current time and it is considered ineligible
to execute

When multiple tasks are eligible, BEVDF they are scheduledarliestdeadline
first, where a task’s deadline is equal to its estimated execution time cost divided by its
share ofthe CPU, f;(t). This deadlinerepresents goint in thefuture when the task
should complete execution if it receives exactly its share oCthd. For example, if
a task’s weight is such that ishare ofthe CPU at theurrenttime is 10%and it
requires 2nsof CPU time to complete execution, then deadlinewill be 20 msin
the future. If the task actually receives 10% of @feU, over the next 20ms it will
execute for 2Zns

Proportional share allocation isalizedthrough a form ofwveighted round-robin
scheduling wherein in each round the task with the earliest deadline is sele¢g&d. In
it was shown that thEEVDF algorithm providesoptimal (.e., minimum possible)
lag bounds.

Realizing Real-Time Execution
In principle, there is nothinfreal-time” about proportionashare resourcallocation.
Proportionalshare resourcallocation is concernedsolely with uniform allocation
(often referred to inthe literature asfluid” or “fair” allocation). A PS scheduler
achieves uniform allocation if it can guarantee that tasks’ lags are always bounded.

Real-time computing ischieved in &S system by ij ensuring that dask’s
share of the CPU (and other required resources) remains constant ovantirbg, i)
schedulingtasks such thatachtask’s lag is alway®ounded by aonstant. Ifthese
two conditions hold over an interval of lengthior a taski, then task is guaranteed
to receive f; x t) + ¢ units of theresource’scapacity,wheref; is the fraction of the
resource reserved for taskande is the allocation error, & ¢ < 5, for some constant
o (for EEVDF ¢ = the quantum sizq) [25]. Thus, althoughreal-time allocation is
possible, it is not possible tprovide hard andfast guarantees ofadherence to
application-definedtiming constraints.Said another wayall guarantees have an
implicit, and fundamental, “#’ term. In FreeBSD-based implementations&dVDF,
¢ has been a tunable parameter and was most commonly s@is{@]1

The deadline-basdeEVDF proportional share schedulimdgorithm ensures that
each task’s lag is bounded by a constant [25] (conditipnTo ensure aask’s share
remains constant oveéime (condition (i)), wheneverthe total weight in the system
changes, a “real-time” task’s weight must be adjusted so that its slita¢ (as given
by equation (1)) doesot change. For example, if the total weight in the system
increases€.g, becausaew tasksare created)then a real-time task’s weigmust
increase by a proportional amount. Adjusting the weight to maintain a cosistaat
is simply a matter of solvingquation (1) fow; whenfi(t) is a constant function.
(Note thatw; appears in both the numeratord denominator othe right-hand side of
(1).) If the sum of the processor shares of the real-time tadksdsthan 1.0 then all
tasks will execute in real-time.¢., underEEVDF real-time scheduablity is simple
function of processor utilization).

3.2.Liu and Layland Extensions: Rate-Based Execution RBE)

The traditional Liuand Layland model of periodiaeal-time execution haween
extended in anumber of directions to be more flexible in way in whigal-time
requirements werenodeled andealized.For example, all of the traditionaheory



assumes a minimunseparation intime between releases dfistances of thesame
task. This requirement does not map well in actyatems thatfor example receive
inputs over a network. For example, irvideo processing applicatiorvideo frames
may be transmitted across an internetworkratiseintervals butarrive at areceiver
with arbitrary spacing in time because of the store-and-forward natunestfnetwork
switches. Although there is explicit structure in this problfames aregenerated at
a precise rate), there is no way to capture this structure in a Liu and Layland model.

TheRBEparadigm is one extension to the Liu and Layland modatitibesghis
problem. INRBE each task is associated with three parametgysd) which define a
rate specification. In arRBE system, eachtask is guaranteed tgrocess at least
events every time units, and each evanwill be processed before relative deadline
d. The actualdeadlinefor processing of thg" event for taski is given by the
following recurrence. If; is the time of the arrival of thg" event, then thénstance
of taski servicing this event will complete execution before time:

o iy D tj +d fisisx
i(J)_%nax(tij+di,Di(l'—Xi)+yi) if j >x (4)

The deadline for the processing of an event is the larger of the release time of the
job plus its relative deadline, orthe deadline ofthe x" previous job plus they
parameter(the averaging interval) ofhe task. Thisdeadline assignment function
confers two important properties &BE tasks. First, up tx consecutivgobs of a
task may contend for the processor with the same deadline and second, the deadlines for
processing evenfjsandj+x for taski are separated by &asty time units. Without
the latter restriction, if a set of events for a taskive simultaneously itwould be
possible to saturate the processor. Howewih the restriction, the time at which a
task must complete its execution is not whalgpendent orits releasetime. This is
done to bound processor demand. Under this deadline assigiumetidn, requests for
tasks that arrive at a faster rate thaarrivals everyy time unitshave theirdeadlines
postponeduntil the time theywould have been assignbddthey actuallyarrived at
the rate of exactly arrivals everyy time units [9].

The RBE task model derivesrom the linear bounded arrivalprocess(LBAP)
model as defined and used in the DASH system [1]. I B¥&P model, taskspecify
a desired execution rate as the number of messageptodassegher secondand the
size of a buffer pool used to store bursts of messages that arrive for the tasi@Hhe
model generalizes tHeBAP model to include a morgeneric specification of rate and
adds an independent response time (relatezglline)parameter to enablmore precise
real-time control of task executions.

RBEtasks can be scheduled by a sing@diest-deadline-firstule solong as the
combined processattilization of all tasksdoesnot saturate the processqHence
thereare no undudimits on theachievable processattilization.) Although nothing
in the statement of thRBE model precludestatic priority scheduling oftasks, it
turns out that thé&kBE modelpoints out afundamentabistinction betweendeadline-
basedscheduling methodand static priority basedmethods. Analysis of thé&RBE
model has shown that undéeadline-basedcheduling, feasibility is solely a function
of the distribution of taskleadlines intime and is independent dhe rate at which
tasksareinvoked. In contrast, the opposite is true of static priosithedulers. For
any static priority schedulerfeasibility is a function of theaate atwhich tasks are
invokedand is independent dhe deadlines othe tasks [9]. Said morsimply, the
feasibility of static priority schedulers is solely a function of pleeiodicity of tasks,
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while the feasibility of deadline schedulers is solely a function of the periodicity of the
occurrence of aask’s deadlines.Given that it is often the operating system or
application that assigndeadlines taasks, this means that the feasibility of a static
priority scheduler is a function of the behavior of the external environmeng(rival
processes), while the feasibility of deadlinedriven scheduler is &unction of the
implementation of the operating system/application. This is a signifadasgrvation

as one typically has more control over the implementation of the opestitgm
than they do over therocesses external tihe system thageneratework for the
system. For thigeasondeadline basedcheduling methods have a significant and
fundamental advantage over static priobgsedmethods when there is uncertainty in
the rates at which work igeneratedor a real-timesystem, such as is th&se in
virtually all distributed real-time systems.

3.3. Server-Based Allocation: The Constant Bandwidth Server ¢BYS)

The final class of rate-based resource allocation algoritnmservealgorithms. At a
high-level, theCBSalgorithm combines aspects of b&BVDF andRBE scheduling
(although it wagdevelopedndependently oboth works). LikeRBE it is an event
basedscheduler, howevelike EEVDF it has a notion of a quantum. Like both, it
achieves rate-based allocation by a form of deadline scheduling

In CBS andits relatedcousin thetotal bandwidth serve(TBS [23, 24], a
portion of theprocessor's capacityjenotedUg, is reservedor processingaperiodic
requests of dask. When an aperiodicequest arrives it is assigneddaadline and
scheduled according to tkarliest-deadline- firsalgorithm. However, while theserver
executes, its capacity linearly decreases. Ifsémwer’s capacity for executingsingle
request is exhausted before the request finishesethuest is suspendeahtil the next
time the server is invoked.

A server is parameterized by two additional param&gedTs, whereCsis the
execution time available for processing requests in any single server invoaadidg
is the inter-invocation period of the servel & C4Ty). Effectively, if thek™ aperiodic
request arrives at timg it will execute as a task with a deadline

dy = maxf, d,) +c/Us )

where ¢, is the worstcaseexecution time of th&™ aperiodic request), ; is the
deadline ofthe previousrequestfrom this task,and Ug is the processor capacity
allocated to the server for this task.

CBS resourceallocation isconsidered a rate-basedheme becausteadlines are
assigned to aperiodic requests based on the rate at whisbrtlee can servihem and
not (for example) onthe rate atwhich theyare expected tarrive. Note that like
EEVDFandRBE, scheduability inCBSis solely a function oprocessouwtilization.
Any real-time task set that does rgatturate theprocessor igguaranteed to execute in
real-time under any of these three algorithms.

4. Using Rate-Based Scheduling

To seehow rate-based resouradlocation methodsan be used to realize real-time
constraintsand overcomethe shortcoming of static priority scheduling, theee
algorithms above were used to solve various resource allocation problems that arose in
FreeBSD UNIX when executing set of interactive multimedia applications. The
details of this study are reported in [10]. The results are summarized here.
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Figure 1: Architectural digram of UDP/IPprotocol processig in FreeBSD.

4.1. A Sample Real-Time Workload

To comparethe rate-basedschedulers, thresimple multimedia applicationsvere
considered.These applicationsvere chosenbecausethey illustrate many of the
essentialresourceallocation problemdound in distributed real-timend embedded
applications. The applications are:

* An Internet telephone applicatiothat handlesincoming 100 byte audio
messages at a rate of 50/second and computes for 1 millisecaatiomessage
(requiring 5% of the CPU on average),

« A motion-JPEGvideo playerthat handlesincoming 1,470 byte messages at a
rate of 90/secondndcomputes for 5 milliseconds osach messagegrequiring
45% of the CPU on average), and

< Afile transfer program thatandlesincoming 1,470 byte messages aiate of
200/second andomputes for 1 millisecond osachmessage (requiring0% of
the CPU on average).

The performance of different rate-based resouddcation schemes was
considered under varying workload conditions. The goal was to evaluatedobvate-
based allocation scheme performed when the rates of tasksstidukiled varietom
constant (uniform), to “bursty” (erratic instantaneous rate but constant average rate), to
“mis-behaved” (long-term deviation from average expected processing rate).

4.2. Rate-Based Scheduling of Operating System Layers

Our experiment$ocused orthe problem of processing inbound network packets and
scheduling user applications to consume these packets. Figure 1 illustrates the high-
level architecture ofthe FreeBSD kernel. Briefly, in FreeBSD, packet processing
occurs asfollows. (For a more completdescription of these functions s§&0].)

When packets arriveeom the network, interrupts from the netwadriterfacecard are
serviced by a device-specifinterrupt handler. The device drivercopies data from

buffers on the adapteardinto a chain offixed-sizekernel memonybuffers sufficient

to hold the entire packefhis chain ofbuffers is passed on procedurecall to a
general interface input routine for a classrgfut devices.This procedure determines
which network protocol shouldeceivethe packetand enqueuethe packet on that



12

protocol’s input queue. It then postssaftwareinterrupt that will causethe protocol
layer to beexecutedwhen no higher priorityhardware orsoftware activities are
pending.

Processing by the protoctdyer occurs asynchronouslkyith respect to the
device driverprocessing. Whethe softwareinterrupt posted bythe device driver is
serviced, gprocessing loogommences wherein ogachiteration thebuffer chain at
the head ofthe inputqueue is removed and processecthoy appropriateroutines for
the transport protocol. This results in theffer chainenqueued orthe receivequeue
for the destination socket. If any procesdiscked in a kernebystem call awaiting
input on the socket, it isinblockedand rescheduledNormally, software interrupt
processing returns when no more buffers remain on the protocol input queue.

The kernel socket layamodeexecutes when aapplication task invokes some
form of receive system call on a socket descriptor. When data exists appttupriate
socket queue, the data is copiatb thereceiving task’s locabuffersfrom the buffer
chain(s) at the head of that socket’s receive queue. When there is suffatéenin the
socket receive queue to satisfy the current request, the kernel completes thecalfstem
and returns to the application task.

The problem of processing inbound network packets was chosestuidy
because iinvolves arange of resourcallocation problems afifferentlayers in the
operating system. Specificallythere are three distinct scheduling problems:
scheduling ofdevice driversand network protocol processing within theperating
system kernel, scheduling system calls made by applicatioresadand write data to
and from the network,and finally the scheduling of useapplications. These are
distinct problemsbecausethe schedulablework is invoked in different ways in
different layers. Asynchronous evemsusedevice driveraanduser applications to be
schedulecbut synchronous eventausesystem calls to becheduled Systemscalls
are, in essence, extensions of the applicatitimsad ofcontrol into theoperating
system.Moreover, these problense ofinterestbecause othe varying amount of
information that isavailable to make real-time scheduling decisioneaghlevel of
the operating system. At the applicatiand systemcall-level it is knownexactly
which real-timeentity should be&charged’for use of systenresourceswhile at the
device driver-level one cannot know whiehtity to charge.For example, in thease
of inbound packet processing, it cannotdaterminedwvhich application tocharge for
the processing of packetuntil the packet is actuallyprocessed anthe destination
application isdiscovered. Orthe otherhand,the cost ofdevice processing can be
known exactly aglevice driverstypically perform simple, bounded-timefunctions
(such as placing a string diuffers representing a packet on a quetigjs is in
contrast to the application-levelhereoften onecanonly estimate the timeequired
for an application to complete.

The challenge is to allocatesourceghroughout the operating system so that
end-to-end system performance measures.g(, network interface to application
performance) can be ensured.

4.3.Workload Performance Under Proportional Share Allocation

A version of FreeBSD wasonstructedthat used EEVDF proportional share
scheduling(with a 1 ms quantum) atthe device, protocol processingand the
application layers. In this systesachreal-time task isassigned a share die CPU
equal toits expectedutilization of theprocessor€.g, the Internet phone application
requires 5% of the CPU artibnce is assignedwaeight of 0.05).Non-real-time tasks
are assigned a weigbtjual tothe unreservedtapacity ofthe CPU.Network protocol
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processing is treated as a real-time (kernel-level) taskptbaesses &ixed number of
packets when it is scheduled for execution.

In the well-behaved senders case all packets are moved from the nietexdace
to the socket layer to the application and processed in real-time. thindite transfer
sender misbehaves and senutwre packets than tHép receiver carprocess given its
CPU reservation,EEVDF does a goodob of isolating the othemwell-behaved
processes from the ill-effects fp. Specifically, theexcesstp packetsare dropped at
the lowest level of the kernel (at the I1&er) beforeany significant processing is
performed onthese packets. These packete droppedbecausethe kernel task
associated with their processingssnply not scheduledbften enough (byesign) to
move the packets up to the socket layer. In a static prieyisgem (such as the
unmodified FreeBSDsystem), networkinterface processing is thesecondhighest
priority task. In this systemyaluable timewould be“wasted” processing packets up
through the kernebnly to havethem laterdiscarded(because of buffer overflow)
because the application wasn't scheduled often enough to consume them.

The cost of this isolation comes in the form inéreasedpacket processing
overhead as now the device layer must sgand demultiplexingpackets (typically a
higher-layer function) todetermine ifthey should bedropped. Performance ialso
poorer when data arrives for all applications in a bursty manner. Thisadifact of
the quantum-basedallocation nature oEEVDF. Over short intervals,data arrives
faster than it can be serviced at the IP layer and tléFacequeueoverflows. With
a 1msquantum, it is possible that IP processiag bedelayedfor upwards of 8-10
msand this is sufficient time for the queue to overflow in a bursty environment. This
problem could be ameliorated to some extent by increasing the length of goeu®,
however,this would also havethe effect ofincreasing the respongine for packet
processing.

4.4.Workload Performance Under Generalized Liu and Layland
Allocation

WhenRBEscheduling was used for processing at the device, protmbgpplication
layers,eachtask had asimple rate specification of1, p, p) (i.e., one event will be
processed everp time units with adeadline ofp) where p is the period of the
corresponding application or kernel function.

Perfect real-timgoerformance is realized ithe well-behavedand bursty arrivals
casesbut performance issignificantly poorer than EEVDF in the case of the
misbehavedile transferapplication. On the onkand, RBEprovides goodsolation
betweenthe file transferandthe other real-time applications, howevihis isolation
comes at theexpense ofthe performance of non-real-time/backgrouapplications.
Unlike EEVDF, as an algorithmRBE has no mechanism fadirectly ensuring
isolation betweentasks aghere is no mechanism fdimiting the amount of CPU
time anRBEtask consumes. All events in &BE systemare assignedieadlines for
processing. Whethe workarrives at a faster ratban isexpectedthe deadlines for
the work are simply pushed furthemand further out in time. Assumingsufficient
buffering, all will eventually be processed.

In the FreeBSDsystem, packetsare enqueued athe socketlayer but with
deadlines that are so large that processing is delayed such that theqeeakgqtiickly
fills andoverflows. Becausdime is spent processirpckets up to the sockétyer
that are neverconsumed bythe application, theperformance of non-real-time
applications suffersBecause othis, hadthe real-timeworkload consumed &rger
cumulative fraction of th€PU, RBE would not have isolatedhe well-behaved and
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misbehaved real-timapplications. (Thais, the fact that isolation wasbserved in
these experiment is an artifact of the specific real-time workload.)

Nonethelesspecausehe RBE schedulerassignsdeadline toall packets, and
becausdhe systermunderstudy was notoverloaded,RBE scheduling results in the
smaller response times for real-time events than sederEEVDF (at the coshon-
real-time task performance).

4.5. Workload Performance Under Server Based Allocation

WhenCBSserver tasks were used for processing throughout the operating system and
at the application layersgach servetask wasassigned a capacitgqual to its
application’s/function’s CPU utilization. Theerver's periodwas made equal to the
expected interarrival time of data (packets). Non-real-time tasksagain assigned to
a server with capacity equal to the unreserved capacity of the CPU.

As expected, performance is good wiveork arrives in awell-behavedmanner.

In the case of the misbehaved file trans@BS alsodoes a googbb of isolating the
other well-behavediasks. Theexcesdtp packetsare dropped athe IP layer andthus
little overhead is incurred. Ithe case ofbursty senders<CBS scheduling outperforms
EEVDF scheduling. This idecausdike RBE scheduling ofCBS tasks islargely
eventdriven andhenceCBS tasksrespond quicker tdhe arrival of packetsUnder
EEVDF therate atwhich the IPqueuecan be serviced is fanction of thequantum
sizeandthe number ofrocesses currently active (which determities length of a
scheduling “round” [4]). In general these parametershatelirectly related tothe real-
time requirements oépplications.Under CBS the service rate is dunction of the
server’s period which is a function of tle&pectedarrival rateandthus is aparameter
that is directly related to application requirements. For the choices of quantum size for
EEVDF, and server periodfor CBS good performanceunder CBS and poor
performance undéEEVDFresults. However, we conjecture that is likely tasethat
these parameters could be tuned to reverse this result.

Although CBS outperformsEEVDF in terms of throughput, the results are
mixed for responséimes for real-timetasks. Even wheisenders aravell behaved
some deadlines are missed un@8&S This results in a significant number jpdckets
being processed later than wiEkVDF or RBEscheduling. This is problematsince
in these experiments the theory predicts that no deadlines should be misseausehe
of the problem here relates to the problem of accounting fo€ERIg time consumed
when aCBStask executes. In the implementationGBS the capacity of £BS task
is updatedbnly when the task sleeps or @vaken bythe kernel.Because otthis,
many other kernetelated functions that interruptservers €.g., Ethernet driver
execution) are inappropriatelycharged to CBS tasks and hence bias scheduling
decisions. This accounting problemfismdamental tothe server-base@pproach and
cannot be completely solved without significant additional mechanism (and overhead).

5. Hybrid rate-based scheduling

The results of applying a singtate-based resour@dlocation policy to the problems

of device, protocol, and application processing were mixed. When processing occurs at
ratesthat match theunderlying scheduling modek (@, when work arrives at a
constant rate), all the policie®nsidered achievegal-time performance. Whemork

arrives for an applicatiothat exceedshe application’sate specification oresource
reservation, then only th€BS server-basedchemeand the EEVDF proportional

share scheme providdérue isolation between well-behavedand misbehaved
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applications.When work arrives in dursty manner, thguantum-baseature of
EEVDF leads toless responsive protocol processiangd more (unnecessary) packet
loss. CBS performs betterbut suffers from the complexity of the CPU-time
accounting problem thahust be solvedRBE providesthe best responsiémes but
only at theexpense ofdecreasedhroughput for the non-real-timactivities. The
obvious question isvhether ornot there isutility in applying different rate-based
resourceallocation schemes irdifferent layers of the kernel to better match the
solution to aparticular resourcellocation problem to thecharacteristics of the
problem.

To test this conjecture two hybrid rate-based FreeBgfdemswere constructed.
For applicationandsystem call level processirgEVDF scheduling was used:his
choice wagnadebecausdghe quantum nature dEEVDF, while bad for intra-kernel
resource allocation, is a good fit given the existing round-robin schedarthgecture
in FreeBSD (and many other operating systems such as Linux). Ite&sy to
implement and to precisely controland gives good real-time response&hen
schedulableentities execute folong periods relative tahe size of a quantum. For
device andprotocol processing inside the kerf@th CBS andRBE schedulingwere
consideredSince the lower kernel layeoperatemore as an everdriven system, a
paradigm which takes into account the notion of event arrivals is appropriate. Both of
these policies are also well-suited for resource allocation withirkkeheel because, in
the case o€BS it is easier to control the levels and degrees of preemption within the
kernelandhence it is easier to accouior CPU usagewithin the kernel (and hence
easier to realizehe resultspredicted bythe CBS theory). In thecase of RBE
processing within the kernel is more determinisiicl henceRBESs inherentinability
to provide isolation between tasks that require more computation thameteryed is
less of a factor.

The forms ofhybrid rate-based resouradlocation describedhere remains the
topic of active study. Preliminary results show that when work arriveglabehaved
rates bottCBStEEVDF andRBE+EEVDF systems perform flawlessly. (Thigbrid
allocation performs no worse than the universal application single rate-based
schemethroughput the system.) In thmisbehavedtp application case, bothybrid
implementationsprovide goodisolation, comparable tothe best single-policy
systems. However, in both hybrid approaches, response timeeadishemiss ratios
are now much improved. In thease ofbursty arrivals, allpacketsare eventually
processed andlthough manydeadlines arenissed, bothhybrid schemesniss fewer
deadlinesthan did the single-policy systemsOverall the RBEFEEVDF system
produces the lowest overaléadlinemiss ratios. While we do natecessarily believe
this is afundamentalresult {.e., there are numerous implementatiodetails to
consider), it isthe casethat the pollingnature of theCBS servertasks increases
response times over the direct event scheduling methRa&f

6. Summary, Conclusions, and Future Work

Rate-based resouredlocation schemeare agoodfit for providing real-time services
in distributed real-timeand embeddedsystems. Allocatiorschemes exist thadre a
goodfit for the scheduling architecturassed inthe various layers of &raditional
monolithic UNIX kernel such as FreeBSDThree such rate-basedschemeswere
considered: thearliest eligible virtual deadlinérst (EEVDHF fluid-flow paradigm, the
constantbandwidth servefCBS polling server paradigmand the generalization of
Liu and Layland scheduling known eate-basedexecution(RBE). We comparedheir
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performancefor three schedulingoroblems found in FreeBSD: application-level
scheduling of user programs, scheduling the executiosysfem callsmade by
applications in thétop-half’ of the operating systermand scheduling asynchronous
eventsgenerated by devices the “bottom-half” of the operatingystem. Foreach
scheduling problem weonsideredthe problem of networkpacket and protocol
processing for a suite otanonical multimediaapplications. Wetested each
implementation under three workloads: a unifaate packet arrivgbrocess, a bursty
arrival processand amisbehaved arrival procefisat generatesvork fasterthan the
corresponding application process can consume it.

The resultswere mixed. When work arrives at ratéisat match theunderlying
scheduling model (theonstantrate sendersase),all the policies weconsidered
achieve real-time performance. Wheork arrivesthat exceedghe application’srate
specification, only theCBS server-basedchemeandthe EEVDF proportional share
scheme providésolation between well-behavednd misbehavedapplications.When
work arrives in abursty manner, thguantum-basedature of EEVDF gives less
responsive protocol processing and more packet @BS performs bettebut suffers
from CPU-time accounting problems that result in numerous midsadinesRBE
provides the best responsmes but only at thexpense oflecreasethroughput for
the non-real-time activities.

We next investigated the application different rate-based resouredlocation
schemes irdifferent layers of the kerneand consideredEEVDF proportionalshare
scheduling of applications and system calls combined with gitB&servers olIRBE
tasks in the bottom half of the kernel. Theantum nature oEEVDF scheduling
proves to be well suited to thgeeBSD application scheduliraychitectureand the
coarser-grainediature of resourcallocation in thehigher-layers ofthe kernel. The
eventdriven nature 0RBE schedulinggives the best responsienes for packet and
protocol processing. Moreover, the deterministic nature logfer-level kernel
processing avoids the shortcomings observed Rifascheduling is employed at the
user-level.

In summary, we conclude that more research is needed on the desatgaised
resourceallocation schemes thatre tailored to the requirementsand constraints of
individual layers of an operating system keridl. of the schemes we testegorked
well for application-level scheduling (the problem primarignsidered by the
developers of eachlgorithm). However, for intra-kerneresourceallocation, these
schemes give significantly different results. By combining resource allocatimmes
we are able to alleviate specific shortcomings, howetés,is likely moreaccidental
thanfundamental asione of these policiesere specifically designedfor scheduling
activities within the kernel. By studying these problems in their own right, significant
improvements should be possible.
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