In: Proceedings of the Fifth IEEE International Symposium on High Assurance Systems Engjnsletingerque, New Mexico, November 2000, pp. 177-]186.

The Synthesis of Real-Time Systems from Processing Graphs

Steve Goddard Kevin Jeffay
Computer Science & Engineering Department of Computer Science
University of Nebraska—Lincoln University of North Carolina at Chapel Hill
Lincoln, NE 68588-0115 Chapel Hill, NC 27599-3175
goddard@cse.unl.edu jeffay@cs.unc.edu
Abstract Inherent latencyn a graph is created by non-unity dataflow

attributes (described in Section 3) and the graph topology.
Directed graphs, called processing graphs, are a stan- Inherent latency exists even if the graph is executed on an
dard design aid for complex real-time systems. The pri- infinitely fast machine.lmposed latencgomes from the
mary problem in developing real-time systems with pro- scheduling and execution of nodes in the graph since we
cessing graphs is transforming the processing graph into a do not have an infinitely fast machine. Thus latency has
predictable real-time system in which latency can be man-two components: inherent latency and imposed latency. In
aged. Software engineering techniques are combined with[14], we presented equations to compute inherent latency in
real-time scheduling theory to solve this problem. In the cyclic processing graphs. Here we use real-time scheduling
parlance of software engineering methodologies, a synthe-theory to bound imposed latency and combine these results
sis method is presented. New results on managing latencywith our bounds on inherent latency to provide an upper
in the synthesis of real-time systems from cyclic processingbound on the total latency any sample (or message) will
graphs are also presented. The synthesis method is demorencounter in the synthesized system. If this bound is less
strated with an embedded signal processing application for than or equal to the latency requirement for each path in
an anti-submarine warfare (ASW) system. the graph, we can guarantee that the application will always
meet its latency requirements.
) We demonstrate our synthesis method with an embedded
1. Introduction signal processing application for an anti-submarine warfare
Directed graphs, callegrocessing graphsare a stan- (ASW) systgm. Forsir_nplicity and concreteness, we presgnt
dard design aid for complex real-time systems. ProcessingU" Synthesis method in terms of the U.S. Navy's Processing
graphs are large grain dataflow graphs in which nodes rep-Graph Method (PGM) [23] and signal processing applica-
resent processing functions and graph edges depict the floWions. However, our synthesis method applies to any general
of data from one node to the next. Depending on the appli-Processing graph paradigm and many application domains.
cation domain, the flow of data represents a sampled signal The rest of this paper is organized as follows. Our re-
to be processed (e.g., [7, 21, 5, 3, 25, 30]) or messages to b&ults are related to other work in Section 2. Section 3
processed (e.g.,[6, 9, 17, 22, 24, 29, 27, 28]). presents a brief oyerview of the p_rocessing graph model
The primary problem in developing real-time systems PGM. The synthesis of real-time uniprocessor systems from
with processing graphs is transforming the processing grap”GM graphs, including the the verification of latency re-
into a predictable real-time system in which latency can quirements, is presented in Section 4. We demonstrate our
be managed. We combine software engineering techniqueSYNthesis method in Section 5 with the Directed Low Fre-
with real-time scheduling theory to solve this problem. In quéncy Analysis and Recording (DIFAR) acoustic signal

the parlance of software engineering methodologies, weProcessing application from the Airborne Low Frequency
present a synthesis method. Sonar (ALFS) system of the SH-60B LAMPS MK Il anti-

We also present new results on managing latency in Submarine helicopter. Our contributions are summarized in

the synthesis of real-time systems from cyclic processing S€ction 6.
graphs. The total latency encountered by a sample or mes:
sage in a processing graph is an integral unit of time createdz' Related Work

by the sum of the latency inherent in the processing graph This paper is part of a larger body of work that creates a
and the additional latency imposed by the implementation. framework for evaluating and managing processor demand,

In: Proceedings of the Fifth IEEE International Symposium on High Assurance Systems Engjnsletingerque, New Mexico, November 2000, pp. 177-]186.

latency, and memory usage in the synthesis of real-time sys-method and related scheduling research based on SDF
tems from processing graphs [10]. Here, we demonstrategraphs has been to minimize memory usage by creating
the management of latency in the synthesis of a real-timeoff-line scheduling algorithms [21, 25, 30, 26, 3]. Off-line
uniprocessor system from cyclic processing graphs devel-schedulers create a static node execution schedule that is
oped with PGM. Portions of our synthesis method have executed periodically by the processor. In contrast, the pri-
been presented previously [12, 13, 14]. However, this is themary goal of our research has been to manage the latency
first complete presentation of our synthesis method. (Forand memory usage of processing graphs by executing them
space considerations, we refer to our previous publicationswith an on-line scheduler. Recently we have shown that
as needed in the full synthesis method presented here.) for a large class of applications, dynamic on-line schedul-
Our early work on the synthesis of real-time uniproces- ing creates less imposed latency than static scheduling. An
sor systems from PGM was based on acyclic PGM graphseven more surprising result is that, in many cases, dynamic
[12, 13]. We first introduced the concept of precise node ex- on-line scheduling uses less memory for buffering data on
ecution rates in [12], and we showed that dynamic, on-line graph edges than static scheduling [13].
scheduling can achieve near minimal memory requirements Our latency analysis is related to the work of Geréer
in [13]. In [14], we extended these results to compute nodeal. in guaranteeing end-to-end latency requirements on a
execution rates and inherent latency for cyclic processingsingle processor [9]. However, Gerbet al. map a task
graphs. This is the first timenposed latenciias been com- graph to a periodic task model in the synthesis of real-time
puted for cyclic processing graphs. Moreover, our latency message-based systems rather than assuming a rate-based
results are novel in that they assume nodes are eligible forexecution. Our analysis and management of latency differs
execution as soon as all required input data is available androm Gerberet al’s in that PGM graphs allow non-unity
then scheduled for execution with a dynamic on-line sched-dataflow attributes. Finally, Gerbet al.introduce new (ad-
uler. ditional) tasks to the task set in their synthesis method to
From the real-time literature, PGM graphs are most Synchronize processing paths. Our synthesis method does
closely related to the Logical Application Stream Model Notneed extra synchronization tasks since our analysis tech-
(LASM) [6] and the Generalized Task Graph (GTG) model Niques are rate-based rather than periodic.

[7]. PGM, LASM, and GTG were all developed indepen- . .
dently and support very similar dataflow properties. PGM 3- Notation and the Processing Graph Method

was the first qf these to be developed. Our work impr_o_ves The notation and terminology of this paper, for the most
on the analysis of LASM and GTG graphs by notrequiring 4t is an amalgamation of the notation and terminology
periodic execution of the nodes in the graph. Instead, we ,gaq in [4] and [3]. A processing graph is formally de-
calculate a more general execution rate, which can be reiped as alirected graph(or digraph) G = (V,E,).
duced to average execution rates assumed in the LASM andriye ordered triple\(, E, «) consists of a nonempty finite
GTG models. Our general execution rate specification pro-gaty/ of vertices a finite setE of edgesand an incidence
vides a more natural representation of node execution forfunction¢ that associates with each edgefbén ordered
PGM graphs. Forcing periodic execution of all graph nodes i of (not necessarily distinct) vertices\éf Consider an
ad_ds latency to the processed S|gnal, but simplifies the a”a"edgee € E and verticess, v € V such thati(e) = (u, v).
ysis of latency and memory requirements. We saye joins u to v, or u andv are adjacent. The ver-
Processing graphs are a standard design aid in digitakex « is called the tail or source vertex efandv is the
signal processing. From the digital signal processing lit- head or sink vertex of edge The edge: is anoutput edge
erature, PGM is most similar to Lee and Messerschmitt's of 4 and aninput edgeof v. The number of input edges
Synchronous Dataflow (SDF) graphs [21] supported by theto a vertexv is theindegreed— (v) of v, and the number
Ptolemy system [5]. The SDF graphs of Ptolemy utilize a of output edges for a vertex is the outdegreed™ (v) of
subset of the features supported by PGM. Any SDF graphy, A vertexv with 6~ (v) = 0 is aninput node The set
can be represented as a PGM graph where each queue’s = {4 | v € VA §~(v) = 0} denotes the set of all input
threshold is equal to its consume value. In addition to sup-nodes. A vertex with 5 (v) = 0 is anoutput node The
porting a more general dataflow model, our research differsset©® = {v | v € VA 6% (v) = 0} denotes the set of all out-
from [21] in that we support dynamic, real-time, scheduling put nodes. For,v € V, there is gpath betweenu andv,
techniques rather than creating static schedules. written asu ~ v, if and only if there exists a sequence of
In 1996, Bhattacharyya, Murthy, and Lee published a vertices(w;, ws, . . ., wg) such thatw; = u, wx = v, and
method for software synthesis from dataflow graphs [3]. w; is adjacent tav;+1 fori = 1,2,...(k — 1). The setZ,
Their software synthesis method is based on the staticis the subset of input nodésfrom which there exists a path
scheduling of Lee and Messerschmitt's SDF graphs. Thefromwu € 7 to the node. Likewise, the se®,, is the subset
main goal of Bhattacharyyat al’s software synthesis of output node® from which there exists a path from node

prd(g) =4 thr(q) = put queues are over threshold (i.e., when each input queue
cngg) = contains at leaghr(q) tokens). After the processing func-
tion finishes executingyrd(q) tokens are appended to each
output queugy. Before the node terminates, but after data
Figure 1. A two node chain. is producedcngg) tokens are dequeued from each input
gqueuey. The execution of a node i&lid if and only if the
node executes only when it is eligible for execution, no two
executions of the same node overlap, each input queue has
its data atomically consumed after each output queue has
its data atomically produced, and data is produced at most
once on an output queue during each node execution.

q If a node has more then one input queue (input edge),
_— > - then the node is eligible for execution whah of its in-

utow € O.

There are many processing graph models, but our syn-
thesis method begins with the U.S. Navy's Processing
Graph Method (PGM). PGM was developed by the U.S.

Navy to facilitate the design and implementation of (acous- A graph execution consists of a (possibly infinite) se-

tic) S|gn_al processing appllcauons, bUt.'t Is a very general guence of node executions. A graph executionakd if
processing graph paradigm that is applicable to many other

domains. In PGM. a svstem is exoressed as a directedand only if all of the nodes in the execution sequence have
' ' y P valid executions and no data loss occurs.

graph in which the nodes (or vertices) represent process-

ing functions and the edges represent buffered communi-4_ Synthesis Method
cation channels called queues. The topology of the graph In thi i bi ft . ing tech-
defines a software architecture independent of the hardware . n this section, we combiné Software engineering tec

hosting the application. The graph edges are First—ln-First—tr;:qu.es W'ttr;] rzafl—tm:e scfhedgllng theory to'developha' styn—
Out (FIFO) queues. There are four attributes associated esis method for transiorming a processing grapn Into a
predictable real-time system in which latency can be man-

with each queue: a produce amoumt(q), a threshold) .
amountthr((;) a consﬁme amouriung;)(;nd an initial- aged. The synthesis of real-time systems from PGM graphs
' ' involves four steps:

ization amouninit(q). Let queuey be directed from node

to nodew. The produce amoumtrd(q) specifies the num- 1. Identification of the rates at which nodes in a PGM
ber of tokens (data elements) appended to quewden graph must execute if they are to process data in real
producing node: completes execution. A token represents time. _ _ _

an instance of a data structure, which may contain multiple 2. Construction of a mapping of each node to a task in a
data words. There must be at le#tst(q) tokens on queue real-time task model so that real-time processing can
q before nodew is eligible for execution. A queue sver be achieved.

thresholdif the number of enqueued tokens meets or ex- 3. Verification that the resulting task set is schedulable so
ceeds the threshold amoutht(g). After nodew executes, that we can guarantee real-time execution.

the number of tokens consumed (deleted) from qugeln 4. Analytical verification that latency requirements of the
nodew is cngq). The number of initial data tokens on the application are met.

queue isinit(q). The analysis of latency requirements only holds if the

Unlike many processing graph paradigms, PGM allows task set is schedulable. Thus, the schedulability of the task
non-unity produce, threshold, and consume amounts as welket is tested in Step 3. If the task set is not schedulable, Steps
as a consume amount less than the threshold. The only and 3 must be repeated with a modified set of parameters
restrictions on queue attributes is that they must be non-used in the mapping of PGM nodes to real-time tasks. Step
negative values and the consume amount must be less than uses analytical techniques (rather than simulation) to ver-
or equal to the threshold. For example consider the portionify latency requirements are met. If the synthesized system
of a chain shown in Figure 1. The queue connecting nodeswill not meet specified latency requirements, then Steps 2,
u andw, labeledy, hasprd(q) = 4, thr(q) = 7,cngq) = 3, 3 and 4 must be repeated with a modified set of task param-
andinit(¢) = 0. (A queue without amit(q) label contains eters.
no initial data.) Nodeu must execute twice before node
w is first eligible for execution. After node executes,
it consumes only 3 of the 8 tokens on its input queue. A We have shown, in [10, 13, 14], that nodes in a PGM
threshold amount that is greater than the consume amoungraph execute with a precise rate ofexecutions every
is often used in signal processing filters. The filter reads y time units. We call the integer paix,y) an execu-

4.1. Step 1: Computing Node Execution Rates

thr(¢q) tokens from the queue but only consuncesq) to- tion rate, and represent the execution rate of nedas
kens, leaving at leasthr(¢) — cngq)) on the queue to be R, = (z4,yw). Moreover, given the execution rate of in-
used in the next calculation. put nodes producing input data for the application, we have

shown that the execution rate of every nadén a cyclic more thanz; deadlines come due in an interval of length

PGM graph can be calculated using Equation (1): even when more thar releases df’; occur in an interval of
lengthy;. Hence, the deadline assignment function prevents
Y = lem{ cnsq)y | ¥(q) = (u,w)}, jitter from creating more process demand in an interval by
ged(prd(g)z., cnggq)) (1) ataskthan thatwhich is specified by the rate parameters.
Tw = Yu - <%> , Vg, u:Y(q) = (u,w). Mapping Nodes to RBE Tasks.To map a PGM graph to a
cng(q)yu set of RBE tasks, a task is associated with each node. Thus

We also showed in [14] how to initialize back edges in a for each node in the graph, node: is associated with
cycle so that they are always over threshold during graphthe four tuple(z., yu, d., e.). The parameters, andy,
execution, which is necessary for Equation (1) to compute are derived using Equation (1). The parametgris the
valid execution rates in cyclic graphs. (@ack edges a worst case execution time for node which we assume
queueq that joins nodey to an ancestow when the graph is SUpp'iEd. The Only free parameter is the relative dead-
is topologically sorted.) We assume in this paper that all line parameted,,, which influences processor capacity re-
back edges in cyclic graphs are so initialized. quirements, latency, and buffer requirements. In general, a
. . smaller value chosen fat, will result in less latency and
4.2. Step 2: Mapping Nodes to a Real-Time Task yemgry requirements than a largér value, but at a cost
Model of increased processor capacity requirements. Execution
The execution rate specifications computed using Equa-time, produce, threshold, consume, and deadline values all
tion (1) represent the rate at which nodes need to execute t@affect schedulability, latency and buffer requirements, and
achieve real-time execution without losing data. We now one can trade-off one metric for any other. The synthesis
address issues related to scheduling nodes in accordancaethod outlined here provides a framework for evaluating
with their rate specifications. To make sure nodes executeschedulability and latency requirements, but leaves open the
according to their rate specifications we execute the nodegroblem of partitioning a processing graph in a distributed
according to the rate-based execution (RBE) model [18]. system when the graph is not schedulable on a uniprocessor.
The RBE paradigm provides a natural description of node In mapping the graph to a set of RBE tasks, relative dead-
executions in an implementation of processing graphs. Theline parameters need to be selected that result in modest
advantage of executing nodes according to the RBE modebuffering on the graph edges without overloading the pro-
is that nodes are eligible for execution as soon as they arecessor with too much processing demand. Sihcaffects
released, even if multiple releases of a node occur at theprocessor capacity requirements, latency and buffer require-
same time. In comparison, a periodic model of execution ments, a good starting point for the selectiondgfis one
requires that each release of a node be separated by a cosuch thatd, is greater than or equal to the relative dead-
stant amount of time, which imposes additional latency on line of nodeu’s predecessor node and less than or equal to
the signal. yu- As shown in [12], when the deadline for each node is
greater than or equal to its predecessor’s relative deadline, a
scheduling technique calledlease time inheritancean be
used to minimize latency. Under release time inheritance,
nodew is assigned a logical release time (at the time of its
pactual release) that is equal to the logical release time of
the node that enabled during graph execution. Deadline
assignment function (2) then uses the logical release times
rather than the actual release times to assign deadlines for
the completion of node execution.

RBE Task Model. RBE is a general task model consist-
ing of a collection of independent processes specified by
four parameters{z, y, d, e). The pair(z,y) represents the
execution rate of a RBE task whetas the number of ex-
ecutions expected to be requested in an interval of lengt
y. Parameted is a response time parameter that specifies
the maximum desired time between the release of a task in
stance and the completion of its execution (idas the rel-
ative deadline). The parameteis the maximum amount of

processor time reqqired for one execution of the task. _ 4.3. Step 3: Verifying Schedulability
A RBE task set is feasible if there exists a preemptive
schedule such that thé" release of tasi; at timet; ; is After we have associated each nad the graph with
guaranteed to complete execution by tiligj), where a four tuple (zy, yu, du, e.), We have an RBE task sys-
tem7T = {T1,T>,...,T,}. Ataskis released when all
Dy(j) = ti;+d; if1<j<u of the node’s input queues are over threshold, ensuring
s max(t; ; + di, Di(j — x:) +yi) if § >z precedence constraints are met for correct graph execution.

) Released tasks are scheduled with the RBE-EDF schedul-
ing algorithm—a simple, preemptive, earliest-deadline-first
The RBE task model makes no assumptions regarding whern(EDF) scheduler using deadline assignment function (2)
atask will be released, however Equation (2) ensures that nawvith release time inheritance.

The schedulability of the resulting task set can be imposed by the implementatiomherent latencyn a graph
checked with Theorem 4.1 [13]. is created by non-unity dataflow attributes and the graph
topology. Inherent latency exists even if the graph is exe-
cuted on an infinitely fast machinenposed latencgomes
from the scheduling and execution of nodes in the graph
since we do not have an infinitely fast machine. Thus la-
tency has two components, and the total latency any sample
encounters can be expressed with the simple equation

Theorem4.1.Let T = {(z1,y1,d1,€1),...
(TnyYn,dn,en)} be a set of tasks such that for the
mappingu € V — i (x5, yi,di,e) = (Tu, Yu, du, €4)-
The processing graph G= (V, E,) is schedulable with
the RBE-EDF scheduler if Equatid8) holds for7 .

~ (L—di+y
VL>0, L > Zf < i) “wiei (3) Total Latency= Inherent Latency- Imposed Latency
i=1
la] fa>0 We now show how to bound the maximum latency any sam-
wheref(a) =) | : . .
0 ifa<0 ple (or message) will encounter in the synthesized system.

If this bound is less than or equal to the latency requirement

An affirmative result after evaluating Condition (3) for each path in the graph, we can guarantee that the appli-
means that the RBE-EDF scheduler can be used to execation will always meet its latency requirements.
cute the graph without missing a deadline. If the cumu- In [14], we showed inherent latency can be calculated
lative processor utilization for an RBE task set is strictly in cyclic processing graphs using Equations (5) and (6) of
less than one (i.e}_ 1, ot < 1) then Condition (3) can Theorem 4.2.
be evaluated efficiently (in pseudo-polynomial time) using
techniques developed by Baruahal. [1]. Moreover, when
d; = y; for all T; in T, the evaluation of Condition (3) re-
duces to the polynomial-time schedulability condition

Theorem 4.2. Let G = (V,E,) be a cyclic PGM graph
with rate-based input nodes. Let € O, and let the exe-
cution rate of input nodg € Z,, be R; = (z;,y;). Let
length(¢) denote the current number of tokens in queue
e, ¢ € E. LetP denote the set of acyclic paths from input
Z — <1 (4) nodej to nodew. Let every back edge be initialized such
=1 Y that it is always over threshold. The inherent latency a sam-
ple will encounter is bounded such that

since}_;_, #o% <1 = VL >0, L>37 L. *&

FE,—-1
"L max <0, { P J : yj> < Sample Latency
ZZ—'ﬁfi'ei pEP Ly
=1 Ji F,
. <max (1] 22]55) ©
et L m(il
P Yi
lj L4 wherep represents a path~»w and F,.,,, is defined as
—a;i tyi -
= — -x;-€; Sinced; = Y . B .
22; vi masx (0, [MDD] if 3 p(g) = (u, w)
- L—di+ yz>
> fl———=—1 -z -e;. (Fo~ow —1)-cns(q) +thr(g) —length(q)
- ; < vi Fro = 42 (0]) D ©
if 3¢ : ¥(q) = (U, V) Av £ WA Fyoy >0
Equation (4) computes processor utilization for the task set
T and is a generalization of the EDF feasibility condition (0 if3g:(q) = (u,0) Av# WA Foooy =0
> Z— < 1 for independent tasks with deadlines equal to
their period given by Liu & Layland [20]. Equation (6) computes the number of times input node

j must execute before enough data is produced to execute
output nodew. Equation (5) then uses this value to bound
the interval of time in which node will next be eligible to
Latency is the delay between when an input node pro- execute, which is the inherent latency a signal encountersin
duces a sample (or message), which consisfwdif;) to- pathj~w.
kens, and when the graph generates a corresponding output. Using our synthesis method to transform a processing
The total latency encountered by a sample (or message) igraph into a real-time system, managing imposed latency is
an integral unit of time created by the sum of the latency a straightforward process. Moreover, unlike the computa-
inherent in the processing graph and the additional latencytion of inherent latency, computing imposed latency is easy.

4.4, Step 4: Analytical Verification of Latency Re-
quirements

Inherent latency is the delay between when a sample is pro-Sample Latency < Inherent Latency Upper Boungt
duced by graph input nodeand when graph output node d,,. O

w executes under the strong synchrony hypothesis. (Un-

der the strong synchrony hypothesis from the synchronousCorollary 4.5. LetG = (V,E,) be a cyclic PGM graph.
programming literature [8], the system instantly reacts to Let7 be an RBE task set synthesized from grépl.etZ,,
external stimuli, as though the application were executing b€ the set of nodes producing data for output nede O.

on an infinitely fast machine.) Thus, imposed latency is the LetR; = (z;,y;) be a well-defined execution rate for node
delay between when nodeexecutes under the strong syn- j € I, starting at time 0. Lef® denote the set of acyclic
chrony hypothesis and when it actually finishes executing paths from input nodg to nodew for all j € Z,,. If T is

in an actual implementation. Under RBE-EDF scheduling, schedulable by Equatiof8), then the latency a sample will
which uses release time inheritance, a node’s logical releaséncur is bounded such that

time is equal to the time it would be released (and execute) I

under the strong synchrony hypothesis. By Theorem 4.1, if Sample Latency< max (1, {_P-‘ .y].> +dy. (7)
the graph is schedulable with the RBE-EDF scheduling al- peEP zj

gorithm (i.e., Equation (3) results in the affirmative), every
released node finishes its execution withid, time units

of its logical release. Thus, the upper bound on imposed
latency incurred by a sample produced by input npded
consumed by output node is equal tod,,. Moreover, as
shown next, computing total latency has now been reduce
to addingd,, to our bound for inherent latency.

Thus, verifying that the application meets its latency re-
quirements has been reduced to ensuring that the right-hand
side of Equation (7) is less than or equal to the latency re-
qguirement for each path in the processing graph. Of course
dCorollary 4.5 can also be used to determine the deadline pa-

rameter to be used for each node in the graph during Step
2. For example, suppose the maximum latency a signal (or
Lemma4.3. LetG = (V,E,v) be a PGM graph. LeT message) encounters from an input ngde output node

be an RBE task set synthesized from graph Letj be must be less thah. Letd,, = k — max (1, [%1 y])

a graph input node for which there exists a path to graph .) pep * 1

output nodew. If T is schedulable by Equatiof8), then If the graph is schedulable with the deadline parameter of

the maximum imposed latency a sample incurs along the®ach node: set such thadl, = min(y,d.), then we can
path j~w is less than or equal td,,. be sure that the latency requirement will be met.

Proof: Since RBE-EDF uses release-time inheritance, 5. Case Study

each task’s logical release time is equal to its release time \\e demonstrate our synthesis method with a signal
(and execution) under the strong synchrony_hypothesis.processmg graph in an anti-submarine warfare (ASW)
Thus, thg maximum |mposed latency asam.plie incurs a'°”gsystem—the Directed Low Frequency Analysis and
the pathj~ w is determined by when nodefinishes exe- Recording (DIFAR) acoustic signal processing graph from
cuting. An affirmative result from Equation (3) means that {he Airborne Low Frequency Sonar (ALFS) subsystem
every released task will finish executing withind,, time of the LAMPS MK Il anti-submarine helicopter. The
units of its logical release time. Thus, output nodevill A FS system processes low frequency signals received by
finish executing withind,, time units of its logical release songpbuoys in the water. Its primary function is to detect
time, and the maximum imposed latency a sample incurss,pmarines and to calculate range and bearing estimates to
along the path~»w is less than or equal i,. D each target. Our example uses the portion of the DIFAR

Theorem 4.4. Let G = (V,E,) be a PGM graph. Let graph shown in Figure 2, which is an abstract representa-

T be an RBE task set synthesized from gréphLet j be _tion of a one-band DIFAR graph [1_5]. The_ qctual process-
a graph input node for which there exists a path to graph ing performed by the DIFAR graph is classified by the U.S.
output nodew. If T is schedulable by Equatiof), then Government. However, an unclassified and abbreviated de-

the latency a sample incurs along the path w under scription of the graph was presented in [14]. An understand-

RBE-EDF scheduling is bounded such that ing of the actual processing is not necessary to follow our
synthesis example.
SampleLatency < Inherent Latency Upper Boung d,,. The DIFAR graph shown in Figure 2 is a cyclic graph

with with 31 nodes and 59 queues. All queues have unity
Proof: The maximum latency a sample incurs is bounded produce, consume, and threshold attributes unless otherwise
from above by the upper bound on inherent latency labeled. Non-unity produce values are labeled near the tail
plus the upper bound on imposed latency. Thus, by of the queue, and non-unity threshold and consume values
Lemma 4.3 and the fact that inherent latency is al- are labeled near the head of the queue. The dataflow at-
ways less than thelnherent Latency Upper Bound tributes used here are not the actual values from the graph

(the actual values are classified). However, the ratio be-graph is schedulable wittd, = y,, for each node: in the
tween the attributes of a queue is the same. For example, igraph.
queueg had a produce of 1024 tokens; a threshold of 2048 Note, however, that this graph only processes one band
tokens; and a consume of 1024 tokens, these values woul@df one sonobuoy. If data from all 16 sonobuoys is pro-
be represented aprd(q) = 1, thr(q) = 2, andcngq) = 1. cessed simultaneously, then 16 instances of the graph are
All back edges, including self-loop edges, are initialized so required, which results in a cumulative processor utiliza-
that they are over threshold. The number of initial tokens tion of 1.0224. Thus, not all 16 instances of the graph can
is shown on all queues that are initialized except self-loop be executed simultaneously on the same processor. More-
edges. Self-loop edges are initialized so that they are alwaysover, while theoretically we can execute with the processor
over threshold, but the number of initial tokens is not shown 100% loaded, the U.S. Navy has a requirement that limits
to reduce clutter in the figure. resource utilization to 80% in new applications. The proces-
The results presented here are from a study conductedsor utilization limit of 80% provides room for application
under contract to General Dynamics to determine the num-enhancements as well as a margin of error for safety. Thus,
ber of 200 MHz PowerPC processors that are needed taat most twelve instances of the graph may be executed on
meet seven different ALFS worst-case concurrent processa single processor given the deadline parameters we have
ing requirements [11]. One of the concurrency modes sup-selected.
ports processing data from 16 different sonobuoys simulta- |f 4, = y. for each node: and the graph is not schedu-
neously. The actual input data rates and the specific latencyable, then relaxing any of the deadline parameters will

requirements are classified. not change the schedulability of the graph since increasing
Step 1: Computing Node Execution Rateslet Rsource= deadline parameters in this case does not reduce utilization.
(16, 625ms be a well-defined rate specification for input A negative result from Equation (4) wheh > y, means

nodeSourcebeginning at time 0. That is, no®ourcede- that the processor is over loaded (i.e., the processor utiliza-

livers 16 samples of the signal (tokens) in every interval of tion is greater than 100%).

625ms Table 1 lists, in topological order, the rate specifi- step 4: Verifying Latency. As with all graphs in which
cations for the other nodes in the graph derived using Equagach queug is initialized with at leasthr(q) — cngq) to-

tion (1). (We showed several examples of computing nodegens, the first sample produced encounters the maximum
execution rates for this graph using Equation (1) in[14]. We |atency [12]. Thus, to verify the latency requirement, only
omit those details here for space considerations.) the latency for the first sample needs to be checked. How-
Step 2: Map Nodes to Tasks in the RBE ModelTable 1 ever, as there are six graph output nodes, the latency of the
lists the RBE parameters associated with each node when ifirst sample reaching each output node must be checked.

is mapped to an RBE task. Parameteysandy,, are as de- By Corollary 4.5, the latency between the time the first
rived in the rate computation step. Paramdigis set toy,, sample arrives and when output ndd®ut executes is less

for each node in the graph. Parametey, is the worst-case than

execution time for node on a 200MHz PowerPC proces-

sor. max (L "M-‘ : ySource> + daliout
Step 3: Verify Schedulability. The third step of the synthe- *Source
sis method is to verify that the resulting task set is schedu- — max (1 {256-‘ 625ms> +10000ms
lable so that we can guarantee real-time execution. By The- | 16
orem 4.1, the RBE task set constructed from the DIFAR = 16 - 625ms+ 10000ms
graph is schedulable using RBE-EDF scheduling if an af- — 20000mMs
firmative result is obtained when the following scheduling
condition is evaluated: = 20 seconds
L—d;+vy; when all of the deadline parameters in the path from node
VL>0, L> Zf (Ty> "Tit € Sourceto nodeAliOut are less than or equal ;0w

Thus, we can manage the amount of latency any sample en-
where f(a) is the floor function defined in Theorem 4.1. counters by choosing appropriate deadline values for node
Sinced,, = y, for every nodeu in the graph, we again use AliOutand its predecessors. For exampl@aifscaie daiimrg,
the simpler utilization expression of Equation (4) to evalu- anddajiout Were reduced t@, 500ms the maximum latency
ate the schedulability of the graph under RBE-EDF schedul-a sample encounters from no&eurceto nodeAliOut is
ing. Using the RBE parameters from Table 1, we see thatless tharl2.5 seconds.
the graph is schedulable sind€’" ”“’;_el = .0639 < 1. The maximum latency the first sample encounters in the
Thus, since the processor utilization is less than one, thepath from nodeSourceto each of the other output nodes is

32,1
init(q) =31

init(g) =1

'

8

8
-
8
8 24 3 BrgOut
24
8

(o],

Figure 2. The PGM DIFAR Graph. All back edges, including self-loop edges, are initialized so that

they are always over threshold.

Node (Tu, Yu, dy, €y) Node (T, Yu, dy, €y)
Source | (16, 625m9 — — AliScale (1, 10000ms 10000ms 3.19mg
FlowCntl | (1, 1250ms 1250ms 6.46mg AliMrg (1, 10000ms 10000ms 0.51mg
BDF (1, 1250ms 1250ms 30.13mg Aliout (1, 10000ms — —
MstrMCS | (1, 1250ms 1250ms 0.34mg BBC (2, 2500ms 2500ms 5.19m9
MnsMrg (0, 1250ms 1250ms 0.75m9 BrgAngle (1, 10000ms 10000ms 5.11mg
MnsOut (0, 1250ms — — BrgMrg (1, 10000ms 10000ms 0.59mg
SIVMCS | (1, 1250ms 1250ms 0.1mg BrgOut (1, 10000msg — —
DDAD (1, 1250ms 1250ms 6.05m9 AutDet (1, 30000ms 30000ms 2.5m9
CRfilter (1, 1250ms 1250ms 8.7mg AutDetMrg | (1, 30000ms 30000ms 0.69m9
CRspec | (1, 1250ms 1250ms 9.2m9 AutDetOut | (1, 30000mg — —
CRdetect| (1, 2500ms 2500ms 3.37mg BinMrg (1, 30000ms 30000ms 0.2mg
BndMrg (2, 2500ms 2500ms 3.22m9 BinOut (1, 30000ms — —
SAD (2, 2500ms 2500ms 3.52m9 VernFilter | (0, 1250ms 1250ms 2.92mg
GramData| (2, 2500ms 2500ms 3.64mg VernSpec | (0, 1250ms 1250ms 3.08m9
GramMrg | (2, 2500ms 2500ms 0.15mg VernDet (0, 1250ms 1250ms 1.18mg
GramOut | (2, 2500mg — —

Table 1. RBE parameters associated with each node in the DIFAR graph for the CR mode of operation.
For each node w inthe graph, dy, = yy.

computed in the same manner. Using the RBE parameters 2. Construction of a mapping of each node to a task in

in Table 1, the maximum latency from no8eurceto node: the RBE task model so that real-time processing can
e GramOutis five seconds, be achieved.
e BrgOutis 20 seconds, 3. Verification that the resulting task set is schedulable so
e AutDetOutis 60 seconds, and that we can guarantee real-time execution.
e BinOutis 60 seconds. 4. Analytical verification that latency requirements of the
At first it is rather surprising that latency as high as 60 application are met.

seconds is acceptable in an embedded application. Acoustic

signal processing applications require much higher latency ~Latency has two components: inherent latency and im-

bounds than other real-time applications such as radar appliPosed latency. We used real-time scheduling theory to
cations. The main reason for this is that sound waves travelPound imposed latency and combined these results with our
much slower than radar waves, and, thus, it takes longer toPrior results on inherent latency to provide an upper bound

accumulate acoustic samples than radar samples — at leagtn the total latency any sample or message will encounter
30 seconds must elapse before enough data is available t8 the synthesized system. If this bound is less than or equal
execute some of the DIFAR signal processing functions. t0 the latency requirement for each path in the graph, we
Consequently, the high latency is due to the time it takes c&n guarantee that the application will always meet its la-

for data to accumulate in a node’s input queues (where it istency requirements. This is the first time imposed latency

buffered) until enough data exists for the node to execute. nas been computed for cyclic processing graphs. More-
over, our latency results are novel in that they assume nodes

6. Summary are eligible for execution as soon as all required input data

. is available and then scheduled with the dynamic on-line
We combined software engineering techniques with real- RBE-EDE scheduler.

time scheduling theory to develop a synthesis method for
transforming a processing graph into a predictable real-
time system in which latency can be managed. The syn-
thesis of real-time systems from PGM graphs involves four
steps:

We demonstrated our synthesis method with DIFAR
acoustic signal processing graph from the ALFS subsystem
of the LAMPS MK Il anti-submarine helicopter. For sim-
plicity and concreteness, we present our synthesis method
in terms of the U.S. Navy's PGM [23] and signal process-
1. Identification of the rates at which nodes in a PGM ing applications. However, our synthesis method applies to

graph must execute if they are to process data in realany general processing graph paradigm and many applica-

time. tion domains.

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

Baruah, S., Howell, R., Rosier, L., “Algorithms and Com-
plexity Concerning the Preemptively Scheduling of Peri-
odic, Real-Time Tasks on One Process&gal-Time Sys-
tems JournalVol. 2, 1990, pp. 301-324.

Baruah, S., Goddard, S., Jeffay, K., “Feasibility Concerns in
PGM Graphs with Bounded Buffers,” Proc. of the Third Intl.
Conference on Engineering of Complex Computer Systems,
Sept., 1997, pp 130-139.

Bhattacharyya, S.S., Murthy, P.K., Lee, E.S8gftware Syn-
thesis from Dataflow Graph&luwer Academic Publishers,
1996.

Bondy, J.A., Murty, U.S.R.Graph Theory with Applica-
tions North Holland, 1976.

Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy:
A Framework For Simulating and Prototyping Heteroge-
neous Systems,International Journal of computer Simu-
lation, special issue on Simulation Software Development
Vol. 4, 1994.

Chatterjee, S., Strosnider, J., “Distributed Pipeline Schedul-
ing: A Framework for Distributed, Heterogeneous Real-
Time System Design,The Computer JourngBritish Com-
puter Society), Vol. 38, No. 4, 1995.

Dasdan, A., Ramanathan, D., Gupta, R.K., “A Timing-
Driven Design and Validation Methodology for Embeded
Real-Time Systems,/ACM Trans. Design Automaton of
Electronic System@HLDVT'97 Special Issue), 3(4), Oct.
1998.

Berry, G., Cosserat, L., “The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics,” Lec-
ture Notes in Computer Science, Vol. 197 Seminar on Con-
currency, Springer Verlag, Berlin, 1985.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[9] Gerber, R., Seongsoo, H., Saksena, M., “Guaranteeing Real- [24]

(10]

(11]

(12]

(14]

Time Requirements with Resource-Based Calibration of Pe-
riodic Processes|EEE Transactions on Software Engineer-
ing, 21(7), July 1995.

Goddard, S.0On the Management of Latency in the Synthe-
sis of Real-Time Signal Processing Systems from Processing
Graphs” Ph.D. Dissertation, University of North Carolina
at Chapel Hill, 1998.
http://www.cse.unl.edlifgoddard/Papers/Dissertation.ps
Goddard, S., “Graph Performance Analysis Report on the
ALFS Worst-Case Concurrency Modes,” Technical Report
300832-980514-01, S.M. Goddard & Co., Inc., under con-
tract to General Dynamics, May 14 1998.

Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
of a Dataflow Execution Paradigm using a Synthetic Aper-
ture Radar Application,Proc. IEEE Real-Time Technology
and Applications Symposiydune 1997, pp. 60-71.

Goddard, S., Jeffay, K. “Managing Memory Requirements
in the Synthesis of Real-Time Systems from Processing
Graphs,”Proc. of IEEE Real-Time Technology and Appli-
cations Symposiupdune 1998, pp. 59-70.

Goddard, S., Jeffay, K. “Analyzing the Real-Time Properties
of a U.S. Navy Signal Processing Systemrbceedings of

10

[25]

[26]

[27]

(28]

[29]

[30]

the Fourth IEEE International Symposium on High Assur-
ance Systems Engineeriidov. 1999, pp. 141-150.

Airborne Low Frequency Sonar Subsystem System Require-
ments Specificationprepared by Hughes Aircraft Corpora-
tion, Version 1.0, Apr. 1991.

System/Segment Specificaton for the Airborne Low Fre-
quency Sonar (ALFS) (Dipper & Integrated Sonobugyi-
pared by Hughes Aircraft Corporation, Aeorspace & De-
fense Sector, Document Number SS12070, Revision D,
April 1994,

Jeffay, K., “The Real-Time Producer/Consumer Paradigm:
A paradigm for the construction of efficient, predictable
real-time systems,Proc. of ACM/SIGAPP Symp. on Appl.
Computing Feb. 1993, pp. 796-804.

Jeffay, K., Goddard, S., “A Theory of Rate-Based Execu-
tion,” Proceedings of the 20th IEEE Real-Time Systems Sym-
posium Dec. 1999, pp. 304-314.

Karp, R.M., Miller, R.E., “Properties of a model for parallel
computations: Determinacy, termination, queuir§§jAM J.
Appl. Math 14(6), 1966, pp 1390-1411.

Liu, C., Layland, J., “Scheduling Algorithms for multipro-
gramming in a Hard-Real-Time Environmengburnal of

the ACM Vol 30., Jan. 1973, pp. 46-61.

Lee, E.A., Messerschmitt, D.G., “Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Process-
ing,” IEEE Transactions on ComputerG-36(1), Jan. 1987,
pp. 24-35.

Mok, A.K., Sutanthavibul, S., “Modeling and Scheduling of
Dataflow Real-Time SystemsProc. of the IEEE Real-Time
Systems SymposiyDec. 1985, pp. 178-187.

Processing Graph Method Specificatiggrepared by NRL
for use by the Navy Standard Signal Processing Program
Office (PMS-412), Version 1.0, Dec. 1987.

Ramamritham, K., “Allocation and Scheduling of
Precedence-Related Periodic TaskdEEE Trans. on
Parallel and Dist. Syst6(4), April 1995, pp 412-420.

Ritz, S., Meyer, H., “Exploring the design space of a DSP-
based mobile satellite receivePtoc. of ICSPAT 94Dallas,

TX, Oct. 1994.

Ritz, R., Willems, M., Meyer, H., “Scheduling for Opti-
mum Data Memory Compaction in Block Diagram Oriented
Software SynthesisProc. of ICASSP 9Detroit, Ml, May
1995, pp. 133-143.

Sun, J., Liu, J., “Synchronization Protocols in Distributed
Real-Time Systems,Proc Intl. Conference on Dist. Com-
puting Syst.May, 1996.

Sun, J., Liu, J., “Bounding Completion Times of Jobs with
Arbitrary Release Times and Variable Execution Times,”
Proc. of the IEEE Real-Time Systems SympogsiD@c.
1996, pp. 2-12.

Spuri, M., Stankovic, J.A., “How to Integrate Precedence
Constraints and Shared Resources in Real-Time Schedul-
ing,” IEEE Transactions on Computersol. 43, No. 12,
Dec. 1994, pp. 1407-1412.

Zivojnovic, V., Ritz, S., Meyer, H., “High Performance DSP
Software Using Data-Flow Graph TransformationBroc.

of ASILOMAR 94Nov. 1994.

