
Feasibility concerns in PGM graphs with bounded bu�ers

Sanjoy Baruah
Department of Computer Science

The University of Vermont

Email: sanjoy@cs.uvm.edu

Steve Goddard Kevin Je�ay
Department of Computer Science

The University of North Carolina

Email: fgoddard,jeffayg@cs.unc.edu

Abstract

The Processing GraphMethod (PGM)| a data
ow
model widely used in the design and analysis of embed-
ded signal-processing applications | is studied from a
real-time scheduling perspective. It is shown that the
problem of deciding if instances of the general model
are feasible on a single processor is intractable (co-NP-
complete in the strong sense); however, a useful special
case is sometimes more tractable. An e�cient feasibil-
ity test and an optimal preemptive scheduling algorithm
are derived for this special case, and a procedure is pre-
sented which permits system architects to make e�cient
use of computational resources and memory require-
ments for bu�ers while constructing real-time data
ow
applications that o�er hard service guarantees.

1. Introduction

Signal processing algorithms are often de�ned in the
literature using large grain data
ow graphs [4]: di-
rected graphs in which a node is a sequential program
that executes from start to �nish in isolation (i.e., with-
out synchronization), and the graph edges depict the

ow of data from one node to the next. Thus, an edge
represents a producer/consumer relationship between
two nodes. Large grain data
ow provides a natural
description of signal processing applications with each
node representing a mathematical function to be per-
formed on an in�nite stream of data that
ows on the
arcs of the graph. The streams of input data are typ-
ically generated by sensors sampling the environment
at periodic rates and sending the samples to the sig-
nal processor via an external channel. The data
ow
methodology allows one to easily understand the sig-
nal processing performed by depicting the structure of
the algorithm; any portion of the application can be
understood in the absence of the rest of the algorithm.
Each node consumes the data produced by its prede-

cessor in the graph and the data exists only between
its production and consumption.

Embedded signal processing applications are natu-
rally de�ned using data
ow techniques, but require the
deterministic performance of real-time applications.
The signal processing graph must process data at the
rates of a set of producers (e.g., sonobuoys, dipping
sonars, or radars) without the loss of data. Further,
data
ow models implicitly de�ne a temporal seman-
tics of a processing graph by specifying lower bounds
on when nodes may execute as a function of the avail-
ability of data on input edges. In order that system
architects be able to successfully construct real-time
data
ow applications that can o�er run-time guaran-
teed service, it is critical that certain algorithmic tools
and techniques be made available to them. These in-
clude:

� schedulability or admission-control tests | How
does one determine if a set of nodes or a graph
\�ts" on a processor?

� upper bounds on queue length | How large must
the storage bu�ers associated with each process-
ing node be in order that no data loss occur due
to inadequate storage?

Unfortunately, without the application of real-time
scheduling theory to data
ow methodologies and a
precise execution model, such tools, techniques, and
methodologies have not been made available to the
architects of real-time data
ow systems. Even the
U.S. Navy's own data
ow methodology, Processing
Graph Method (PGM) [1], lacks real-time analysis
techniques to support making cost tradeo�s or to
verify schedulability requirements. PGM is a U.S.
Navy standard for developing real-time, embedded,
anti-submarine warfare (ASW) applications for the
AN/UYS-2A (the U.S. Navy's standard signal proces-
sor). The AN/UYS-2A is used in a number of U.S.
Navy systems including airborne, surface, and sub-

surface platforms. Millions of dollars have been in-
vested in developing the AN/UYS-2A and applications
for it, yet the U.S. Navy has no way to guarantee that
the hard real-time processing requirements of these
ASW applications can be met.

Prior to [3], none of the data
ow models or real-
time execution paradigms documented in the research
literature were able to correctly model the execution of
PGM applications. In [3], we identi�ed inherent real-
time properties of nodes in a PGM data
ow graph, and
demonstrated how these properties can be exploited
to perform useful and important system-level analy-
ses such as schedulability anaysis, end-to-end latency
analysis, and memory requirements analysis in single
processor systems.

A primary focus in [3] was to bound latency and
bu�er requirements of a graph by assigning response
times (relative deadlines) to nodes based on latency
constraints and then bounding bu�er requirements of
the graph. We explore the complement of that prob-
lem in this paper. That is, we assume an implementa-
tion of a PGM graph has speci�ed bu�er constraints,
and design a deadline assignment algorithm and a cor-
responding preemptive scheduling algorithm. We for-
mally show that our deadline assignment and schedul-
ing algorithms are optimal in the sense that when they
are used to schedule the execution of any feasible PGM
chain, no bu�er over
ow occurs (i.e., no data is lost).

Organization of this paper. The rest of this pa-
per is organized as follows. In Section 2, we formally
introduce the general PGM data
ow graph model, and
de�ne the PGM data
ow graph feasibility prob-
lem. In Section 3, we show that we are unlikely to be
able to design e�cient algorithms for solving this prob-
lem, by proving it to be co-NP-hard in the strong sense.
In Section 4, we de�ne PGM data
ow chains| a sub-
class of PGM data
ow graphs | and present a brief
overview of the Synthetic Aperture Radar (SAR) graph
from ARPA's Rapid Prototyping of Application Spe-
ci�c Signal Processors (RASSP) project. We discuss
the issues of optimal scheduling and feasibility analysis
for PGM data
ow chains in Section 5. We conclude in
Section 6 with a summary of the major ideas presented
herein.

2. PGM data
ow graphs

This section provides a formal description of the
speci�cation of a PGM data
ow graph we require to
perform our analysis. See [1] for the actual PGM spec-
i�cation.

A PGM data
ow graph G is a directed graph
with

� a subset S of the set of nodes designated as
source nodes; each source node s is labeled with
a period ys, indicating that s �res at all time in-
stants ys � k, k 2N.

� for each node Ni, an non-negative parameter ei
called the execution requirement of Ni. The exe-
cution requirement ei denotes the amount of time
for which Ni must be assigned the processor each
time it �res. (We assume that the scheduling
model is preempt-resume; i.e., the execution of a
node may be preempted at some point in time,
and resumed later, and that there is no penalty
associated with such preemption.)

� for each edge Ej = (~Nj ; N̂j)

{ an integer parameter Bj called the bu�er ca-
pacity of the edge; Bj denotes the maximum
number of tokens that may be stored in the
bu�er associated with edge Ej.

{ a threshold amount �j , denoting the mini-
mum number of tokens that must be present
in the bu�er associated with edge Ej in or-

der that node N̂j may �re.

{ a produce amount pj, denoting the number
of tokens generated and deposited in the
bu�er associated with edge Ej each time

node ~Nj �res.

{ a consume amount cj, denoting the number
of tokens consumed and hence removed from
the bu�er associated with edge Ej each time

node N̂j �res.

Edge Ek is over threshold when the bu�er contains
at least �k tokens. A node N̂j is eligible for execu-
tion when all of its input edges are over threshold. A
node begins execution by reading the speci�ed amount
of data from each of its input edges. Next the pro-
cessing function associated with the node is executed.
After the processing function completes, the speci�ed
produce amount of tokens is appended to each output
edge. Before the node terminates, but after data is pro-
duced, ck tokens are dequeued (consumed) from each
input queue. The production and consumption of data
are both atomic operations. That is, all pk tokens are
available to the consumer at the same time; all ck to-
kens are removed from an input queue in one indivisible
operation.

The PGM data
ow graph feasibility problem
is de�ned as follows: Given the speci�cations of a PGM

data
ow graph G, determine if it is possible to schedule
G in such a manner that no bu�er over
ow ever occurs.
A PGM data
ow graph for which such scheduling is
possible is said to be feasible.

We conclude this section with two observations re-
garding feasible PGM data
ow graphs:

1. We can associate a steady state execution rate ri
with each node Ni of a PGM data
ow graph G,
as follows:

ri =

8>>>><
>>>>:

1
y

if Ni is a source node and y

its associated period

rk �
pj
cj

if there is an edge Ej = (Nk; Ni)

in graph G

Since there may be several edges leading into a
node, and each incoming edge may, in general,
de�ne a di�erent execution rate for the node, we
say that a PGM data
ow graph is consistent if
and only if the rates de�ned on each node by
all its incoming edges are the same. We observe
that, for a PGM data
ow graph to be feasible on
a single processor, it is necessary that it be consis-
tent , since there would otherwise be unbounded
buildup of tokens on some edge.

2. We de�ne the utilization of a consistent
PGM data
ow graph to be the quantityP

all nodes Ni
(ri � ei). For a consistent PGM

data
ow graph to be feasible, it is necessary that
its utilization not exceed unity.

3. Intractability

In Section 2 we saw that, for a PGM data
ow graph
to be feasible, it is necessary that it be consistent, and
that its utilization not exceed one. We now explore the
issue of determining necessary and su�cient conditions
for a a PGM data
ow graph to be feasible. Unfortu-
nately, we are unlikely to be able to determine any such
conditions that can be e�ciently checked. More specif-
ically, we prove below that the PGM data
ow graph
feasibility problem is intractable:

Theorem 1 It is co-NP-hard in the strong sense to
determine whether a given PGM data
ow graph is fea-
sible.

Proof: The proof is by reduction from the Simulta-
neous Congruences Problem (SCP). This problem was
introduced by Leung and Merrill [5], and shown to
be NP-hard. Subsequently, it was proven [2] that the
problem is NP-hard in the strong sense.

����0 ����1r�1)(1)
1

-
a1 + b1

b1

����0 ����1r�1)(1)
1

-
a2 + b2

b2

����0 ����1r�1)(1)
1

-
ai + bi

bi

����0 ����1r�1)(1)
1

-
an + bn

bn

r

r

r

r

r

r

Figure 1. PGF dataflow graph constructed
during the proof of Theorem 1. (Node ex-
ecution requirements are written within the
nodes, and the produce amount, threshold,
and consume amount of an edge are written
above the edge at its beginning, and above
and below the edge at its end, respectively.
Each source node is indicated by a double in-
coming arrow which is labelled by the source
node’s period, in parentheses.)

The Simultaneous Congruences Problem is de�ned
as follows:

Given n ordered pairs of positive integers (a1; b1),
(a2; b2), : : : , (an; bn). A positive integer r, 2 �
r � n.

Determine whether there exists a positive integer
x, and r ordered pairs (ai1; bi1), (ai2; bi2), : : : ,
(air; bir) from among the given ordered pairs,
such that x � aij mod bij for each j, 1 � j � r.

Given an instance of the SCP, we construct an in-
stance of the PGM data
ow graph feasibility problem
as shown in Figure 1. This PGM data
ow graph con-
sists of n disjoint chains, each of length 2. Each of
the n source nodes (the leftmost nodes in the �gure)
has an execution requirement of zero, �res once every
time unit, and generates one token onto the queue cor-
responding to its outgoing edge per �ring. Each sink
node has an execution requirement of 1

r�1 (where r is
as given in the SCP instance). The queue correspond-
ing to the i'th edge from the top of the �gure has a
threshold of ai + bi, a bu�er bound of the same size,
and consumes bi tokens per �ring.

It is straightforward to observe that the i'th sink
node is enabled for the �rst time at time ai+bi, and, if
there is never to be any bu�er over
ow, is henceforth
periodically enabled every bi time units. Furthermore,
if there is to be no bu�er over
ow, each node must
�re within one time unit of being enabled, since tokens
arrive along its incoming edge every time unit, and its
bu�er is at capacity when it is enabled. Since each sink
node has an execution requirement of 1

r�1 , at most r�1
of them can execute during any time unit. Hence, there
is bu�er over
ow if and only if at least r nodes are
enabled simultaneously at some time t; i.e., if and only
if r ordered pairs (ai1; bi1), (ai2; bi2), : : : , (air ; bir) from
among the ordered pairs (a1; b1), (a2; b2), : : : , (an; bn)
satisfy t � aij mod bij for each j, 1 � j � r.

As a consequence of Theorem 1, we are unlikely to be
able to determine in polynomial time whether a given
PGM data
ow graph is feasible or not. As a conse-
quence of the co-NP hardness of the problem, it is also
less likely that e�cient heuristics will be found. Our
approach is therefore to focus on a special class of PGM
data
ow graphs, for which the feasibility problem is
not necessarily as hard. This class | PGM data
ow
chains | turns out to be a practically signi�cant one,
in that a large number of signal-processing applications
can be modelled as PGM data
ow chains. We study
these systems in greater detail in the rest of this paper.

4. PGM data
ow chains

A PGM data
ow chain G is a PGM data
ow
graph with the additional properties that (i) there is
exactly one source node, (ii) there is exactly one sink
node, where a sink node is de�ned to be one which has
outdegree zero (i.e., it has no edges leaving it), and
(iii) Every node other than the sink has outdegree one.

An example PGM data
ow chain is shown in Figure 2.
As in Figure 1, the (unique) source node is marked by a
double incoming arrow which is labelled by its period,
in parentheses. We let Ni denote the node at distance
i from the source node (which is therefore denoted as
No); ei the execution requirement of node Ni; pi, �i,
and ci denote the produce amount, threshold, and con-
sume amount respectively of the edge (Ni; Ni+1); and
Bi the bu�er associated with edge (Ni�1; Ni). (For no-
tational convenience, we assume that eo = 0; i.e., the
source node has no execution requirement and hence
completes �ring at exactly k � y for all y 2N.)

PGM chains can represent non-trivial signal pro-
cessing applications. For example, the graph of Fig-
ure 3 represents a real-time image processing applica-
tion from ARPA's Rapid Prototyping of Application

Speci�c Signal Processors (RASSP) project.1 This
graph processes data collected from a Ka-band syn-
thetic aperture radar (SAR) sensor in real-time. The
SAR application is used to identify man-made ob-
jects on the ground or in the air by producing high-
resolution, all-weather images.

The rest of this section provides a brief description
of the processing performed by each node in the graph.
This information is provided for concreteness for the
reader with a signal processing background. The actual
logical operation of the SAR graph is immaterial to the
results we derive and the analyses we perform. The
only essential properties of the SAR graph are those
that in
uence node execution (i.e., the produce, con-
sume, and threshold values for each node). For a more
detailed description of the processing performed by the
SAR benchmark, see [6].

The top row of nodes in the SAR graph each operate
on one pulse of data at a time. The pulse delivered by
the external source, labeledYRange, has already been
converted to complex-valued data and consists of 118
range gate samples. The Zero Fill node, however, pads
the pulse with zeroes to create a pulse length of 256
in preparation for the FFT node. Before performing
the FFT, the data is passed through a Kaiser window
function, represented by the node Window Data, to
reduces sidelobe levels and perform bandpass �ltering.
After being compressed in the range dimension by the
Range FFT node, the pulse is passed through the radar
cross section calibration �lter performed by the RCS
Mult node.

Unlike the previous nodes in the SAR graph, which
require only one pulse of data before being eligible for
execution, the Corner Turn node requires 128 pulses
of data. The corner turn node forms a 2-D processing
array where each row of the array contains one sample
from 128 di�erent pulses and each column contains the
256 range gates that form a pulse. The processing array
consists of two 64�256 frames (or sequences of pulses).
As a new frame is loaded in, the previous two frames
are \released" with the oldest frame being shifted out.
Hence, the 256 �128 threshold and the 256 �64 consume
values on the RCS input queue to the Corner Turn
node.

Convolution processing is performed on each row of
the 2-D matrix by the Azimuth FFT, Kernel Mult, and
Azimuth IFFT nodes. The Azimuth FFT node per-
forms a FFT on the signal, which has been aligned in

1The graph shown in Figure 3 is actually themini-SAR graph,
which was created to test tools developed for the RASSP project.
It performs the range and azimuth compression processing in
forming an image that is one eighth the size of that formed by
the full SAR benchmark.

��
��
No)(y)

- s s s -�i�1

ci�1��
��
Ni

ei

Bi

pi �i

ci
-��
��
Ni+1

pi+1
- s s s

Figure 2. A PGM dataflow chain

the azimuth dimension. Next the Kernel Mult node
multiplies each row of the matrix by a convolution ker-
nel. Before the SAR image is output to the Sink node,
an inverse FFT is performed by the Azimuth IFFT
node.

5. Analyzing PGM data
ow chains

We now address the issue of determining whether
a given PGM data
ow chain is feasible and, if so, the
issue of actually constructing a schedule for it. This
section is organized as follows. In Section 5.1, we deter-
mine lower bounds on the size of the bu�er associated
with each edge (Lemma1), and reiterate the utilization
bound of Section 2 (Lemma 2). In Section 5.2, we in-
troduce the concept of deadlines for particular �rings
of nodes, and present a scheduling algorithm that is
optimal in the sense that it will successfully schedule
any feasible PGM data
ow chain with no bu�er over-

ow. In Section 5.3, we design a reasonably e�cient
feasibility test which, while not necessary, is certainly
su�cient in that any PGM data
ow chain that passes
this test is guaranteed to be feasible. Hence, given a
PGM data
ow chain

1. We can check and see whether it possesses the
necessary properties (Lemma 1 and Lemma 2); if
not, the chain is infeasible;

2. If it does possess these necessary properties, we
can check to determine whether it passes the suf-
�cient feasibility test (Section 5.3);

3. If so, the system can be scheduled to never suf-
fer bu�er over
ow, by simply using the optimal
scheduling algorithm of Section 5.2. On the other
hand, if the system does not pass the feasibil-
ity test, we do not know whether it is feasible
(although we are guaranteed that, if it is fea-
sible, then the optimal scheduling algorithm of
Section 5.2 can schedule it with no bu�er over-

ow).

In Section 5.4, we put all these pieces together, and de-

scribe a procedure for implementing applications that
are modelled as PGM data
ow chains. While our im-
plementations are not optimal in terms of computing
resources (CPU or memory), it is possible to make a
CPU/ design-time tradeo�: by expending more time in
the design process, higher CPU utilization can be ob-
tained (equivalently, a less powerful CPU can be used).
And, our approach can be formally proved to require
not much more than twice the minimum amount of
memory needed in an optimal solution.

5.1. Necessary conditions for feasibility

Lemma 1 For a given PGM data
ow chain to be fea-
sible, it is necessary that Bi � bi for all nodes Ni,
where bi is de�ned as follows:

bi
def

=

��
�i�1

gcd(pi�1; ci�1)

�
� 1

�
� gcd(pi�1; ci�1) + pi�1 :

Example 1 Before presenting the proof sketch for
Lemma 1, we derive bi for the Corner Turn and Az-
imuth FFT nodes from the SAR graph of Figure 3.

bCorner Turn

=

��
256 � 128

gcd(256; 256 � 64)

�
� 1

�
� gcd(256; 256 � 64)

+256

=

��
256 � 128

256

�
� 1

�
� 256 + 256 = 128 � 256

bAzimuth FFT

=

��
128

gcd(256 � 128; 128)

�
� 1

�
� gcd(256 � 128; 128)

+256 � 128

=

��
128

128

�
� 1

�
� 128 + 256 � 128 = 256 � 128

Proof Sketch: Since each �ring of node Ni�1

deposits pi�1 tokens into the i'th bu�er and each
�ring of Ni consumes ci�1 tokens, it follows that

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

?

����

AzimuthImageSink

IFFT 256�128128,
128

AFFT CornerKernelAzimuth

128,
128

128 128128,
128

256

256�128,
256�64

Turn
Output

RCS

RCS
Mult

Mult FFT

AzimuthMult

256,
256

c=128
�=128, p=128

RFFTRange
FFT256,

256
256

WindowWindow
Data256,

256
256

FillSource

256
YRange

Range

Fill
Zero

p=118
c=118
�=118,

(3.6ms))

Figure 3. SAR Graph

(i) the number of tokens in the i'th bu�er at
any instant in time is a multiple of gcd(pi�1; ci�1),
and (ii) at some instant during a valid execution,
there will be exactly k � gcd(pi�1; ci�1) tokens in
the bu�er, for each multiple of gcd(pi�1; ci�1) less
than �i�1. By algebraic manipulation, it can be
seen that the largest multiple of gcd(pi�1; ci�1) less
than � is (d�i�1= gcd(pi�1; ci�1)e � 1) � gcd(pi�1; ci�1);
when the bu�er contains this many tokens, node
Ni is not eligible for execution. Hence, when
Ni�1 �res once again, the bu�er will contain exactly
(d�i�1= gcd(pi�1; ci�1)e � 1) � gcd(pi�1; ci�1)+ pi�1 to-
kens.

For each node Ni, we de�ne a steady state execution
rate ri as follows:2

ri =

8<
:

ri�1 �
pi�1

ci�1

if i > 0

1
y

if i = 0
(1)

Lemma 2 For a given PGM data
ow chain to be fea-
sible on a single processor, it is necessary thatX

all nodes Ni

(ri � ei) � 1

Proof Sketch: Observe that, for large t each node
Ni executes approximately t � ri times over the interval
of time [0; t]. Hence, ri � ei � t denotes the amount of
time for which node Ni must be executed over interval
[0; t], as t!1. Summing over all nodes and observing
that the total amount of execution time available over
[0; t] is t units, we obtain the desired condition.

5.2. An optimal scheduling algorithm

Let �i denote the number of tokens initially in the
bu�er at node Ni, at time t = 0.

2For a more precise treatment of execution rates, see [3].

De�nition 1 (Deadlines) For each k 2 N and for
each node Ni, we de�ne a dline(Ni; k) that denotes the
latest time at which node Ni must complete execution
for the k'th time, if bu�er over
ow is not to occur.
This is de�ned as follows:

dline(Ni; k) =

8>>><
>>>:

dline(Ni�1;
j
(k�1)ci�1+Bi��i

pi�1

k
+ 1)

if i > 0

(k � 1) � y if i = 0

(2)

Given the speci�cation for a PGM data
ow chain,
dline(Ni; k) can be determined in time �(i), by making
a recursive call for computing some deadline for node
Ni�1. In Figure 4, we illustrate the process, by deriving
deadlines for the �rst 2 executions of the Zero Fill node,
Corner Turn, and Azimuth FFT nodes.

The de�nition of dline(Ni; k) is motivated by the fol-
lowing considerations: With respect to a particular ex-
ecution of the PGM data
ow chain, let �nish(Ni; k)
denote the time at which node Ni completes execution
for the k'th time. Suppose that node Ni�1 has com-
pleted ` �rings by then. For bu�er over
ow to not have
occurred at node Ni, it is necessary that

�i + `pi�1 � (k � 1)ci�1 � Bi :

By algebraic manipulation, we obtain

�i + `pi�1 � (k � 1)ci�1 � Bi

� ` �
(k � 1)ci�1 + Bi � �i

pi�1

� ` �

�
(k � 1)ci�1 +Bi � �i

pi�1

�

Let, 8i, Bi = bi and �i = 0.

dline(Zero F ill; 1) = dline(Source;

�
(1� 1)118 + 118� 0

118

�
+ 1)

= dline(Source; 2) = y

dline(Zero F ill; 2) = dline(Source;

�
(2� 1)118 + 118� 0

118

�
+ 1)

= dline(Source; 3) = 2y

dline(Corner Turn; 1) = dline(RCS Mult;

�
(1� 1)(256 � 64) + 128 � 256� 0

256

�
+ 1)

= dline(RCS Mult; 129) = 132y

dline(Corner Turn; 2) = dline(RCS Mult;

�
(2� 1)(256 � 64) + 128 � 256� 0

256

�
+ 1)

= dline(RCS Mult; 193) = 196y

dline(Azimuth FFT; 1) = dline(Corner Turn;

�
(1� 1)128 + 256 � 128� 0

256 � 128

�
+ 1)

= dline(Corner Turn; 2) = 196y

dline(Azimuth FFT; 2) = dline(Corner Turn;

�
(2� 1)128 + 256 � 128� 0

256 � 128

�
+ 1)

= dline(Corner Turn; 2) = 196y

Figure 4. An example of determining deadlines

Thus, for over
ow to not occur, it is necessary that

�nish(Ni; k) < �nish(Ni�1;

�
(k � 1)ci�1 +Bi � �i

pi�1

�
+ 1)

(3)

be satis�ed. Thus dline(Ni; k) | the latest time at
which node Ni may complete execution for the k'th
time | is related to the latest times at which execu-
tions of node Ni�1 may complete.

Algorithm edf. We propose the following algorithm
for scheduling PGM data
ow chains. Recall that a
node Ni is de�ned to be eligible at a particular time in-
stant if there are at least �i�1 tokens bu�ered at its in-
coming edge at that time instant. At each time instant,
Algorithm edf executes the currently eligible node with
the highest priority according to the following priority
rule: Eligible node Ni, which has �red (ki � 1) times
thus far, has priority over eligible node Nj , which has
�red (kj � 1) times thus far, i�

� dline(Ni; ki) < dline(Nj ; kj), or

� dline(Ni; ki) = dline(Nj ; kj), and i > j.

That is, nodes are scheduled for execution according to
deadlines, with ties broken in favor of the node further

down the chain.

A scheduling algorithm is de�ned to be optimal for
PGM data
ow graphs on uniprocessors if and only if it
can schedule every feasible PGM data
ow chain with
no bu�er over
ow on a single processor.

Theorem 2 Algorithm edf is optimal for PGM
data
ow chains on uniprocessors.

Proof Sketch: In the appendix.

5.3. A sufficient condition for feasibility

As a consequence of Lemma 2, it is necessary that
the utilization � of a PGM data
ow chain be at most
one, where � is de�ned as follows:

� =
X

all nodes Ni

(ri � ei) :

When � is strictly less than one, it is possible to design
an e�cient su�cient (albeit not necessary) feasibility
test for PGM data
ow chains. As we shall soon see,
when � ! 1 the complexity of the feasibility test !
1. This feasibility test is based upon identifying a
\worst-case" scenario for the PGM data
ow chain, and

then simulating the behavior of the optimal scheduling
algorithm{ Algorithm edf|on the chain in this worst-
case scenario.

De�nition 2 (Saturation) A PGM data
ow chain
is said to be saturated if, 8i, �i | the number of to-
kens in the bu�er at node Ni at time t = 0 | is greater
than or equal to bi, where bi is as de�ned in Lemma 1.

Recall that by Lemma 1, it is necessary that the bu�er
at node Ni be of size at least bi, for all i. Hence, each
potentially feasible PGM data
ow chain can saturated.

The following lemmaasserts that the saturated state
represents a \worst-case" scenario for a PGM data
ow
chain:

Lemma 3 If a saturated PGM data
ow chain can be
scheduled with no bu�er over
ow by Algorithm edf,
then the chain is feasible when �i = 0 for all nodes
Ni.

(Notice that it is not claimed that this saturated chain
is actually ever achieved during execution | the lemma
merely claims that no realized state is \worse" than a
saturated state.)

Lemma4 characterizes the behavior of feasible PGM
data
ow chains when executed starting from their sat-
urated state:

Lemma 4 If Algorithm edf idles the processor while
scheduling a saturated PGM data
ow chain, then Algo-
rithm edf will successfully schedule the saturated chain
for all time, with no bu�er over
ow.

From Lemmas 3 and 4, we may conclude that if Algo-
rithm edf idles the processor while scheduling a PGM
data
ow chain starting from a saturated state, then the
PGM data
ow chain is feasible when starting with all
its bu�ers initially empty. A su�cient feasibility test
for PGM data
ow chains now suggests itself:

Algorithm feas: Simulate the behavior of Algo-
rithm edf on the saturated PGM data
ow chain. Con-
tinue the simulation until one of the two following
events occur:

bu�er over
ow: return \not known to be feasible."
processor idles: return \guaranteed feasible."

Run-time analysis: For chains that have � < 1,
the simulation in Algorithm feas is guaranteed to ter-
minate. A loose upper bound on the time interval
for which the simulation must be carried out is ob-
tained as follows: The bi tokens at node Ni at time

0 may force it to �re no more than (bi=ci�1) times,
for a total execution requirement (over all nodes) ofP

all nodes Ni
((bi=ci�1) � ei). The externally triggered

�ring of the source node causes an additional execu-
tion requirement of no more than � � t over any interval
of size t; therefore, the processor will idle at or before
the smallest t satisfying

X
all nodes Ni

biei
ci�1

+ � � t < t ;

which is satis�ed by

t >
1

1� �

0
@ X

all nodes Ni

biei
ci�1

1
A

For constant �, this expression is pseudopolynomial in
the parameters bi and ei, and hence in the input in-
stance.

5.4. Synthesizing a PGM dataflow chain

Suppose that we have a DSP application that can
be represented as a PGM data
ow chain (e.g., the SAR
application), and we wish to implement this chain on
appropriate hardware. The values of the execution re-
quirements of the nodes are in
uenced by the choice
of CPU: in general, the faster the CPU, the smaller
the ei's. We also have some control over the bu�er ca-
pacities: by making more memory space available, we
can make the Bi's larger. The remaining parameters
| the period of the source node, the pi's, the �i's, and
the ci's | are determined by the application charac-
teristics, and are not really under our control.

Given such a DSP application, we outline below how
we would choose a CPU and the bu�er sizes in order
to be able to guarantee that our implementation is fea-
sible.

1. Choose a fast enough CPU such that the utiliza-
tion � of the chain is strictly less than one. (There
is a cost-e�ciency tradeo� here in that the faster
the CPU | consequently, the smaller the value
of � | the more e�cient the remainder of this
design procedure.)

2. Choose bu�er sizes B1, B2, : : : ; Bn such that
Bi � bi for each i, where the bi's are as de�ned
in Lemma 1.

3. Execute Algorithm feas on the system.

� if Algorithm feas returns \guaranteed feasi-
ble" then we have a feasible design; return.

� if bu�er over
ow occurs at the i'th bu�er,
increase Bi by (at least) the amount of the
over
ow, and re-execute Step 3.

And how close to optimal is the design so obtained? It
can be shown that if a PGM data
ow chain is feasible
with bu�er-sizes B̂1, B̂2, : : : ; B̂n, then Algorithm feas

will return \guaranteed feasible" with the values of B1,
B2, : : : ; Bn set to b1+B̂1, b2+B̂2, : : : ; bn+B̂n, where
the bi's are as de�ned in Lemma 1. Since by Lemma 1
it is necessary that B̂i � bi for all i, this means that
the design obtained above is likely to use no more than
twice the minimum amount of bu�er space necessary
to achieve feasibility.

6. Conclusions

The data
ow paradigm o�ers a convenient and pow-
erful means to design and analyze signal processing ap-
plications. In embedded signal-processing applications,
particularly those for safety-critical systems, hard per-
formance guarantees must be met. We have studied
the issue of determining whether a given application,
represented as a data
ow graph, can be feasibly sched-
uled on available resources and if so, how to go about
constructing the actual schedule. For general data
ow
graphs, we have shown that this problem is intractable
(co-NP hard in the strong sense); for the more re-
stricted (but still immensely useful) model of data
ow
chains, we have suggested a synthesis approach that
permits the system architect to make e�cient use of
computational and memory resources. In conjunction
with the results in [3], the research presented here rep-
resents a comprehensive scheduling-theoretic analysis
of a popular software engineering methodology; it is
hoped that this analysis will (i) be useful to the sys-
tem architect by extending this methodology for use in
constructing systems with hard-real-time guarantees,
and (ii) serve as a concrete \proof-of-concept" example
to validate our thesis that formal analysis of real-time
properties and behavior has the potential to provide
major bene�ts in the ongoing endeavor to obtain more
powerful tools, techniques, and methodologies for the
design and implementation of complex computer appli-
cation systems.

References

[1] PGM { Processing Graph Method Speci�cation, Decem-
ber 1987. Prepared by the Naval Research Laboratory
for use by the Navy Standard Signal Processing Pro-
gram O�ce (PMS-412). Version 1.0.

[2] S. Baruah, R. Howell, and L. Rosier. Feasibility prob-
lems for recurring tasks on one processor. Theoretical

Computer Science, 118:3{20, 1993.
[3] S. Goddard. Analyzing the real-time properties of a

data
ow execution paradigm using a synthetic aper-
ture radar application. In Proceedings of the Real-

Time Technology and Applications Symposium, Mon-
treal, Canada, June 1997.

[4] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data
ow programs for digital signal pro-
cessing. IEEE Transactions on Computers, C-36(1):24{
35, January 1987.

[5] J. Leung and M. Merrill. A note on the preemptive
scheduling of periodic, real-time tasks. Information

Processing Letters, 11:115{118, 1980.
[6] B. Zuerndorfer and G. A. Shaw. SAR processing for

RASSP application. In Proceedings of First Annual

RASSP Conference, Arlington, VA, August 1994.

Appendix

A. Proof of optimality of Algorithm edf

Lemma 5 If (i > j) and dline(Ni; ki) � dline(Nj ; kj),
then Ni completes its ki'th execution strictly before Nj

completes its kj'th execution in any valid schedule.

Proof Sketch: By the recursive de�nition of dead-
lines, and since i > j, dline(Ni; ki) = dline(Nj ; k̂) for

some k̂. Since dline(Ni; ki) � dline(Nj ; kj), it follows

that k̂ � kj. Let �nish(Ni; ki) denote the time at which
node Ni completes execution for the ki'th time. Sup-
pose that node Ni�1 has completed ` �rings by then.
For bu�er over
ow to not have occurred at node Ni, it
is necessary that

�i + `pi�1 � (ki � 1)ci�1 � Bi :

By algebraic manipulation, we obtain

�i + `pi�1 � (k � 1)ci�1 � Bi

� ` �
(k � 1)ci�1 + Bi � �i

pi�1

� ` �

�
(k � 1)ci�1 +Bi � �i

pi�1

�

Thus, for over
ow to not occur, it is necessary that

�nish(Ni; k) < (4)

�nish(Ni�1;

�
(k � 1)ci�1 + Bi � �i

pi�1

�
+ 1)

be satis�ed. Observe that the second argument of the
�nish(;) on the right hand side above is identical to the
second argument of the dline(;) on the right hand side
in the recursive de�nition of deadlines.

By repeating the above argument for i � 1; i �
2; : : : ; j + 1, we conclude that it is necessary that
�nish(Ni; ki) < �nish(Nj ; k̂); since k̂ � kj, it fol-
lows that Ni must complete its ki'th execution before
Nj completes its kj'th execution.

Lemma 6 In any valid schedule, node Ni completes
execution for the ki'th time no later than time
dline(Ni; ki), for all i � 1.

Proof Sketch: This is easily proved by induction
on i. The base case is i = 0. From the de�nition,
dline(No; k) = y � (k � 1); by assumption (Section 4),
the source node No has no execution requirement, and
hence completes execution the instant it is enabled, at
exactly these time instants.

For the induction step,
assume that �nish(Ni�1; k

0) � dline(Ni�1; k
0) for all

k0. Suppose that node Ni�1 has completed ` �rings
before Ni completes its k'th �ring. For bu�er over
ow
to not have occurred at node Ni, it is necessary that

�i + `pi�1 � (k � 1)ci�1 � Bi

� ` �
(k � 1)ci�1 + Bi � �i

pi�1

� ` �

�
(k � 1)ci�1 + Bi � �i

pi�1

�

It therefore follows that

�nish(Ni; k) <

�nish(Ni�1;

�
(k � 1)ci�1 +Bi � �i

pi�1

�
+ 1)

Given the induction hypothesis, the lemma follows.

A schedule is de�ned to be work conserving if and
only if it never idles the processor while there is some
node eligible for execution.

Lemma 7 Every feasible PGM data
ow chain can be
scheduled in a work-conserving manner with no bu�er
over
ow.

Proof Sketch: Since the time at which a node most
complete a particular �ring depends upon the time at
which other nodes complete �ring (Equation 4), one
may at �rst assume that there is some bene�t to be
obtained by adopting a non work-conserving strategy.
However, observe that while being non-conserving may
delay the actual time by which some task must com-
plete, such a strategy will not cause any reduction in
the amount of actual work that must be done prior to
this completion time (indeed, by perhaps having the
source node �re during the idle interval, the amount of
work may actually increase).

We are now ready to sketch out a proof for Theo-
rem 2.

Proof Sketch of Theorem 2: Let G be a feasible
PGM data
ow chain in which all parameters are inte-
gers. Our proof of correctness proceeds by induction
on time t. The induction hypothesis is that there is
a valid work-conserving schedule | Opt(t) | which
agrees exactly with the schedule generated by Algo-
rithm edf over the interval [0; t). (By Lemma 7, this
hypothesis is true for t = 0, since G has a workconserv-
ing schedule in which no bu�er over
ow occurs.) The
inductive step consists of obtaining a new valid work-
conserving schedule Opt(t+1) from Opt(t) such that
(i) Opt(t+ 1) and Opt(t) are identical over the inter-
val [0; t), and (ii) Opt(t+ 1) and Algorithm edf make
the same scheduling decision during [t; t+ 1]. The in-
ductive hypothesis would then be true for t+1 as well,
and the proof would be complete.

Suppose that Algorithm edf schedules the ki'th �r-
ing of Node Ni during interval [t; t+ 1], while Opt(t)
scheduled the kj'th �ring of node Nj . (Observe that
this implies that dline(Ni; ki) � dline(Nj ; kj).)

Case: (i = j). The schedule Opt(t + 1) in this case
is simply the schedule Opt(t).

Case: (i > j). By Lemma 5, Opt(t) completes Ni's
ki'th �ring strictly before Nj 's kj'th �ring. Thus, we
can swap the allocation to Ni made in Opt(t) with
the allocation made to Nj during [t; t+1], and still not
cause either �ring to complete after its deadline3. (If
this completes the execution of Ni, then it is possible
that Ni+1 transits froman ineligible to an eligible state;
if this �ring of Ni+1 has a deadline before dline(Nj ; kj),
it may be necessary to further swap the allocation toNj

with the an allocation to Ni+1, and so on a maximum
of n� i times, where n is the length of the chain.) The
schedule obtained after these swaps is Opt(t+ 1).

Case: (i < j). Once again, we can swap the alloca-
tion to Ni made in Opt(t) with the allocation made
to Nj during [t; t+ 1]. However, this may cause nodes
in Ni+1; : : : ; Nj�1 to become eligible, and these �rings
may have deadlines prior to Nj's. The point to note,
however, is that none of these �rings can have a dead-
line prior to Ni's ki'th �ring, since they are activated
by Ni's ki'th �ring. Hence once again a series of swaps
{ a maximum of j � 1 { will yield a schedule in which
no bu�er over
ow occurs; this schedule is Opt(t + 1)

3Where the deadline is as implied by Lemma 6

