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Abstract — Active queue management (AQM) in routers has
been proposed as a solution to some of the scalability issues asso-
ciated with TCP’s pure end-to-end approach to congestion control.
A recent study of AQM demonstrated its effectiveness in reducing
the response times of web request/response exchanges as well as
increasing link throughput and reducing loss rates [10]. However,
use of the ECN (explicit congestion notification) signaling protocol
was required to outperform drop-tail queuing. Since ECN is not
currently widely deployed on end-systems, we investigate an alter-
native to ECN, namely applying AQM differentially to flows based
on a heuristic classification of the flow’s transmission rate. Our
approach, called differential congestion notification (DCN), distin-
guishes between “small” flows and “large” high-bandwidth flows
and only provides congestion notification to large high-bandwidth
flows. We compare DCN to other prominent AQM schemes and
demonstrate that for web and general TCP traffic, DCN outper-
forms all the other AQM designs, including those previously de-
signed to differentiate between flows based on their size and rate.

1.  Introduction
Congestion control on the Internet has historically been per-
formed end-to-end with end-systems assuming the responsi-
bility for detecting congestion and reacting to it appropri-
ately. Currently, TCP implementations detect instances of
packet loss, interpret these events as indicators of conges-
tion, and reduce the rate at which they are transmitting data
by reducing the connection’s window size. This congestion
reaction (combined with a linear probing congestion avoid-
ance mechanism) successfully eliminated the occurrence of
congestion collapse events on the Internet and has enabled
the growth of the Internet to its current size.

However, despite this success, concerns have been raised
about the future of pure end-to-end approaches to conges-
tion control [1, 5]. In response to these concerns, router-
based congestion control schemes known as active queue
management (AQM) have been developed and proposed for
deployment on the Internet [1]. With AQM, it is now possi-
ble for end-systems to receive a signal of incipient conges-
tion prior to the actual occurrence of congestion. The signal
can be implicit, realized by a router dropping a packet from
a connection even though resources exist to enqueue and
forward the packet, or the signal can be explicit, realized by
a router setting an explicit congestion notification (ECN) bit
in the packet’s header and forwarding the packet.

In a previous study of the effects of prominent AQM de-
signs on web performance, we argued that ECN was re-
quired in order to realize the promise of AQM [10]. This

was a positive result that showed a tangible benefit to both
users and service providers to deploying AQM with ECN.
When compared to drop-tail routers, the deployment of par-
ticular AQM schemes with ECN (and with ECN support in
end-system protocol stacks) allowed users to experience
significantly reduced response times for web re-
quest/response exchanges, and allowed service providers to
realize higher link utilization and lower loss rates. Without
ECN, certain AQM schemes could realize modest perform-
ance improvements over simple drop-tail queue manage-
ment, but the gains were small compared to those achiev-
able with ECN.

The positive ECN results, however, beg the question of
whether or not all AQM inherently requires ECN in order to
be effective, or if it simply is the case that only existing
AQM designs require ECN in order to be effective. This is a
significant issue because ECN deployment requires the par-
ticipation of both routers and end-systems and hence raises a
number of issues including the cost and complexity of im-
plementing and deploying ECN, the incremental deploy-
ability of ECN, and the (largely unstudied) issue of dealing
with malicious end-systems that advertise ECN support but
in fact ignore ECN signals or simply have not been config-
ured appropriately. Other deployment issues include the fact
that many firewalls and network address translators inten-
tionally or unintentionally drop all ECN packets or clear
ECN bits. In a study of TCP behavior, Padhye and Floyd
found that less than 10% of the 24,030 web servers tested
had ECN enabled, of which less than 1% had a compliant
implementation of ECN [14]. More recent results (August
2003) showed that only 1.1% of 441 web servers tested had
correctly deployed ECN [15]. This clearly points to obvious
difficulties in deploying and properly using ECN on the
end-systems. Thus, AQM could be significantly more ap-
pealing if ECN were not required for effective operation.

In this paper, we present an AQM design that signals con-
gestion based on the size and rate of the flow and does not
require ECN for good performance. Our approach is to dif-
ferentially signal congestion to flows (through the dropping
of packets) based upon a heuristic classification of the
length and rate of the flow. We classify traffic into “mice,”
short connections that dominate on many Internet links
(more than 84% of all flows in some cases [21]), and “ele-
phants,” long connections that, while relatively rare, account
for the majority of bytes transferred on most links (more
than 80% of all bytes [21]). Our AQM design attempts to
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notify only high-bandwidth “elephants” of congestion while
allowing “slower” (and typically shorter) connections to
remain unaware of incipient congestion. The motivation for
this approach, borne out by our analysis of AQM schemes,
is that providing early congestion notifications to mice only
hurts their performance by forcing these short TCP connec-
tions to simply wait longer to transmit their last few seg-
ments. These short flows are often too short to have a
meaningful transmission rate and are so short that slowing
them down does not significantly reduce congestion. In con-
trast, providing early congestion notification to elephants
can lead to abatement of congestion and more efficient use
of the network. Our form of differential congestion notifica-
tion, called DCN, significantly improves the performance of
the vast majority of TCP transfers and provides response
times, link utilizations, and loss ratios that are better than
those of existing AQM schemes including those that also
attempt to differentiate between flows based on their size
and rate.

The remainder of the paper makes the case for differential
congestion notification based on classification of flow-rate.
Section 2 discusses previous related work in AQM schemes
in general and in differential AQM specifically. Section 3
presents our DCN scheme. Section 4 explains our experi-
mental evaluation methodology and Section 5 presents the
results of a performance study of DCN and several promi-
nent AQM schemes from the literature. The results are dis-
cussed in Section 6.

2.  Background and Related Work
Several AQM designs have attempted to achieve fairness
among flows or to control high-bandwidth flows. Here we
give a description of the AQM designs most related to ours.

The Flow Random Early Drop (FRED) algorithm protects
adaptive flows from unresponsive and greedy flows by im-
plementing per-flow queueing limits [11]. The algorithm
maintains state for each flow that currently has packets
queued in the router. Each flow is allowed to have up to
minq but never more than maxq packets in the queue. Packets
of flows that have more than minq but less than maxq packets
in the queue are probabilistically dropped. When the number
of flows is large and a high-bandwidth flow consumes only
a small fraction of the link capacity, FRED maintains a large
queue. However, a large queue results in high delay. Fur-
thermore, the algorithm becomes less efficient with a large
queue since the search time for flow state is proportional to
queue length.

The Stabilized Random Early Drop (SRED) algorithm con-
trols the queue length around a queue threshold independent
of the number of active connections [13]. The algorithm
keeps the header of recent packet arrivals in a “zombie list.”
When a packet arrives, it is compared with a randomly cho-
sen packet from the zombie list. If the two packets are of the
same flow, a “hit” is declared. Otherwise, the packet header

in the zombie list is probabilistically replaced by the header
of the new packet. The number of active connections is es-
timated as the reciprocal of the average number of hits in a
given interval (a large number of active connections results
in a low probability of hits and vice versa). The drop prob-
ability of a packet is a function of the instantaneous queue
length and the estimated number of active connections. Hits
are also used to identify high-bandwidth flows. Packets of
high-bandwidth flows are dropped with a higher probability
than other packets.

The CHOKe algorithm heuristically detects and discrimi-
nates against high-bandwidth flows without maintaining per
flow state [17]. The algorithm is based on the assumption
that a high-bandwidth flow is likely to occupy a large
amount of buffer space in the router. When a new packet
arrives, CHOKe picks a random packet in the queue and
compares that packet’s header with the new packet’s header.
If both packets belong to the same flow, both are dropped,
otherwise, the new packet is enqueued. As with FRED,
CHOKe is not likely to work well on a high-speed link and
in the presence of a large aggregate of flows.

The Stochastic Fair BLUE (SFB) algorithm detects and rate-
limits unresponsive flows by using accounting bins that are
organized hierarchically [4]. The bins are indexed by hash
keys computed from a packet’s IP addresses and port num-
bers and used to keep track of queue occupancy statistics of
packets belonging to the bin. High-bandwidth flows can be
easily identified because their bins’ occupancy is always
high. These high-bandwidth flows are then rate-limited.
SFB works well when the number of high-bandwidth flows
is small. When the number of high-bandwidth flows in-
creases, more bins become occupied and low bandwidth
flows that hash to these bins are incorrectly identified as
high-bandwidth and penalized.

The Approximate Fairness through Differential Dropping
(AFD) algorithm approximates fair bandwidth allocation by
using a history of recent packet arrivals to estimate a flow’s
transmission rate [16]. AFD uses a control theoretic algo-
rithm borrowed from PI [7] to estimate the “fair share” of
bandwidth that a flow is allowed to send. Packets of a flow
are marked or dropped with a probability that is a function
of the flow’s estimated sending rate. The algorithm uses a
shadow buffer to store recent packet headers and uses these
to estimate a flow’s rate. The estimated rate of a flow is
proportional to the number of that flow’s headers in the
shadow buffer. When a packet arrives, its header is copied
to the shadow buffer with probability 1/s, where s is the
sampling interval, and another header is removed randomly
from the shadow buffer. Note that while sampling reduces
implementation overhead, it also reduces the accuracy in
estimating flows’ sending rate. This problem can be severe
when most flows only send a few packets per RTT.

The RED with Preferential Dropping (RED-PD) algorithm
provides protection for responsive flows by keeping state
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for just the high-bandwidth flows and preferentially drop-
ping packets of these flows [12]. RED-PD uses the history
of recent packet drops to identify and monitor high-
bandwidth flows. The algorithm is based on the assumption
that high-bandwidth flows also have a high number of
packet drops in the drop history. Packets of a high-
bandwidth flow are dropped with a higher probability than
other packets. After being identified as high-bandwidth, a
flow is monitored until it does not experience any packet
drop in a certain time period. The absence of packet drops
of a high-bandwidth flow in the drop history indicates that
the flow has likely reduced its sending rate. In this case, the
flow is deleted from the list of monitored flows.

The RIO-PS scheme (Red with In and Out with Preferential
treatment to Short flows) gives preferential treatment to
short flows at bottleneck links [6]. With preferential treat-
ment, short flows experience a lower drop-rate than long
flows and can thus avoid timeouts. In RIO-PS, edge routers
maintain per-flow state for flows entering the network. The
first few packets of a flow are marked as “short” or “in.”
Subsequent packets of that flow are marked as “long” or
“out.” Core routers use the standard RIO algorithm [2] and
drop long or out packets with a higher probability than short
or in packets.

Our DCN algorithm, described next, is an amalgam of ex-
isting AQM mechanisms. Like AFD it uses a control theo-
retic algorithm for selecting packets to drop and like RED-
PD it maintains state for only the suspected high-bandwidth
flows. However, we show empirically that our particular
choice and construction of mechanisms results in better ap-
plication and network performance than is possible with
existing differential and non-differential AQM designs.

3.  The DCN Algorithm
The design of DCN is based on the observation that on
many networks, a small number of flows produce a large
percentage of the traffic. For example, for the web traffic we
have used to evaluate AQM designs, Figure 1 shows the cu-
mulative distribution function (CDF) of the empirical distri-
bution of HTTP response sizes [18]. Figure 2 shows a CDF
of the percentage of total bytes transferred in an hour-long
experiment as a function of HTTP response size. Together,
these figures show that while approximately 90% of web
responses are 10,000 bytes or less, these responses account
for less than 25% of the bytes transferred during an experi-
ment. Moreover, responses greater than 1 megabyte make
up less than 1% of all responses, but account for 25% of the
total bytes.

These data suggest that providing early congestion notifica-
tion to flows carrying responses consisting of a few TCP
segments (e.g., flows of 2,000-3,000 bytes, approximately
70% of all flows), would have little effect on congestion.
This is because these flows comprise only 6-8% of the total
bytes and because these flows are too short to have a trans-

mission rate that is adaptable. By the time they receive a
congestion notification signal they have either already com-
pleted or have only one segment remaining to be sent. Fur-
thermore, since short flows have a small congestion win-
dow, they have to resort to timeouts when experiencing a
packet loss. Thus giving these flows a congestion signal
does not significantly reduce congestion and can only hurt
the flows’ performance by delaying their completion. In
contrast, high-bandwidth flows carrying large responses are
capable of reducing their transmission rate and hence can
have an impact on congestion. Unlike short flows, high-
bandwidth flows do not have to resort to timeouts and in-
stead can use TCP mechanisms for fast retransmission and
fast recovery to recover from their packet losses. Our ap-
proach will also police high-bandwidth non-TCP or non-
compliant TCP flows that do not reduce their transmission
rate when congestion occurs.

Our observation about traffic characteristics is also con-
firmed by other studies of Internet traffic. For example,
Zhang et al. found that small flows (100KB or less) ac-
counted for at least 84% of all flows, but carried less than
15% of all bytes [21]. They also found that large flows ac-
counted for a small fraction of the number of flows, but car-
ried most of the bytes. Moreover, the flows that are “large”

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Response size (bytes)

Generated response sizes

Figure 1: CDF of generated response sizes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

P
er

ce
nt

ag
e 

of
 b

yt
es

 tr
an

sf
er

re
d

Response size (bytes)

Figure 2: CDF of percentage of total bytes transferred as a func-
tion of response sizes.



4

and “fast” (i.e., high-bandwidth, greater than 10KB/sec)
account for less than 10% of all flows, but carrying more
than 80% of all the bytes.

The Differential Congestion Notification (DCN) scheme is
based on identifying these “large” and “fast” flows, and
providing congestion notification to only them. While the
idea is simple, the challenge is to design an algorithm with
minimal state requirements to identify the few long-lived,
high-bandwidth flows from a large aggregate of flows and
provide them with a congestion signal when appropriate. An
important dimension of this problem is that of all the flows
carrying large responses, we most want to signal flows that
are also transmitting at a high-rate. These are the flows that
are consuming the most bandwidth and hence will produce
the greatest effect when they reduce their rate. Additionally,
we must ensure that flows receiving negative differential
treatment are not subject to undue starvation.

Our DCN AQM design has two main components: identifi-
cation of high-bandwidth flows and a decision procedure for
determining when early congestion notification is in order.

3.1 Identifying High-bandwidth Flows
Our approach to identifying high-bandwidth, long-lived
flows is based on the idea that packets of high-bandwidth
flows are closely paced (i.e., their interarrival times are
short) [3]. DCN tracks the number of packets that have been
recently seen from each flow. If this count exceeds a thresh-
old, the flow is considered to be a “long-lived and high-
bandwidth” flow. The flow’s rate is then monitored and its
packets are eligible for dropping. As long as a flow remains
classified as high-bandwidth, it remains eligible for drop-
ping. If a flow reduces its transmission rate, it is removed
from the list of monitored flows and is no longer eligible for
dropping.

DCN uses two hash tables for classifying flows: HB (“high
bandwidth”) and SB (“scoreboard”). The HB table tracks
flows that are considered high-bandwidth and stores each
flow’s flow ID (IP addressing 5-tuple) and the count of the
number of forwarded packets. The SB table tracks a fixed
number of flows not stored in HB. For these flows SB stores
their flow ID and “recent” forwarded packet count.

When a packet arrives at a DCN router, the HB table is
checked to see if this packet belongs to a high-bandwidth
flow. If the packet’s flow is found in HB, then it is handled
as described below. If the packet’s flow ID is not in HB,
then the packet is enqueued and its flow is tested to see if it
should be entered into HB. The SB table is searched for the
flow’s ID. If the flow ID is not present, it is added to SB.1 If
                                                            
1 If a flow ID hashes to an entry in SB for another flow, then the
new flow overwrites the entry for the previous flow. This ensures
that all SB operations can be performed in constant time. Thus, SB
stores the packet counts for all currently active non-high-
bandwidth flows, modulo hash function collisions on flow IDs.

the flow ID is present in SB, the flow’s packet count is in-
cremented.

A flow is classified as long-lived and high-bandwidth if the
number of packets from the flow arriving within a “clearing
interval,” exceeds a threshold. Once the flow’s packet count
in SB has been incremented, if the count exceeds the thresh-
old, the flow’s entry in SB is added to HB.2 If no packets
have been received for the flow within a clearing interval,
the flow’s packet count is reset to 0.

A high-level flow chart of the DCN algorithm is given in
Figure 3. All operations on the SB table are performed in
O(1) time. Since the number of flows identified as high-
bandwidth is small (e.g., ~2000 for traffic generated during
experiments reported herein), hash collisions in HB are rare
for a table size of a few thousand entries. Thus, operations
on the HB table are also usually executed in O(1) time.

3.2 Early Congestion Notification
Packets from a high-bandwidth flow are dropped with a
probability 1 – pref / pktcount, where pktcount is the number
of packets from that flow that have arrived at the router
within a period of Tdec, and pref is the current “fair share” of a
flow on a congested link. When congestion is suspected in
the router we target high-bandwidth flows for dropping in
proportion to their deviation from their fair share (pref pack-
ets within an interval Tdec) [16, 19].

DCN uses a simple control theoretic algorithm based on the
well-known proportional integral controller to compute pref.
The instantaneous length of the queue in the router is peri-
odically sampled with period Tupdate. A flow’s fair share of
the queue at the kth sampling period is given by:

pref(kTupdate) = pref((k–1)Tupdate) + a  (q(kTupdate) – qref) –

                                b  (q((k–1)Tupdate) – qref)
                                                            
2 If a collision occurs in HB when trying to insert the new flow,
then a hash chain is used to locate a free table entry.
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Figure 3: High-level DCN flowchart.
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where a and b , a  < b , are control coefficients (constants)
that depend on the average number of flows and the average
RTT of flows (see [7] for a discussion), q() is the length of
the queue at a given time, and qref is a target queue length
value for the controller. Since a < b, pref decreases when the
queue length is larger than qref (an indication of congestion)
and hence packets from high-bandwidth flows are dropped
with a high probability. When congestion abates and the
queue length drops below qref, pref increases and the prob-
ability of dropping becomes low. Pan et al. and Misra et al.
use the same equation in the design of AFD and PI respec-
tively [16, 7].

The flow ID of a high-bandwidth flow is kept in the HB
table as long as the flow’s counter pktcount is positive. After
each interval Tdec, the counter pktcount is decreased by pref.
If a high-bandwidth flow’s packet count becomes negative,
the flow is deleted from HB. We set Tdec to 800 ms in our
experiments because the maximum RTT in our network can
be up to 400 ms. Furthermore, we want to avoid situations
where a new high-bandwidth flow is detected at the end of
an interval Tdec and immediately removed from HB. We
experimented with different parameter settings for a, b, Tup-

date, and Tdec and here report only the results for our empiri-
cally determined best parameter settings.

4.  Experimental Methodology
To evaluate DCN we ran experiments in the testbed network
described in [10]. The network, illustrated in Figure 4,
emulates a peering link between two Internet service pro-
vider (ISP) networks. The testbed consists of approximately
50 Intel processor based machines running FreeBSD 4.5.
Machines at the edge of the network execute one of a num-
ber of synthetic traffic generation programs described be-
low. These machines have 100 Mbps Ethernet interfaces and
are attached to switched VLANs with both 100 Mbps and 1
Gbps ports on 10/100/1000 Ethernet switches. At the core of
this network are two router machines running the ALTQ
extensions to FreeBSD [9]. ALTQ extends IP-output queu-
ing at the network interfaces to include alternative queue-
management disciplines. We used the ALTQ infrastructure
to implement DCN, AFD, RIO-PS, and PI.

Each router has sufficient network interfaces to create either
a point-to-point 100 Mbps or 1 Gbps Ethernet network be-
tween the two routers. The Gigabit Ethernet network is used
to conduct calibration experiments to benchmark the traffic
generators on an unloaded network. To evaluate DCN and
compare its performance to other AQM schemes, we create
a bottleneck between the routers by altering the (static)
routes between the routers so that all traffic flowing in each
direction uses a separate 100 Mbps Ethernet segment. This
setup allows us to emulate the full-duplex behavior of a
typical wide-area network link.

So that we can emulate flows that traverse a longer network
path than the one in our testbed, we use a locally-modified

version of dummynet [8] to configure out-bound packet de-
lays on machines on the edge of the network. These delays
emulate different round-trip times on each TCP connection
(thus giving per-flow delays). Our version of dummynet
delays all packets from each flow by the same randomly-
chosen minimum delay. The minimum delay in milliseconds
assigned to each flow is sampled from a discrete uniform
distribution on the range [10, 150] with a mean of 80 ms.
The minimum and maximum values for this distribution
were chosen to approximate a typical range of Internet
round-trip times within the continental U.S. and the uniform
distribution ensures a large variance in the values selected
over this range.

A TCP window size of 16K bytes was used on the end sys-
tems because widely used OS platforms, e.g., most versions
of Windows, typically have default windows of 16K or less.

4.1 Synthetic Generation of TCP Traffic
Two synthetically generated TCP workloads will be used to
evaluate DCN. The first is an HTTP workload derived from
a large-scale analysis of web traffic [18]. Synthetic HTTP
traffic is generated according to an application-level de-
scription of how the HTTP 1.0 and 1.1 protocols are used by
web browsers and servers today. The specific model of
synthetic web browsing is as described in [10], however,
here we note that the model is quite detailed as it, for exam-
ple, includes the use of persistent HTTP connections and
distinguishes between web objects that are “top-level” (e.g.,
HTML files) and objects that are embedded (e.g., image
files).

The second workload is based on a more general model of
network traffic derived from measurements of the full mix
of TCP connections present on Internet links. For the ex-
periments here we emulate the traffic observed on an Inter-
net 2 backbone link between Cleveland and Indianapolis
[20]. Thus in addition to generating synthetic HTTP con-
nections, this model will also generate synthetic FTP,
SMTP, NNTP, and peer-to-peer connections. Details on this
model can be found in [20].

For both workloads, end-to-end response times for TCP data
exchanges will be our primary measure of performance.
Response time is defined as the time interval necessary to
complete the exchange of application-level data units be-
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100/1,000
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... 1
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Network Monitor

Network
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Figure 4: Experimental network setup.



6

tween two endpoints. For example, for the HTTP workload,
response time is defined as the time between when an
(emulated) web browser makes a request for content to an
(emulated) web server and the time when the last byte of the
response is delivered from the server to the browser.

4.2  Experimental Procedures
To evaluate DCN we performed experiments on the two
emulated ISP networks in our testbed connected with 100
Mbps links. For the evaluation we congest these 100 Mbps
links with varying degrees of traffic. To quantify the traffic
load in each experiment we define offered load as the net-
work traffic (in bits/second) resulting from emulating the
behavior of a fixed-size population of users (e.g., a popula-
tion of users browsing the web in the case of the HTTP
workload). More specifically, load is expressed as the long-
term average throughput on an uncongested link that would
be generated by that user population. For example, to de-
scribe the load offered by emulating a population of 20,000
users evenly distributed on our network testbed, we would
first emulate this user population with the two ISP networks
connected with a gigabit/second link and measure the aver-
age throughput in one direction on this link. The measured
throughput, approximately 105 Mbps in the case of the
HTTP workload, is our value of offered load.

Although the TCP traffic we generate is highly bursty (e.g.,
for the HTTP workload we generate a long-range dependent
packet arrival process at the routers [10]), the range of loads
we attempt to generate in our experiments (approximately
50-120 Mbps) is such that congestion will never be present
on the gigabit network. Since experiments are ultimately
performed with the two ISP networks connected at 100
Mbps, a calibration process (described in [10]) is used to
determine the population of users required to achieve a par-
ticular degree of congestion on the 100 Mbps network.

Each experiment was run using offered loads of 90%, 98%,
or 105% of the capacity of the 100 Mbps link connecting the
two router machines. It is important to emphasize that terms
like “105% load” are used as a shorthand notation for “a
population of users that would generate a long-term average
load of 105 Mbps on a 1 Gbps link.” As offered loads ap-
proach saturation of the 100 Mbps link, the actual link utili-
zation will, in general, be less than the intended offered
load. This is because as utilization increases, response times
become longer and emulated users have to wait longer be-
fore they can generate new requests and hence generate
fewer requests per unit time.

Each experiment was run for 120 minutes to ensure very
large samples (over 10,000,000 TCP data exchanges), but
data were collected only during a 90-minute interval to
eliminate startup effects at the beginning and termination
synchronization anomalies at the end.

The key indicator of performance we use in reporting our
results are the end-to-end response times for each data ex-
change (e.g., an HTTP request/response). We report these as
CDFs of response times up to 2 seconds. We also report the
fraction of IP datagrams dropped at the link queues, the link
utilization on the bottleneck link, and the number of re-
quest/response exchanges completed in the experiment.

5.  Experimental Results
We compared the performance of DCN against a large
number of AQM designs but report here only the results of
DCN versus only PI, AFD and RIO-PS. PI was selected
because it was the best performing non-differential AQM
scheme from a previous study [10]. AFD and RIO-PS were
chosen because they were the best performing differential
schemes. We also include results from experiments with
drop-tail FIFO queue management to illustrate the perform-
ance of no AQM (i.e., the performance to beat), and results
from drop-tail experiments on the uncongested gigabit net-
work to illustrate the best possible performance. (The ex-
periments on the uncongested network provide the best pos-
sible response times as there is no queue present on either
router at any of the load levels considered here.)

For PI, DCN and AFD, an important parameter is the target
queue length the algorithm attempts to maintain. After ex-
tensive experimentation, we found that AFD perform best at
a target queue length of 240 packets at all loads. DCN and
PI obtain their best performance with a target queue length
of 24 packets. We used the parameter settings for RIO-PS
that were recommended by its inventors [6]. In all cases we
set the maximum queue size to a number of packets that was
large enough to ensure tail drops did not occur.

5.1 Experimental Results for the HTTP Workload
Figures 5-8 give the results for DCN, PI, AFD, and RIO-PS.
They show the cumulative distribution functions (CDFs) for
response times of HTTP request/response exchanges at of-
fered loads of 90%, 98%, and 105% respectively. We also
report other statistics for the experiments in Table 1.

Figure 5 shows that at all loads, the performance of HTTP
flows under DCN is close to that obtained on the uncon-
gested network. Although DCN performance decreases as
load increases, the performance degradation of DCN is
rather small and DCN still obtains good performance for
flows even at very high load (98% and 105%).

Figure 6 gives the comparable results for PI (reproduced
here from [10] but obtained under identical experimental
conditions). Without ECN, the response-time performance
obtained with PI degrades rapidly with loads above 90%.
However, with ECN, even at loads of 98% and 105% per-
formance is only modestly worse than it is at 90% load and
is reasonably comparable to the uncongested case.
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Figure 7 shows the results for AFD. At 90% load, the per-
formance of AFD is fairly close to that of an uncongested
network and there is almost no performance gain with the
addition of ECN. There is significant degradation in re-
sponse-time performance as load is increased to 98% and
105%. AFD does show a small yet noticeable improvement
with addition of ECN at these loads. This is because with
ECN, some connections avoid a timeout that otherwise
would have resulted from drops by the AFD algorithm. This
can be seen by examining the CDFs for the non-ECN cases
and observing show a flat region extending out to 1 second
(the minimum timeout in FreeBSD’s TCP implementation).

Figure 8 shows the results for RIO-PS. RIO-PS obtains rea-
sonably good performance at 90% load and experiences
more modest (but still significant) performance degradation
at higher loads. At all loads, ECN contributes little to the
performance of flows under RIO-PS.

A more direct comparison of these AQM designs is shown
in Figures 9, 11, and 13, which show response time per-
formance of the best performing version of each AQM de-
sign at loads of 90%, 98%, and 105%, respectively. We also

include in these plots the results of experiments with drop-
tail on the same congested 100 Mbps network.

At 90% load all the algorithms except drop-tail perform
quite well and provide response times that are not signifi-
cantly degraded over the uncongested case. At loads of 98%
and 105% there is clear performance superiority for DCN
and PI with ECN over the other AQMs. However, in both
cases, DCN, even without ECN, provides performance that
is equal or superior to PI with ECN.

For the vast majority of flows, the best AQM designs pro-
vide performance superior to drop-tail at all loads. This re-
sult demonstrates the benefits of AQM. However, the results
also show that differential treatment of flows is not a pana-
cea. PI with ECN’s uniform treatment of flows provides
comparable or better performance for flows than AFD’s and
RIO-PS’s differential treatment.

Comparing just the differential AQM designs, DCN obtains
better performance than RIO-PS which in turn provides
better performance than AFD. This reflects different
cost/performance tradeoffs in differential AQM designs.
AFD maintains a fixed size hash table and performs flow
classification in O(1) time. However, AFD has to resort to
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Figure 6: PI response time CDF for HTTP
request/response exchanges for various offered loads.
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random sampling and can only detect a subset of the high-
bandwidth flows. RIO-PS maintains per-flow state for all
flows and has the potential for detecting all high-bandwidth
flows. However, since RIO-PS classifies flows based on
their size, persistent HTTP connections may be erroneously
classified as high-bandwidth flows. In this case, short re-
quest/response exchanges over these persistent connections
suffer high packet loss rates and bad performance. DCN, on

other hand, classifies flows based on the interarrival times
of packets within a flow and has a lower rate of false posi-
tives than RIO-PS. Moreover, DCN only maintains per-flow
state for high-bandwidth flows and can potentially require
significantly less state than RIO-PS.

We also see in Table 1 that as the load increases, the loss
rate increases significantly for AFD and RIO-PS, even with
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the use of ECN. With DCN’s scheme for detecting and con-
trolling high-bandwidth flows, a fairly low loss rate is
maintained even at very high loads.

Simply counting the number of responses that receive better
response times (as in the CDF plots) does not provide a
complete picture because it does not consider which re-
sponses constitute the majority of bytes carried by the net-
work. Figures 10, 12, and 14 give the fractions of the total
bytes in all HTTP responses that are contained in responses
of a specific size or smaller with the different AQM designs.

For example, we see in Figure 10 that at 90% load, ap-
proximately 20% of the total bytes are contained in re-
sponses of 10,000 bytes or less and approximately 75% of
the total bytes are contained in responses of 1 MB or less.
Recall, however, that in Figure 1 we saw that approximately
90% of all HTTP responses are 10,000 bytes or less and
more than 99% of all responses are 1 MB or less. Because
DCN controls high-bandwidth flows and protects small
flows, we would expect that DCN would cause a greater
fraction of the total bytes in all responses to come from the
shorter responses that DCN favors (or conversely, a smaller
fraction from the longer responses that are subject to DCN
drops). This effect is seen in Figures 10, 12, and 14 where
the curve for DCN is always above the others for response
sizes greater than approximately 50,000 bytes. Thus under
DCN, more shorter flows complete and they complete
quicker than under the other AQM schemes.

To demonstrate the differential treatment for “small” and
“large” flows by differential AQM designs, we show the
CDFs of response times for objects smaller than 100,000
bytes in Figures 15 and 17, and CDFs of response times (on
a log scale) for objects larger than 100,000 bytes in Figures
16 and 18. In Figures 15 and 17, we see that DCN clearly
favors “small” flows as expected and outperforms the other
AQM schemes at 90% and 98% load. In Figure 16, we see
that DCN outperforms other AQM schemes for approxi-
mately 75% of flows that are larger than 100,000 bytes at
90% load. Similarly, we observe in Figure 18 that about
40% of flows larger than 100,000 bytes experience better
performance under DCN than under other AQM schemes.
Furthermore, we note that the large flows that are affected
adversely by DCN already experience long response times
under other AQM schemes (at least 10 seconds). Recall
from Figure 1 that flows with object sizes greater than
100,000 bytes comprise less than 1% of the total number of
flows. Hence, more than 99% of the flows experience per-
formance improvement under DCN at the cost of a degrada-
tion in performance for a small number of flows.

We note that the differential treatment of DCN and RIO-PS
has the same spirit as the “shortest job first” (SJF) schedul-
ing algorithm which is provably (with regard to an abstract
formal model) optimal for minimizing mean response times.
While this intuition is straightforward, the challenge is to

design a light-weight algorithm that can classify and control
high-bandwidth flows with a low implementation overhead.

5.2 Results for the General TCP Workload
While results for DCN from previous experiments are en-
couraging, they are limited to only Web traffic. To demon-
strate the generality of our approach, we perform a set of
experiments with DCN and other AQM schemes using
synthetic traffic that is derived from the full mix of TCP
connections captured on Internet links.

Figures 19 and 20 show the cumulative distribution func-
tions (CDFs) and complementary CDF (CCDFs) of re-
sponse times for these experiments. Here the offered load is
asymmetric with a load on the “forward” path of 105.3
Mbps and 91.2 Mbps on the “reverse” path.

We again see the benefits of differential AQM approaches,
in particular with DCN and RIO-PS. These two AQM de-
signs outperform drop-tail and other AQM designs and
come close to the performance of the uncongested network.
The summary statistics for these experiments are included in
Table 2.

6.  Summary and Conclusions
Our recent study of AQM schemes [10] demonstrated that
AQM can be effective in reducing the response times of
web request/response exchanges, increasing link throughput,

Table 1: Loss, completed requests, and link utilizations for
experiments with the HTTP workload.

Offered
Load

Loss ratio
(%)

Completed
requests

(millions)

Link
utilization/
throughput

(Mbps)
No

ECN
ECN No

ECN
ECN No

ECN
ECN

90% 0 15.0 91.3

98% 0 16.2 98.2

Uncongested
1 Gbps
network
(drop-tail) 105% 0 17.3 105.9

90% 1.8 14.6 89.9

98% 6.0 15.1 92.0
drop-tail
queue size =
                 240 105% 8.8 15.0 92.4

90% 1.3 0.3 14.4 14.6 87.9 88.6

98% 3.9 1.8 15.1 14.9 89.3 89.4
PI
qref = 24

105% 6.5 2.5 15.1 15.0 89.9 89.5

90% 0.95 14.5 86.1

98% 2.3 14.9 88.6
DCN
qref = 24

105% 3.0 15.3 90.5

90% 0.5 0.5 14.7 14.6 88.3 88.3

98% 6.1 6.2 14.5 14.5 87.6 87.9
AFD
qref = 240

105% 8.9 9.2 14.6 14.4 87.8 87.9

90% 2.1 1.3 14.6 14.6 88.8 87.9

98% 5.3 4.7 15.0 15.2 91.2 91.0
RIO-PS

105% 8.2 7.9 15.3 15.3 91.9 91.9
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and reducing loss rates. However, ECN was required for
these results. In this work we have investigated the use of
differential congestion notification as a means of eliminat-
ing the requirement for ECN. Our differential AQM design,
DCN, uses a two-tiered flow filtering approach to heuristi-
cally classifying flows as being long-lived and high-
bandwidth or not, and provides early congestion notification

to only these suspect flows. DCN can perform classification
in O(1) time with high probability and with a constant (and
tunable) storage overhead.

We compared DCN to PI/ECN, AFD/ECN, and RIO-
PS/ECN and demonstrated that DCN, without ECN, outper-
forms the other AQM designs. Under a variety of workloads
and congestion conditions, response times for TCP data
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Figure 15: Distribution of response times for HTTP
responses smaller than 100,000 bytes at 90% load.

Figure 16: Distribution of response times for HTTP
responses larger than 100,000 bytes at 90% load.
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Figure 17: Distribution of response times for HTTP
responses smaller than 100,000 bytes at 98% load.

Figure 18: Distribution of response times for HTTP
responses larger than 100,000 bytes at 98% load.
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general TCP workload.

Figure 20:  CCDFs of response times for the
general TCP workload.
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exchanges, link utilization, and loss rates were most im-
proved under DCN.

Moreover, the results demonstrate that our differential
treatment of flows by size/rate does not lead to starvation of
flows. While short flows do better, long flows are not un-
duly penalized under DCN. For contemporary models of
Internet traffic (i.e., for mixes of mice and elephants ob-
served in recent measurements of Internet traffic), DCN
marginally penalizes only a few very large flows and the
aggregate of short flows do not starve long flows.

We believe these results are significant because they dem-
onstrates that the benefits of AQM can be realized without
the cost and new protocol deployment issues inherent in the
use of ECN. Moreover, these results lead us to speculate
that ECN is required with existing non-differential AQM
designs not just because it improves AQM performance, but
because ECN ameliorates a limitation in these designs. Non-
differential AQM designs treat all flows identically when
deciding whether to signal congestion. ECN packet mark-
ings helps end systems avoid timeouts that they may other-
wise suffer due to packet losses under non-ECN AQM. This
is especially true for small flows that do not have enough
packets to trigger fast recovery when a packet loss occurs.
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Table 2: Summary statistics for experiments with
general TCP workload

Completed
exchanges
(millions)

Forward
path loss

rate
(%)

Reverse
path

loss rate
(%)

Forward
path link

throughput
(Mbps)

Reverse
path link

throughput
(Mbps)

Uncongested 2.75 0.0 0.0 105.3 91.2

drop-tail
qlen = 240 2.62 3.7 0.9 90.8 85.7

PI/ECN
qref = 240

2.69 0.2 0.1 88.5 84.4

DCN
qref = 24

2.60 1.0 0.6 89.4 83.3

AFD/ECN
qref = 240

2.67 4.5 0.7 87.5 80.2

RIO-PS/ECN 2.66 3.4 1.0 91.0 83.5


