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1.  Introduction & Motivation

Our research at UNC concerns the management of multimedia and more general continuous-media flows

across the Internet. We focus on network support for (highly) interactive applications where real-time

transmission is essential for the correct operation of the application. Such applications include tele-

immersion applications and interactive distributed virtual environments. In these applications minimum

possible end-to-end transmission delay is required for effective device control and for maintaining the

sense of immersion in a virtual world [1, 2]. To realize the performance requirements of these and other

real-time multimedia applications, end-system media adaptation techniques are commonly employed to

ameliorate the effects of contention for bandwidth and other resources in the network. Most multimedia

and virtual environment systems, including the ones we consider, are capable of adapting to modest

changes in end-to-end network delay and throughput, however, doing so often reduces the function of the

application.

Media adaptation can be abstractly described as the process of dynamically modifying an application’s

network bit- and packet-rate based on feedback from receivers [3]. Bit-rates can be modified by changing

media generation parameters, media encodings, or levels of redundancy in the bit-stream [4]. Packet-rates

can be manipulated by changing how the bit-stream is partitioned into network packets by changing the

number of encoded media samples carried in a single packet [5]. The goal of all media adaptation

schemes is to discover an operating point for the application that is sustainable given the current level of

contention for network and end-system resources, and results in an acceptable mode of operation for the

application.

Media adaptation is a form of application-level congestion control. Whereas other network applications

such as Web browsers rely on the underlying network transport protocol, most notably TCP, for

congestion control and avoidance, real-time interactive multimedia applications eschew TCP in favor of

UDP. These applications either perform no congestion control or employ application-level techniques.

The reliance on UDP by interactive multimedia applications typically results from a conscious trade-off

between reliable, in-order data delivery and the ability to exercise control (however effective) over the

reaction to packet loss and the variation in the delay of transmissions. This trade-off is made because a

salient feature of real-time multimedia applications is the requirement that they transmit data continuously
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at a rate determined by the application. Real-time multimedia applications typically continuously sample

the external environment. To maintain interactivity, continuous transmission of samples with low end-to-

end delay is required.

The requirement of continuous transmission puts many multimedia applications at odds with current and

proposed Internet network management practices and is at the core of our research. There exists a

fundamental tension between the current practice of relying on end-systems to limit the rate at which they

inject traffic into the network and the desire of many multimedia applications to transmit data

continuously at a quasi-uniform rate. TCP connections detect packet loss in the network, treat it as a

signal of congestion, and react by reducing their transmission rate. In the worst case, a connection will

stop transmitting data for a time (on the order of 1-2 seconds) and then transmit packets at a minimal rate

determined by the time it takes for a packet to transit the network and for an acknowledgement to return

to the sender. While this particular reaction to packet loss is unsuitable for applications requiring

continuous transmission at uniform rates, it is essential for the health of the Internet. It ensures quasi-fair

sharing of link capacity between TCP connections and ensures that a pathological condition called

congestion collapse does not occur. These are vital attributes given that TCP traffic accounts for

approximately 97% of all the bytes transmitted over the Internet today [6].

UDP applications, for example high-bandwidth multimedia applications, have the potential to starve TCP

connections of bandwidth. A network becomes congested when the flow of data into the network exceeds

the capacity of the network to transmit data. Queues of packets build up in routers and switches and

packets are dropped (“lost”) when the queues overflow. A UDP application that does not respond to

packet loss as an indicator of congestion will continue transmitting data into queues that are overflowing.

TCP connections that share these queues will react to packet loss and reduce their transmissions. If the

network resources previously consumed by these TCP connections (e.g., buffer space in routers) are now

consumed by the non-responsive applications, then the situation spirals. Router queues remain full and

TCP connections, although transmitting at a lower rate, still lose packets and therefore continue to reduce

their transmissions rate until they effectively stop transmitting.

Figure 1 illustrates this effect for a set of TCP connections that share a 10 Mbps link with a high-

bandwidth UDP flow. The plot shows aggregate TCP throughput over time. Initially, a group of

approximately 3,000 users browsing the Web share the 10 Mbps link. There are a sufficient number of

browsers active at any one time to keep the average link utilization at approximately 95%. At time 30,

some multimedia applications, a set of videoconferences in this case, commence execution. TCP

throughput is slightly reduced by this overall increase in network traffic. At time 90, a single high-

bandwidth UDP application commences transmission. Instead of sharing link capacity fairly with the TCP

connections (e.g., instead of consuming approximately 1/nth of the link capacity where n is the number of

active flows), the UDP application causes congestion and starves the TCP connections of bandwidth. The

introduction of the unresponsive application causes the network to become saturated and hence causes

packet loss. The TCP connections react to the loss by reducing their transmission rates and hence
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consuming fewer buffers in the router. The UDP application also sees a high rate of packet loss but

nonetheless does not adapt its transmissions. As a result, the buffers in the router remain full and all

network connections continue to experience packet loss. The queue in the router remains full because in

essence, the queue elements previously occupied by TCP packets are now occupied by UDP packets.

This example illustrates the negative effects of the interaction between the requirement for uniform-rate

transmission and the need to be reactive to packet loss as an indicator of network congestion. Our

research attempts to develop network resource management mechanisms that strike a balance between the

conflicting requirements of continuous transmission and congestion control. TCP connections require

isolation or protection from non-reactive applications (or more generally, from all non-TCP applications)

and interactive UDP-based multimedia applications require the ability to transmit data continuously with

(ideally) low end-to-end latency.

All of these goals can be met in a tunable manner by reserving bandwidth in the network for either

individual connections or collections of connections, and explicitly allocating network bandwidth on a

packet-by-packet basis by scheduling packets across network links. However, this approach is complex

and requires close coordination among, and integration between, all routers (and hence all network

service providers) along the path from sender to receiver. We are investigating an alternate approach

based on queue management rather than packet scheduling. The practice of manipulating queues to bias

the performance of network connections is known as active queue management. We are developing

lightweight active queue management schemes for routers that (1) protect TCP connections from
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Figure 1: TCP starvation in the presence of unresponsive, high-bandwidth UDP flows.
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starvation by “aggressive” or non-responsive UDP applications, and (2) reserve router capacity for UDP

applications that require continuous transmission. The goal is not to provide guarantees of performance or

quality-of-service, but rather to provide a so-called “better-than-best-effort” forwarding service for

multimedia flows that results in better throughput and latency for multimedia flows in times of

congestion. The challenge is to provide a better-than-best-effort service without unnecessarily degrading

TCP performance. We focus on a fundamentally best-effort service because we recognize that multimedia

applications do not, in general, require or need performance guarantees. Most applications are capable of

adapting to modest changes in network conditions but have minimal bandwidth and latency requirements

that must be respected. Moreover, we are interested in determining how close one can come to achieving

the performance of packet scheduling schemes with simpler and cheaper mechanisms.

The following section discusses active queue management in more detail and describes our approach. We

also give some preliminary results showing that it is possible to meet our two goals with minimal

modifications to existing active queue management schemes.

2.  Active Queue Management

The default “best-effort” packet-forwarding service of IP is typically implemented in routers by a single,

fixed-size, FIFO queue shared by all packets to be transmitted over an outbound link. The queue exists

simply to provide capacity for tolerating variability (“bursts”) in the arrival rate of packets. However,

when the demand exceeds the available capacity of the outbound link for sustained periods of time, the

queue capacity is exceeded. Router implementations using a simple fixed-size FIFO queue typically drop

any packet that arrives at an already-full queue. This behavior is often called drop-tail packet discarding.

Braden et al. describe two important problems with the drop-tail behavior [7]. First, in some situations,

many of the flows can be “locked-out,” a condition in which a small subset of the flows sharing the

outbound link can monopolize the queue during periods of congestion. Flows generating packets at a high

rate can fill up the queue such that packets from flows generating packets at substantially lower rates have

a higher probability of arriving at the queue when it is full and being discarded. This has the effect of

providing feedback to the “wrong” sources. The locked-out flows receive feedback that they should

reduce their load while the “aggressive,” high packet-rate flows receive proportionally less feedback and

do not reduce their transmissions appropriately.

The second problem also occurs when the queue remains full or nearly full for sustained periods of time.

When the queue is continually full, latency is increased for all flows. Simply making the queue shorter

will decrease the latency but negates the possibility of accommodating brief bursts of traffic without

dropping packets unnecessarily. For TCP-responsive flows, the latency problems associated with full

queues can be addressed by selectively dropping packets before the queue fills. Since TCP flows decrease

the load they generate in response to drops, dropping packets “early” should have the effect of eventually

slowing or ceasing the growth of router queues. (How quickly this happens or if it happens at all depends

on a variety of factors such as the round-trip latency for the individual flows.)
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The Internet community is promoting a specific form of active queue management for routers known as

random early detection or RED [7, 8]. Under RED, packets will randomly be dropped from a non-full

queue with the probability of a packet being dropped at any given time being a function of the average

length of the queue in the recent past.

At any time, a RED router operates in one of three modes. When a packet arrives at the router, a weighted

average of the instantaneous queue length is computed. If the weighted average is less than a minimum

threshold value, the router is considered to be uncongested and no drop action will be taken; the packet

will simply be enqueued. This is the no drop mode of operation. If the weighted average queue length is

greater than a minimum threshold value but less than a maximum threshold, this indicates some

congestion has begun and some packets will be dropped probabilistically. In this case the router is in the

probabilistic drop mode. In this mode an arriving packet is subjected to an early drop test. A random

number is generated and compared to a computed drop probability threshold that is a function of the

weighted average queue length and a drop probability parameter. To ensure that the router provides

occasional feedback even when there is low-level but persistent congestion, a third parameter, the number

of packets that have been enqueued since the last packet was dropped, is also used to compute the drop

probability. If the random number generated is greater than the computed drop probability threshold, then

the arriving packet is dropped. In the final case, if the average is greater than the maximum threshold

value, a forced drop operation will occur. This is the forced drop mode, An average queue length in this

range indicates persistent congestion and packets must be dropped to avoid a persistently full queue. The

forced drop is also used in the special case where the queue is full but the average queue length is still

below the maximum threshold (i.e., in the case where the queue actually overflows but the long-term

average queue length is less than the maximum threshold).

Figure 2 illustrates the queue length dynamics in a RED router. For the experiment illustrated in Figure 2,

forced drops would occur only in the one short interval around time 10 when the weighted average
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Figure 2: An illustration of the dynamics of the instantaneous queue length in a router and the
RED weighted average queue length. The blue line represents the instantaneous queue length
and the red line represents the weighted average queue length.
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reaches the maximum threshold. For most of the time the router is operating in the probabilistic drop

mode.

By using a probabilistic mechanism for early drops, RED ensures that all flows experience the same

percentage of packet loss. High-bandwidth flows will have a larger number of packets dropped since their

packets arrive at a higher rate than lower-bandwidth flows (and thus are more likely to be subjected to a

probabilistic, or forced drop), however, all flows experience the same loss rate. RED therefore avoids

lockout by minimizing the probability of repeatedly penalizing the same flow when a burst of packets

arrives. Moreover, by providing early notification of congestion, RED has been shown to result in shorter

average queue lengths in routers [8].

Although RED improves the network performance of TCP flows, these flows are still subject to starvation

in the presence of non-responsive UDP flows. In essence, the starvation dynamic described previously for

a simple, non-RED FIFO queue, is unaffected by the imposition of RED. As TCP packets are dropped

(for whatever reason), the TCP sources reduce their transmission rates while the non-responsive UDP

flows occupy the queue elements previously occupied by TCP flows. The UDP flows experience the same

loss rates as the TCP flows, that is, the UDP-based applications may perform quite poorly, but whatever

performance levels they do achieve comes at the expense of TCP performance.

The starvation phenomenon has led to the call for routers to explicitly recognize non-responsive flows

and to place them in a “penalty box” [9]. Non-responsive flows would be penalized by some draconian

action such as having all their packets dropped during times of congestion. Such proposals are, on the one

hand, seemingly necessary to protect TCP from non-responsive flows and to provide an incentive for

applications to respond to packet loss as an indicator of congestion. On the other hand, the penalty box

concept does not bode well for continuous media applications that while potentially adaptive, do not or

can not adapt in a manner that mimics TCP’s response to congestion.

We are experimenting with extensions to RED and other active queue management schemes that will

isolate TCP flows from non-TCP flows while at the same time ensuring that continuous media

applications receive a tunable share of network resources. We describe one such scheme, called class-

based thresholds (CBT) [11], next.

3.  Class-Based Thresholds — Active Queue Management for Multimedia
Networking
Our approach is to isolate TCP flows from the effects of all other flows by constraining the average

number of non-TCP packets that may reside simultaneously in a router’s queue. We also want to isolate

classes of non-TCP traffic from one another, specifically isolating certain continuous media traffic from

all other traffic. To do this we tag packets of designated continuous media streams before they reach the

router so that they can be classified appropriately. How this tagging is accomplished and the issues raised

by tagging flows are outside the scope of this work, however, our operating assumption is that these flows
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are either self-identified at the end-system or identified by network administrators. For example, a tagging

scheme using the type-of-service field in the IP header as part of a larger architecture for differentiated

network services is one obvious possibility [10].

Once flows are tagged, a router will maintain simple queue statistics for a limited number of classes of

traffic. At a minimum we assume the existence of a TCP class and a marked (tagged) non-TCP class. For

simplicity, in the following discussion we assume that statistics are maintained for three traffic classes:

TCP, marked non-TCP, and all others. The throughput of traffic classes will be constrained during times

of congestion by limiting the average number of packets each traffic class can have enqueued in the router

(thus limiting the fraction of link bandwidth each class can consume). Whenever a packet arrives at a

router, it is classified into one of the three traffic classes. TCP packets are subject to the RED algorithm as

described above. Thus if the average number of TCP packets in the queue remains less than the minimum

RED threshold, an arriving TCP packet is guaranteed to be enqueued independent of the behavior of the

other traffic classes.

For the non-TCP traffic classes, a weighted average number of enqueued packets from each class is

maintained. When a non-TCP packet arrives, the weighted average for the appropriate class is updated

and compared against a maximum threshold for the class. If the class average exceeds the threshold, the

incoming packet is dropped. If the class average does not exceed the threshold then the packet is

enqueued. Although packets are classified, there is still only one queue of packets, shared by all traffic

classes, per outbound link in the router, and all packets are enqueued and dequeued in a FIFO manner.

In CBT, class thresholds only determine the ratios between the number of queue elements occupied by

each class when all classes are fully utilizing the resources allocated to them. When one class is operating

below its allocated queue capacity then other classes can effectively “borrow” that class’s unused link

capacity. This happens because the total queue occupancy is reduced because one class is not using all of

its allocated queue elements and, as a result, the average total queue length is reduced. When this occurs,

packets from those classes that are operating at capacity, represent a larger fraction of the total packets

enqueued and, thus, the classes operating at capacity are able to consume a larger fraction of the outbound

link’s capacity. This is because ultimately, the link bandwidth consumed by a given traffic class is

directly proportional to the average fraction of the queue that is occupied by packets of the class.

CBT provides isolation between traffic classes by maintaining separate thresholds for each class. These

thresholds effectively allocate each class a portion of the queue’s capacity and ensure this capacity is

available to the class independent of the transmission rates of other classes. Packets for a given class are

dropped only if that class’s weighted average queue occupancy exceeds its allocation.

To demonstrate the effectiveness of CBT, we empirically compare the performance of CBT to simple

FIFO (drop-tail) queuing and RED. We would naturally expect the worst performance for both TCP and

continuous media UDP flows under FIFO. To understand what the best possible performance is, we also
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compare CBT to class-based queuing (CBQ), which is not a queue management scheme, but rather a

packet scheduling scheme. In CBQ, link bandwidth (as opposed to queue elements) is explicitly allocated

to traffic classes and packets are scheduled according to their allocation. Traffic classes are segregated

into separate queues that are sampled according to their bandwidth allocations. In general, CBQ should

provide optimal performance. Since traffic classes no longer share a common queue, all traffic classes are

completely isolated from one another. If provisioned correctly by the CBQ allocation, continuous media

flows should experience no drops and have minimal latency. While a packet scheduler such as CBQ can

in fact provide performance guarantees to traffic classes, it is considerably more complicated to

implement than an active queue management scheme for a FIFO queue. The interesting question is how

closely an active queue management scheme such as CBT (or RED) can approximate the performance of

CBQ.

In the following experiment FIFO, RED, CBT, and CBQ are implemented in a router. The router is

configured with a 10 Mbps outbound link that is the bottleneck link in the network. In the CBT and CBQ

implementations there are three classes of traffic: TCP, marked non-TCP, and other traffic. As before, the

TCP traffic originates from a collection of users browsing the Web. In aggregate, these users are capable

of utilizing 95% of a 10 Mb link. The marked non-TCP traffic originates from a set of end-systems that

are participating in a set of six videoconferences each generating 220 Kb/s of UDP traffic.

Figure 3 illustrates the TCP throughput measurements on the outbound link of the router. Initially TCP’s

throughput is between 1,000 and 1,100 KB/s for each of the four methods. At approximately time 20, an

aggressive and unresponsive high-bandwidth UDP flow is introduced and remains until time 70. It is the

performance of the traffic classes during this “UDP blast” that highlights the benefits of CBT over the

other queue management schemes. Under RED and FIFO, TCP throughput plummets to 200-400 KB/s.

Throughput only remains as high as it does because of the sheer number of TCP flows in the experiment.

In aggregate, the TCP flows maintain 200-400 KB/s even though individually some flows are suffering

the starvation effect described above. Meanwhile, CBT and packet scheduling do show a decrease in TCP

throughput, but the decrease is on the order of 10% for CBQ and 20% for CBT. This is because both

methods constrain the amount of bandwidth that the aggressive flow can consume. TCP throughput

decreases slightly because the aggressive flow is allowed a small fraction of the link’s capacity.

In addition to isolating TCP in order to provide it with good performance, CBT also isolates the marked

non-TCP multimedia flows from the non-responsive flows in the “other” class. This can be seen from the

measured drop-rates for multimedia packets during the period of the UDP blast. These results are shown

in Table 1. Both FIFO and RED produced extremely high drop-rates for multimedia while CBT produced

drop-rates of just over 1%. No multimedia packets are lost under CBQ as it is tuned to meet the

bandwidth requirements of the multimedia flows and as such, provides a guaranteed forwarding service to

these applications. Note, however, that CBT closely approximates the performance of CBQ, and in
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particular, results in a drop rate for marked multimedia flows that is quite likely to be tolerated by the

applications.

Table 1 also compares the average end-to-end network latency of marked multimedia packets. Latency is

highest under simple FIFO queuing because the queue is consistently full and the average (successfully

enqueued) arriving packet must wait for the entire queue to drain before it is transmitted. RED and CBT

maintain shorter average queues, and this is reflected in their lower average latencies. Not surprisingly,

CBQ provides the best average latency as it maintains a separate queue for packets from each traffic class.

Under CBQ, applications such as videoconferencing that generate traffic at uniform rates and do not

consume more bandwidth than has been provisioned for them, should experience minimal latency.
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Figure 3: TCP throughput under each queue management/packet scheduling scheme.

Table 1:  Comparison of drop rates and network latency for tagged continuous media traffic
under the various queue management alternatives.

Queue Management Scheme Packet Drop-rate for
Marked Flows

Average Latency of
Marked Flows

FIFO 32.4% 63.2 ms

RED 30.0% 26.2 ms

CBT 1.3% 28.4 ms

Packet Scheduling (CBQ) 0.0% 5.7 ms
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4.  Summary

A salient requirement of interactive multimedia applications is that they transmit data continuously at

uniform rates with minimum possible end-to-end delay. The majority of these applications do not require

hard and fast guarantees of network performance, however, the current best-effort forwarding model of

the Internet is frequently insufficient for realizing these requirements. Worse still, the requirement of

uniform-rate transmission puts many multimedia applications at odds with current and proposed Internet

network management practices which assume or require TCP-like reactions to packet loss. There exists a

fundamental tension between the current practice of relying on end-systems to limit the rate at which they

inject traffic into the network and the desire of many multimedia applications to transmit data

continuously at a quasi-uniform rate. The Internet only works as well as it does because the vast majority

of packets transmitted on the network are controlled by (loosely-speaking) the same congestion control

and avoidance algorithm. Multimedia flows present a potential threat to this regime given their potentially

high bandwidth requirements. Moreover, making these flows react to congestion in a TCP-like manner is

not likely to work for all applications.

We are investigating a form of segregation between TCP and non-TCP continuous media flows. This will

allow the research community to develop congestion control and avoidance mechanisms for continuous

media applications that are inherently suited to the performance requirements of these applications

without having to worry about compatibility with TCP. We have focused on simple router-based

mechanisms such as active queue management rather than more complex mechanisms such as packet

scheduling. In particular we are investigating the use of queue occupancy thresholds to isolate TCP flows

from non-TCP flows (and vice versa) and to provide a better-than-best-effort forwarding service for flows

that have been marked as being in need of this service. Our current scheme, called class-based thresholds

(CBT), relies on a packet marking mechanism such as those proposed for realizing differentiated services

on the Internet. CBT, when combined with existing active router queue management schemes such as

RED, provides performance for TCP that approximates that achievable under a packet scheduling

scheme, and acceptable performance for multimedia flows. CBT is a simple and efficient mechanism with

implementation complexity and run-time overhead comparable to that of RED.
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