
My colleagues and I at the University of North
Carolina at Chapel Hill (UNC) conduct

research about the management of multimedia
and more general continuous-media flows across
the Internet. We focus on network support for
(highly) interactive applications where real-time
transmission is essential for the correct operation
of the application, such as tele-immersion and
interactive distributed virtual environments. To
be effective, these applications typically require
the ability to transmit data continuously at an
application-specific, uniform rate.

The requirement of continuous transmission
puts many multimedia applications at odds with
current and proposed Internet network manage-
ment practices. Whereas other network applica-
tions such as Web browsers rely on the underlying
network transport protocol, most notably TCP, for
congestion control and avoidance, real-time inter-
active multimedia applications eschew TCP in
favor of the User Datagram Protocol (UDP). The
reliance on UDP by interactive multimedia appli-
cations typically results from a conscious trade-off
between reliable, in-order data delivery and the
ability to exercise control (however effective) over
the reaction to packet loss and the variation in the
delay of transmissions. Thus, there exists a funda-
mental tension between the current practice of
relying on end-systems to limit the rate at which
they inject traffic into the network and the desire
of many multimedia applications to transmit data
continuously at a uniform rate. TCP connections
detect packet loss in the network, treat it as a signal
of congestion, and react by reducing their trans-
mission rate. While this particular reaction to pack-
et loss is unsuitable for applications requiring
uniform or quasi-uniform-rate transmissions, it is
essential for the health of the Internet. It ensures a

crude form of fair sharing of link capacity between
TCP connections and ensures that a pathological
condition called congestion collapse does not
occur. These are vital attributes given that TCP traf-
fic accounts for approximately 97 percent of all the
bytes transmitted over the Internet today.

UDP applications, such as high-bandwidth
multimedia applications, have the potential to
starve TCP connections of bandwidth. During con-
gestion, queues of packets build up in routers and
switches. Packets are dropped (“lost”) when the
queues overflow. A UDP application that does not
respond to packet loss as an indicator of conges-
tion will continue transmitting data into queues
that are overflowing. TCP connections that share
these queues will react to packet loss and reduce
their transmissions. If the buffer space in routers
previously consumed by these TCP connections
are now consumed by packets from nonresponsive
applications, then the situation spirals. Router
queues remain full and TCP connections, although
transmitting at lower rates, still lose packets and
therefore continue to reduce their transmission
rates until they effectively stop transmitting.

Our research attempts to develop network
resource-management mechanisms that strike a
balance between the conflicting requirements of
continuous transmission and congestion control.
TCP connections require isolation or protection
from nonreactive applications (or more generally,
from all non-TCP applications), and interactive
UDP-based multimedia applications require the
ability to transmit data continuously with (ideal-
ly) low end-to-end latency. All of these goals can
be met in a tunable manner by reserving band-
width in the network for either individual con-
nections or collections of connections, and
explicitly allocating network bandwidth on a

84 1070-996X/99/$10.00 © 1999 IEEE

Project Reports Editor: Harrick Vin
University of Texas at Austin

Kevin Jeffay
University of North

Carolina at 
Chapel Hill

Towards a Better-Than-Best-Effort
Forwarding Service for 
Multimedia Flows

jeffay
Published in: IEEE Multimedia, Volume 6, Number 4, October-December 1999, pages 84-88.



packet-by-packet basis by scheduling packets
across network links. However, this approach is
complex and requires close coordination among,
and integration between, all routers (and hence
all network service providers) along the path from
sender to receiver. 

We are investigating an alternate approach
based on queue management rather than packet
scheduling. The practice of manipulating queues
to bias the performance of network connections
is known as active queue management. We are
developing lightweight active queue management
schemes for routers that (1) protect TCP connec-
tions from starvation by “aggressive” or nonre-
sponsive UDP applications, and (2) reserve router
capacity for UDP applications that require con-
tinuous transmission. The goal is not to provide
guarantees of performance, but rather to provide a
so-called “better-than-best-effort” forwarding ser-
vice for multimedia flows that results in better
throughput and latency for multimedia flows in
times of congestion. The challenge is to provide a
better-than-best-effort service without unneces-
sarily degrading TCP performance. We focus on a
fundamentally best-effort service because we rec-
ognize that multimedia applications do not, in
general, require or need performance guarantees.
Most applications are capable of adapting to mod-
est changes in network conditions but have min-
imal bandwidth and latency requirements that
must be respected. Moreover, we are interested in
determining how close one can come to achiev-
ing the performance of packet scheduling
schemes with simpler and cheaper mechanisms.

Active queue management
The default “best-effort” packet-forwarding ser-

vice of the Internet Protocol (IP) is typically imple-
mented in routers with a single, fixed-size, first-in,
first-out (FIFO) queue shared by all flows. The
queue exists simply to provide capacity for toler-
ating variability (“bursts”) in the arrival rate of
packets. Router implementations using a simple
fixed size FIFO queue typically drop any packet
that arrives at an already full queue. We call this
behavior drop-tail packet discarding. However,
this behavior has two well-documented problems.
First, in some situations flows can be “locked out,”
a condition in which a small subset of the flows
sharing the outbound link monopolize the queue
during periods of congestion. Flows generating
packets at a high rate fill up the queue such that
packets from flows generating packets at substan-
tially lower rates have a higher probability of

arriving at the queue when it is full and being dis-
carded. This has the effect of providing feedback
to the “wrong” sources. The locked out flows
receive feedback that they should reduce their
transmission rate while the “aggressive,” high-
packet-rate flows receive less feedback and do not
reduce their rate appropriately.

The second problem is that latency is increased
for all flows when the queue remains full or near-
ly full. Simply making the queue shorter will
decrease the latency but negates the possibility of
accommodating brief bursts of traffic without
dropping packets. For TCP-responsive flows, these
latency problems can be addressed by selectively
dropping packets before the queue fills. Since TCP
flows decrease the load they generate in response
to drops, dropping packets “early” should have
the effect of eventually slowing or ceasing the
growth of router queues. 

The Internet community is promoting a spe-
cific form of active queue management for routers
known as random early detection, or RED. Under
RED, packets will randomly be dropped from a
non-full queue with the probability of a packet
being dropped at any given time being a function
of the average length of the queue in the recent
past. RED avoids lockout by dropping packets uni-
formly from all flows. By providing early notifica-
tion of congestion, RED has been shown to result
in shorter average queue lengths in routers.

Although RED improves the network perfor-
mance of TCP flows, they are still susceptible to
starvation in the presence of nonresponsive UDP
flows. The starvation phenomenon has led to the
call for routers to explicitly recognize nonrespon-
sive flows and to place them in a “penalty box.”
Nonresponsive flows would be penalized by some
draconian action such as having all their packets
dropped during times of congestion. Such propos-
als are, on the one hand, seemingly necessary to
protect TCP from nonresponsive flows and to pro-
vide an incentive for applications to respond to
packet loss as an indicator of congestion. On the
other hand, the penalty box concept does not bode
well for continuous media applications that, while
potentially adaptive, do not or can not adapt in a
manner that mimics TCP’s response to congestion.

Class-based thresholds
We are experimenting with extensions to RED

and other active queue management schemes that
will isolate TCP flows from non-TCP flows while
at the same time ensuring that continuous media
applications receive a tunable share of network

85

O
cto

b
er–D

ecem
b

er 1999



resources. Our approach is to isolate TCP flows
from the effects of all other flows by constraining
the average number of non-TCP packets that may
reside simultaneously in a router’s queue. We also
want to isolate classes of non-TCP traffic from one
another, specifically isolating certain continuous
media traffic from all other traffic. To do this we
tag packets of designated continuous media
streams before they reach the router so that they
can be classified appropriately. How this tagging
is accomplished and the issues raised by tagging
flows lie outside the scope of this work. However,
our operating assumption is that these flows are
either self-identified at the end system or identi-
fied by network administrators as part of a larger
architecture for differentiated network services. 

Once flows are tagged, a router will maintain
simple queue statistics for a limited number of
classes of traffic. For simplicity, in the following
we assume three traffic classes: TCP, marked non-
TCP, and all others. The throughput of traffic
classes will be constrained during times of con-
gestion by limiting the average number of pack-
ets each traffic class can have enqueued in the
router. When a packet arrives at the router, it is
classified into one of the three traffic classes. TCP
packets are subject to the RED algorithm. For the
non-TCP traffic classes, a separate weighted aver-
age number of enqueued packets from each class
is maintained. When a non-TCP packet arrives,
the weighted average for the appropriate class is
updated and compared against a maximum
threshold for the class. If the class average exceeds
the threshold, the incoming packet is dropped,
otherwise it is enqueued. Although packets are
classified, there is still only one queue of packets,

shared by all traffic classes, per outbound link in
the router, and all packets are enqueued and
dequeued in a FIFO manner.

We call our scheme class-based thresholds
(CBT). CBT provides isolation between traffic
classes by maintaining separate thresholds for
each class. These thresholds effectively allocate
each class a portion of the queue’s capacity and
ensure this capacity is available to the class inde-
pendent of the transmission rates of other classes.

To demonstrate the effectiveness of CBT, we
empirically compare the performance of CBT to
simple FIFO (drop-tail) queuing and RED. We
would naturally expect FIFO queuing to result in
the worst performance for all flows. The best pos-
sible performance results when packets are explic-
itly scheduled. Therefore, we also compare CBT to
a packet scheduling scheme called class-based
queuing (CBQ). In CBQ, link bandwidth (as
opposed to queue elements) is explicitly allocated
to traffic classes, and classes are segregated into
separate queues and scheduled according to their
bandwidth allocations. Since traffic classes no
longer share a common queue, all traffic classes
are completely isolated from one another, and, if
provisioned correctly, flows such as continuous
media flows should experience no drops. While a
packet scheduler such as CBQ can in fact provide
performance guarantees to traffic classes, it is con-
siderably more complicated to implement than an
active queue management scheme for a FIFO
queue. The interesting question is how closely a
simpler active queue management scheme such as
CBT can approximate the performance of CBQ.

Figure 1 illustrates aggregate TCP performance
under FIFO, RED, CBT, and CBQ. In this demon-
stration a router is configured with a 10-Mbps out-
bound link that is the bottleneck link in the
network. Five separate experiments are run, each
using a different active queue management (or
packet scheduling) scheme. In the CBT and CBQ
implementations there are three classes of traffic:
TCP, marked non-TCP, and other traffic. Initially,
a group of approximately 3,000 users browsing the
Web share the 10 Mbps link. A sufficient number
of browsers are active at any one time to keep the
average link utilization at approximately 95 per-
cent. In addition, there exists a set of six marked,
non-TCP audio/video flows originating from end
systems participating in a set of videoconferences
(each generating 220 Kbps of UDP traffic).

At time 20, a single high-bandwidth UDP appli-
cation (the “UDP blast”) commences transmission.
Instead of sharing link capacity fairly with the TCP

86

IE
EE

 M
ul

ti
M

ed
ia

Project Reports

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

FIFO
RED
CBT 
CBQ

Time (seconds)

UDP blast

A
gg

re
ga

te
 T

C
P 

th
ro

ug
hp

ut
 (

Kb
ps

)

Figure 1. TCP throughput under each queue management/packet

scheduling scheme.



connections, the UDP application causes conges-
tion and starves the TCP connections of band-
width. The introduction of the unresponsive
application causes the network to become saturat-
ed and hence causes packet loss. The TCP connec-
tions react to the loss by reducing their
transmission rates and hence consuming fewer
buffers in the router. The UDP application also sees
a high rate of packet loss but nonetheless does not
adapt its transmissions. Under FIFO and RED, the
buffers in the router remain full. All network con-
nections continue to experience packet loss, and
TCP performance plummets as connections are
starved of bandwidth. CBT and CBQ do show a
decrease in TCP throughput, but the decrease is on
the order of 10 percent for packet scheduling and
20 percent for CBT. This is because both methods
constrain the amount of bandwidth that the unre-
sponsive flow can consume. 

In addition to protecting TCP, CBT also isolates
the marked non-TCP multimedia flows from the
nonresponsive flows in the “other” class. This can
be seen from the measured drop-rates for marked
multimedia packets during the period of the UDP
blast shown in Table 1. Both FIFO and RED pro-
duced extremely high drop-rates for multimedia
while CBT produced drop-rates of just over 1 per-
cent. No multimedia packets are lost under CBQ,
as CBQ is providing a guaranteed forwarding ser-
vice to these applications. However, CBT closely
approximates the performance of CBQ. In partic-
ular, it results in a drop rate for marked multime-
dia flows that is quite likely to be tolerated by the
applications.

Table 1 also compares the average end-to-end
network latency of marked multimedia packets
under each scheme. Latency is highest under sim-
ple FIFO queuing because the queue is consistent-
ly full. RED and CBT maintain shorter average
queues, and this is reflected in their lower average
latencies. CBQ provides the best average latency,
as it maintains a separate queue for packets from
each traffic class. 

Summary
A salient requirement of interactive multime-

dia applications is that they transmit data contin-
uously at uniform rates with minimum possible
end-to-end delay. The majority of these applica-
tions do not require hard and fast guarantees of
network performance, but, the current best-effort
forwarding model of the Internet is frequently
insufficient for realizing these requirements. Worse
still, the requirement of uniform-rate transmission

puts many multimedia applications at odds with
current and proposed Internet network manage-
ment practices that assume or require TCP-like
reactions to packet loss. The Internet only works
as well as it does because the vast majority of pack-
ets transmitted on the network are controlled by
(loosely speaking) the same congestion control
and avoidance algorithm. Multimedia flows pre-
sent a potential threat to this regime given their
potentially high bandwidth requirements (either
individually or in aggregate). Moreover, making
these flows react to congestion in a TCP-like man-
ner is not likely to work for all applications.

We are investigating a form of segregation
between TCP and non-TCP continuous media
flows. This will allow the research community to
develop congestion control and avoidance mech-
anisms for continuous media applications inher-
ently suited to the performance requirements of
these applications without being burdened by
compatibility with TCP. We are investigating
router-based active queue management, specifi-
cally, the use of queue occupancy thresholds to
isolate TCP flows and to provide a better-than-best-
effort forwarding service for flows in need of uni-
form-rate transmissions. Our current scheme,
class-based thresholds, relies on a packet marking
mechanism such as those proposed for realizing
differentiated services on the Internet. CBT, when
combined with existing active router queue man-
agement schemes such as RED, provides perfor-
mance for TCP that approximates that achievable
under a packet scheduling scheme and acceptable
performance for multimedia flows. CBT is a sim-
ple and efficient mechanism with implementation
complexity and run-time overhead comparable to
that of RED. MM

Acknowledgements
The research described here has been performed

87

O
cto

b
er–D

ecem
b

er 1999

Table 1. Comparison of drop rates and network latency for

tagged continuous media traffic under the various queue

management alternatives.

Queue Packet Average
Management Drop-Rate for Latency of
Scheme Marked Flows Marked Flows

FIFO 32.4% 63.2 ms

RED 30.0% 26.2 ms

CBT 1.3% 28.4 ms

Packet Scheduling (CBQ) 0.0% 5.7 ms



by the Distributed and Real-Time Systems group at
the University of North Carolina at Chapel Hill (see
http://www.cs.unc.edu/Research/dirt). Mark Parris
is the inventor of the CBT concept and performed
the experiments described in the section “Class-
based thresholds.” Other team members and con-
tributors include Don Smith, David Ott, Michele
Clark, Jan Borgersen, Arun Moorthy, Mikkel Chris-
tiansen, Ramkumar Parameswaran, Gerardo
Lamastra, Felix Hernandez, and Karim Mardini.

Support for this research has come from the
National Science Foundation (grants CDA-
9624662, CCR 95-10156, and IRIS-9508514), the
National Institute of Health (National Center for
Research Resources Award RR02170), the IBM
Corporation, the Intel Corporation, Cabletron
Incorporated, Advanced Networks & Services Inc.,
and the North Carolina Networking Initiative. 

Readers may contact Jeffay at the Department of Com-

puter Science, University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599-3175, e-mail jeffay@cs.unc.edu.

88

IE
EE

 M
ul

ti
M

ed
ia

Project Reports




