
Responsive vs. Unresponsive Traffic:
Active Queue Management for a Better-Than-Best-

Effort Service

Mark Parris Kevin Jeffay Don Smith
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175 USA
{parris,jeffay,smithfd}@cs.unc.edu

Abstract: In the best-effort Internet, there is a fundamental tension between responsive and
unresponsive flows. During periods of congestion, responsive flows reduce the load they generate
while unresponsive flows may or may not do so. As a result, responsive flows can suffer from a
starvation effect while unresponsive flows benefit from their greedy nature. Many of the proposed
approaches to this problem focus on encouraging end-systems to use responsive protocols by
deploying mechanisms in network switches that penalize unresponsive traffic. We argue that while
there are applications that are unnecessarily unresponsive, there are also some classes of
applications that have legitimate motivations for using unresponsive protocols. Based on this
argument we approach the problem with the goal of isolating these three types of flows
(responsive, unnecessarily unresponsive, and necessarily unresponsive) from each other.

We survey the problem of managing responsive and unresponsive traffic and propose an active
queue management mechanism that insures responsive flows are not penalized for their
cooperative nature while also insuring that necessarily unresponsive flows have acceptable
performance. Our mechanism, called class-based thresholds (CBT), allocates buffer capacity
within a switch’s FIFO queue to each type of flow in proportion to the desired bandwidth
allocation between traffic types. We demonstrate empirically (1) the starvation effect of
unresponsive traffic on responsive traffic, (2) the effect of unresponsive traffic on proposed active
queue management mechanisms, and (3) the ability of CBT to efficiently provide isolation
between traffic classes and provide a better-than-best-effort service to necessarily unresponsive
traffic.

Responsive and Unresponsive Traffic

Responsive and unresponsive flows1 are distinguished by their response to network congestion.
Congestion occurs when the aggregate load exceeds the capacity on some bottleneck link. When
congestion occurs, a queue builds up in the router servicing the bottleneck link. The initial effect is simply
poor performance in the form of increased end-to-end latency. If the congestion persists, the queue
overflows and packets are lost. The widely accepted appropriate response to this situation is to reduce the
load in an attempt to match the available capacity of this bottleneck link. Protocols that follow this
approach and use some form of congestion-control are referred to as responsive. The most common
example of a responsive protocol is the Transport Control Protocol (TCP) [1]. Those protocols that fail to
detect or choose to ignore congestion by simply maintaining (or even increasing!) their load are referred

1 Here we use the term flow simply as a convenient way to designate the packets traveling between a source and destination. In
the IP context, a flow is the collection of packets having a common addressing 5-tuple of <source, source port, destination,
destination port, and transport protocol type.>

2

to as unresponsive. The most common example of an unresponsive protocol is the Unreliable Datagram
Protocol (UDP) [1]. The most widely advocated responsive mechanism is to decrease the generated load
geometrically when congestion is detected and increase load linearly in order to probe for available
capacity when the congestion subsides [2]. Because this approach was first shown to be effective in TCP,
those protocols that closely follow this approach are referred to as TCP-friendly. This congestion
response mechanism allows the system to reach equilibrium with the generated load approximately equal
to the available capacity of the bottleneck link. Moreover, since all TCP-friendly sources respond to loss
in the same manner, all of the sources should be impacted equally by congestion and thus network
resources are shared in loosely fair manner. In principle, if all sources reduce their load during a period of
congestion, the overload is averted.

Unresponsive protocols, intentionally or unintentionally, abuse the cooperative nature of responsive
traffic. Sources using unresponsive protocols do not decrease their load in response to congestion
indicators such as packet loss. As a result, congestion persists unless responsive sources continue to
decrease their load below their fair share. The responsive sources stabilize their aggregate load at the
difference between the true capacity of the bottleneck link and the load generated by the unresponsive
sources. As a result, the unresponsive flows are able to use the lesser of their maximal bandwidth
requirement or the capacity of the link. Thus in the extreme, unresponsive flows can starve responsive
flows of bandwidth.

0

200

400

600

800

1,000

1,200

0 25 50 75 100 125 150 175 200

Figure 1: Responsive Traffic in the Presence of Unresponsive Traffic (KB/s vs. time).

Figure 1 illustrates the starvation of responsive traffic. This figure shows the results of an experiment
performed on a small internetwork wherein two simulated campus networks are connected via a 10 Mbps
link. The plot shows the aggregate throughput of responsive traffic (TCP) over the 10 Mbps link. A large
number (thousands) of TCP flows are introduced at approximately time 25. The flows quickly stabilize
and are able to share the full capacity of the link. High-bandwidth unresponsive (UDP) traffic is
introduced at time 60, and deactivated at time 110. Although the same application load is present on the
end-systems, the responsive traffic’s throughput decreases from 1,100 KB/s to 200 KB/s while the
unresponsive traffic is present. While the unresponsive sources benefit from their uncooperative behavior,
the responsive flows suffer poor performance. This phenomenon may encourage application designers to
use unresponsive protocols in an effort to receive better performance during periods of congestion.
Recognizing the danger presented by this scenario, the Internet community is widely advocating
mechanisms to encourage the use of end-to-end congestion control [3],[4]. They encourage the
deployment of network mechanisms that will provide a disincentive to use unresponsive protocols by
dynamically identifying and aggressively penalizing unresponsive flows during periods of congestion.
However, many of the approaches proposed seem to assume unresponsive sources could be modified to
behave in a TCP-friendly manner. As we argue next, this is not likely to be the case for all flows.

3

The Nature of Responsive and Unresponsive Flows

TCP and UDP are the most common examples of responsive and unresponsive protocols. In fact, 95% of
the bytes traversing the Internet use the TCP protocol while UDP traffic makes up most of the remaining
5% [5]. As such, we use TCP and UDP as the representative examples of each type of traffic. In order to
appreciate why applications choose responsive (TCP) and unresponsive (UDP) protocols it is helpful first
to examine each of these protocols more closely, focusing on their primary features as well as their
response to congestion.

The primary feature of TCP is the abstraction of a reliable, ordered byte-stream. As long as connectivity
is maintained, all data entering the stream at the source will arrive at the receiving application in the order
it was sent. TCP thus works well for applications that require reliable in-ordered delivery such as file-
transfers or web page loads. To provide reliability the protocol requires the receiver to acknowledge
receipt of each packet of data. If an acknowledgement is not received in a reasonable period of time after
the packet is transmitted, the source infers that the original packet was lost and retransmits the packet. In
TCP’s original design a source simply retransmitted lost packets while maintaining its rate of
transmission of new data. Given that the primary cause of loss in the Internet is the overflow of a router’s
queue because of overload, responding to losses by only retransmitting data leads to a pathological
network condition known as congestion collapse. If all of sources respond to loss by retransmitting while
maintaining their load, congestion persists at the bottleneck link and loss continues. Moreover, the
overload at the bottleneck link leads to inefficient use of the upstream links as the lost data traverses those
links multiple times (because of the retransmissions).

In response to this problem, researchers added congestion-avoidance mechanisms to TCP. TCP
geometrically decreases the amount of data allowed to be in transit at any one time (its window size)
when losses are detected and linearly increases the window size to probe for available capacity when
losses subside. Using this control-loop, TCP attempts to find equilibrium between network capacity and
offered load. Note that TCP infers congestion by the implicit detection of losses resulting from the
absence of acknowledgements. There is no explicit mechanism to detect congestion. Instead, TCP
leverages the existing feedback mechanism already present for reliability to infer the presence of
congestion. It is important to further note that responsiveness requires some form of feedback mechanism
in order for the source to detect congestion.

In contrast to TCP, UDP is an unreliable transport protocol. UDP provides a simple best-effort datagram
service. Application data units are packaged into datagrams and passed to the network protocol but there
is neither assurance nor confirmation that the datagram reaches the intended receiver. UDP is best suited
for applications that can tolerate loss, and where each unit of data is relatively independent. UDP is often
used to transmit data that is periodically superseded, such as audio or video frames. In those applications
loss of one datagram is not a concern because the information in a subsequent datagram supersedes the
lost datagram. One of UDP’s primary strengths is its simplicity and the resulting low overhead. Because
the protocol is connectionless and unreliable, there is no overhead associated with maintaining connection
state or with storing packets for possible retransmission until the destination confirms their receipt.
Moreover, as soon as a packet arrives at the destination, it is available to the application layer. There are
no delays such as the ordering delays incurred while waiting for the retransmission of a lost or mis-
ordered packet. As a result, those packets that do arrive successfully at the destination do so with low end-
to-end latency. Here we use end-to-end latency to refer to the time between the time the sending
application passes the packet to the transport layer and the time when the packet becomes available to the
receiving application. Note that there is no feedback mechanism at the transport layer for UDP. Without
such a feedback mechanism it is difficult to extend UDP to detect and, consequently, respond to
congestion.

4

Because TCP-friendly protocols are vulnerable to aggressive, unresponsive flows, there are incentives to
deploy mechanisms to encourage the use of end-to-end congestion control mechanisms. Most of these
mechanisms take a TCP-centric approach, discouraging and penalizing flows that do not use end-to-end
congestion control mechanisms in an effort to encourage them to adopt a TCP-friendly protocol.
However, it is important to consider why applications are built using responsive or unresponsive
protocols. In most cases the issue of responsiveness has very little to do with the application designer’s
choice of protocol. Application designers are concerned with higher level properties of the protocol. For
example, recall that TCP’s fundamental feature is reliability. Application designers usually choose to use
TCP not because of its responsiveness, but because they need to ensure the integrity of the data being
transferred. However, this integrity comes at a cost. Packets may have to be retransmitted multiple times
before reaching the receiver. This means that other packets may be delayed while waiting for a prior
packet in the byte stream to be retransmitted. Although all data will eventually reach the receiver, very
little can be said about its timeliness. For many applications this is acceptable. Web and file-transfers that
take 30 seconds are just as correct as those that take 30 milliseconds. Although a smaller response time is
always preferable, it does not impact the integrity of the data or the correctness of the application.

Other applications, such as videoconferencing and IP telephony, do have minimum requirements for
timeliness and bandwidth. If the end-to-end latency is too high, interactivity in these applications is lost.
Moreover, one must typically maintain some minimal frame- or sample-rate to ensure minimal fidelity of
the communication. These application level concerns translate into a minimum transmission rate
requirement. Additionally, these so-called continuous media applications are able to tolerate some packet
loss without the need for retransmissions. Because frames are encoded as independent units (or
independent groups), losses are also independent at the application level. A packet loss may result in the
loss of a frame or group of frames, but it does not compromise the correctness of other groups of frames.
For example, because video frames must be played out periodically to give the illusion of motion, the loss
of a few frames may be below the threshold of perception of the user. Rather than freezing the play-out
while waiting for the retransmission of the n-th frame, the application can simply skip to the n+1-th frame
and continue on. Because continuous media can tolerate some loss and is more concerned with
minimizing end-to-end latency, application designers choose unreliable protocols with low overhead, like
UDP. Moreover, they specifically avoid reliable protocols like TCP because reliability through
retransmission introduces a great deal of variability in the end-to-end latency while offering a feature that
is not required. Those applications that do have concerns about limiting loss may elect to employ
application-level techniques for ameliorating the effects of loss such as the use of adaptive media
encoding [6, 18]. However, none of this is to say that multimedia applications are inherently
unresponsive. Rather, because frame-rate and end-to-end latency are major concerns, application
designers usually choose to respond to congestion by adjusting the amount of data they try to send, not
simply the rate at which they send it. To do this, application-level techniques are used that take advantage
of knowledge of the media encoding and semantics. For example, an application may use temporal (e.g.
frame-rate) or spatial (e.g. image resolution) scaling techniques to adjust the quality of the media stream
[6]. Nonetheless, the point remains: application designers seldom choose protocols based on their
responsiveness. They choose protocols that come closest to offering the services and performance they
require. Beyond the issue of responsiveness, what is actually needed is a “better” service than the current
best-effort delivery service of the Internet.

In addition to application level approaches there has been a good deal of work focused on new
unresponsive and “semi-responsive” protocols which incorporate feedback for the purpose of making
streaming media applications more responsive, both at the application and transport level [7],[8]. These
approaches show promise, however, until they are fully developed and widely deployed, the tension
between responsive and unresponsive traffic remains a problem. In our work we focus on network-centric
approaches where the problem is addressed without changing the end-systems but, rather, through

5

changes to network infrastructure. Specifically, we focus on approaches in an area of router design called
active queue management.

Active Queue Management

Active queue management refers to the practice of manipulating queues in routers to bias the performance
of network connections. For our purposes here we focus on the process of being proactive in deciding
which packets to discard from the queue and when to discard them. For example, one approach, Random
Early Detection, focuses on giving better feedback to responsive flows to indicate when congestion is
imminent by monitoring the average queue occupancy and probabilistically dropping packets before the
queue overflows [9]. Another approach, Flow Random Early Detection, seeks to insure equal sharing of
link bandwidth between flows by managing queue occupancy on a per flow basis [10]. Other work has
focused on identifying and penalizing unresponsive flows by monitoring the queue behavior [4]. Here we
summarize some of the active queue management approaches and introduce our approach, class-based
thresholds. We will then compare the performance of each of these algorithms in the presence of
unresponsive traffic in an attempt to understand the impact that active queue management mechanisms
can have on application performance.

Drop-Tail FIFO

In today’s Internet, packet loss from router queues is the primary indicator of congestion. Routers have
packet queues associated with each outbound link. These queues are intended to buffer bursty packet
arrivals before forwarding on the outbound interface. In most Internet routers, these queues are simple
FIFO queues with drop-tail discard semantics. Arriving packets are enqueued at the tail of the queue.
When the queue fills, the arriving packet is discarded. The “drop-tail” behavior is effective in providing
congestion notification to responsive flows as demonstrated by the success of the Internet. However, with
drop-tail, the decision to drop a packet is essentially a passive one. Moreover, drop-tail has several flaws
that prompted research into a more active approach to router queue management [3]. These flaws are
most apparent during periods of persistent congestion and include the problems of lock-out and full
queues. Briefly, lock-out refers to a phenomenon where a few flows are able to monopolize the queue
space. Because of TCP synchronization effects, packets from some flows always arrive to a full-queue
and are subsequently dropped, effectively locking those flows out of the outbound link and preventing
them from making progress. (For more details, see [3].) Full queues also occur during persistent
congestion. When the queue is consistently full, it is simply a source of latency and cannot serve its
intended function of buffering bursty arrivals. Moreover, because drop-tail routers only drop packets
when the queue is full, sources are only able to detect and respond to congestion after it has grown
persistent. Notification of imminent congestion would allow sources to activate their avoidance
mechanisms before congestion becomes severe.

Active queue management seeks to remedy these, and other problems with drop-tail FIFO queuing and
provide TCP better feedback to respond to.

RED

The most well known and widely deployed active queue management mechanism is Random Early
Detection (RED). The main goal of RED is to provide better feedback to responsive flows. This goal has
several parts. First, RED seeks to do a better job detecting the onset of congestion instead of waiting until
congestion is persistent and the queue is overflowing. Second, RED seeks to distribute feedback more
evenly across all flows. Instead of the disparity in drops that can lead to the lock-out phenomenon
observed with drop-tail, RED seeks to insure that all flows have an equal percentage of their packets
dropped. Finally, RED seeks to maintain shorter average queue occupancy. The intent is to avoid full
queues and have queue space available to accommodate bursty arrivals, even during periods of modest
congestion.

6

RED accomplishes these goals by actively monitoring and managing the queue. Since a queue builds up
when the offered load exceeds the link’s capacity and the queue drains when the load is less than the
link’s capacity, a measure of the queue’s length over time is a good indicator of the state of congestion.
Using the instantaneous queue occupancy is problematic as it may be the result of recent bursty arrivals
and not persistent congestion. Thus, instead of using instantaneous queue occupancy as a congestion
indicator, RED uses the recent average queue occupancy. The RED algorithm maintains a running
weighted average of queue occupancy. When the average is below a minimum threshold value, packets
are simply enqueued and forwarded. When the average exceeds the minimum threshold, arriving packets
are randomly dropped. The probability the arriving packet will be dropped is a function of the average
queue occupancy and the number of packets that have arrived since the last packet was dropped. The
probabilistic component of this mechanism allows RED to distribute the drops more evenly across all
flows. Better distributed drops mean better feedback to all flows, allowing them all to back-off equally.
Finally, dropping packets before the queue fills helps to maintain a shorter average queue.

RED has proven effective in addressing its stated goals. As a result, RFC2309 recommends that some
form of active queue management, specifically RED, be widely deployed in routers [3]. However, neither
RED nor drop-tail FIFO addresses the tension between responsive and unresponsive flows. (Neither was
intended to address this problem; each dealt with other significant problems: accommodating bursts and
providing better feedback to responsive flows.) As a result, the same RFC also recognizes the tension
between responsive and unresponsive flows and encourages continued research in how to deal with flows
that are unresponsive or not TCP-friendly. Most research in this area has focused on approaches that are
TCP-centric. That is, they focus on identifying and penalizing, often severely, unresponsive traffic in an
effort to encourage the use of responsive protocols. We discuss two such approaches below. The first is
another active queue management scheme, Flow Random Early Detection [10], focused on providing fair
sharing of bandwidth using per flow statistics. The other approach outlines techniques for identifying
different classes of unresponsive traffic [4].

FRED

FRED seeks to insure that all flows receive a fair share of the link’s capacity. To do this the algorithm
logically manages the queue on a per-flow basis. FRED maintains statistics for every flow that has a
packet enqueued in the router. During periods of congestion (as determined by monitoring the average
queue size) the algorithm drops packets for those flows that occupy more than twice their fair share of the
queue. A fair-share of the queue is 1/nth of the average queue occupancy where n is the number of flows
with a packet enqueued. The limit is twice a fair share to accommodate burstiness. However, once a flow
has violated this loose fair share limit, it has a “strike” recorded against it and is strictly constrained to
occupy no more than exactly its fair share. This constraint is lifted only when the flow has no packets
enqueued. Since high-bandwidth unresponsive flows will maintain their load, they will usually have a
packet enqueued and this constraint will be maintained continuously. Conversely, if a responsive flow
happens to generate a burst of packets that triggers the strike mechanism, it should respond to the
resulting drop by reducing its load, leading to a period when it has no packet enqueued at the bottleneck
router, allowing the strike to be erased. This strike mechanism should tightly constrain unresponsive
flows while allowing responsive flows to get a larger share of the link capacity. (For additional details see
[10].)

FRED provides a mechanism that offers fairness by managing queue occupancy on a per-flow basis. This
approach is effective in constraining individual, unresponsive flows and addressing the tension between
responsive and unresponsive flows. However, this solution requires significant overhead as state must be
maintained for each active flow. Moreover, it is not clear that equal bandwidth shares is the best kind of
fairness. Continuous media applications often have some minimum bandwidth requirement while file-
transfers are primarily concerned with data integrity and response time is a secondary concern. In some
situations dividing link capacity could result in slightly faster response times for data transfers while

7

making an interactive video-conference useless. Consider an example where a video-conference with a
minimum bandwidth requirement of 1.5 Mb/s shares a 10Mb link with 19 file-transfers using TCP. If the
video-conference receives its minimum requirement, the file-transfers can share the remaining 8.5 Mb/s
equally. However, if FRED constrains all flows to equal shares, the file-transfers receive 11% more of the
link capacity while the video-conference will be constrained to one-third of its minimum requirement,
making the interaction useless. The file-transfers’ integrity is the same in either case, though the response
time is 11% better using FRED. However, the video-conference has value in the former case and no value
in the latter.

Detecting Unresponsive Flows

Other work has focused on extending existing active queue management mechanisms such as RED for
detecting different classes of unresponsive flows. Floyd and Fall propose tests for detecting these
different types of flows by monitoring the RED drop-histories of different flows [4]. With this technique
they can identify which flows are TCP-friendly, high-bandwidth, or unresponsive. They then propose that
those flows that are not TCP-friendly be constrained in an effort to encourage application designers to use
TCP-friendly protocols. This and similar approaches focus on better feedback for responsive flows and
recommend actively discouraging unresponsive flows to promote the use of end-to-end congestion
control.

CBT

In our approach, class-based thresholds (CBT), we recognize the importance of protecting responsive
traffic from the effects of unresponsive flows, but we also recognize there are applications that have
legitimate reasons for using unresponsive protocols [11]. As such, we seek a solution that protects
responsive traffic while also insuring that necessarily unresponsive traffic continues to make progress.
Instead of seeking to severely penalize unresponsive traffic, we seek to isolate responsive traffic from the
effects of the unresponsive traffic. Moreover, we try to isolate necessarily unresponsive traffic from other
unresponsive traffic, and insure that the necessarily unresponsive traffic can claim a managed share of the
link’s capacity. At one extreme, one could provide bandwidth allocation using packet scheduling
mechanisms to insure each class receives exactly its desired service rate [12]. However, for reasons of
efficiency and simplicity, we seek to explore how effectively we can approximate this type of resource
allocation by using thresholds on the occupancy of a single queue instead of packet scheduling. In the
implementation of our work presented here, we identify three classes of traffic: responsive (TCP), tagged
(necessarily unresponsive traffic such as continuous media), and “other” (everything else). We then use
thresholds on the average queue occupancy of each class of traffic to effectively allocate the capacity of
the bottleneck link between these traffic types. The limits on average queue occupancy serve two
functions. First, they determine the proportions of the queue’s capacity available to each class. Since this
queue feeds the outbound link, these proportions also hold on the outbound link. Second, the occupancy
thresholds in aggregate determine the maximum average queue occupancy. The maximum average queue
occupancy, in turn, establishes a limit on the maximum average queue-induced latency. This is an
important consideration as we try to insure low latency for continuous media.

It’s important to note that this algorithm does not maintain separate queues for each class. It simply
maintains separate state for each class and bases the drop decision for an arriving packet on the statistics
for that class. It is also worth noting that there are far fewer traffic classes (3!) than active flows (typically
thousands). Moreover, while tagged and other traffic have a single threshold to simply limit the queue
occupancy, the algorithm uses a RED algorithm with a minimum and maximum threshold for the
responsive traffic. As a result, responsive traffic continues to receive early notification of imminent
congestion but only if the responsive traffic is the source of the overload. If traffic in the tagged or other
class is the source of the overload, then packets from those classes are dropped and responsive traffic
behaves as if the link is uncongested. The ratio between the thresholds for the classes determines the ratio

8

of bandwidth allocated for each class during periods of congestion. However, the thresholds equate to
allocations, not upper limits, for bandwidth for each class. The algorithm implicitly allows for borrowing
link capacity in a min-max fair manner [13]. If some class is using less than its allocation, other classes
borrow that class’s leftover capacity in proportion to their thresholds.

CBT provides an active queue management facility to allocate bandwidth to multiple classes of traffic.
Using this approach we can isolate responsive traffic from the effects or both necessarily and
unnecessarily unresponsive traffic. Moreover, we can isolate the two classes of unresponsive traffic from
each other. CBT also allows one to control latency directly by (deterministically) controlling the
maximum queue length. Combined these features can result a better-than-best-effort service for the
necessarily unresponsive traffic.

Packet Scheduling - CBQ

Finally, for comparison purposes, we also consider an approach to bandwidth allocation and isolation
based on packet scheduling. Rather than deciding which packets to discard when, a packet scheduler
divides different classes of traffic into separate queues and services each queue at a specified rate. In this
manner a scheduler is capable of providing perfect isolation between traffic classes (since packets are
enqueued by class) and perfect bandwidth allocation (since queues can be serviced at precise rates).
However, this quality of service comes at the price of significant complexity and state in the router. The
router must maintain multiple queues and perform a (potentially non-trivial) computation prior to
dequeuing every packet in order to maintain the desired service rates. We seek to determine how close we
can come to the performance offered by packet scheduling using only queue management.

We use the packet-scheduling algorithm, Class-based Queues (CBQ) [12], as a baseline to which we
compare the performance of the different active queue management algorithms. We configure CBQ to
classify packets into the same traffic classes used in CBT and to service queues according to a pre-
determined share of the link capacity we have chosen to allocate to each traffic class.

Empirical Comparison

We have conducted a series of experiments using the network infrastructure described in [15], to
demonstrate the effectiveness of each active queue management scheme above in addressing the tension
between responsive and unresponsive flows. In each of these experiments we have a bottleneck router (a
PC running FreeBSD) using either one of the ALTQ [14] implementations of drop-tail FIFO, RED, or
CBQ or our own implementation of FRED or CBT. (To the best of our knowledge there are no
implementations of the mechanisms described in [4].) We tuned each algorithm to offer optimal
performance based on the algorithm’s intended goals. For FIFO, RED, and FRED we focused on TCP
performance while for CBT and CBQ we considered the performance of all the traffic types. To generate
TCP traffic we simulate a large collection (thousands) of users browsing the Web using an application-
model of Web traffic [16]. To avoid synchronization effects, we introduce artificial delays at each
receiver using dummynet [17]. Multimedia traffic is generated with an application based model of the
Intel ProShare videoconferencing system [18]. We also generate aggressive unresponsive traffic with an
application generating UDP traffic at a rate sufficient to saturate the bottleneck link. In each experiment,
we measured TCP throughput by monitoring the bottleneck link using tcpdump. We measure multimedia
loss and latency by instrumenting our traffic generators.

For each algorithm, we begin by introducing enough responsive traffic (Web traffic using TCP) to
saturate the bottleneck link. We then introduce 6 “tagged” multimedia streams with an aggregate load of
~160 KB/s. Finally, we introduce aggressive unresponsive traffic (referred to as a “udpblast”). Finally, we
stop the udpblast, multimedia, and responsive traffic, in that order. The period each traffic type is present
is indicated on the relevant plots.

9

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Udpblast Present

Continuous Media Present

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Udpblast Present

Continuous Media Present

a) DROP-TAIL b) RED.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Udpblast Present

Continuous Media Present

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Udpblast Present

Continuous Media Present

c) FRED. d) CBQ.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Udpblast Present

Continuous Media Present

e) CBT.
Figure 2: Aggregate TCP throughput under DROP-TAIL, RED, FRED, CBQ, and CBT

(TCP throughput in kilobytes/second versus elapsed time in seconds.)2

2 To the Editors: We can merge these plots into a single unit if we the plots will be reproduced in color.

10

To evaluate the effect of the various active queue management mechanisms, we first consider the
throughput of responsive traffic. Figure 2 compares the throughput of TCP under drop-tail FIFO, RED,
FRED, CBT, and CBQ. Note that in the case of drop-tail FIFO and RED, TCP throughput collapses when
the aggressive flows are introduced. This is because the TCP flows respond to the resulting congestion
and packet loss by decreasing their load while the aggressive flows continue to transmit at the same rate.
Since the TCP load is reduced, the aggressive flows are able to consume the unused bandwidth (the
bandwidth no longer consumed by TCP) and dominate the link. In contrast, FRED better polices the
unresponsive flows and results in better TCP throughput. FRED’s per-flow fairness constrains the
aggressive flow and allows TCP to continue to make progress. The CBQ experiment shows the best
possible performance that can be expected. By scheduling packets at guaranteed rates, CBQ provides a
guaranteed service for those classes that operate within their allocations. (In this experiment, CBQ was
configured to allocate 74% of the link’s capacity to TCP, 14% to multimedia, and 12% to “other.”) Before
the aggressive flows are introduced TCP is able to consume more than that share, but its throughput
reduces to its allocated level when the udpblast is introduced. Finally, we show the performance under
CBT where CBT’s thresholds are set to provide multimedia with its desired 160 KB/s, other traffic with
150 KB/s, and responsive traffic with the remaining capacity. TCP’s throughput is much better than RED,
FRED, or drop-tail FIFO and nearly comparable to that of CBQ. However, the more interesting fact is
that CBT is able to achieve this TCP throughput with out compromising the performance of the
necessarily unresponsive traffic, as we will see when we consider latency and loss for those flows.

Except for CBT, none of the active queue management schemes give special consideration to multimedia
or other unresponsive flows that have minimum acceptable performance levels. In the case of RED and
FRED, there was no effort to distinguish between flows so multimedia was simply as likely to receive
drops as any other traffic type. Table 1 shows the multimedia drop-rate during the udpblast period.
Clearly, RED forces a large number of drops for continuous media, with a 31% drop-rate. Performance
under drop-tail FIFO is similar. (Generally speaking, for the class of interactive continuous media
applications we are considering, loss rates much above 5% are likely to render the application useless.)
FRED’s policy of restricting unresponsive flows results in a similar drop-rate for continuous media, 27%.
These drop-rates are unacceptable if the multimedia interaction is to have any value. In contrast, a well-
configured CBT offers a drop-rate of 3%. This is comparable to the performance of the packet scheduling
discipline. CBQ guarantees no drops as long as the class’s offered load remains within its allocated
bandwidth and since that is the case here we see a drop-rate of 0% for continuous media.

Finally, we look at the average network latency of multimedia flows for the various queuing and
scheduling schemes. If interactivity is to be maintained the queue-induced latency at each router must be
minimized. Drop-tail FIFO gives the worst performance as it allows the queue to remain full during
periods of congestion and the average latency is directly related to the queue size. In the case of RED and
FRED, the maximum threshold parameter limits the average queue occupancy and is the primary
constraint on queue size. A maximum threshold of 30 packets in the case of RED results in latency on the
order of 30 ms. FRED requires a larger queue threshold in order to maintain a reasonable drop rate. As a
result, the average latency is almost 80ms. In contrast CBT’s threshold settings are tuned to have a lower
limit on the maximum average queue size, resulting in an average latency of 20ms. Finally, since CBQ
schedules packet transmissions, any class that is within its bandwidth allocation and non-bursty should be
serviced almost immediately. In this case, the overall latency is 7ms for multimedia.

11

Table 1: Average Packet Drop Rate and Latency for Multimedia Packets

Queue Management Scheme Drop Rate for
Continuous Media

Latency

DROP-TAIL 38% ~ 54 ms

RED 31% ~ 35 ms

FRED 27% ~ 79 ms

CBT 3% ~ 20 ms

CBQ 0% ~ 8 ms

Summary

In the Internet today there exists a fundamental tension between protecting TCP connections from
congestive collapse and supporting the needs of multimedia applications that require continuous
transmission of data. The Internet as a whole requires TCP, or TCP-friendly, reactions to congestion in
order to operate effectively. Unresponsive traffic, however, including well-behaved multimedia, has the
potential to take advantage of the cooperative nature of responsive flows and dominate a link’s capacity
while forcing responsive flows to decrease the load they generate. The current focus of the Internet
research community is on the use of active queue management mechanisms to resolve this tension in
favor of TCP performance and at the expense of even necessarily-unresponsive traffic. We have argued
that useful and important applications exist which are inherently unresponsive and have sought to
demonstrate that this tension can be resolved in a manner that is more amicable to both responsive and
necessarily unresponsive traffic classes.

We have surveyed two of the basic classes of active queue management, RED and FRED, and have
proposed a third method called CBT. RED focuses on providing probabilistic early notification of
impending congestion to responsive flows and as such is ineffective against isolating TCP from
unresponsive connections. FRED extends RED by promoting fair-sharing of link capacity through
minimal and maximal allocations of queue capacity that are a function of the number of flows present in
the router. CBT on the other hand uses static allocation of capacity to a small (and configurable) number
of traffic classes to both isolate traffic classes from one another, and to ensure well-behaved non-
responsive traffic realizes better service than under simple drop-tail FIFO (or RED or FRED).

Through a series of experiments we have shown:

! Congestion collapse is possible (and easy!) under simple drop-tail FIFO or RED. This demonstrates
that the tension between response and unresponsive traffic classes is real and needs to be addressed.

! TCP receives a larger share of available bandwidth when facing unresponsive flows under CBT than
with RED, FRED, or drop-tail FIFO. Performance is comparable to that achieved with a guaranteed
service packet scheduler such as CBQ but with significantly less state and simpler mechanisms.

! Under CBT, the number of drops experienced by low-bandwidth multimedia flows is substantially
lower than when RED or FRED is used and within the range that can be accommodated by
application-level error control schemes.

! Under CBT, end-to-end multimedia latency can be tuned to a value lower than that observed with
RED or FRED.

12

While CBT is not a panacea and issues such as marking schemes for packets remain, we believe it
demonstrates that the goals of providing a better-than-best-effort forwarding service for well-behaved
unresponsive traffic and protecting responsive traffic from unresponsive traffic are not inherently
contradictory.

13

References

[1] W. R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols. Addison-Wesley, Reading, Mass. 1994.

[2] V. Jacobson, Congestion Avoidance and Control, ACM Computer Communications Review,
18(4):314-329, Proceedings of ACM SIGCOMM ‘88, Stanford, CA, August 1988.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G.
Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, & L. Zhang,
“Recommendations on Queue Management and Congestion Avoidance in the Internet”, Internet
draft, work in progress, 1998.

[4] S. Floyd, S., & K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet,
IEEE/ACM Transactions on Networking, August 1999

[5] K. Claffy, G. Miller, K. Thompson, “The Nature of the Beast: Recent Traffic Measurements from an
Internet Backbone”, http://www.caida.org/outreach/papers/Inet98/

[6] Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich, R., Krone, O., Sandvoss, J., Vogt, C., 1993.
“Media Scaling for Audiovisual Communication with the Heidelberg Transport System”, Proc. ACM
Multimedia ‘93, Anaheim, CA, August 1993, pp. 99-104.

[7] S. Cen, C. Pu, J. Walpole, “Flow and Congestion Control for Internet Streaming Applications”, Proc.
SPIE/ACM Multimedia Computing and Networking ‘98, San Jose, CA, January 1998, pages 250-264.

[8] D. Sisalem, H. Schulzrinne, The Loss-Delay Based Adjustment Algorithm: A TCP-Friendly
Adaptation Scheme, Eighth International Workshop on Network and Operating Systems Support for
Digital Audio and Video, Cambridge, UK, July 1998, pp. 215-226.

[9] S. Floyd, & V. Jacobson, “Random Early Detection gateways for Congestion Avoidance”, IEEE/ACM
Trans. on Networking, V.1 N.4, August 1993, p. 397-413.

[10] D. Lin & R. Morris, Dynamics of Random Early Detection, Proc. SIGCOMM ‘97.

[11] M. Parris, K. Jeffay, F. D. Smith, Lightweight Active Router-Queue Management for Multimedia
Networking, Multimedia Computing and Networking 1999, SPIE Proceedings Series, Volume 3020,
San Jose, CA, January 1999

 [12] S. Floyd & V. Jacobson, “Link-Sharing and Resource Management Models for Packet Networks”,
IEEE/ACM Transactions on Networking, V.1, N.4, August 1995, pp. 365-386.

[13] S. Keshav, An Engineering Approach to Computer Networks: ATM Networks, the Internet, and the
Telephone Network, Addison-Wesley, professional computing series, 1997

[14] K. Cho, “A Framework for Alternate Queueing: Towards Traffic Management by PC-UNIX Based
Routers”, USENIX ‘98, Annual Technical Conference, New Orleans, LA, June 1998.

[15] M. Christiansen, K. Jeffay, D. Ott, F. D. Smith, “Tuning Red for Web Traffic”, ACM SIGCOMM
2000, Stockholm, Sweden, August, 2000.

[16] B. A. Mah, An Empirical Model of HTTP Network Traffic, in Proceedings of the Conference on
Computer Communications (IEEE Infocomm), (Kobe, Japan), pp. 592-600, Apr. 1997.

[17] L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols”, ACM Computer
Communication Review, January 1997

[18] P. Nee, K. Jeffay, G. Danneels, “The Performance of Two-Dimensional Media Scaling for Internet
Videoconferencing,” Proceedings of the Seventh International Workshop on Network and Operating
System Support for Digital Audio and Video, St. Louis, MO, May 1997, pages 237-248.

