
Published in: IEEE/ACM Transactions on Networking, Volume 9, Number 3, (June 2001), pages 249-264.

Tuning RED for Web Traffic *

Mikkel Christiansen,** Kevin Jeffay, David Ott, F. Donelson Smith
University of North Carolina at Chapel Hill

Department of Computer Science
Chapel Hill, NC 27599-3175 USA
http://www.cs.unc.edu/Research/dirt

Abstract * * *
We study the effects of RED on the performance of Web brows-
ing with a novel aspect of our work being the use of a user-
centric measure of performance — response time for HTTP
request-response pairs. We empirically evaluate RED across a
range of parameter settings and offered loads. Our results show
that: (1) contrary to expectations, compared to a FIFO queue,
RED has a minimal effect on HTTP response times for offered
loads up to 90% of link capacity, (2) response times at loads
in this range are not substantially effected by RED parameters,
(3) between 90% and 100% load, RED can be carefully tuned to
yield performance somewhat superior to FIFO, however, re-
sponse times are quite sensitive to the actual RED parameter
values selected, and (4) in such heavily congested networks,
RED parameters that provide the best link utilization produce
poorer response times. We conclude that for links carrying
only web traffic, RED queue management appears to provide
no clear advantage over tail-drop FIFO for end-user response
times.

1. Introduction
A recent IETF publication strongly recommended the wide-
spread deployment of active queue management technology in
routers to improve the performance of today’s Internet [4].
Active queue management refers to the practice of manipulat-
ing the queue at an outbound interface in a router to bias the
performance of flows that transit the router. The goals of ac-
tive queue management are to (1) reduce the average length of
queues in routers and thereby decrease the end-to-end delay
experienced by packets, and (2) ensure that network resources
are used more efficiently by reducing the packet loss that oc-
curs when queues overflow.

The recommended active queue management to be deployed is
random early detection, better known as RED [13]. Under
RED, a router will probabilistically drop an arriving packet
even though the queue for the appropriate outbound interface
is not full. The motivation for this “early” drop comes from
the fact that packet loss is the primary indicator of congestion
for a TCP connection. By dropping packets before a router’s
queue fills, the TCP connections sharing the queue will reduce
their transmission rates and (ideally) ensure the queue does not
overflow. The claim (borne out by significant empirical data)
is that dropping packets prior to the overflow of the queue will
reduce the overall rate of packet loss. Given that TCP traffic
dominates on Internet backbones [25], RED, and other forms

* Work supported by grants from the National Science Foundation
(grants CDA-9624662 and ITR 00-82870), Cisco Systems, the Intel
Corp., and the North Carolina Networking Initiative.
** Current address: Aalborg University, Department of Computer Sci-
ence, Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø, Denmark. This work
was performed while the first author was a visiting student at the Uni-
versity of North Carolina.

of early congestion notification, have the potential to im-
prove overall network performance as well as that seen by
individual TCP connections. In this work we test this claim
and explore the impact of RED on the performance of the most
dominant subset of TCP connections on the Internet today:
Web traffic. In particular, we are interested in measuring the
effect of RED on a user-centric measure of performance — the
response time for an HTTP 1.0 request. Although the perform-
ance of RED and other early congestion notification mecha-
nisms continue to be the subject of much study, the evaluation
metrics have largely been network-centric measures such as
network link utilization or aggregate TCP throughput.
Moreover, as argued in Section 2 below, most of these evalua-
tion studies focused on simulations of long-lived TCP connec-
tions such as (huge) file transfers. In contrast, measurement
studies have shown that the majority of TCP connections are
HTTP connections1 and that many of these connections are
quite short-lived, often on the order of a few TCP segments.
More importantly, given that the performance of the Internet
is becoming synonymous with the performance of the Web,
understanding the impact of router forwarding behaviors on
user-visible performance measures is an important (and
largely ignored) aspect of the evaluation of any congestion
control proposal.

At a high-level, we seek to compare the performance of HTTP
request-response pairs under RED and more traditional tail-
drop2 FIFO queuing. Unfortunately, measuring the perform-
ance of HTTP under RED is a complex problem. First, as de-
scribed in more detail in Section 3, RED is a general mecha-
nism that is controlled by (at least) 5 separate control parame-
ters. There exist rules-of-thumb for assigning values to most
parameters [15], but little is known about how (or if) one can
optimize RED performance for a given traffic class. Second,
even if optimal RED parameter settings were known, generat-
ing or simulating HTTP behaviors in a meaningful way is
problematic. There are few models of HTTP traffic and it is
likely the case that Web traffic dynamics (e.g., the mix be-
tween HTTP 1.0 and 1.1 protocols) are evolving faster than
our current ability to measure and model the traffic.

Our general approach is to conduct a “live simulation” of Web
browsing in a laboratory environment. By live simulation, we
mean that we simulate a large collection of users browsing the
Web at a set of sites distributed throughout the continental
United States. The HTTP traffic generated by the simulated
users will traverse a laboratory network with routers that sup-
port both RED and traditional tail-drop FIFO queuing. A num-
ber of instances of the user-browsing simulation program are

1 For example, recent measurements on the MCI backbone show that
about 95% of the bytes transmitted across the network are carried by
TCP and of these, 50-70% are HTTP messages [25].
2 Tail-drop refers to the action of dropping a packet that was intended
to be added at the tail of a full FIFO queue.

2

run to generate a configurable offered load on a bottleneck
network link. The user HTTP requests will be delivered to a set
of servers that will respond with responses of the appropriate
sizes. Both request and response packets are artificially de-
layed to simulate the round trip times (RTT) experienced when
communicating with machines distributed across the US. This
is done to ensure our end-to-end response-time measurements
reflect the full range of effects of TCP congestion control and
retransmissions experienced by real users. When the re-
sponses are delivered back to the users, we record the elapsed
time for each simulated HTTP request/response pair.

This experimental setup provides a basis for comparing the
effect of RED v. FIFO queuing on the response time for HTTP
requests. We performed a series of experiments to empirically
determine the FIFO queue length and combination of RED pa-
rameter settings that result in the best performance for our
network and our simulation of Web traffic. From our experi-
ments we observe the following:

• Contrary to expectations, when compared to a (properly
configured) tail-drop FIFO queue, RED has a minimal ef-
fect on HTTP response times for offered loads up to 90%
of link capacity.

• Response times for loads in this range are not substan-
tially effected by values of RED parameters.

• Between loads of 90% to 100% of link capacity, RED can
be carefully tuned to yield performance somewhat supe-
rior to FIFO. However, response times are quite sensitive
to the actual RED parameter values selected. In our ex-
periments recommended parameter settings resulted in
poorer performance than FIFO. Worse, the “optimal” set-
tings that resulted in the best RED performance were non-
obvious and arrived at only through exhaustive trial-and-
error experimentation.

• For loads of 90% to 100% of link capacity where RED has
the potential to provide better performance, performance
becomes a subjective measure. For loads in this range
there exists a trade-off between improving response
times of short-lived connections and improving response
times of long-lived connections. Both cannot be opti-
mized simultaneously.

• In such heavily congested networks, there exists a trade-
off between network utilization and HTTP transaction re-
sponse times. RED parameters values that provide the
best link utilization produce poorer response times.

We have considered only HTTP traffic in our experiments and
hence our results are best interpreted as representing a worst-
case scenario for RED performance on real Internet links that
carry a mix of HTTP and other traffic classes. Nonetheless, we
conclude that for links carrying only web traffic, RED appears
to provide no clear advantage over tail-drop FIFO for end-users
whose primary metric of satisfaction is response time.
Moreover, given the lack of engineering practice to guide the
setting of RED parameter values, and our demonstration that
“reasonable,” but nonetheless sub-optimal RED parameters
values can result in poorer performance than FIFO queuing,
without further analysis it is possible that widespread RED
deployment may not provide the expected benefits.

The remainder of this paper is organized as follows. Section 2
provides a more in-depth introduction to RED and reviews the
literature in the performance evaluation of RED and related
active queue management schemes. Section 3 describes our
experimental methods and the design and calibration of our

experiments. Section 4 presents the performance of our simu-
lated Web browsing sessions under FIFO queuing; Section 5
presents results for RED queuing. Section 6 provides a pre-
liminary analysis of the observed response time distributions
under RED. Section 7 compares the RED and FIFO results. We
conclude in Section 8 with a discussion of the results, the
limitations of our experiments and results, and some com-
ments on future work.

For completeness, we include two appendices. Appendix A
provides additional details on our experimental setup and
methods. Appendix B provides additional result data on our
RED and FIFO experiments.

2. Background and Related Work
RED is an active queue management mechanism that is in-
tended to address some of the shortcomings of standard tail-
drop FIFO queue management [4]. In a FIFO queue it is possi-
ble for “lock-out” to occur, a condition in which a small sub-
set of the flows sharing the link can monopolize the queue
during periods of congestion. Flows generating packets at a
high rate can fill up the queue such that packets from flows
generating packets at substantially lower rates have a higher
probability of arriving at the queue when it is full and being
discarded. A second problem with a FIFO queue is that latency
is increased for all flows when the queue is constantly full.
Simply making the queue shorter will decrease the latency but
negates the possibility of accommodating brief bursts of traf-
fic without dropping packets unnecessarily. RED addresses
both the “lock-out” problem by using a random factor in se-
lecting which packets to drop and the “full queue” problem by
dropping packets early, before the queue fills.

The RED algorithm uses a weighted average of the total queue
length to determine when to drop packets. When a packet ar-
rives at the queue, if the weighted average queue length is less
than a minimum threshold value, minth, no drop action will be
taken and the packet will simply be enqueued. If the average is
greater than minth but less than a maximum threshold, maxth,
an early drop test will be performed as described below. An
average queue length in the range between the thresholds indi-
cates some congestion has begun and flows should be notified
via packet drops. If the average is greater than the maximum
threshold value, a forced drop operation will occur. An average
queue length in this range indicates persistent congestion and
packets must be dropped to avoid a persistently full queue.
(The forced drop is also used when the queue is full but the av-
erage queue length is still below the maximum threshold.)
Note that by using a weighted average, RED avoids over-
reaction to bursts and instead reacts to longer-term trends.
Furthermore, because the thresholds are compared to the
weighted average (with a typical weighting factor, wq, of
1/512), it is possible that no forced drops will take place even
when the instantaneous queue length is quite large. For exam-
ple, Figure 1 illustrates the queue length dynamics in a RED
router used in our experiments. For the experiment illustrated
in Figure 1, forced drops would occur only in the one short
interval near the beginning when the weighted average
reaches the maximum threshold.

The early drop action in the RED algorithm probabilistically
drops the incoming packet when the weighted average queue
length is between the minth and maxth thresholds. In contrast,
the forced drop action in the RED algorithm is guaranteed to
drop the incoming packet. In the case of early drops, the prob-

3

ability that the packet will be dropped is dependent on several
other parameters of the algorithm. An initial drop probability
Pb = maxp(avg – minth)/(maxth – minth), is computed, where
maxp is the maximum drop probability (an additional control
parameter) and avg is the weighted average queue length. The
actual drop probability is a function of the initial probability
and a count of the number of packets enqueued since the last
packet was dropped: Pa = Pb/(1 – count×Pb). Note that given a
weighted average queue size, the impact of minth is dependent
on both maxp and maxth. This means that one may find a value
for minth that results in good performance, but it may only be
in combination with certain values of maxp and maxth. In prin-
ciple, this is the case for all the parameters. The main control
parameters for RED are summarized in Table 1.

The design of RED is such that during the drop phases of the
algorithm, high bandwidth flows will have a higher number of
packets dropped since their packets arrive at a higher rate than
lower bandwidth flows (and thus are more likely to be dropped
in an early drop action). However, all flows experience the
same loss rate under RED. By using probabilistic drops, RED
maintains a shorter average queue length, avoiding lockout
and repeated penalization of the same flows when a burst of
packets arrives.

The original RED paper [13] presented analysis and several
simulations to show the results of RED usage and develop
insights into the effects different RED parameters have on
performance. They arrived at suggested guidelines for useful
ranges of parameter values and explanations of the considera-
tions that would influence tuning parameters to achieve de-
sired results for particular traffic characteristics. Subsequent
analysis by RED’s designers and others led to the current
guidelines ([15]) that are discussed later in this paper.

One of the earliest experiments with RED was reported in [26]
and gives the results of live testing with a RED implementa-
tion in a router ahead of a bottleneck DS3 link in a transconti-
nental network. These tests were conducted with a small num-
ber of continuously sending high-bandwidth TCP connec-
tions. Total throughput of the TCP connections was the pri-

mary measure of performance and delays were not measured.
The results showed that, in general, RED achieved better
throughput and better link utilization for multiple connec-
tions than comparable tail-drop FIFO. RED was also effective
in preventing congestion collapse when the TCP windows
were configured to exceed the storage capacity of the network.
A very important result showed that the interface queue (buffer)
size is a critical parameter even with RED and should be 1-2
times the bandwidth-delay product at a bottleneck link.

A number of research efforts have focused on possible short-
comings of the algorithms in RED and have proposed modifi-
cations and alternatives, among them BLUE [12], SRED (Sta-
bilized RED) [23], Adaptive RED [11], FRED (Flow Random
Early Drop) [17], and BRED (Balanced RED) [2]. We do not
comment here on the contributions and merits of these pro-
posals except to note any analysis or simulations that ex-
amine the behavior and performance of “classic” RED. For
example, in [17] simulations are used to demonstrate situa-
tions in which RED does not provide protection from non-
adaptive flows, and situations in which RED does not promote
fair sharing of link bandwidth between TCP connections with
long RTT or small windows, and other competing flows.

In [12] there are a suite of results from ns simulations of RED
with ECN (explicit congestion notification [14]) enabled in
both routers and end-system TCP implementations. The simu-
lations focused primarily on the effects of the parameter wq

used to smooth measurements of the average queue size. Inter-
estingly, some of these simulations use a large number of
sources (1,000-4,000) that generate traffic with Pareto on/off
periods and might provide clues to behavior in web-like traf-
fic. Unfortunately, because all the simulations use ECN mark-
ing instead of packet drops, and end-to-end delays are not con-
sidered, the results are not directly comparable to our work on
packet-drop RED. Feng et al. presents ns simulations of RED
with packet drops in situations where a moderate number (32
or 64) of continuously sending TCP connections share a link
[11]. Here the maximum drop probability maxp was varied to
see its effect on loss rates and average queue length. The re-
sults show that the “best” value for maxp is dependent on the
number of connections and, for any setting, the drop rate is
not significantly different from that of a tail-drop FIFO queue.
The argument is also made that the effectiveness of RED de-
creases as the number of connections sharing the queue in-
creases. This is because a small number of connections actu-
ally receive and act on RED-induced congestion indications.

Results reported in [23] for simulations of RED with persis-
tent (continuously sending) TCP connections (ranging from
10-1,000 connections) showed that router queue lengths
(measured in the total buffer space consumed) were at or below
the minimum threshold for a small number of connections and
stabilized around the maximum threshold for a large number of
connections. Simulations were also conducted with more “re-
alistic” traffic by using a large number of TCP connections
(2,000-3,500) to transfer random size files with a size distri-
bution derived from measurements of Web transfers [6]. Be-
tween file transfers, the TCP connections were idle for a
“think time” also based on the same data (but with the mean
reduced by a factor of 10 to generate a heavier load). The only
results reported from simulations with these traffic condi-
tions, however, were for buffer occupancy in the RED router
which again demonstrated a tendency to stabilize around the
maximum threshold for larger numbers of active flows.

0

Min threshold

Max threshold

Max queue
length

Drop Probability

Probabilistic
early drop

No drop

Forced
drop

Queue Length

Time

Figure 1: An illustration of the desired behavior of a packet
queue at an outbound interface in a router. The gray line indi-
cates instantaneous queue length; the black line indicates the

weighted average queue length.

Table 1: RED control parameters.

qlen The maximum number of packets that
can be enqueued.

minth
Queue length threshold for triggering
probabilistic drops.

maxth
Queue length threshold for triggering
forced drops.

wq
Weighting factor for the average queue
length computation.

maxp
The maximum probability of performing
an early drop.

4

Recent work at INRIA has used analytic models and simulation
[20] along with live testing on a commercial RED implemen-
tation [19] to quantify the performance effects of RED. The
emphasis was on quantifying how RED influences loss rates,
patterns of consecutive loss, mean delay, and delay jitter for
mixes of “bursty” (TCP) and “smooth” (UDP) traffic, when
compared with tail-drop FIFO queue management. The results
from analytic models were confirmed with ns simulations for
a number (up to 300) of continuously-sending TCP connec-
tions sharing a bottleneck link with UDP flows operating at
10% of the link capacity. They concluded that TCP “goodput”
does not improve significantly with RED and this effect is
largely independent of the number of flows. They also ob-
served that the mean queuing delay is lower with RED but has a
much larger delay variance. In essence, the RED router be-
haved as a tail-drop router with a queue length equal to the
maximum threshold

Even though the INRIA work considers the effect of both queu-
ing delay and drop rates at routers, it does not integrate these
effects with the dynamics of TCP congestion control and re-
transmission to determine the overall result on end-to-end
response times for interactive or web-like traffic. Moreover,
the goal in these experiments was to explore how changes in
Cisco’s WRED configuration parameters could be used to con-
trol performance. The measures of performance were through-
put, bytes sent, and percentage of UDP drops. There were no
measurements of delays or end-to-end response times. Their
conclusion was that determining the best combinations of
RED parameters is difficult and, overall, RED did not show
much better performance than tail-drop FIFO (except with
larger queue sizes where RED did show some improvement in
performance).

We are aware of only two available reports from network op-
erators that have conducted pilot tests of RED in production –
those by Doran at Ebone [7] and Reynolds at QualNet (now
Verio) [24]. Doran’s measurements using the Cisco implemen-
tation indicate that RED was able to sustain near 100% utiliza-
tion on a 1,920 Kbps customer-access link where tail-drop
FIFO could not. Reynolds used the Cisco implementation of
WRED on both a DS3 core network link and a DS1 customer-
access link. For the heavily congested periods on the core
link, it was found that a wide separation of queue thresholds
(minth = 60, maxth = 500) produced the best tradeoff for link
utilization and low drop rates and was somewhat superior to
tail-drop FIFO. The default values for drop probability (1/10)
and smoothing factor (1/512) were used and their effects not
studied. For the customer access DS1 links, (apparently) the

default settings were used. These links were congested only
during some intervals and some increase in end-to-end latency
was observed with RED but the claim was made that “… the
user is not, in my opinion, inconvenienced, and has the bene-
fit of limited packet loss…” [24].

In summary, while the results from these studies have added
important pieces of evidence to the growing corpus of infor-
mation about RED, important elements are missing. In par-
ticular, none of the work we found explicitly considers RED
interactions with Web-like traffic where end-to-end response
time is the primary measure of performance. Further, many of
the results on RED performance are based on “best case” simu-
lations in which a constant number of TCP connections, each
sending continuously, share a queue facing a bottleneck link.
In the work reported here, we consider the opposite “worst
case” in which there is a dynamically changing number of TCP
connections with highly variable lifetimes.

3. Experimental Methods
3.1 Experimental Network
For our experiments we constructed a laboratory network that
models an enterprise or campus network having a single wide-
area link to an upstream Internet service provider (ISP). All
traffic using the ISP link is Web traffic where the requesters
(browsers) are all located on the enterprise or campus network
and all the requests are satisfied by Web servers located some-
where on the Internet beyond the ISP link.

The laboratory network used to emulate this configuration is
shown in Figure 2. All systems shown in this figure are Intel
architecture machines running FreeBSD 2.2.8. At one edge of
this network are machines that run instances of a Web request
generator (described below) each of which emulates the brows-
ing behavior of hundreds of human users. At the other edge of
the network are another set of machines that run instances of a
Web response generator (also described below) that creates
traffic in response to the browers' requests. In the remainder of
this paper we refer to the machines running the Web request
generator simply as the “browser machines” (or “browsers”)
and the machines running the Web response generator as the
“server machines” (or “servers”). The browser and server ma-
chines have 10/100 Mbps Ethernet interfaces configured to
run at only 10 Mbps and are attached to a switched VLAN on a
Cisco Systems Catalyst 5000. All browser machines are on
one VLAN and all server machines are on a separate VLAN.

At the core of this network are two router machines running
the ALTQ version 1.2 extensions to FreeBSD. ALTQ extends

“Campus”
Router

100
Mbps

Requests Responses

10
Mbps

Ethernet
SwitchHTTP

Request
Generators

(“Browser machines”)
10/100
Mbps

HTTP
Response

Generators
(“Server machines”)

RED Queue

... 100
Mbps

“ISP”
Router Ethernet

Switch

10
Mbps

Network Monitor

Network
Monitor

...

Figure 2: Experimental laboratory network diagram.

5

the network-interface output queuing discipline to include
FIFO, RED, CBQ, and WFQ queue management [16]. These
router machines are 300 Mhz Pentium IIs. Each router machine
has one 100 Mbps Ethernet interface attached to one of the
switched VLANs on the Catalyst 5000. Each router machine
also has two additional 10/100 Mbps Ethernet interfaces con-
figured to create two point-to-point Ethernet segments (using
two hubs) that connect the routers as shown in Figure 2. Static
routes are configured on the routers so that all traffic flowing
from the servers to the browsers uses one Ethernet segment
and all traffic flowing in the opposite direction uses the other
Ethernet segment. This configuration allows us to approxi-
mate the full-duplex behavior of the typical wide-area link to
an ISP from a customer’s network. By configuring the router-
to-router Ethernet segments to run at only 10 Mbps, we can
make our representation of the ISP link be a potential bottle-
neck since the aggregate bandwidth available to the machines
at each edge of the network is constrained only by the 100
Mbps links from the VLANs to the routers. When the links
connecting the routers are configured to run at 100 Mbps, the
bottleneck is removed.

Another important factor in modeling this configuration is
the effect of end-to-end latency. We use the dummynet [8]
component of FreeBSD to configure in-bound packet delays
on the end systems to emulate different round-trip times be-
tween each paring of a browser machine and a server machine.
The delays ranged from 7-137 milliseconds and were derived
from measurement data obtained at the NetStat.net web site
[21]. (See Appendix A for the actual delay values used.) The
delays were chosen to represent a sample of Internet round-trip
times within the continental U.S. A given delay represents the
minimum round-trip time experienced by an arbitrary TCP
connection between a given pair of client and server machines
in our experiments (assuming no delays in the two routers). As
explained below, the distribution of TCP connections over
pairs of machines should be approximately uniform and, thus,
we can calculate the mean minimal round-trip time for all TCP
connections sharing the network as approximately 79 milli-
seconds. The default TCP window size in FreeBSD of 16K
bytes was used on all the end systems. (For other characteris-
tics of the TCP implementation, see Appendix A.)

The instrumentation used to collect network data during runs
of the experiments consists of two monitoring programs. One
monitor is on the router interface where we are examining the
effects of queue algorithms. It calculates a mean and variance
of the queue size sampled every 3 milliseconds. The maximum
and minimum queue size seen in any sample is also collected.
These statistics are logged every 100 milliseconds along with
more general information about the number of transmitted and
dropped packets. The second monitoring program runs on a
separate machine connected to the hubs forming the links
between the routers (see Figure 2). Using a modified version of
the tcpdump utility, the machine collects the TCP/IP headers
in each frame traversing the links and processes these to pro-
duce a log of link throughput over each specified time interval
(typically one second). End-to-end performance measures such
as response times are measured on the end-systems as de-
scribed below.

3.2 Web-like Traffic Generation
The traffic that drives the experiments described here is based
on the model of web browsing developed by Mah [18]. Mah’s
model is an application-level description of the critical ele-
ments that characterize how HTTP 1.0 [22] protocols are used.

It is based on empirical data and is intended for use in generat-
ing synthetic Web workloads. The data were extracted from
more than 230 hours of traces collected on the UC-Berkeley
campus in late 1995 and include over 1.6 million HTTP proto-
col packets. These data were used to compute empirical distri-
butions describing elements necessary to generate synthetic
HTTP workloads. The elements of the HTTP model are:

• HTTP request length in bytes,

• HTTP reply length in bytes,

• Number of embedded (file) references per page,

• Time between retrieval of two successive pages (user
“think” time), and

• Number of consecutive pages requested from a server.

The empirical distributions for all these elements are used in
synthetic-traffic generator programs we wrote. The elements
that have the most pronounced effects on generated traffic are
the size of server responses, the number of requests necessary
to download a page (including all embedded references), and
the user “think” time between successive page requests. (See
Appendix A for a more detailed discussion of the Mah data.)
We used the Mah model to write Web-traffic generating pro-
grams using the normal socket system calls provided in
FreeBSD. Most of the behavioral elements of Web browsing
are emulated in the client-side request-generating program. Its
primary parameter is the number of browsing users (typically
several hundred) the program is to represent. For each user, the
program implements a simple state machine that represents
the user’s state as either “thinking” or requesting a web page.
If requesting a web page, a separate TCP connection, as im-
plied by the HTTP 1.0 protocol, is made to the server-side
portion of the program for the primary page and each embed-
ded reference (the distribution of embedded references per page
is used to generate a random value). Another parameter of the
program is the number of concurrent TCP connections allowed
on behalf of each browsing user to make embedded requests
within a page (this parameter is used to mimic the behavior of
Netscape and Internet Explorer).

For each request, a message of random size (sampled from the
request size distribution) is sent to the server program. This
message contains a value that represents the number of bytes
the server is to return as a response (a random sample from the
distribution of response sizes). The server sends this number
of bytes back to the browser and closes the TCP connection.
For the experiments reported here, the server’s “service time”
is set to zero so the response begins as soon as the request
message has been received and parsed (this roughly models the
behavior of a Web server or proxy having a large main-
memory cache with a hit-ratio near 1.0). For each re-
quest/response pair, the browser program logs its response
time. Response time is defined as the elapsed time in milli-
seconds between the time of the socket connect() operation
and the time the response is completed and the connection is
closed. Note that this response time is for each element of a
page, not the total time to load all elements of a page.

When all the request/response pairs for a page have been com-
pleted, the emulated browsing user enters the “thinking” state
and makes no more requests for a period of time sampled from
the think-time distribution. The number of page requests the
user makes in succession to a given server machine is sampled
from the distribution of consecutive page requests. When that
number of page requests has been completed, the server to

6

handle subsequent requests is selected randomly and uniformly
from the set of active servers. The number of emulated users is
constant throughout the execution of each experiment.

The HTTP 1.0 protocol implies the use of a new TCP connec-
tion for each request/response pair. This protocol is gradually
being replaced by the more efficient HTTP 1.1 protocol which
allows multiple and pipelined requests to reuse TCP connec-
tions [22]. While some data have been reported (e.g. [10])
suggesting that as many as 30% of HTTP requests now use the
HTTP 1.1 protocol, we have been unable to find data or models
sufficient for building a synthetic workload generator for
HTTP 1.1. For these reasons we generate only HTTP 1.0 traffic
in our experiments. We note, however, that the older HTTP
1.0 protocols are expected to represent a very significant por-
tion of Web traffic for some time because of difficulties with
migrating the installed base of browsers. Furthermore, our
focus on HTTP 1.0 serves as a worst-case analysis of RED
performance.

3.3 Experiment Calibrations
There are two critical elements of our experimental procedures
that had to be calibrated before performing experiments: (1)
ensuring that no element on the end-to-end path represented a
primary bottleneck other than when the links connecting the
two routers are limited to 10 Mbps, and (2) the offered load on
the network can be predictably controlled using the number of
emulated browsing users as a parameter to the traffic genera-
tor. To perform these calibrations, we first configured the two
segments connecting the routers to eliminate congestion by
running at 100 Mbps.

The first calibration performed was to verify that the traffic
generator programs did not have any resource constraints that
limited their ability to emulate hundreds of users. These pro-
grams were implemented using efficient programming tech-
niques for managing large numbers of socket connections
(based in part on Banga and Druschel’s scalable methods for
generating HTTP requests [3]). For this calibration we first
selected the slowest machine in our network (a 66 Mhz 486) to
run the browser program. We ran one instance of the server-
side program on each of the server machines and configured
the browser program to select uniformly from all servers for
each new sequence of page requests. The number of browsing
users was varied from 500 to 1,400 and the bandwidth used on
the 10 Mbps interface to the browser machine is plotted in
Figure 3 as a function of the number of simulated browsing
users. These results show that over this range of users, there is
a linear increase in generated traffic and the traffic is signifi-
cantly less than the capacity of the host’s 10 Mbps interface.
We repeated this experiment with a 200 Mhz Pentium Pro with
the results also shown in Figure 3 for further confirmation that
CPU and interface speeds of the end system are not resource
constraints. Thus if traffic generation machines are limited to
simulating no more than 1,400 users each, we can be confi-
dent that the number of users simulated in an experiment is
accurate and reproducible.

A second concern is that a single program can not faithfully
simulate hundreds of browsers because by default, a single
FreeBSD process can use at most 64 sockets simultaneously.
However, because user think times are much longer than the
times required to request pages, most of the emulated users are
idle at any time. We explicitly performed experiments to dem-
onstrate that the 64 socket descriptors limitation was never
encountered in practice. With a similar experiment we also

verified that even the slowest server machine could handle a
maximum number of expected requests without reaching a re-
source limitation.

For the next calibration, we ran an instance of the browser
program on each of the browser machines and again uniformly
distributed requests across all server machines. Each browser
was configured to emulate the same number of users with the
total users varied from 700 to 5,075. Figure 4 plots aggregate
traffic on the path carrying response traffic from the servers as
a function of emulated browsers (users). Again the load is a
linear function of browsers indicating there are no fundamen-
tal resource limitations in the system and generated loads can
easily exceed the capacity of a 10 Mbps link.

With these data we can determine the number of emulated
browsers that would generate a specific offered load in this
configuration if there were no bottleneck link present. This
capability is used in subsequent experiments to control the
offered loads on the network, including loads that nominally
exceed the capacity of a 10 Mbps link. For example, if we
want to generate an offered load equal to the capacity of a 10
Mbps link, we use Figure 4 to determine that we need to emu-
late approximately 3,400 browsing users; for a load of 110%
(11 Mbps) we need to emulate 3,750 users.

A motivation for choosing Web-like traffic to drive these
experiments was the assumption that properly generated traf-
fic would exhibit highly variable and bursty demands on the
network. To illustrate that this is indeed realized with our ex-
perimental setup, we have plotted the results from one of the
calibration experiments (3,500 browsers) in Figures 5 and 6 .
These plots show the number of requests initiated during each
one second interval (each request requires a new TCP connec-
tion) and the number of bytes requested (not necessarily re-
ceived) in each one second interval. Clearly these show the
highly bursty nature of the traffic actually generated.

3.4 Experimental Procedures
Each experiment was run using the following procedure. After
initializing and configuring all router and end-system parame-
ters, the server-side processes were started followed by the
browser processes. Each browser emulated an equal number of
users chosen, as described above, to place a nominal offered
load on an unconstrained (100 Mbps) network. The offered
loads used in the experiments were chosen to represent 50, 70,
80, 90, 98, or 110 percent of the capacity of a 10 Mbps link
connecting the two router machines. Loads exceeding 110%
were tried; it turned out, however, that the extreme duration of
the connections when using a congested link caused the traffic
generators to occasionally use all available sockets and fail to
generate the desired level of traffic. Because the measured re-
sponse times at a load of 120% had deteriorated well beyond
levels that most users would tolerate, we decided to not con-
sider loads beyond 110% on the congested link.

Each experiment was run for 90 minutes but data collected
during the first 20 minutes was discarded to eliminate startup
and stabilization effects. These effects are illustrated in Figure
7 which shows a plot of mean response times for requests dur-
ing each one second interval in a typical experiment. Figure 8
gives a plot of the cumulative distribution of response times
at a load from 3,500 browsers in an unconstrained network.
Note that about 90% of the requests complete in 500 millisec-
onds or less. Figure 8 represents the best-case performance for
HTTP request/response pairs and will be used as a basis for
comparison with experiments on the constrained (congested)

7

network link. Table 2 shows the number of requests generated
during a 70 minute interval for each of the loads in typical
runs on the unconstrained network.

Because responses are much larger than requests, the load on
the link between routers that carries traffic from the servers to
the browsers (the link from the “ISP” router to the “campus”
router in Figure 2) will be much greater than that on the link
carrying traffic in the opposite direction. Consequently, only
the effects of different queue management algorithms on the IP

output queue for this link interface are reported here. The IP
output queues for the link interfaces on all other machines in
the network were tail-drop FIFO queues with the FreeBSD de-
fault queue size of 50 elements. Data collected on these inter-
faces using the netstat function showed no dropped packets.

The key indicators of performance we use in reporting our
results are the end-to-end response times for each re-
quest/response pair. We report several measures of response
times including the median, the percent of requests complet-

1000

1500

2000

2500

3000

3500

4000

4500

400 600 800 1000 1200 1400

K
bp

s

Browsers

200Mhz Pentium Pro
66 Mhz 486

0

2000

4000

6000

8000

10000

12000

14000

16000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

K
bp

s

Browsers

measured
y = 2.95x-53.60

Figure 3: Offered load as a function of the number of simu-
lated users on one machine.

Figure 4: Offered load as a function of the number of simu-
lated users on 7 machines.

40

60

80

100

120

140

160

180

200

220

0 500 1000 1500 2000

R
eq

ue
st

s
pe

r
se

co
nd

Seconds

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

K
B

yt
es

 p
er

 s
ec

on
d

Seconds

Figure 5: Requests per second from 3,500 users. Figure 6: Bytes requested per second from 3,500 users.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Seconds

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

3500 browsers

Figure 7: Average response time per second during an ex-
periment. The plot includes the initial 20 minutes, where the

traffic generators are started and stabilize.

Figure 8: Cumulative response time distribution for 3,500
users on the unconstrained (100 Mbps) network.

8

ing in intervals of 0-1, 1-2, 2-3, and greater than 3 seconds,
and plots of the cumulative distributions of response times
(usually showing only times less than or equal to 2 seconds).
We also measured the percent of IP datagrams dropped at the
link queue, the mean queue size, and the link throughput actu-
ally achieved on the bottleneck link.

4. FIFO Results
To establish a baseline for evaluating the effects of using RED
on interface queues for links carrying only Web traffic, we
first examined the effects of FIFO queues with tail-drop behav-
ior in our experimental network. For these experiments we
created a bottleneck between the two routers by configuring
the two segments connecting the router machines to run at 10
Mbps using 10 Mbps hubs (see Figure 2). The critical parame-
ter for a FIFO queue is the size of the buffer space allocated to
hold the queue elements. Guidelines (or “rules of thumb”) for
determining the “best” queue size have been widely debated in
various venues including the IRTF end2end-interest mailing
list [9]. The guideline that appears to have attracted a rough
consensus is to provide buffering approximately equal to 2-4
times the bandwidth-delay product of the link. Bandwidth in

this expression is that of the link for the interface using the
queue and delay is the mean round-trip time for all connections
sharing the link – a value that is, in general, very difficult to
determine. For our experimental network, the mean minimum
round-trip time can be computed as 79 milliseconds and the 10
Mbps link has a bandwidth-delay product of approximately
96K bytes (see Appendix A). FreeBSD queues are allocated in
terms of a number of buffer elements (mbufs) each with capac-
ity to hold an IP datagram of Ethernet MTU size. We measured
the mean IP datagram size in our generated Web response traf-
fic to be just over 1K bytes so the FIFO queue should have
approximately 190-380 queue elements to fall within the
guidelines.

We ran a number of experiments with a FIFO queue on the bot-
tleneck link varying the offered load and queue size. Figure 9
shows the cumulative response time distributions for different
FIFO queue sizes at loads of 80%, 90%, 98%, and 110%. At a
load of 80%, there is little effect from increasing the queue
size from 30 to 240 elements. At 90% load we begin to see
queue size having more significant effects on response times
and observe that a queue size of 120 elements is a reasonable
choice for this loading. The effect that queue size has on re-
sponse times depends on the size of the HTTP response data as
is shown in the plots for 98% load. Increasing the queue size
from 30 to 120 has a slightly negative effect on relatively
short responses that could complete in a few hundred millisec-
onds by increasing the amount of time each packet spends in
the queue. For a 10 Mbps Ethernet link and an average frame
size around 1 KB, approximately 1,000 packets can be for-

Table 2: Typical numbers of requests in a 70 minute interval.

Load % Requests Load % Requests

50 240,379 90 425,293

70 329,638 98 461,837

80 375,673 110 521,561

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

queue length=30
queue length=60

queue length=120
queue length=190
queue length=240

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

queue length=30
queue length=60
queue length=90

queue length=120
queue length=190
queue length=240

Figure 9a: FIFO performance at 80% load. Figure 9b: FIFO performance at 90% load.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

queue length=30
queue length=60
queue length=90

queue length=120
queue length=190
queue length=240

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

queue length=30
queue length=60
queue length=90

queue length=120
queue length=190
queue length=240

Figure 9c: FIFO performance at 98% load. Figure 9d: FIFO performance at 110% load.

9

warded per second. Thus a packet arriving at the queue already
containing 100 packets has to wait approximately 100 milli-
seconds on the router. Such a delay is significant for requests
with short responses that may otherwise complete within
200-350 milliseconds. On the other hand, increasing the
queue size from 30 to 120 reduces response times significantly
for long requests. Even though the time spent in the queue by
each packet is longer, the reduced rate of drops means that
longer responses are less likely to encounter retransmission
timeouts (which are often longer than queuing delays by a
factor of 5-10 times). At queue sizes of 190 or 240 the increase
in response times for short requests appears to offset any im-
provement gained for longer requests from reduced drops.

Our results indicate that, overall, a FIFO queue size of 120
elements (about 1.25 times the bandwidth-delay product) to
190 elements (2 times bandwidth-delay) is a reasonable choice
for loads up to the link capacity. For offered loads that only
slightly exceed the link capacity (e.g., 110%), we observe
that queue sizes beyond 120 only exacerbate an already bad
situation. Additional measures of performance in these ex-
periments, including link utilization and drop rates, are given
in Appendix B. These results confirm that our selection of
queue sizes of 120-190 represent reasonable tradeoffs for re-
sponse times without significant loss of link utilization or
high drop rates.

These experiments illustrate (as queuing theory predicts) the
dramatic effect that offered loads near or slightly beyond the
link capacity have on response times. Figure 10 shows the
cumulative distribution of response times for these loads with
a FIFO queue of 120 elements. Clearly, response times degrade
sharply when the offered load approaches or exceeds link ca-
pacity. If an ISP has links that experience utilization above
90% over intervals greater than a few minutes, response time
for Web users are seriously impacted. A second important ob-
servation is that at loads below 80% there is no significant
change in response times as a function of load.

5. RED Results
The goal for our experiments with RED was to determine pa-
rameter settings that provide good performance for Web-
traffic. We also examined the tradeoffs among the different
parameters in tuning for performance. The RED queuing
mechanism has five different parameters for adjusting the al-
gorithm’s behavior. An exhaustive search for the best parame-
ter values is impossible because of the number of possible

combinations of values. Our approach for the RED experi-
ments was to design an initial set of experiments that could
give a broad approximation of parameter values that result in
good HTTP performance. We then examine the effects of vary-
ing each parameter individually using this initial determina-
tion as a baseline.

From our experiments with FIFO it is clear that there is a com-
plex tradeoff between response times for short responses that
can be completed in a few hundred milliseconds (best with a
short queue) and response times for longer responses (best
with longer queues and lower drop rates). The original Floyd
and Jacobson paper [13] suggests guidelines for tuning pa-
rameters that have been revised based on subsequent experi-
ence and analysis (see [15] for the current guidelines). These
guidelines suggest that the most fundamental effects are de-
termined by the minth and wq parameters which control trade-
offs between average queue size and sensitivity to the duration
of periods of congestion. For our initial experiments we de-
cided to eliminate the size of the physical queue as a factor and
set the number of queue elements to 480, more than double the
largest average queue size seen in the FIFO experiments. In
these experiments we varied minth beginning with the guide-
line value of 5 and ranging up to 120. We fixed maxp at 0.10,
wq at 0.002 (actually 1/512), and maxth at 3 times minth as sug-
gested in the current guidelines.

Each of the parameter settings was tried at six different offered
loads: 50%, 70%, 80%, 90%, 98%, and 110%. At 50% load
the number of dropped packets was between 0.00% and 0.01%
of the total number of packets transmitted. This means that at
loads of 50% and below, there is limited room for increasing
the performance of the router queuing mechanism. Post proc-
essing of the logs shows that the queue size never reaches the
maximum value of 480 even at a load of 110%, though it is
possible in a worst-case scenario. As expected, the perform-
ance changes significantly as the load is increased from 50%
to 110%. Figure 11 illustrates typical results from these ex-
periments by showing the effect of varying loads on response
time distributions with (minth, maxth) set to (30, 90).

It is encouraging to see that performance degradation only
occurs at loads greater then 70%, especially when combined
with the fact that the drop rates at 50% load never exceeds
0.01% of the packets received at the router. This indicates that
parameter tuning will have limited effect until loads reach
levels of 70-80% of link capacity. When loads exceed 70%,
the performance decreases monotonically as the load in-

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

load=50%
load=70%
load=80%
load=90%
load=98%

load=110%

Figure 10: FIFO performance for different loads with a
 queue length of 120 elements.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

load=50%
load=70%
load=80%
load=90%
load=98%

load=110%

Figure 11: The performance of RED at different loads.
wq=1/512, maxp=1/10, minth=30, maxth=90, qlen=480.

10

creases. The most significant performance decrease occurs at
load levels of 90-110%. These are the most interesting targets
for optimization, since this is where there is significant per-
formance to gain.

We start by exploring possible choices for minth and maxth.
Figure 12 shows the response time distributions for the 90%
and 98% offered loads, respectively. These results clearly
show that a naive application of the guidelines in [15] with a
minth of 5 would result in poor performance for Web-dominated
traffic. The best overall response-time performance is ob-
tained with values for (minth, maxth) of (30, 90) or (60, 180).
We see, as in the case of FIFO, that there is a tradeoff between
better response times for short responses at (30, 90) and im-
proving response times for longer ones at (60, 180), espe-
cially at the 98% load. Although the differences are not great,
we prefer (30, 90) on the grounds that about 70% of the re-
quests experience somewhat better response times than with
(60, 180). (One could also argue that (60, 180) is best because
it improves the most noticeable delays.) The complete results,
including link utilization and drop rates for loads of 90%,
98%, and 110% are summarized in Appendix B. These indicate
a slight drop in link utilization for the (30, 90) setting over
the (60, 180) setting. Like the FIFO results, response times at
loads of 110% are quite bad and are not improved by changing
the RED settings for (minth, maxth).

We next consider varying the ratio between minth and maxth by
holding one constant and varying the other. To see the effect

of minth, we first fixed maxth at 90 and varied minth. We then
held minth constant at 30 and varied maxth. We fixed maxp at
0.10, wq at 0.002 (actually 1/512), and qlen at 480 as in the
previous experiments. Figure 13 illustrates the effect from
varying minth on the response time distributions for the 90%
load. The results obtained by varying maxth are similar. The
results from these experiments, in general, show only mar-
ginal changes in response times (or link utilization) and con-
firmed the notion that the best balance of response times for
all sizes of responses with the loads considered here are
achieved with (minth, maxth) = (30, 90). The complete results
from these experiments are again given in Appendix B.

Experiments testing the impact of changing wq and maxp were
combined because of the close relationship between the two
parameters. The values used for wq were: 1/512, 1/256, and
1/128. (The implementation of RED requires the denominator
to be a power of 2.) Decreasing wq to 1/1024 was tried, but we
found it to be an unrealistic setting that causes reaction to
congestion to be quite slow. The values of maxp used were
0.05, 0.10, and 0.25. The remaining parameters were fixed at
minth = 30, maxth = 90, and qlen = 480. All the different set-
tings were tested at loads of 90, 98, and 110%.

These experiments showed that at all load levels the setting of
maxp to 0.25 has a negative impact on performance, because
too many packets are dropped. Figure 14 shows the results
from the experiments at 90% load (the results at 98% are simi-
lar). At 90% and at 98% load, the difference between the set-

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

minth=5,maxth=15
minth=15,maxth=45
minth=30,maxth=90

minth=60,maxth=180
minth=120,maxth=360

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

minth=5,maxth=15
minth=15,maxth=45
minth=30,maxth=90

minth=60,maxth=180
minth=120,maxth=360

Figure 12a: Response time CDF for offered load at 90% of
link capacity (wq=1/512, maxp=1/10, qlen=480).

Figure 12b: Response time CDF for offered load at 98% of
link capacity (wq=1/512, maxp=1/10, qlen=480).

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

minth= 5
minth=15
minth=30
minth=45
minth=60

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

wq=1/512, maxp=1/20
wq=1/512, maxp=1/10

wq=1/512, maxp=1/4
wq=1/256, maxp=1/20
wq=1/256, maxp=1/10

wq=1/256, maxp=1/4
wq=1/128, maxp=1/20
wq=1/128, maxp=1/10

wq=1/128, maxp=1/4

Figure 13: The effect of changing minth. Load = 90% and
maxth = 90, wq = 1/512, maxp = 1/10, qlen = 480.

Figure 14: Results for different values of wq and maxp.
Load = 90%, and qlen = 480, minth = 30, maxth = 90.

11

tings occurs beyond the knee (above the 75th percentile) of the
CDF, meaning that changes of wq and maxp mainly impact the
longer flows. Overall, however, we conclude that there is no
strong evidence to indicate using values other than the sug-
gested wq = 1/512 and maxp = 0.10.

Finally, we consider the effect of having a limit on the queue
size such that there are occasionally forced drops because the
instantaneous queue exceeds the buffer space. Table 3 gives
experimental results with our recommended values of RED
parameters for actual queue sizes of 480, 160, and 120 ele-
ments. These results are very similar to the FIFO results – the
120 element queue (1.25 times bandwidth-delay) is a rea-
sonable choice at 90% and 110% loads while a longer queue of
2-3 times bandwidth-delay might provide some advantage at
loads just below link saturation.

Our conclusion is that, except for minth which should be set to

larger values to accommodate the highly bursty character of
Web traffic, the guidelines for RED parameter settings and for
configuring interface buffer sizes (for both FIFO and RED)
also hold for the Web-like traffic used in our experiments. We
also conclude that attempting to tune RED parameters outside
these guidelines is unlikely to yield significant benefits.

To illustrate the latter point, we examined the entire suite of
experiments conducted for the 90% and 98% loads (including
some trial experiments with parameter values outside the
ranges reported above) to find the combination of settings
that gave the best results on three performance measures:
“best” response times (a subjective choice because of the
trade-off between improving response times for short v. long
responses), best link utilization, and lowest drop rate. These
settings are shown in Table 4 and the response times shown in
Figure 15. For 90% load, there are relatively small differences

between tuning for highest link utilization
or lowest drop rates and tuning for re-
sponse times. At 98% loads, tuning for
highest link utilization has potentially
serious effects on increasing response
times. Note that the “best” overall re-
sponse times are obtained for the 98% load
(only) with parameters that are quite differ-
ent from our generally recommended set-
tings. (In Figure 15, the “uncongested”
plots refer to the performance on the un-
constrained 100 Mbps network.)

Table 3: RED performance with recommended parameters and queue lengths.

Load
%

Queue
Length KB/s

%
drop

Mean
queue

Median
resp.(ms)

% ≤ 1
sec

1<%≤ 2
sec

2<%≤ 3
sec

% > 3
sec

90 480 1079 0.8 20.2 266 92.5 4.3 2.0 1.3
90 160 1093 1.1 22.2 278 91.2 4.7 2.4 1.7
90 120 1066 0.7 18.8 266 93.0 4.1 1.7 1.2
98 480 1164 4.1 39.4 345 79.2 8.2 6.3 6.3
98 160 1175 5.9 46.3 397 72.4 9.7 8.2 9.7
98 120 1171 5.5 44.3 377 74.2 9.2 7.7 8.9
110 480 1187 19.7 76.0 1846 39.4 12.9 12.1 35.5
110 160 1188 19.5 76.6 1864 39.1 13.0 12.2 35.7
110 120 1188 18.9 77.0 1840 39.3 13.2 12.5 34.9

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

uncongested
best setting at 90% load
best setting at 98% load

highest link utilization
lowest drop rate

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

uncongested
best setting at 90% load
best setting at 98% load

highest link utilization
lowest drop rate

Figure 15a: “Good” RED parameter settings at 90% load. Figure 15b: “Good” RED parameters settings at 98% load.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

best setting
wq=1/512, max_p=1/10, th=(5,15), qlen=480
wq=1/256, maxp=1/4, th=(5,120), qlen=480

wq=1/512, maxp=1/10, th=(120,150), qlen=480
0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

best setting
wq=1/512, maxp=1/20, th=(5,15),qlen=60

wq=1/512, maxp=1/10,th=(5,45),qlen=480
wq=1/512, maxp=1/4, th=(5,90),qlen=480

wq=1/512, maxp=1/10, th=(120,360), qlen=480

Figure 16a: “Bad” RED parameters settings at 90% load. Figure 16b: “Bad” RED parameters settings at 98% load.

12

Moreover, there is a significant down-side potential for
choosing “bad” parameter settings, especially at near-
saturation loads. We again searched the entire set of experi-
ments for the 90% and 98% loads looking for combinations of
RED parameters that produced response times that (subjec-
tively) represented poor choices (i.e., choices that increased
response times significantly for larger numbers of either short
or long responses). Figure 16 shows these results. Clearly
some parameter settings produce results that are considerably
less desirable than our recommended ones.

Table 4: Empirically determined “best” RED parameter values.

Load minth, maxth wq maxp Notes

90 30,90 1/512 1/10 best overall response
90 30,90 1/512 1/20 highest link utilization
90 120,360 1/512 1/10 lowest drop rate

98 5,90 1/128 1/20 best overall response
98 30,180 1/512 1/10 highest link utilization
98 90,150 1/512 1/10 lowest drop rate

6. Analysis of RED Response Times
While a detailed analysis of the causes of the response time
distributions observed under RED remains the subject of fur-
ther study, we are able to report the results of a preliminary
analysis. We repeated two of the RED experiments reported in
Figure 12b using more elaborate instrumentation to provide
additional data for each HTTP request/response pair. In addi-
tion to end-to-end response times, this instrumentation al-
lowed us to determine a detailed breakdown of the number and
types of retransmission events occurring in the TCP connec-
tions. We repeated RED experiments for an offered load of
98% with two sets of RED parameter values that produced
clearly different response time results; (minth, maxth) = (5, 15)
and (60, 180). In both cases the remaining RED parameters
were fixed at maxp = 1/10, wq = 1/512, and qlen = 480.

Table 5 gives the percentage of TCP connections that experi-
enced no retransmissions, those that experienced one or more
retransmissions of a SYN segment, one or more retransmis-
sions of a FIN segment, one or more retransmissions of a data
segment, and those with any combination of SYN, FIN, and
data segment retransmissions. In this analysis we consider
only retransmissions on the congested path from the server to

the client (there were no observed packet drops on the reverse
path).

Figures 17 and 18 give the cumulative distributions of re-
sponse times for those connections that experienced no re-
transmissions and for the connections that experienced re-
transmission events of the types described above. Also shown
is the cumulative distribution of response times for all con-
nections. In Figure 17 we observe that the response times for
about 50% of the connections with FIN or data retransmis-
sions are shifted relative to those with no retransmissions by
an amount corresponding to typical retransmission timeouts
in our experiments (approximately 1.5 seconds). The re-
sponse times for connections with SYN retransmissions are
shifted even more because of the longer timeouts on TCP con-
nection establishment. Connections with one or more data
retransmissions or with combinations of retransmission
types have heavier distribution tails (longer response times)
because of the cumulative effects of multiple retransmissions.

Comparing the two figures we observe that response times for
those connections having retransmissions are longer in Fig-
ure 18 by a factor somewhat greater than the additional mean
queueing delay for this case (about 55 milliseconds). Our pre-
liminary analysis indicates that changes in response times
because of retransmissions are a complex combination of
factors that influence the retransmission delays. These include
the mean queueing delay (which influences the estimated RTT),
the deviations in RTT caused by increased variance in queueing
delays (which are magnified by a factor of 4 in the TCP algo-

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

No Retransmissions
SYN one or more
FIN one or more

DATA one or more
Multiple types

ALL 0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

No Retransmissions
SYN one or more
FIN one or more

DATA one or more
Multiple types

ALL

Figure 17: Absolute performance of flows experiencing re-
transmissions ((minth, maxth) = (5, 15)).

Figure 18: Absolute performance of flows experiencing re-
transmissions ((minth, maxth) = (60, 180)).

Table 5: Summary retransmission statistics for experiments
with more detailed instrumentation.

Class of % of all TCP connections

retransmission event (minth, maxth) = (5,15) (60,180)

No retransmissions 56.1 87.1

1 or more retransmissions 43.9 12.9

1 or more SYN segments 7.4 2.0

1 or more FIN segments 6.0 2.0

1 or more data segments 25.5 8.5

Combined SYN/FIN/data 5.0 0.4

Total TCP connections 439,979 460,022

Total segments lost 12.4% 2.4%

13

rithm for computing the timeout), the timer granularity (500
milliseconds), and the minimum timeout value (1 second).
(For a more comprehensive analysis of these and other factors
affecting TCP retransmissions see [1].)

The relative contributions of each class of retransmission to
the overall response time distribution is shown in Figures 19
and 20. They show the cumulative distributions of connec-
tions with the following characteristics: those with no re-
transmissions, those with either no retransmissions or only
SYN retransmissions, those with either no retransmissions or
only FIN retransmissions, and those with either no retrans-
missions or only data segment retransmissions. To magnify
the relative contributions of each class we only show the por-
tion of the distribution beyond the 50th percentile. Contrary to
our expectations, retransmissions of lost SYNs (even when
most of the TCP connections transfer relatively few bytes) is
far from being the dominant factor leading to increased re-
sponse times. It is, in fact, data segment retransmissions that
have the greatest cumulative effect.

Another view of these dynamics is shown in Figure 21 that
gives a scatter plot of response times versus server reply
sizes. There is one dot in this plot for each of the approxi-
mately 400,000 connections with reply sizes less than
16,000 bytes in the experiment illustrated in Figures 17 and
19 ((minth, maxth) = (5, 15)). Connections experiencing one or

more retransmissions are marked with dark black dots while
those with no retransmissions are marked with gray dots. Sev-
eral features of this plot are striking:

• The large influence of retransmissions on response times
for short responses (e.g., the large number of replies of
size less then 4K bytes that take 5 seconds to complete),

• The clear regions of response times divided between con-
nections with and without retransmissions,

• The distinct bands of response times at intervals roughly
proportional to the granularity of the TCP retransmission
timer,

• The sharp step increase in response times with no re-
transmissions for those responses with lengths greater
than 2,880 bytes (corresponding to the initial TCP con-
gestion window), and

• The relatively few connections with retransmissions that
avoid a timeout, e.g., with fast retransmission (indicated
by black dots in the region dominated by connections
with no retransmissions).

This brief analysis has re-enforced our view that understanding
the effects of RED and FIFO queue management on end-to-end
response times for HTTP traffic is a complex issue. It involves
many trade-offs and parameters including not only parameters
set on routers but also those controlled at the end-systems
(e.g., TCP retransmission parameters).

7. Comparing FIFO and RED
Figure 22 shows the response time distributions for RED and
FIFO with the parameters selected as a result of our experi-
ments at offered loads of 90%, 98%, and 110%, respectively.
Also included for reference are the response time distributions
at these loads from the calibrations on the unconstrained net-
work. The only case in which there is a distinct advantage
from using RED is at the 98% load where response times for
shorter responses (80% of requests) are improved with care-
fully tuned RED parameters. Note that in Figure 22a we include
the response time distribution for both (minth, maxth) = (30,
90) and (60, 180). Recall that these settings gave nearly iden-
tical performance at 90% load and we selected (minth, maxth) =
(30, 90) as the best setting at this level for largely subjective
reasons.

50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

No Retransmissions (NR)
NR + SYN one or more
NR + FIN one or more

NR + DATA one or more
NR + Multiple types

ALL
50

55

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

No Retransmissions (NR)
NR + SYN one or more
NR + FIN one or more

NR + DATA one or more
NR + Multiple types

ALL

Figure 19: Relative contribution of flows experiencing re-
transmissions to total distribution ((minth, maxth) = (5,15)).

Figure 20: Relative contribution of flows experiencing re-
transmissions to total distribution ((minth, maxth) = (60,180)).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

po
ns

e
tim

e
(m

s)

Reply size (bytes)

Figure 21: Scatter plot of response times v. reply size
under RED for (minth, maxth) = (5,15).

14

8. Conclusions and Future Directions
Based on our experiments we summarize our conclusions as
follows. Contrary to expectations, for offered loads near or
below the levels of link saturation (90% or less), there is little
difference in end-to-end response times between the best-tuned
RED and tail-drop FIFO configured with 1-2 times the band-
width-delay product in buffer space. Tuning of the RED pa-
rameters generally produces little gain (or loss) in response
time performance, however, as illustrated in Figure 16a, one
can use plausible values for certain RED parameters and pro-
duce poorer performance.

At offered loads that approach link saturation (above 90%),
RED can be carefully tuned to yield performance somewhat
superior to properly configured tail-drop FIFO. The difference
is probably significant only between 90% and 100% loading
as response times degrade so rapidly above this level that any
“improvement” from tuning RED (or FIFO) is, at best, a sec-
ond-order effect. Moreover, at loads above 90%, response
times are more sensitive to the actual values of RED parame-
ters. In particular, there is greater down-side potential from
choosing “bad” parameter values as illustrated in Figure 16b.
This is significant because parameter settings that outper-
formed FIFO were arrived at only through extensive trial-and-
error experimentation. It was also the case that the RED pa-
rameters that provide the best link utilization at this load pro-
duce poorer response times.

In general we observed a complex trade-off between choosing
parameters that improve response time for short responses
(those consisting of only a few TCP segments) and those that
improve response times for longer responses. We have cho-
sen to favor those parameter settings that improve perform-
ance for the largest fraction of responses, and hence have fo-
cused on improving response times for the shorter responses.

Qualitatively these conclusions imply that providing adequate
link capacity (utilization less than 90%) is far more important
for Web response times than tuning queue management pa-
rameters. If one decides to deploy RED for any reason, re-
sponse times for Web-dominated traffic are not likely to be
impacted positively and, unless careful experimentation is
performed, response times can suffer. Given the current lack of
a widely-accepted analytic model for RED performance or
field-tested engineering guidelines for RED deployment and
the complexity of setting RED parameters, there seems to be

no advantage to RED deployment on links carrying only Web
traffic.

In applying these conclusions, there are some limitations of
this study that should be considered.

• We used packet-drops as the only “marking” behavior of
RED. Explicit marking by RED for ECN-capable TCP im-
plementations is likely to produce better results.

• We examined only HTTP 1.0 protocols. The interaction
of RED with a mix of HTTP 1.0 and HTTP 1.1 traffic
should also be analyzed.

• We studied a link carrying only Web-like traffic. More
realistic mixes of HTTP and other TCP traffic as well as
traffic from UDP-based applications need to be examined.
Congestion on both paths on a full-duplex link and over
multiple router hops, should also be considered.

Removing these limitations to produce a broader perspective
on RED behavior is the central theme of our ongoing network-
ing experiments.

9. References
[1] M. Allman and V. Paxson, On Estimating End-to-End

Network Path Properties, Proceedings of SIGCOMM ‘99,
September 1999, pp. 263-274.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

uncongested
FIFO - qlen=120
FIFO - qlen=190

RED - wq=1/512, maxp=1/10,th=(30,90), qlen=120
RED - wq=1/256, maxp=1/20,th=(30,90), qlen=480

Figure 22c: FIFO and RED at 110% load.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

uncongested
FIFO - qlen=120
FIFO - qlen=190

RED - wq=1/512, maxp=1/10,th=(30,90),qlen=120
RED - wq=1/512, maxp=1/10, th=(60,180),qlen=480

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

uncongested
FIFO - qlen=120
FIFO - qlen=190

RED - wq=1/512, maxp=1/10, th=(30,90),qlen=120
RED - wq=1/128, maxp=1/20, th=(5,90), qlen=480

Figure 22a: FIFO and RED at 90% load. Figure 22b: FIFO and RED at 98% load.

15

[2] F. Anjum and L. Tassiulas, Balanced-RED: An Algorithm
to Achieve Fairness in the Internet, http://www.isr.umd.-
edu/TechReports/ISR/1999/TR_99-17/TR_99-17.phtml.

[3] G. Banga and P. Druschel, Measuring the Capacity of a
Web Server, Proceedings of the USENIX Symposium on
Internet Technologies and Systems (USITS), December
1997, pp. 61-71.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Par-
tridge, L. Peterson, K. Ramakrishnan, S. Shenker, J .
Wroclawski, & L. Zhang, Recomedations on Queue Man-
agement and Congestion Avoidance in the Internet, RFC
2309, April 1998.

[5] P. Barford and M. E. Crovella, Generating Representative
Web Workloads for Network and Server Performance
Evaluation, in Proceedings of Performance '98/ACM
SIGMETRICS '98, 1998, pp. 151-160.

[6] M. Crovella and A. Bestavros, Explaining World Wide
Web Traffic Self-Similarity, TR-95-015, Boston Univer-
sity Computer Science Department, Revised, October 12,
1995.

[7] http://adm.ebone.net/~smd/red-1.html

[8] http://www.iet.unipi.it/~luigi/ip_dummynet/

[9] ftp://ftp.isi.edu/end2end/end2end-interest-1998.mail

[10] http://www.research.att.com/~anja/w3c_webchar/

[11] W. Feng, D. Kandlur, D. Saha, K. Shin, A Self-
Configuring RED Gateway, Proc. INFOCOM ‘99, March
1999, pp. 1320-1328.

[12] W. Feng, D. Kandlur, D. Saha, K. Shin, Blue: A New
Class of Active Queue Management Algorithms, Univer-
sity of Michigan Technical Report CSE-TR-387-99,
April 1999.

[13] S. Floyd, and V. Jacobson, Random Early Detection
Gateways for Congestion Avoidance, IEEE/ACM Transac-
tions on Networking, vol. 1 no. 4, August 1993, pp.
397-413.

[14] S. Floyd, TCP and Explicit Congestion Notification,
ACM Computer Communication Review, vol. 24 no. 5 ,
October 1994, pp. 10-23.

[15] http://www.aciri.org/floyd/REDparameters.txt

[16] C. Kenjiro, A Framework for Alternate Queueing: Towards
Traffic Management by PC-UNIX Based Routers, Proc.
USENIX 1998 Annual Technical Conference, New Orleans
LA, June 1998, pp. 247-258.

[17] D. Lin and R. Morris, Dynamics of Random Early Detec-
tion. Proc. SIGCOMM '97, September 1997, pp. 127-
138.

[18] B. Mah. An Empirical Model of HTTP Network Traffic,
Proceedings of INFOCOM ‘97, April 1997, pp. 592-600.

[19] M. May, J. Bolot, C. Diot, and B. Lyles, Reasons not to
deploy RED, Proc. IWQoS’99, London, March 199, pp.
260-262.

[20] M. May, T. Bonald, and J. Bolot, Analytic Evaluation of
RED Performance, Proc. INFOCOM 2000, March 2000,
pp. 1415-1424.

[21] http://www.netstat.net/

[22] H. Nielsen, J. Gettys, A. Baird-Smith, E.
Prud’hommeaux, H. Lie, C. Lilley, Network Performance
Effects of HTTP/1.1, CSS1, & PNG, Proc. SIGCOMM '97,
September 1997, pp. 155-166.

[23] T. Ott, T. Lakshman, and L. Wong, SRED: Stabilized
RED, Proceedings IEEE INFOCOM '99, March 1999, pp.
1346-1355.

[24] http://null0.qual.net/brad/papers/reddraft.hm, 1998 (link
now broken).

[25] K. Thompson, G. Miller, and R. Wilder, Wide-Area Inter-
net Traffic Patterns and Characteristics, IEEE Network,
vol. 11 no. 6, November/December 1997, pp. 10-23.

[26] C. Villamizar and C. Song, High Performance TCP in
ANSNET, ACM Computer Communications Review, vol.
24 no. 5, October 1994, pp. 45-60.

16

Appendix A

Details of the Experimental Configuration

TCP implementation characteristics in
FreeBSD 2.2.8
The laboratory network used to emulate this configuration is a
collection of Intel architecture machines running FreeBSD
2.2.8. All machines were configured identically. As config-
ured on our experimental systems, TCP has a default window
size in of 16K bytes. The TCP implementation supports Reno
congestion control and does not include SACK or new-Reno
functions. It supports RFC 1323 (high performance — not
enabled in our experiments), RFC 1122 (delayed ACKs), and
the Nagle algorithm. It does not support RFC 2414 (larger
initial window) or RFC 2481 (ECN). The bugs from RFC 2525
(4.2 BSD) are fixed. The default initial ssthresh is 1MB and
the behavior at cwnd equal to ssthresh is slow-start.

Round trip times
We use the dummynet [7] component of FreeBSD to configure
in-bound packet delays on the end systems to emulate different
round-trip times between each paring of a browser machine
and a server machine. Table 1 shows the different round-trip
times between each paring of browser machine and server ma-
chine. The values in this table were taken from measurement
data obtained at the NetStat.net web site
(http://www.netstat.net). Each value is the mean of 10 sam-
ples taken on different days for the reported round trip times
between one of the probe-destination pairs in the NetStat data
in July of 1999. The 49 probe-destination pairs were chosen
to represent a mix of Internet “distances” in the continental
U.S.

A given entry in Table 1 represents the minimum round-trip
time experienced by an arbitrary TCP connection between a
specific pair of client and server machines in our experiments
(assuming no delays in the two routers). Given that the distri-
bution of TCP connections over pairs of machines is designed
to be approximately uniform in our experiments, the mean

minimal round-trip time for all TCP connections sharing the
network is the average of all entries in Table 1. This value is
approximately 79 milliseconds.

Web-like traffic generation
The traffic that drives the experiments described here is based
on a model of web browsing developed by Mah [18]. The ele-
ments that have the most pronounced effects on generated
traffic are the size (bytes) of server responses, the number of
requests (files) necessary to download a page (including all
embedded references), and the user “think” time between suc-
cessive page requests. Mah found that the median response
sizes in four sub-samples of his trace data ranged between 1.5
KB and 2.2 KB while the means ranged from 8.3 KB to 10.6
KB, characteristics that are consistent with heavy-tail distri-
butions. He also found that the distributions of response sizes
above 1 KB could be modeled as Pareto distributions with pa-
rameter α = 1.04 to 1.14. Response sizes are actually further
characterized depending on whether the response is to a re-
quest for the primary page or an embedded reference. Mah
found that the distributions of primary page sizes have a dif-
ferent Pareto model (α = 0.85 to 0.97) than sizes of embedded
references model (α = 1.12 to 1.39). User think times between
page requests were found to have medians that ranged between
14 and 16 seconds with means ranging from 837 to 1,916
seconds, again characteristics consistent with heavy-tail dis-
tributions (although Mah did not report any attempt to fit the
empirical data to a model such as Pareto). The mean number of
requests (files) per page ranged between 2.8 and 3.2 with a
median of 1. More recent empirical data and models reported
by Barford, et al., [4] confirms that these characteristics of
Web traffic are well-modeled by heavy-tailed distributions.
The sizes of client request messages are relatively small (me-
dians of 231-244 bytes and means of 301-356 bytes) and do
not contribute greatly to the overall network loads.

Table 1: Round trip times in milliseconds between pairs of server machines (rows) and client machines (columns).

bra in t a z twee t ie howard l o v e y speedy petunia

goddard 81 105 64 64 67 147 114

wako 126 137 47 53 41 86 114

f l o y d 33 42 40 114 112 117 108

g o o b e r 35 45 95 100 31 100 116

the lmalou 105 92 78 41 53 109 66

roadrunner 85 112 38 83 55 8 41

y a k o 124 87 101 87 95 7 61

17

Appendix B

Tables of Result Data

Additional FIFO Results — Choice of queue length
Table 1 provides additional data on the performance of tail-
drop FIFO queuing for 5 choices of queue length and 4 load
levels. These results confirm that our selection of queue sizes

of 120-190 represent reasonable tradeoffs for response times
without significant loss of link utilization or high drop rates.

Table 1: FIFO results.

Load
%

Queue
Length

KB per
s e c .

%
drops

Mean
queue

Median
resp. (ms)

% ≤ 1
s e c .

1<% ≤2
s e c .

2<% ≤3
s e c .

% > 3
s e c .

80 30 992 1.1 6.5 246 92.2 4.5 2.1 1.3

80 60 980 0.3 11.7 248 95.5 2.9 0.9 0.7

80 120 990 0.1 22.7 264 95.8 3.0 0.6 0.6

80 190 992 0.0 27.7 273 95.5 3.3 0.6 0.6

80 240 981 0.0 25.8 265 95.9 3.1 0.5 0.5

90 30 1107 2.2 9.9 258 87.7 6.2 3.7 2.5

90 60 1130 0.9 20.0 266 92.4 4.2 2.0 1.3

90 120 1164 0.3 40.3 298 93.7 4.0 1.3 1.0

90 190 1106 0.2 66.6 361 92.1 5.4 1.3 1.2

90 240 1179 0.3 85.7 397 89.9 6.8 1.6 1.7

98 30 1163 6.7 16.6 329 71.8 11.1 8.5 8.6

98 60 1177 6.2 41.6 375 73.5 9.3 7.8 9.4

98 120 1169 3.1 84.8 421 81.2 7.5 5.2 6.1

98 190 1166 1.3 119.2 478 84.2 8.5 3.3 4.0

98 240 1167 1.4 154.3 555 80.0 11.3 3.7 5.0

110 30 1183 18.9 22.6 1538 44.6 14.5 11.1 29.8

110 60 1189 16.4 52.4 1440 47.7 13.3 11.7 27.4

110 120 1188 17.0 112.3 1600 45.1 11.3 12.9 30.6

110 190 1188 19.3 183.0 2156 37.3 10.8 14.7 37.0

110 240 1188 16.5 231.7 1917 38.7 12.3 13.9 35.0

Additional RED Results — Choice of minth
and maxth

Here we present additional data to support our choice of values
of minth and maxth that provide the best performance for our
HTTP workloads. In all the experiments reported here we fixed
maxp at 0.10, wq at 0.002 (actually 1/512), and qlen at 480.

Performance with max th = 3 x min th

Table 2 presents the performance of RED for 5 pairs of (minth,
maxth) and 3 load levels. In these experiments the ratio be-

tween minth and maxth is fixed at 3 as per the RED guidelines
[14]. These results (combined with those in the following
section) confirm that our selection of queue sizes of 120-190
represent reasonable tradeoffs for response times without sig-
nificant loss of link utilization or high drop rates. For our
subjective measures of performance presented in Section 5 ,
the best overall response time performance is obtained with
values for (minth, maxth) of (30, 90) or (60, 180).

18

Table 2: RED results with maxth = 3 × minth.

Load
%

(min th, maxth) KB per
s e c

%
drop

Mean
queue

Median
resp. (ms)

% ≤ 1
s e c .

1<% ≤2
s e c .

2<% ≤3
s e c .

% > 3
s e c .

90 5,15 1068 3.2 7.1 257 83.6 8.0 4.8 3.6

90 15,45 1088 2.0 14.7 264 88.1 5.9 3.4 2.6

90 30,90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3

90 60,180 1095 0.5 35.5 290 93.1 4.1 1.6 1.2

90 120,360 1094 0.1 53.8 325 93.7 4.4 1.0 0.9

98 5,15 1135 15.2 11.6 680 51.6 14.9 10.2 23.3

98 15,45 1158 5.8 24.0 338 73.3 10.5 7.9 8.3

98 30,90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3

98 60,180 1178 2.4 69.1 384 83.2 7.1 5.0 4.7

98 120,360 1182 3.1 147.4 554 75.6 10.1 6.0 8.3

110 5,15 1147 24.0 12.6 1936 36.9 14.0 9.8 39.3

110 15,45 1175 23.4 36.1 1957 37.1 13.5 10.3 39.1

110 30,90 1187 19.7 76.0 1850 39.4 12.9 12.1 35.5

110 60,180 1187 17.9 157.6 2119 37.9 10.5 15.5 36.1

110 120,360 1188 15.5 303.4 2470 31.6 14.0 14.6 39.7

Varying the ratio of min th to max th

Tables 3 and 4 provide data from the experiments that vary the
ratio between minth and maxth. In Table 3 maxth is fixed at 90

and four values of minth are considered. In Table 4 minth is
fixed at 30 and four values of maxth are considered.

Table 3: RED results for different values of minth with maxth fixed at 90.

Load
%

(min th, maxth) KB per
s e c

%
drop

Mean
queue

Median
resp . (ms

% ≤ 1
s e c .

1<% ≤2
s e c .

2<% ≤3
s e c .

% > 3
s e c .

90 5, 90 1088 1.6 12.8 264 89.2 5.7 3.1 2.0

90 15, 90 1104 1.4 17.7 272 89.9 5.3 2.9 1.9

90 30, 90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3

90 60, 90 1079 0.6 27.6 282 93.2 4.0 1.6 1.2

98 5, 90 1149 4.2 24.3 315 78.8 9.0 6.4 5.9

98 15, 90 1161 4.2 30.7 329 78.8 8.6 6.5 6.1

98 30, 90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3

98 60, 90 1171 4.5 54.8 379 78.4 7.5 6.7 7.4

110 5, 90 1188 19.7 75.0 1912 38.0 13.3 12.5 36.2

110 15, 90 1188 19.9 75.2 1902 38.3 13.2 12.4 36.1

110 30, 90 1187 19.7 76.0 1846 39.4 12.9 12.1 35.5

110 60, 90 1187 21.7 80.4 1992 38.0 12.1 11.8 38.1

19

Table 4: RED results for different values of maxth with minth fixed at 30.

Load
%

(min th, maxth) KB per
s e c

%
drop

Mean
queue

Median
resp . (ms

% ≤ 1
s e c .

1<% ≤2
s e c .

2<% ≤3
s e c .

% > 3
s e c .

90 30, 45 1088 2.1 20.0 279 87.9 5.7 3.7 2.8

90 30, 60 1106 1.6 22.0 280 89.3 5.3 3.2 2.2

90 30, 90 1079 0.8 20.2 266 92.5 4.3 2.0 1.3

90 30, 180 1092 0.9 25.7 281 92.1 4.3 2.0 1.5

98 30, 45 1144 9.4 30.0 377 69.2 10.0 8.4 12.3

98 30, 60 1162 6.7 36.2 372 72.1 9.7 8.1 10.1

98 30, 90 1164 4.1 39.4 345 79.2 8.2 6.3 6.3

98 30, 180 1187 5.6 72.0 446 71.8 9.5 8.4 10.3

110 30, 45 1179 22.5 37.9 1762 41.5 11.9 9.8 36.8

110 30, 60 1182 22.7 49.9 1908 38.0 13.2 10.7 38.1

110 30, 90 1187 19.7 76.0 1846 39.4 12.9 12.1 35.5

110 30, 180 1187 19.4 158.2 2354 35.3 10.4 15.5 38.7

