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Abstract— We present an empirical study of the effects of active
queue management (AQM) and explicit congestion notification
(ECN) on the distribution of response times experienced by
users browsing the Web. Three prominent AQM designs are
considered: the Proportional Integral (PI) controller, the Random
Exponential Marking (REM) controller, and Adaptive Random
Early Detection (ARED). The effects of these AQM designs
were studied with and without ECN. Our primary measure of
performance is the end-to-end response time for HTTP request-
response exchanges. Our major results are:

• If ECN is not supported, ARED operating in byte-mode was
the best performing design, providing better response time
performance than drop-tail queuing at offered loads above
90% of link capacity. However, ARED operating in packet-
mode (with or without ECN) was the worst performing
design, performing worse than drop-tail queuing.

• ECN support is beneficial to PI and REM. With ECN,
PI and REM were the best performing designs, providing
significant improvement over ARED operating in byte-
mode. In the case of REM, the benefit of ECN was dramatic.
Without ECN, response time performance with REM was
worse than drop-tail queuing at all loads considered.

• ECN was not beneficial to ARED. Under current ECN
implementation guidelines, ECN had no effect on ARED
performance. However, ARED performance with ECN im-
proved significantly after reversing a guideline that was
intended to police unresponsive flows. Overall, the best
ARED performance was achieved without ECN.

• Whether or not the improvement in response times with
AQM is significant, depends heavily on the range of round-
trip times (RTTs) experienced by flows. As the variation
in flows’ RTT increases, the impact of AQM and ECN on
response-time performance is reduced.

We conclude that AQM can improve application and network
performance for Web or Web-like workloads. In particular, it
appears likely that with AQM and ECN, provider links may be
operated at near saturation levels without significant degradation
in user-perceived performance.

I. INTRODUCTION AND MOTIVATION

The random early detection (RED) algorithm, first described
almost fifteen years ago [1], inspired a new focus for conges-
tion control research in the area of active queue management
(AQM). AQM is a router-based form of congestion control
wherein routers notify end-systems of incipient congestion.
The common goal of all AQM designs is to keep the average
queue size in routers small. This has a number of desirable
effects including (1) providing queue space to absorb bursts

of packet arrivals, (2) avoiding lock-out and bias effects from
a few flows dominating queue space, and (3) providing lower
delays for interactive applications such as Web browsing [2].

All AQM designs function by detecting impending queue
buildup and notifying sources before the queue overflows.
The various designs proposed for AQM differ in the mech-
anisms used to detect congestion and in the type of control
mechanisms used to achieve a stable operating point for the
queue size. Another dimension that has a significant impact
on performance is how the congestion signal is delivered to
the sender. In today’s Internet where the dominant transport
protocol is TCP (which reacts to segment loss as an indicator
of congestion), the signal is usually delivered implicitly by
dropping packets at the router when the AQM algorithm
detects queue buildup. An IETF standard adds an explicit
signaling mechanism, called explicit congestion notification
(ECN) [3], by allocating bits in the IP and TCP headers.
With ECN, a router can signal congestion to an end-system
by “marking” a packet (setting a bit in the header).

We report the results of an empirical evaluation of three
prominent AQM designs. These are the Proportional Integral
(PI) controller [4], the Random Exponential Marking (REM)
controller [5] and a contemporary redesign of the classic RED
controller, Adaptive RED [6] (here called ARED). While these
designs differ in many respects, each is an attempt to realize
a control mechanism that achieves a stable operating point for
the size of the router queue. Thus a user of each of these
mechanisms can determine a desired operating point for the
control mechanism by simply specifying a desired mean queue
size. Choosing the desired queue size may represent a trade-
off between link utilization and queuing delay - a short queue
reduces latency at the router but setting the target queue size
too small may reduce link utilization by allowing the queue to
drain frequently and overflow when bursts of packets arrive.

This work extends the study previously reported in [7]. Our
goal is to compare the performance of control theoretic AQM
algorithms (PI and REM) with the more traditional randomized
dropping found in RED. For performance metrics we choose
both user-centric measures of performance such as response
times for the request-response exchanges that comprise Web
browsing, as well as more traditional metrics such as link
utilization and loss rates. The distribution of response times
that would be experienced by a population of Web users is
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Fig. 1. Experimental network setup.

used to assess the user-perceived performance of the AQM
designs and is our primary metric for assessing overall AQM
performance. Another goal is to assess the implications of
ECN for AQM performance. ECN requires changes to end-
system protocol stacks and hence it is important to quantify the
performance gain to be had at the expense of a more complex
protocol stack and migration issues for end-systems.

In total, our results suggest that with the appropriate choice
and configuration of AQM, providers may be able to operate
links dominated by Web traffic at load levels as high as 90% of
link capacity without significant degradation in application or
network performance. Thus unlike a similar earlier study [8]
which was negative on the use of a specific form of AQM
(RED), our results presented here are a significant indication
that the stated goals of AQM can be realized in practice.

Our results also demonstrate some shortcomings in cer-
tain AQM algorithms. We show that ARED performance is
critically a function of whether the router’s queue length is
measured in units of bytes or packets. When ARED measures
queue length in packets it consistently resulted in response
time performance that was worse than that achieved with
simple drop-tail. Moreover, unlike PI and REM whose per-
formance was significantly improved by the addition of ECN,
ARED performance in “packet-mode” was unaffected by ECN.

We also show that the current guidelines for forwarding
ECN-marked packets can be counter-productive. By reversing
an implementation guideline for ECN, specifically by allowing
ECN-marked packets to be forwarded and not dropped when
the average queue length is in the “gentle region,” ARED
performance with ECN was substantially improved (resulting
in better performance than drop-tail). Overall, the best ARED
performance was always obtained when queue length was
measured in bytes rather than packets.

While the results of this study are intriguing, the study was
nonetheless limited. The design space of AQM designs is large
with each algorithm characterized by a number of independent
parameters. We limited our consideration of AQM algorithms
to a comparison between two classes of algorithms: those
based on control theoretic principles and those based on the
original randomized dropping paradigm of RED. Moreover,
we studied a link carrying only Web-like traffic. More realistic
mixes of HTTP and other TCP traffic as well as traffic from
UDP-based applications need to be examined. Remedying
this problem using more general, and realistic application
workloads, is the subject of our future work [9].

II. BACKGROUND AND RELATED WORK

The original RED design uses a weighted-average queue
size (avg) as a measure of congestion. When avg is smaller
than a minimum threshold (minth), no packets are marked
or dropped. When avg is between minth and a maximum
threshold (maxth), the probability of marking or dropping
packets varies linearly between 0 and a maximum drop prob-
ability (maxp). If avg exceeds maxth, all packets are marked
or dropped. (The actual size of the queue must be greater
than maxth to absorb transient bursts of packet arrivals.)
A modification to the original design introduced a “gentle
mode” in which the mark or drop probability increases linearly
between maxp and 1 as avg varies between maxth and
2×maxth. This fixed a problem in the original RED design
caused by the non-linearity in drop probability (increasing
from maxp to 1.0 immediately when maxth is reached).

An alleged weakness of RED is that it does not take into
consideration the number of flows sharing a link [10]. Given
TCP’s congestion control mechanism, a packet mark or drop
reduces the offered load by a factor of (1 − 0.5n−1) where
n is the number of flows sharing the bottleneck link. Thus,
RED is not effective in controlling the queue length when
n is large. On the other hand, RED can be too aggressive
and can cause under-utilization of the link when n is small.
Feng et al. proposed a self-configuring algorithm for RED
that adapts itself to the dynamic characteristics of traffic [10].
When the average queue is smaller than minth, maxp is
decreased multiplicatively to reduce RED’s aggressiveness
in marking or dropping packets. When the average queue
is larger than maxth, maxp is increased multiplicatively.
Floyd et al. improved this original adaptive RED by replacing
the MIMD (multiplicative increase multiplicative decrease)
approach with an AIMD (additive increase multiplicative
decrease) approach [6]. They also provided guidelines for
choosing minth, maxth, and the weight for computing a target
average queue length. The RED version that we implemented
and studied in our work (referred to herein as “ARED”)
includes both the adaptive and gentle refinements to the
original design. It is based on the description in [6].

Misra et al. applied control theory to develop a model for
TCP and AQM dynamics to analyze RED [11]. They asserted
two limitations in the original RED design: (1) RED is either
unstable or has slow responses to changes in network traffic,
and (2) RED’s use of a weighted-average queue length to
detect congestion and its use of loss probability as a feedback
signal to the senders were flawed. Because of this, in overload
situations, flows can suffer both high delay and a high packet
loss rate. Hollot et al. simplified the TCP/AQM model to
a linear system and designed a Proportional Integrator (PI)
controller that regulates the queue length to a target value
called the “queue reference,” qref [4]. PI uses instantaneous
samples of the queue length taken at a constant sampling
frequency as its input. The drop probability is computed as

p(kT ) = α(q(kT )−qref )−β(q((k−1)T )−qref )+p((k−1)T )
(1)

where p(kT ) is the drop probability at the kth sampling
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(a) CDF of generalized RTT distribution. (b) CCDF of generalized RTT distribution.
Fig. 2. Generalized RTT distribution (measured versus experimentally reproduced values).

interval, q(kT ) is the queue length sample, and T is the
sampling period. A close examination of this equation shows
that the drop probability increases in sampling intervals when
the queue length is higher than its target value. Furthermore,
the drop probability also increases if the queue has grown
since the last sample (reflecting an increase in network traffic).
Conversely, the drop probability in a PI controller is reduced
when the queue length is lower than its target value or the
queue length has decreased since its last sample. The sampling
interval and the coefficients in the equation depend on the link
capacity, the expected number of active flows using the link,
and the maximum RTT among those flows.

Athuraliya et al. proposed the Random Exponential Marking
(REM) design [5]. REM periodically updates a congestion
measure called “price” that reflects any mismatch between
packet arrival and departure rates at the link and any queue size
mismatch (i.e., the difference between the actual queue length
and its target value). The price measure p(t) is computed by:

p(t) = max(0, p(t− 1) + γ(α(q(t)− qref ) + x(t)− c)) (2)

where c is the link capacity, q(t) is the queue length, and
x(t) is the packet arrival rate at time t. As with ARED and
PI, the control target is only expressed by the queue size. The
mark/drop probability in REM is 1−φ−p(t), where φ > 1 is a
constant. In overload situations, the congestion price increases
due to the rate mismatch and the queue mismatch. Thus,
more packets are dropped or marked to signal TCP senders
to reduce their transmission rate. When congestion abates, the
congestion price is reduced because the mismatches are now
negative. This causes REM to drop or mark fewer packets and
allows the senders to potentially increase their transmission
rate. It is easy to see that a positive rate mismatch over a time
interval will cause the queue size to increase. Conversely, a
negative rate mismatch over a time interval will cause the
queue to drain. Thus, REM is similar to PI because the rate
mismatch can be detected by comparing the instantaneous
queue length with its previous sampled value. Furthermore,
when the drop or mark probability is small, the exponential
function can be approximated by a linear function [12].

An additional aspect of each AQM design is whether the
algorithm measures the length of the router’s queue (and
specifies target queue length, thresholds, etc.) in units of bytes
or packets. When measuring queue length in bytes, the AQM
algorithms bias the initial drop probability p by the size of the
arriving packet according to the following formula:

pb = p× arrivingpacketsize

averagepacketsize
(3)

Thus all other factors being equal, AQM algorithms oper-
ated in “byte-mode” assign lower drop probabilities to small
packets (e.g., SYNs, FINs, pure ACKs, etc.) than to large
packets. For PI and REM it is recommended that queue length
be measured in bytes while for ARED the recommendation
is to measure queue length in packets. However, to better
compare ARED to PI and REM we will evaluate ARED
performance in both byte- and packet-mode.

III. EXPERIMENTAL METHODOLOGY

For our experiments we constructed a laboratory network
that emulates the interconnection between two Internet service
provider (ISP) networks. Specifically, we emulate one peering
link that carries Web traffic between sources and destinations
on both sides of the peering link and the traffic carried between
the two networks is evenly balanced in both directions.

The laboratory network used to emulate this configuration
is shown in Figure 1. All systems shown in this figure are
Intel-based machines running FreeBSD 4.5. At each edge of
this network are a set of machines that run instances of a Web
request generator (described below) each of which emulates
the browsing behavior of thousands of human users. Also at
each edge of the network is another set of machines that run
instances of a Web response generator (also described below)
that creates the traffic flowing in response to the browsing
requests. A total of 44 traffic-generating machines are in the
testbed. In the remainder of this paper we refer to the machines
running the Web request generator simply as the “browser
machines” (or “browsers”) and the machines running the Web
response generator as the “server machines” (or “servers”).
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TABLE I
ELEMENTS OF THE HTTP TRAFFIC MODEL

Element Description
Request size HTTP request length in bytes
Response size HTTP response length in bytes

(top-level or embedded)
Page size Number of embedded objects per page
Think time Time between retrieval of two successive pages
Persistent Number of requests per persistent
connection use connection
Servers Number of unique servers used for all
per page objects in a page
Consecutive Number of consecutive pages requested from
page retrievals a given server

At the core of this network are two router machines running
the ALTQ extensions to FreeBSD. ALTQ extends IP-output
queuing at the network interfaces to include alternative queue
management disciplines [13]. The ALTQ infrastructure was
used to implement PI, REM, and ARED. The routers are
interconnected via three point-to-point Ethernet segments (two
100 Mbps Fast Ethernet segments and one fiber Gigabit
Ethernet segment) as illustrated in Figure 1. The gigabit
interconnection is used to perform experiments in an uncon-
gested environment while the 100 Mbps connections are used
to perform experiments in a congested environment. When
conducting experiments on the uncongested network, static
routes are configured on the routers so that all traffic uses
the full-duplex Gigabit Ethernet segment. When we need to
create a bottleneck between the two routers, the static routes
are reconfigured so that all traffic flowing in one direction
uses one 100 Mbps Ethernet segment and all traffic flowing
in the opposite direction uses the other 100 Mbps Ethernet
segment. These configurations allow us to emulate the full-
duplex behavior of the typical wide-area network link and to
monitor the traffic in each direction using Ethernet hubs.

Another important factor in emulating this network is the
effect of end-to-end latency. We use a modified version of
dummynet [14] in FreeBSD to configure outbound packet
delays on browser machines to emulate different RTTs on each
TCP connection (giving per-flow delays). This is accomplished
by extending the dummynet mechanisms for regulating per-
flow bandwidth to include a mode for adding a randomly
chosen minimum delay to all packets from each flow. The
same minimum delay is applied to all packets in a given
flow (identified by IP addressing 5-tuple). The minimum delay
assigned to each flow is randomly sampled from an RTT
distribution that is provided for each experiment. Two RTT
distributions are used. The first is a uniform distribution. For
the experiments reported in Sections IV and V, a uniform
distribution of minimum RTTs between 10 and 150 millisec-
onds was used. The minimum and maximum values for this
distribution were chosen using the method described in [8] to
approximate a typical range of Internet round-trip times within
the continental U.S. and the uniform distribution ensures a
large variance in the values selected over this range.

The second minimum RTT distribution is a more general
distribution that comes from a measurement study of the RTTs
experienced by the TCP connections transiting a university

campus-to-Internet gateway [15]. Figure 2 shows the cumu-
lative distribution function (CDF) and complementary CDF
(CCDF) of the general RTT distribution. (Note that the uni-
form distribution of minimum RTTs used in Sections IV and V
is a good approximation for the body of the more general
distribution (e.g., the 5th to 80th percentile).) Figure 2 shows
both the general distribution used as an input to the traffic
generation program and the range of minimum RTTs actually
achieved in our experiments. The general RTT distribution
is used for the experiments reported in Section VI. In all
experiments the actual RTTs experienced by the TCP senders
(servers) will be the combination of the flow’s minimum RTT
(dummynet delay) plus the queuing delays at the routers. (End
systems are configured to ensure no resource constraints were
present, hence delays there are insignificant.) A TCP window
size of 16K bytes was used on all the end systems because
widely used OS platforms, e.g., most versions of Windows,
typically have default windows this small or smaller.

A. Web-Like Traffic Generation

The traffic that drives our experiments is based on a large-
scale analysis of Web traffic [16]. The resulting model is
an application-level description of the critical elements that
characterize how HTTP/1.0 and HTTP/1.1 protocols are used
in practice. It is based on empirical data and is intended for use
in generating synthetic Web workloads. An important property
of the model is that it reflects the use of persistent HTTP
connections as implemented in many contemporary browsers
and servers. Further, the analysis distinguishes between “top-
level” objects (typically an HTML file) and embedded objects
(e.g., an image file). When these data were gathered, approxi-
mately 15% of all TCP connections carrying HTTP protocols
were effectively persistent (were used to request two or more
objects) but more than 50% of all objects (40% of bytes) were
transferred over these persistent connections.

The model is expressed by empirical distributions describing
the elements necessary to generate synthetic HTTP workloads.
The distributions that have the most pronounced effects on
generated traffic are summarized in Table I. Most of the be-
havioral elements of Web browsing are emulated in the client-
side request-generating program (the “browser”). Its primary
parameter is the number of emulated browsing users (typically
several hundred to a few thousand). For each emulated user,
the program implements a simple state machine that represents
the user’s state as either “thinking” or requesting a Web page.
If requesting a Web page, a request is made to the server-
side program (executing on a remote machine) for the primary
page. Then requests for each embedded reference are sent to
some number of servers (the number of servers and number
of embedded references are drawn as random samples from
the appropriate distributions). The browser also determines the
appropriate usage of persistent and non-persistent connections;
15% of all new connections are randomly selected to be
persistent. Another random selection from the distribution of
requests per persistent connection is used to determine how
many requests will use each persistent connection. Another
parameter of the program is the number of parallel TCP
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Fig. 3. Link throughput versus number of emulated browsing users.

connections used to make embedded requests within a page.
This parameter is used to mimic the parallel connections used
in Netscape (typically 4) and Internet Explorer (typically 2).

For each request, a message of random size sampled from
the request size distribution is sent over the network to an
instance of the server program. This message specifies the
number of bytes the server is to return as a response (a random
sample from the distribution of response sizes depending on
whether it is a top-level or embedded request). The server
transmits this number of bytes back to the browser. For
each request/response exchange, the browser logs its response
time. For the first request on a connection, the response time
begins at a timestamp taken just before the socket connect()
operation. For subsequent requests (on persistent connections),
the response time begins at a timestamp taken just before the
socket write() operation to send the request. The response time
ends when the read() operation completes for the last byte of
response data. Note that this response time is for each object
of a page, not the total time to load all objects of a page.

When all the request/response exchanges for a page have
been completed, the emulated user enters the thinking state and
makes no more requests for a random period of time sampled
from the think-time distribution. The number of page requests
the user makes in succession to a given server machine is
sampled from the distribution of consecutive page requests.
When that number of page requests has been completed, the
next server to handle the next top-level request is selected
randomly and uniformly from the set of active servers. The
total number of emulated users is constant throughout the
execution of each experiment.

B. Experiment Calibrations
Offered load for our experiments is defined as the network

traffic resulting from emulating a fixed-size population of Web
users. It is expressed as the long-term average throughput
(bits/second) on an uncongested link that would be generated
by that user population. There are three critical elements of
our experimental procedures that had to be calibrated before
performing experiments:

1) Ensuring that no element on the end-to-end path repre-
sented a bottleneck other than the links connecting the

two routers when they are limited to 100 Mbps,
2) The offered load on the network can be predictably

controlled using the number of emulated users as a
parameter to the traffic generators, and

3) Ensuring that the resulting packet arrival time-series
(e.g., packet counts per millisecond) is long-range de-
pendent as expected because the distribution of response
sizes is a heavy-tailed distribution [16].

To perform these calibrations, we first configured the net-
work connecting the routers to eliminate congestion by run-
ning at 1 Gbps. All calibration experiments were run with
drop-tail FIFO queues having a length equal to 2,400 packets
(the reasons for this choice are discussed in Section IV).
We ran one instance of the browser program on each of the
browser machines and one instance of the server program on
each of the server machines. Each browser was configured to
emulate the same number of active users and the total active
users varied from 7,000 to 35,000.

Two sets of calibration experiments were performed: one
with the uniform RTT distribution, and one with the more
general RTT distribution. Figure 3 shows the aggregate traffic
on one direction of the 1 Gbps link as a function of the number
of emulated users for both RTT distributions. The load in the
opposite direction was essentially the same. The offered load
expressed as link throughput is a linear function of the number
of emulated users indicating there are no fundamental resource
limitations in the system and generated loads can easily exceed
the capacity of a 100 Mbps link.

For each of our minimum RTT distributions, these data can
be used to determine the number of emulated users that would
generate a specific offered load in the absence of a bottleneck
link. This capability is used in subsequent experiments to
control the offered loads on the network. For example, if
we want to generate an offered load equal to the capacity
of a bidirectional 100 Mbps link between ISP1 and ISP2, we
would need to emulate a user population in ISP1 and a user
population in ISP2 (see Figure 1). The aggregate request data
flowing from emulated users in ISP1 to servers in ISP2, plus
the aggregate response data flowing from servers in ISP1 to
emulated users in ISP2, should have a mean of 100 Mbps.
The same constraint would also have to hold for the traffic
flowing from ISP2 to ISP1. To generate an offered load of 100
Mbps with uniformly distributed minimum RTTs, Figure 3
is used to determine that approximately 9,520 users must
be emulated on each side of the 1 Gbps link (i.e., 9,520
users in ISP1 and 9,520 users in ISP2). As expected, more
users must be emulated to realize a given target load with
the more general minimum RTT distribution which has a
larger mean and variance. To generate an offered load of 100
Mbps with the more general RTT distribution, approximately
10,570 users must be emulated in both of ISP1 and ISP2.
Note that for offered loads approaching saturation of the 100
Mbps link, the actual link utilization will, in general, be less
than the intended offered load. This is because as response
times become longer, users have to wait longer before they
can generate new requests and hence generate fewer requests
per unit time.
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TABLE II
SUMMARY STATISTICS FOR ARED, PI, AND REM

Offered Loss Completed Link
load rate (%) requests throughput

(millions) (Mbps)
No ECN No ECN No ECN

ECN ECN ECN
1 Gbps 90% 0.0 15.0 91.3
network 98% 0.0 16.2 98.2
drop-tail 90% 1.9 14.7 90.0
q = 240 98% 5.8 15.1 91.9

PI 90% 1.1 0.2 14.5 14.7 88.1 88.1
qref = 24 98% 4.1 1.7 14.9 14.9 89.4 89.5

PI 90% 0.4 0.04 14.6 14.7 88.3 88.2
qref = 240 98% 3.7 1.5 15.0 15.1 90.0 90.4

REM 90% 1.6 0.1 14.3 14.6 86.4 88.2
qref = 24 98% 4.9 1.7 14.6 14.9 87.5 89.5

REM 90% 3.2 0.1 13.7 14.7 83.3 88.5
qref = 240 98% 5.4 1.6 14.4 15.0 86.2 90.4

ARED 90% 0.9 0.7 13.8 13.8 85.2 84.7
(12, 36) 98% 2.1 2.1 13.9 14.0 86.2 86.0
ARED 90% 1.1 1.2 13.9 13.9 84.9 85.0

(120, 360) 98% 3.3 3.9 14.0 13.9 86.1 85.9
ARED byte 90% 0.8 1.1 14.6 14.5 88.0 87.8
(12, 36) 98% 3.6 4.0 14.8 14.6 89.4 88.0

ARED byte 90% 0.9 1.8 14.6 14.2 87.6 85.7
(120, 360) 98% 4.2 4.5 14.6 14.4 87.8 86.4

TABLE III
SUMMARY STATISTICS FOR ARED “NEW GENTLE”

Offered Loss Completed Link
load rate (%) requests throughput

(millions) (Mbps)
ARED 90% 0.7 14.4 87.2
(12, 36) 98% 1.8 14.4 88.0
ARED 90% 1.0 14.6 88.4

(120, 360) 98% 3.1 14.6 88.7
ARED byte 90% 1.1 14.6 87.5
(12, 36) 98% 3.1 14.6 88.0

ARED byte 90% 1.0 14.2 86.0
(120, 360) 98% 3.9 14.4 87.1

Our main motivation for using Web-like traffic was the
assumption that properly generated traffic would exhibit de-
mands on the laboratory network consistent with those found
in empirical studies of real networks, specifically, a long-range
dependent (LRD) packet arrival process. The empirical data
used to generate our Web traffic showed heavy-tailed distri-
butions for both user “think” times and response sizes [16].
For example, while the median response size generated in
experiments is approximately 1,000 bytes, responses as large
as 109 bytes are also generated. We verified that the number
of packets and bytes arriving to the router interfaces on the 1
Gbps link indeed constituted an LRD arrival process [7]. Thus,
although our study considers only web traffic, the dynamics
of the arrival process seen at router queues is indicative of
arrival processes observed on real networks.

C. Experimental Procedures

Each experiment was run using a fixed population of emu-
lated users chosen, as described above, to place a nominal
offered load on an unconstrained network. Each browser
program emulated the same number of users. The offered loads
used in experiments were chosen to represent user populations

that could consume 90% or 98% of the capacity of the 100
Mbps link connecting the two router machines (i.e., consume
90 or 98 Mbps, respectively). In [7] we demonstrated that
at offered loads up to 80% of link capacity, the distribution
of response times achieved with AQM was virtually identical
to that achieved with conventional drop-tail FIFO queuing.
Because these distributions were also quite similar to the
response-time distribution on the uncongested network, we
concluded that AQM offered no advantage over drop-tail at
or below 80% load. For this reason we begin our study
here at 90% load. ( [7] also reports the results of additional
experiments, identical to those performed here, for offered
loads of 105% of link capacity.) It is important to emphasize
again that terms like “98% load” are used as a shorthand
notation for “a population of Web users that would generate
a long-term average load of 98 Mbps on a 1 Gbps link.”

Each experiment was run for 120 minutes to ensure very
large samples (over 10,000,000 request/response exchanges in
each experiment) but data were collected only during a 90-
minute interval to eliminate startup effects at the beginning
and termination synchronization anomalies at the end. Each
experiment for a given AQM design was repeated three
times with a different set of random number seeds for each
repetition and the results from all three independent repetitions
were combined for plotting or computing means. To facilitate
comparisons among different AQM designs, experiments for
different designs were run with the same sets of initial seeds
for each random number generator.

The key indicator of performance is the end-to-end response
time for each HTTP request/response exchange. We report it as
plots of the cumulative distributions of response times up to 2
seconds. We also show the results obtained on an uncongested
1 Gbps link to provide a baseline for comparison. On all plots,
the “uncongested network” line represents the best possible
response time distribution. We also report the packet loss rate,
the link utilization on the bottleneck link, and the number
of request/response exchanges completed in the experiment.
These metrics for all experiments reported in Section IV and
Section V are found in Tables II and III.

IV. AQM EXPERIMENTS WITH PACKET DROPS

For PI and REM, target queue lengths of 24 and 240 packets
were evaluated. These values were chosen to represent two
operating points: one that potentially yields minimum latency
(24) and one that potentially provides high link utilization
(240). The values used for the coefficients in the control
equations are those recommended in [4], [12] and confirmed
by the algorithm designers. For ARED the same two target
queue lengths were evaluated. The calculations for all the
ARED parameter settings follow the guidelines given in [6] for
achieving the desired target delay (queue size). For all three
designs we set the maximum queue size to a number of packets
sufficient to ensure tail drops do not occur. All experiments in
this section use the uniform RTT distribution.

A. Results for PI with Packet Drops
Figure 4 (a) gives the results for PI at target queue lengths

of 24 and 240 packets, and loads of 90% and 98%. At 90%
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(a) Results for PI with packet drops. (b) Results for REM with packet drops.
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(e) Comparison of all designs at 90% load. (f) Comparison of all designs at 98% load.
Fig. 4. Response time distributions for PI, REM, ARED in packet-mode, and ARED in byte-mode with packet drops.

load, a target queue size of 24 results in lower response times
for all but the 10% of request/response exchanges having the
longest durations, those requiring more than approximately
500 milliseconds to complete. For these long-duration ex-
changes, the larger target size of 240 is slightly better. At 98%
load, the trade-off between optimizing the response time of
“shorter” exchanges, those requiring less than approximately
400 milliseconds to complete in this case, versus “longer”
exchanges, those requiring more than 400 milliseconds to
complete, is clearer. At 98% load, a target queue of 24 packets

results in lower response times for only the shortest 70% of
request/response exchanges. At both loads, both target queue
lengths result in equivalent performance for the very longest
exchanges (those requiring more than 2 seconds to complete).
Overall, PI provides the best response time performance when
used with a target queue reference of 24 packets.

In Figure 4 (a), we see a feature that is found in all results
at high loads where the loss rate is high (see Table II). The
flat area in the curves between approximately 500 milliseconds
and 1 second shows the impact of the RTO minimum and its
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granularity in TCP - exchanges that experience a timeout take
at least 1 second to complete on FreeBSD.

B. Results for REM with Packet Drops

Figure 4 (b) gives the results for REM at the same target
queue lengths and offered loads used for PI. At 90% load,
a queue reference of 24 performs significantly better than a
target queue of 240. At 98% load, a queue reference of 24
also performs slightly better than 240. Overall, REM provides
the best response time performance when used with a queue
reference of 24 packets.

C. Results for ARED with Packet Drops

ARED experiments were performed in both packet-mode
and byte-mode (i.e., the average queue length was computed
in terms of either packets or bytes). Previously reported results
for ARED operating in packet-mode with packet drops found
increased response times for HTTP transfers when compared
to drop-tail FIFO queuing at all load levels [7]. Those results
are confirmed here. For ARED operating in packet-mode,
Figure 4 (c) shows a significant shift in the response time
distribution compared to PI and REM for both target queue
lengths and both load levels. However, as shown in Figure 4
(d), ARED operating in byte-mode provides significantly bet-
ter response times. Interestingly, as shown in Table III, at 98%
load, ARED in byte-mode results in a (slightly) higher loss
rate than in packet-mode, however, more responses complete
(are delivered) during the experiment and a higher network
utilization is observed. Similar to PI and REM, the best
performance is obtained with queue thresholds corresponding
to a target queue length of 24 (minth = 12, maxth = 36).

D. Comparing All Designs with Packet Drops

We use the results from a conventional drop-tail FIFO queue
of size equal to either 24 or 240 packets as a baseline for
evaluating the performance of the AQM designs. In addition,
we also attempted to find a queue size for drop-tail FIFO that
would represent a “best practice” choice. Guidelines (or “rules
of thumb”) for determining the “best” allocations of queue
size have been widely debated in various venues including the
IRTF end2end-interest mailing list. One guideline that appears
to have attracted a rough consensus is to provide buffering
approximately equal to 2-4 times the bandwidth-delay product
of the link. Bandwidth in this expression is that of the link
and the delay is the mean round-trip time for all connections
sharing the link - a value that is, in general, difficult to
determine. Other mailing list contributors have recently tended
to favor buffering equivalent to 100 milliseconds at the link’s
transmission speed. In our experimental environment where
the link bandwidth is 100 Mbps and mean frame size is a
little over 500 bytes, 100 milliseconds of buffering implies a
queue length of approximately 2,400 packets.

In [7] we evaluated the response-time performance of a
drop-tail queue with lengths equal to 24, 240 and 2,400 packets
for offered loads of 80%, 90%, and 98%. Here, we use a drop-
tail queue of 240 packets as a baseline for comparing with
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Fig. 5. Response time CCDF of all designs with packet drops at 98% load.

AQM mechanisms because it corresponds to one of the targets
selected for AQM and provides reasonable performance for
drop-tail even though it provides only about 10 milliseconds
of buffering at 100 Mbps.

Figures 4 (e) and (f) compare the response-time perfor-
mance of PI, REM, and ARED under the best settings for
each algorithm at offered loads of 90% and 98%. To calibrate
these curves, the response time performance for drop-tail FIFO
and for the uncongested 1 Gbps network are also shown.
The uncongested network curve represents the best possible
response time distribution and provides a basis for an absolute
comparison of AQM designs. The curve labeled “drop-tail” on
all the plots represents the baseline performance that, ideally,
all AQM designs should beat. Thus, in evaluating an AQM
algorithm, its performance will be considered acceptable in the
absolute if the response time CDF is better than (above) that of
drop-tail. In comparing results for two AQM designs, we claim
that the response time performance is better for one of them
if its CDF is clearly above the other’s (closer to that of the
uncongested network) in some substantial range of response
times, and comparable in the remaining range.

Comparing AQM designs at 90% load, ARED operating in
byte-mode is the best performing algorithm, providing better
response times for virtually all exchanges. PI, REM, and
drop-tail provide equivalent performance for about the 40%
of exchanges that can be completed in approximately 125
milliseconds or less. For the remainder of the distribution out
to 2 seconds, PI performs better than REM and drop-tail while
REM performs the same as (or worse than) drop-tail.

At 98% load, PI, REM, and ARED in byte-mode, result
in nearly identical performance for the approximately 65%
of request/response exchanges that can be completed in 300
milliseconds or less. In addition, all three designs outperform
drop-tail. For the remaining 35% of exchanges, ARED and PI
provide similar or slightly better response times than drop-tail
while REM provides similar or slightly worse response times.
However, overall, no AQM design can offset the performance
degradation at this extreme load.

Tables II and III show that at 90% and 98% loads, drop-tail
with a queue of 240 packets gives slightly better link utilization
than any of the AQM designs. It also completes slightly more
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(a) Results for PI with/without ECN at 90% load. (b) Results for PI with/without ECN at 98% load.
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(c) Results for REM with/without ECN at 90% load. (d) Results for REM with/without ECN at 98% load.
Fig. 6. Response time distributions for PI and REM with/without ECN.

request-response exchanges than the other designs. However,
drop-tail has higher loss ratios than the other designs. ARED
in byte-mode has slightly better loss ratios than PI and REM
at all loads. ARED and PI complete more requests, and have
better link utilization than REM at all loads.

Figures 4 (e) and (f) show that about 90% of all re-
quest/response exchanges complete in under 2 seconds for the
best AQM parameter settings at 98% load. Figure 5 shows
the remainder of the distribution for this load level. The
conclusions drawn from Figures 4 (e) and (f) also hold for
exchanges that experience response times up to approximately
50 seconds (about 99.95% of all request/response exchanges).
The remaining exchanges perform best under drop-tail. For
the 0.05% of request/response exchanges in the tail of the
distribution, ARED in byte-mode outperforms PI and REM.

The major conclusion from the experiments with packet
drops is that AQM, specifically, PI and ARED in byte-
mode, can improve response times of Web request/response
exchanges when compared to drop-tail. This improvement
comes at the cost of a very slight decrease in link utilization.

V. AQM EXPERIMENTS WITH ECN

AQM designs drop packets as an indirect means of signaling
congestion to end-systems. The explicit congestion notification
(ECN) packet-marking design was developed as a means of

explicitly signaling congestion to end-systems [3]. To signal
congestion a router can “mark” a packet by setting a specified
bit in the TCP/IP header of the packet. This marking is not
modified by subsequent routers. Upon receipt of a marked
packet, a TCP receiver will mark the TCP header of its next
outbound packet (typically an ACK) destined for the sender
of the original marked packet. Upon receipt of this marked
packet, the original sender will react as if a single packet had
been lost within a send window. In addition, the sender will
mark its next outbound packet (with a different marking) to
confirm that it has reacted to the congestion.

We repeated each of the above experiments with PI, REM,
and ARED using packet marking and ECN instead of packet
drops for offered loads of 90% and 98%. The uniform distri-
bution of minimum RTTs is again used throughout.

A. Results for PI and REM with ECN

Figures 6 (a)-(b) compare the results for PI with and without
ECN. At 90% load, PI with ECN performs somewhat better
than it does without ECN, especially at a target queue length of
24 packets. At 98% load, however, ECN significantly improves
performance for PI at both target queue lengths.

REM shows significant performance improvement with
ECN at both loads (Figures 6 (c)-(d)). When using packet
drops, PI and drop-tail outperformed REM at 90% and 98%
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(a) Results for ARED/ECN packet-mode at 90% load. (b) Results for ARED/ECN packet-mode at 98% load.
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(c) Results for ARED/ECN byte-mode at 90% load. (d) Results for ARED/ECN byte-mode at 98% load.
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(e) Results for ARED/ECN/new gentle mode at 90% load. (f) Results for ARED/ECN/new gentle mode at 98% load.
Fig. 7. Response time distributions for ARED with and without ECN and new gentle mode with/without ECN.

loads. With ECN, REM outperforms drop-tail and gives per-
formance similar to PI at both loads.

Table II presents the link utilization, loss ratios, and the
number of completed requests for each ECN experiment. PI
with ECN clearly seems to have better loss ratios, although
there is little difference in link utilization and number of
requests completed. REM’s improvement when ECN is used
derives from lowered loss ratios, increases in link utilization,
and increases in number of completed requests.

B. Results for ARED with ECN

Figures 7 (a)-(d) show results for ARED with and without
ECN. Contrary to the PI and REM results, for ARED in both
packet-mode and byte-mode, ECN has little effect on response
times. In particular, at all tested target queue lengths, ARED
packet-mode performance with ECN is worse than drop-tail at
both loads. In byte-mode, only ARED with ECN and queue
thresholds of (12, 36) outperforms drop-tail. However, even
in this case, performance is slightly worse than ARED byte-
mode without ECN with the same thresholds. Moreover, as
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(a) Comparison of the best of all designs, 90% load. (b) Comparison of the best of all designs, 98% load.
Fig. 8. Comparison of all designs with/without ECN.

shown in Table III, in almost all the ARED experiments, the
loss rate is higher with ECN than without ECN.

Additional analysis indicates that the performance anoma-
lies observed with ECN are due to a subtle aspect of ARED’s
design. In ARED’s “gentle region,” when the average queue
size is between maxth and 2×maxth, ARED drops packets
even if the packets carry ECN-markings. This is in keeping
with ECN guidelines that state packets should be dropped
when the AQM design’s maxth queue length threshold is
exceeded. The motivation for this rule is to more effectively
deal with potential non-responsive flows that ignore congestion
indications and thereby increase the average queue length [3].
We believe this rule to be counter-productive in environments
such as ours where there are no non-responsive flows. To test
this hypothesis we allow ARED to forward all ECN packets in
the gentle region. Figures 7 (e)-(f) compare the performance
of ARED with ECN in packet-mode and byte-mode with and
without our “new gentle” ECN behavior. With the new gentle
ECN behavior, performance in packet-mode at both load levels
is substantially improved, outperforming drop-tail for the vast
majority of request/response exchanges.

The results are less dramatic for ARED in byte-mode. At
90% load, new gentle ECN forwarding in byte-mode improves
performance over the original ECN forwarding in byte-mode.
However, overall, new gentle ECN forwarding in byte-mode
does not improve performance over original ARED in byte-
mode without ECN. Moreover, at 98% load, new gentle
ECN forwarding in byte-mode neither improves response time
performance over the original ECN forwarding in byte-mode,
nor gives better performance then original ARED in byte-
mode without ECN. In summary, ECN provides no benefit
to ARED in byte-mode. However, with ECN forwarding in
the gentle region, ECN significantly ameliorates the otherwise
poor performance of ARED operating in packet-mode. We
conclude, however, that the best overall ARED response time
performance is achieved in byte-mode without ECN.

With respect to loss rate and link utilization, Table III shows
that ARED in packet-mode (queue thresholds (12, 36)) with
new gentle ECN forwarding has loss rates lower than ARED
with or without (original) ECN, and comparable to PI and

REM with ECN. ARED in byte-mode without ECN (queue
thresholds (12, 36)) experiences a comparable loss rate at 90%
load but a higher loss rate at 98% load. ARED in byte-mode
without ECN results in slightly more completed requests per
experiments and higher link utilization.

C. Comparisons of PI, REM, and ARED

Recall that at 80% load, previous work showed no AQM de-
sign provides better response time performance than a simple
drop-tail queue. This result was not changed by the addition
of ECN [7]. Here we compare the performance obtained for
PI, REM, and ARED with best parameter settings and pairing
with ECN for loads of 90% and 98% (see Figure 8).

At 90% load, both PI and REM perform best with ECN
while ARED performs best in byte-mode without ECN. All
provide response time performance that is close to that on an
uncongested link for the shortest 85% of exchanges. For the
remaining 15% of exchanges, PI and REM perform somewhat
better than ARED. In addition, all AQM designs perform better
than drop-tail for well over 95% of exchanges.

At 98% load there is some response time degradation with
both PI/ECN and REM/ECN. These results, however are
essentially the same for both and far superior to those obtained
with drop-tail and ARED. Further, both PI and REM with
ECN have substantially lower packet loss rates than drop-
tail, and they have link utilizations that are only modestly
lower. For the best performing ARED (byte-mode without
ECN) response time performance at 98% load is somewhat
better than drop-tail but significantly worse than PI and REM
(except for the shortest 45% of request/response exchanges
where performance is comparable).

Figure 9 shows the tails of the response time distribution at
98% load. For the best AQM settings, drop-tail again eventu-
ally provides better response time performance, however, the
crossover point occurs earlier than in the non-ECN case, at
approximately 5 seconds. The 1% of exchanges experiencing
response times longer than 5 seconds complete sooner under
drop-tail. ARED performance in byte-mode eventually beats
PI and REM for a handful of exchanges.
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Fig. 9. CCDF of the best of all designs at 98% load.

The major conclusion from the experiments with ECN, is
that with the addition of ECN support in routers and end-
systems, the control theoretic AQM designs PI and REM,
can provide significantly improved response time performance
over drop-tail FIFO queuing. This is especially true at loads
approaching link saturation. However, as was the case with
packet drops, these response time improvements come at the
cost of slightly decreased link utilizations.

VI. THE EFFECTS OF ROUND-TRIP TIMES ON AQM
PERFORMANCE

To study the sensitivity of response time to round trip
time (RTT), we reran several experiments applying a more
general distribution of minimum RTTs in our experimental
methodology (see Section III). We repeated the experiments
of Sections IV and V to test the effects on AQM with and
without ECN. As described in Section III, the use of the
general minimum RTT distribution required a recalibration of
the network. Experiments were still performed with offered
loads of 90% and 98% of the capacity of the bottleneck 100
Mbps link, however, larger populations of emulated users were
required to realize these loads (see Figure 3).

Figures 10 (a)-(d) show the major results for the settings
of algorithm parameters that resulted in the best performance
using uniformly distributed minimum RTTs. Without ECN, at
90% load, PI, REM, and ARED byte-mode provide response
time performance indistinguishable from drop-tail and surpris-
ingly close to the performance achieved on the uncongested
network. ARED packet-mode performs significantly worse
than drop-tail and all other algorithms. At 98% load, overall
performance decreases and slightly more differentiation is
visible between PI, REM, ARED byte-mode, and drop-tail. All
give near identical performance, however, and ARED packet-
mode gives poor performance.

With ECN, at 90% load, all AQM designs give identical
performance that is nearly the best possible performance. At
98% load, PI, REM, ARED byte-mode with new gentle ECN
forwarding, and drop-tail provide identical performance for the
first 50% of request/response exchanges (those completing in
approximately 250 milliseconds or less). For the remainder of
the distribution out to 2 seconds, PI and REM perform best and

ARED byte-mode with new gentle forwarding performs better
than drop-tail. ARED packet-mode with new gentle forwarding
has slightly poorer performance than drop-tail for short dura-
tion exchanges and then approximates drop-tail performance
for longer ones. Table IV gives the summary statistics for
the experiments with the generalized RTT distribution. As
expected, loss rates decrease with the addition of ECN.

Overall we conclude that with a general RTT distribution,
AQM adds no value without ECN. Only the control theo-
retic AQM designs can improve performance, but only when
used with ECN and only at extreme network loads (loads
approaching network saturation). Our conjecture is that the
characteristics of the arrival process at router queues under
the general RTT distribution are such that AQM has less
opportunity to affect response time (e.g., the arrival process is
less bursty). This conjecture is supported by the fact that drop-
tail queuing performs surprisingly well in this environment.

VII. DISCUSSION

Our experiments demonstrated interesting differences in
Web performance under the different operating modes of AQM
designs as well as interesting differences between control
theoretic and pure randomized dropping AQM. Our most
striking result is the improvement in ARED performance
in byte-mode over packet-mode. ARED in packet-mode (the
recommended mode of operation for ARED) consistently gave
worse response-time performance than drop-tail and all other
AQM designs. If ECN was not used, ARED operating in byte-
mode resulted in the best performance at 90% load and, along
with PI, also resulted in the best performance at 98% load. We
conjecture that the positive effects of byte-mode are primarily
due to its lowering of the drop probability for small data
segments, SYNs, FINs, and pure ACKs.

A second striking result is that once ARED is operating in
byte-mode, the addition of ECN provides little benefit. This
is sharp contrast to PI and REM which both provide better
response times with ECN. ECN similarly had little effect on
ARED performance in packet-mode.

In addition to the ARED byte-mode results, the performance
of the new gentle forwarding behavior suggests that the design
decision to drop ECN-marked packets in ARED’s gentle
region deserves reconsideration. Although we did not evaluate
the effectiveness of ARED (or any design) in controlling
unresponsive flows, such control cannot come at the expense
of decreasing the performance of responsive flows.

Regarding the performance of Web traffic, for loads up
to 90%, comparable good performance is possible under all
designs. Of note is the fact that ECN is required for the best
performance with PI and REM while ECN is not required for
the best performance with ARED in byte mode. However, at
98% load, PI and REM significantly outperform ARED. It
remains an open question if ECN can be effectively combined
with an ARED design to bridge this performance gap.

Considering only control theoretic AQM, an interesting
result is that performance varied substantially between PI
and REM with packet dropping and this performance gap
was closed through the addition of ECN. A preliminary
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(a) Results without ECN at 90% load. (b) Results without ECN at 98% load.
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(c) Results with ECN at 90% load. (d) Results with ECN at 98% load.
Fig. 10. Response time distributions with measured RTT distribution for all designs with/without ECN.

analysis of REM’s behavior suggests that ECN is not so much
improving REM’s behavior as it is ameliorating a fundamental
design problem. Without ECN, REM consistently causes flows
to experience multiple drops within a sender’s congestion
window, forcing flows more frequently to recover the loss
through TCP’s timeout mechanism rather than its fast recovery
mechanism. With ECN, REM simply marks packets and hence
even if multiple packets from a flow are marked within a
window, a timeout will be avoided. Thus ECN appears to
improve REM’s performance by mitigating the effects of its
otherwise poor (compared to PI) marking/dropping decisions.

Finally, the experiments with the general minimum RTT
distribution show that AQM performance is clearly sensitive
to round-trip time. Further experimentation is required to
understand this result. In particular, we need to understand how
longer RTTs effect measures of traffic such as the burstiness
of the packet-arrival process at the router in our experiments.

VIII. CONCLUSIONS

From our results we draw the following conclusions. These
conclusions are based on a premise that user-perceived re-
sponse times are the primary yardstick of performance and
that link utilization and packet loss rates are important but
secondary measures. To begin, it is useful to recall one of the
primary conclusions from our initial AQM study [7]:

TABLE IV
SUMMARY STATISTICS FOR ALL DESIGNS WITH GENERALIZED RTT

DISTRIBUTION

Offered Loss Completed Link
load rate (%) requests throughput

(millions) (Mbps)
No ECN No ECN No ECN

ECN ECN ECN
1 Gbps 90% 0.0 14.7 89.7
network 98% 0.0 16.0 97.8
Drop-tail 90% 0.3 14.4 86.9
q = 240 98% 1.5 15.0 89.9

PI 90% 0.1 0.02 14.5 14.6 87.3 87.4
qref = 24 98% 1.0 0.2 15.0 15.1 88.6 88.8

REM 90% 0.2 0.02 14.5 14.6 87.1 87.4
qref = 24 98% 1.4 0.2 14.7 15.1 87.1 89.1

ARED 90% 0.2 0.05 13.5 14.4 84.4 86.5
(120, 360) 98% 2.1 1.3 13.7 15.0 85.9 89.7
ARED-byte 90% 0.2 0.07 14.5 14.4 86.7 86.7
(12, 36) 98% 1.0 0.8 14.9 15.0 89.0 88.9

For offered loads up to 80% of bottleneck link
capacity, no AQM design provides better response
time performance than simple drop-tail FIFO queue
management. Further, the response times achieved
on a 100Mbps link are not substantially different
from the response times on a 1 Gbps link with the



14

same number of active users that generate this load.
This result is not changed by combining any of the
AQM designs with ECN.

Thus for Web or Web-like traffic, any benefit AQM can
provide to application and network performance is limited to
occurring only at high link loads. For loads of 90% and 98%
of the bottleneck link’s capacity, we conclude:
• ARED in byte-mode significantly outperforms ARED

in packet-mode. Moreover, ARED in packet-mode, the
current recommended mode of ARED usage, was the
worst performing AQM design. ARED in byte-mode was
the best performing AQM design when ECN is not used.
It outperformed both PI and REM and provided a modest
response time improvement over drop-tail.

• ECN does not improve the performance of ARED in
either byte- or packet-mode and in certain cases may
degrade performance. However, allowing ARED to for-
ward ECN marked packets when the weighted average
queue length is in the “gentle region” significantly im-
proves the performance of ARED in packet-mode. This
improvement, however, results in absolute performance
that is still lower than that achieved by ARED in byte-
mode without ECN.

• With ECN, both PI and REM provide significant response
time improvement at offered loads at or above 90% of
link capacity. In particular, at a load of 90%, PI and
REM with ECN provide performance on a 100 Mbps link
competitive with that achieved with a 1 Gbps link with
the same number of active users. While PI and REM with
ECN are the best overall performers, it is noteworthy that
at 90% load, ARED in byte-mode without ECN matches
PI and REM’s performance with ECN for the shortest
85% of all request/response exchanges.

• Without ECN, REM and ARED in packet-mode deliver
worse performance than drop-tail.

We conclude that AQM can improve application and net-
work performance for Web workloads. If arbitrarily high loads
on a network are possible then the control theoretic designs PI
and REM give the best performance but only when deployed
with ECN-capable end-systems and routers. In this case the
performance improvement at high loads may be substantial.
Whether or not the improvement in response times with AQM
is significant (when compared to drop-tail FIFO), depends
heavily on the range of round-trip times (RTTs) experienced
by flows. As the variation in flows’ RTT increases, the impact
of AQM and ECN on response-time performance is reduced.
If network saturation is not a concern then ARED in byte-
mode, without ECN, gives the best performance. Combined,
these results suggest that with the appropriate choice of AQM,
providers may be able to operate links dominated by Web
traffic at load levels of 90% or more of link capacity without
significant degradation in application or network performance.

IX. ACKNOWLEDGEMENTS

We are indebted to Sanjeewa Athuraliya, Sally Floyd,
Steven Low, Vishal Misra, and Don Towsley for their as-
sistance in performing our experiments. We also thank the

reviewers, especially Sally Floyd, for their constructive com-
ments. This work was supported in parts by the National
Science Foundation (grants ANI 03-23648, EIA 03-03590,
CCR 02-08924, and ITR 00-82870), Cisco Systems Inc., and
the IBM Corporation.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[2] B. Braden, D. D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. K.
Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Recommen-
dations on queue management and congestion avoidance in the Internet,”
RFC 2309, Apr. 1998.

[3] K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The addition of explicit
congestion notification (ECN) to IP,” RFC 3168, Sept. 2001.

[4] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in Pro-
ceedings of IEEE INFOCOM, Apr. 2001.

[5] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue
management,” IEEE Network, vol. 15, no. 3, pp. 48–53, May 2001.

[6] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm
for increasing the robustness of RED’s active queue management,” Aug.
2001, under submission.

[7] L. Le, J. Aikat, K. Jeffay, and F. D. Smith, “The effects of active queue
management on web performance,” in Proceedings of ACM SIGCOMM,
Aug. 2003.

[8] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for
web traffic,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp.
249–264, June 2001.

[9] M. Weigle, P. Adurthis, F. H. Campos, K. Jeffay, and F. D. Smith, “Tmix:
a tool for generating realistic TCP application workloads in ns-2,” ACM
Computer Communication Review, vol. 36, no. 3, pp. 65–76, July 2006.

[10] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring
RED gateway,” in Proceedings of IEEE INFOCOM, Mar. 1999.

[11] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to
RED,” in Proceedings of ACM SIGCOMM, Aug. 2000.

[12] S. Athurliya, “A note on parameter values of REM with Reno-like
algorithms,” Mar. 2002, available at http://netlab.caltech.edu.

[13] K. Cho, “A framework for alternate queueing: Towards traffic manage-
ment by PC-UNIX based routers,” in USENIX, June 1998.

[14] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” ACM Computer Communication Review, Jan. 1997.

[15] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in TCP round-
trip times,” in Proceedings of Internet Measurement Conference, 2003.

[16] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott, “What TCP/IP
protocol headers can tell us about the web,” in Proceedings of ACM
SIGMETRICS, June 2001, pp. 245–256.

Long Le is a research staff member at the NEC Laboratories
Europe. He received a Ph.D. degree in Computer Science
from the University of North Carolina at Chapel Hill. Dr. Le’s
research interests include computer systems and networks.

Jay Aikat is a Ph.D. student in Computer Science at the
University of North Carolina at Chapel Hill. Her research in-
terests include networking and experimental computer science.

Kevin Jeffay is the S. Shepard Jones Professor of Computer
Science at the University of North Carolina at Chapel Hill. He
received his Ph.D. in computer science from the University of
Washington. Dr. Jeffay’s research interests include networking,
operating systems, and real-time systems.

F. Donelson Smith is a research professor of Computer
Science at the University of North Carolina at Chapel Hill. He
received his Ph.D. in Computer Science from the University
of North Carolina at Chapel Hill. Dr. Smith’s research in-
terests include networking, operating systems, and distributed
systems.


