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Abstract ment paradigms based on directed graphs caltedessing

graphs which are a standard design aid in the development

The state of the art in verifying the real-time require- of complex digital signal processing systems. Processing
ments of applications developed using general processinggraphs are large grain dataflow graphs in which nodes rep-
graph models relies on simulation or off-line scheduling. resent processing functions and graph edges depict the flow
We extend the state of the art by presenting analytical meth-of data from one node to the next. Each data element that is
ods that support the analysis of cyclic processing graphs processed by a node is a sample of the signal — an element
executed with on-line schedulers. We show that it is possi-of the discrete sequence of numbers representing the signal.
ble to compute the latency inherent in a processing graph  General processing graph paradigms, such as PGM, have
independent of the hardware hosting the application. We been used to create a wide variety of applications (e.g, com-
also show how to compute the real-time execution rate of mand and control, distributed multimedia, and signal pro-
each node in the graph. Using the execution rate of eachcessing applications). While this paper focuses on a spe-
node and the time it takes per execution on a given pro-cific acoustic signal processing application, the analysis
cessor, the resulting CPU utilization can be computed, as presented here is applicable to any application developed
shown here for the Directed Low Frequency Analysis and using a general processing graph model such as PGM.
Recording (DIFAR) acoustic signal processing application  The state of the art in verifying the real-time require-
from the Airborne Low Frequency Sonar (ALFS) system of ments of applications developed using general processing
the SH-60B LAMPS MK Il anti-submarine helicopter. graph models relies on one of two techniques. The first

simulates graph execution, and hopes that the simulation
encounters the worst case scenario (i.e., that the simulated
graph execution is performed long enough to encounter the
1. Introduction peak processor demand). This technique is generally ap-
plied when dynamic scheduling is used for graph execution.

We present the analysis and verification of the real-time The second technique is applied when static scheduling is
properties of an embedded signal processing application forused to determine the order of node executions. An “off-
an anti-submarine warfare (ASW) system. More specifi- line” algorithm creates a node execution schedule that is
cally, we study the CPU requirements and inherent processrepeated periodically. The length of the schedule (i.e., the
ing latency of the Directed Low Frequency Analysis and period of the schedule) determines the latency and mem-
Recording (DIFAR) acoustic signal processing application ory usage of the application. This technique requires the
from the Airborne Low Frequency Sonar (ALFS) system of generation and on-line storage of a large number of sched-
the SH-60B LAMPS MK Il anti-submarine helicopter. The ules for the various modes of operation of the ALFS subsys-
ALFS system processes low frequency signals received bytem. Consequently, the ALFS system uses on-line schedul-
sonobuoys in the water. Its primary function is to detect and ing rather than static scheduling. This means, however, that
track submarines and to calculate range and bearing estiit has not been possible to verify the real-time processing
mates to each target [14]. requirements of the ALFS signal processing graphs.

The DIFAR application was developed using the U.S.  We extend the state of the art in verifying the real-time
Navy’s Processing Graph Method (PGM) [17], and executesrequirements of applications developed using processing
on the U.S. Navy’s standard signal processing computer,graph models by presenting analytical methods that sup-
the AN/UYS-2A. PGM is one of many application develop- port the analysis of cyclic processing graphs executed with
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on-line schedulers, such as the DIFAR graph. In [11], cutionrateandimprove memory usage analysis by showing
we proposed a new synthesis technique for building hardthat dynamic scheduling with execution rates results in less
real-time signal processing systems from general processmemory usage than periodic or static scheduling.
ing graphs, and demonstrated its use with a synthetic aper- Processing graphs are a standard design aid in digital
ture radar (SAR) system, an International Maritime Satellite signal processing. From the digital signal processing lit-
(INMARSAT) mobile satellite receiver application, and an erature, PGM is most similar to Lee and Messerschmitt’s
acoustic digital signal processing application. Here we useSynchronous Dataflow (SDF) graphs [16] supported by the
some of those techniques to calculate the CPU utilization ptolemy system [4]. The SDF graphs of Ptolemy utilize a
of the DIFAR graph executing on the AN/UYS-2A and to subset of the features supported by PGM. Any SDF graph
compute the inherent latency in the signal processing graphcan be represented as a PGM graph where each queue’s
Inherent latency is created by non-unity dataflow attributes threshold is equal to its consume value. In addition to sup-
and graph topology. We show that both the CPU utilization porting a more general dataflow model, our research differs
and the inherent latency of the signal processing graph carfrom [16] in that we support dynamic, real-time, scheduling
be analytically derived. Moreover, we show that the inher- techniques rather than creating static schedules.
ent latency in the signal processing graph is independentof | 1996, Bhattacharyya, Murthy, and Lee published a
the scheduling algorithm and even of the number of proces-method for software synthesis from dataflow graphs [2].
sors used to execute the graph. Their software synthesis method is based on the static
The rest of this paper is organized as follows. Section scheduling of Lee and Messerschmitt's SDF graphs. The
2 describes related work. Section 3 presents backgroungnain goal of Bhattacharyyat al’s software synthesis
knowledge on PGM and the real-time analysis techniquesmethod and related scheduling research based on SDF
that are applied to the DIFAR graph in Section 4. We con- graphs has been to minimize memory usage by creating
clude our analysis of the real-time properties of the DIFAR off_|ine scheduling algorithms [16, 18, 20, 19, 2]. Off-line

graph with a summary in Section 5. schedulers create a static node execution schedule that is
executed periodically by the processor. In contrast, the pri-
2. Related Work mary goal of our research has been to manage the latency

and memory usage of processing graphs by executing them
Our previous work on the synthesis of real-time unipro- with an on-line scheduler. Recently we have shown that

cessor systems from PGM was based on acyclic PGMfora large class_of applications, dynamic _on—Iine schedul—

graphs [1, 9, 10]. In this paper, we present the analyses of 4Nng creates less |_rr_1posed Iat_ency th_an static scheduling. An

cyclic PGM graph. This is the first time general execution €VEN More surprising result is that, in many cases, dynamic

rates and inherent latency have been computed for cyclico-line scheduling uses less memory for buffering data on

graphs. Since we do not assume the existence of a real-tim@"@Ph edges than static scheduling [10].

scheduler or even knowledge of the type of scheduling per-  Our latency analysis is related to the work of Gerber

formed during graph execution, we do not, in this paper, al. in guaranteeing end-to-end latency requirements on a

address latency imposed by the scheduling and execution ofingle processor [8]. However, Gerber al. map a task

the graph nodes. A complete discourse on latency in prO_graph to a periodic task model in the synthesis of real-time

cessing graphs is contained in [11]. message-based systems rather than assuming a rate-based
From the real-time literature, PGM graphs are most execution. Our analysis and management of latency differs

closely related to the Logical Application Stream Model from Gerberet al's in that PGM graphs allow non-unity

(LASM) [5] and the Generalized Task Graph (GTG) model dataflow attributes. Finally, Gerbet al.introduce new (ad-

[6]. PGM, LASM, and GTG were all developed indepen- ditional) tasks to the task set in their synthesis method to

dently and support very similar dataflow properties. PGM synchronize processing paths. Our synthesis method does

was the first of these to be developed. Our work improves ot need extra synchronization tasks since our analysis tech-

on the analysis of LASM and GTG graphs by not requir- Niques are rate-based rather than periodic.

ing periodic execution of the nodes in the graph. Instead,

we calculate a more general execution rate, which can b : :

reduced to average eiecution rates assumed in the LASI\G/}B' Background & Analysis Techniques

and GTG models. Our general execution rate specification

provides a more natural representation of node execution A basic understanding of PGM and the theory of real-

for PGM graphs. Forcing periodic execution of all graph time graph execution is necessary before one can under-

nodes adds latency to the processed signal, but simplifiesstand our analysis of the real-time properties of the DIFAR

the analysis of latency and memory requirements. In [10], graph. Thus, this section presents a brief overview of PGM

we model PGM node execution with the more natural exe- followed by the theory supporting our analysis techniques.



prd(q) =4 thr(q) = queuey. The execution of a node islid if and only if the
cngg) = node executes only when it is eligible for execution, no two
executions of the same node overlap, each input queue has
its data atomically consumed after each output queue has

q output queugy. Before the node terminates, but after data
- 5 > - is producedgcngg) tokens are dequeued from each input

Figure 1. A two node chain. its data atomically produced, and data is produced at most
once on an output queue during each node execution.
3.1. Processing Graph Method A graph execution consists of a (possibly infinite) se-

guence of node executions. A graph executionakd if

In PGM, a system is expressed as a directed graph inand only if all of the nodes in the execution sequence have

. . . valid executions and no data loss occurs.
which the nodes (or vertices) represent processing func-

tions and the edges represent buffered communication chan- ) )

nels called queues. The topology of the graph defines3-2 Real-Time Graph Execution Theory

a software architecture independent of the hardware host-

ing the application. The graph edges are First-In-First- Embedded signal processing systems receive a contin-

Out (FIFO) queues. There are four attributes associateduous signal from external sensors. They are required to

with each queue: a produce amoymtl(q), a threshold  process the signal in real time and present the signal pro-

amountthr(g), a consume amourngq), and an initial-  cessing results to an output device within a specified time

ization amouninit(q). Let queuey be directed from node interval. Processing the signal in real time requires execut-

to nodew. The produce amoumrd(q) specifies the num-  ing the PGM graph nodes so that they execute their pro-

ber of tokens (data elements) appended to queuden cessing functions as the signal arrives and without losing

producing node: completes execution. A token represents data. For example, some of the ALFS signal processing

an instance of a data structure, which may contain multiple graphs are used to track submarines by calculating the dis-

data words. There must be at le#tst(q) tokens on queue tance, speed, and direction of a submarine. External sen-

q before nodaw is eligible for execution. A queue Bver sors, called sonobuoys, convert the sound wave created by

thresholdif the number of enqueued tokens meets or ex- a submarine to a digital signal that is input to a PGM graph.

ceeds the threshold amoutht(q). After nodew executes,  The graph must process the signal and send the results, such

the number of tokens consumed (deleted) from quelne as updated distance, speed, and direction, to a display before

nodew is cngq). The number of initial data tokens on the the next portion of the signal is sent by the sonobuoys.

queue isnit(q). The notation and terminology of this paper, for the most
Unlike many processing graph paradigms, PGM allows part, is an amalgamation of the notation and terminology

non-unity produce, threshold, and consume amounts as wellised in [3] and [2]. A processing graph is formally de-

as a consume amount less than the threshold. The onlscribed as alirected graph(or digraph) G = (V, E, ¢).

restrictions on queue attributes is that they must be non-The ordered triple\{, E, 1)) consists of a nonempty finite

negative values and the consume amount must be less thagetV of vertices a finite setE of edges and an incidence

or equal to the threshold. For example consider the portionfunction that associates with each edgetoin ordered

of a chain shown in Figure 1. The queue connecting nodespair of (not necessarily distinct) vertices\éf Consider an

u andw, labeledy, hasprd(q) = 4, thr(q) = 7,cngq) = 3, edgee € E and vertices:,v € V such that)(e) = (u,v).

andinit(¢) = 0. (A queue without afnit(q) label contains ~ We saye joins u to v, or u andv are adjacent. The ver-

no initial data.) Nodeu must execute twice before node tex u is called the tail or source vertex efandv is the

w is first eligible for execution. After noder executes, head or sink vertex of edge The edge: is anoutput edge

it consumes only 3 of the 8 tokens on its input queue. A of u and aninput edgeof v. The number of input edges

threshold amount that is greater than the consume amounto a vertexv is theindegreeé— (v) of v, and the number

is often used in signal processing filters. The filter reads of output edges for a vertex is the outdegreed* (v) of

thr(¢q) tokens from the queue but only consuncesq) to- v. A vertexv with §~(v) = 0 is aninput node The set
kens, leaving at leagthr(gq) — cngg)) on the queuetobe 7 = {v|v e VAJ (v) = 0} denotes the set of all input
used in the next calculation. nodes. A vertex with *(v) = 0 is anoutput node The

If a node has more then one input queue (input edge),setO = {v | v € VA §*(v) = 0} denotes the set of all out-
then the node is eligible for execution what of its in- put nodes. Fou,v € V, there is gpathbetweenu andv,
put queues are over threshold (i.e., when each input queue written asu ~» v, if and only if there exists a sequence of
contains at leaghr(q) tokens). After the processing func- vertices(wy,ws, . ..,wy) such thatw; = u, wy = v, and

tion finishes executingyrd(q) tokens are appended to each w; is adjacent tav;; fori = 1,2,...(k — 1). The setZ,



is the subset of input noddsfrom which there exists a path  rived as follows:
fromu € 7 to the nodey. Likewise, the se®),, is the subset

of output node® from which there exists a path from node R = (2w, yu)

utow € O. :< prd(q) - zy cngq) - Yu )
To simplify the presentation of execution rates and in- ged(prd(q) - z.,cngq))” ged(prd(q) - u,cngq))

herent latency, we assume the graph executes on an in- 4.3 3-16

finitely fast machine so that node execution takes no time. <gcd(4 -3,3)" ged(4 - 3,3)>

More precisely, we assume nodes execute in accordance 12 48 12 48

with the strong synchrony hypothesis from the synchronous = <gcd(12,3)’ gcd(12,3)> = < 3 ;§> = (4,16)

programming literature [7]. The strong synchrony hypoth-
esis states that the system instantly reacts to external stim- Ty =4
uli, which lets us define rate executions in the absence of Yw = 16

scheduling algorithms.

Now consider a general PGM graph in which a node has
multiple input queues, such as the graph in Figure 2. Node
w is a consumer of data produced by batandv; ¢ (a) =
(u,w) andy(B) = (v,w) define two producer/consumer
Definition 3.2. An execution rate specification for node pairs. We use the notatidR,« = (Tw«u, Tweu) 1O rep-

Definition 3.1. An execution ratés an integer paifz, y).

R, = (z,y), isvalid if there exists a time such that node resent the execution rate of nodewith respect to node
executes exactly times in time interval$ + (k — 1)y, t+ 4. With R, = (3,16) (the execution rate of node),
ky) for all k > 0. R« is derived using Equation (1) as shown above with

Ry = (4,16). Likewise withR, = (2,12), Ry, (the
) _ o execution rate of node with respect to node) is:
Corollary 3.1. If R, = (z,y) is a valid rate specification

for nodev, thenm - R, = (m -z, m -y) is also a valid rate Ry =
specification for node. < prd cng(B) - yo )
prd mv, Cﬂs(ﬁ)) " ged(prd(B) - zv, cns(3))

l'w<—v7 yw<—v)

Proof: The proof follows immediately from Defini- _ < 2-12 )
tion 3.2. O d(3- 2 2)’ gcd(3 2,2)
6 24
< d(6,2)” ged(6 2)) (5’ 7) =312)

In [9], we derived execution rates for nodes in a PGM Twew =3
chain. The execution rate theorem of that paper is repro- = Ywew = 12
duced here since we will use this result to extend the analy-
sis to include nodes with multiple input queues. Since nodav can only execute whehotha andj3 are

over threshold, neitheR,,._,, nor R,,., satisfies the def-

Theorem 3.2. Letu ~ w be a PGM chain with)(q) = inition of a valid execution rate for node. Observe that

(u,w), and letR,, = (z,,y,) be a valid execution rate for ~ althoughR,, # Ry, We do havefes=s = fus=w,
nodeu Under the strong synchrony hypothesis, the execu- Lemma 3.3 states that without this equallty, it WOU|d be im-

tion rate Ry, = (%, yw), Where possible to schedule a valid execution of the graph.
Lemma 3.3. Using Equation(1) to evaluate the execution
_ prd(q) - rate of nodew with respect to its adjacent predecessors in
ged(prd(q) - ., cndq)) (1) the digraph, if a valid graph execution is possible using fi-
cngq) nite memory for buffering thef—im sz for all u,v
and y., = gcd(prd(q) - za,cndq)) 7* for which there exists queues,é’ such that)(a) = (u, w)
andy () = (v, w).
iS a Valid execution rate f0r nodﬂ. Proof (We prove the Contraposn'_“/e )m 75 Twewn .

Yw v

Observe that in an interval of Iengmwu Yweop tiIMe

Equation (1) can be used to derive the execution rate ofunits nodeu would produce enough data for nodeto
any consumer in terms of its producers in a chain of nodes.executez ., * yw« times if nodesu andw were pro-
For example, givem)(q) = (u,w) for queueg and an ex-  ducer/consumer pairs in a chain, and nedeould produce
ecution rate ofR, = (z, = 3,y, = 16) for nodeu in enough data for node to executer . , - Y times if
Figure 1, the execution rate of the consumer nede de- nodesv andw were producer/consumer pairs in a chain.
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Figure 2. A three-node graph and time-line execution showing the execution of nodes under the
strong synchrony hypothesis. If R, = (3,16) and R, = (2,12) are valid after time 0, then R,, = (12,48).
Each down arrow represents an execution of the node. Multiple executions of a node at the same
instant are represented by a number above the down arrow.

Slnce”“’wu # Twer — pocw Ywew F Twew to nodeu. In the second part we show that the rate derived
Yeweu and ﬁodew can only execute when all of the in- using they(a) = (u,w) pair is the same for alk € V and
put queues are over threshold, nadean execute at most ¢ € E such that)(q) = (u, w).

Min(Tyy * Ywiv, Twenw - Tweey) liMes in any interval of
lengthy,« v - Ywew- Therefore data will back up on the
queue that requir@8ax (T« * Ywews Tweov * Twu) EX-
ecutions of nodev in the same interval. Since we have
only finite memory available, data will eventually be lost
and a valid graph execution is impossible. Therefore if valid
graph execution is possiblée=xr = Zwev for g|| y, v for

If nodew were in a chain such thatandw were a pro-
ducer/consumer paif(a) = (u,w), then Equation (1) de-
rives the execution rate af with respect taw asRy¢ o =
(xuu—u’ yw<—u) where

Y prd(a)
which there exists queues such thaw u,w) and Twen = © Ty
$(3) = (o). R )
cnd«)
Theorem 3.4. Let G = (V, E, 1) be an acyclic PGM di- and  yueu = ecd(prd(a) - 24, cnda)) v
graph for which a valid execution is possible using finite
memory and node € V withd~(w) > 1. The execution
rate of nodew is Ry, = (%, yw) Where Let Ry = (Tw, Yw) = (My - Toeu, My - Yuweu) Where
cnyq)y.
Yu = lem{ | (q) = (u,w)},
_ . (Prd@z. e — . Y '
v = (B ) Vo wla) = (), -

Proof: The proof is constructed in two parts. In the first By Theorem 3.2 and Corollary 3.1 ,,._,, is a valid rate
part we prove that for &, w) pair, with an adjoining queue  specification for nodev with respect to node, then R,,
«, Equation (2) derives a valid rate for nodewith respect is as well. We now reduce this expression to the form of



Equation (2):

Yw = My * Ywu

cns(q) —
_ Jen{ GG ey Ve | 9(@) = (v, w)} _
Yw—u we
cngq)

= lem{

Thus,

ged(prd(q) - o endq)) V0 | V(@ = (0w}

Tw = My * Twu

cngq) —
_ lem{ gcd(prd(q)-zu,cniq)) ye | 9(a) = (v, w)} .z
= w—u
Yw—u
= Yu cTweu
Yw—u

_ Yw ( pl’d(a) * Ty )
seataae) sy Yo ) \ECA(PI(@) -, ens))

- Yu : .
= ona) 7. prd(a@) - =,

— - ().

We now show by contradiction th&t: € V, g € E such
(u,w) used to deriver,,, if the graph is valid,
R, = (zw,yw) is a valid rate specification for node.
Supposedi,j € VA Jda, B € E such that)(a) = (i,w),
Y(B) = (Jyw), and Ry = (M Twei,Mi * Yuwei) 7
(mj - Twej, mj - Ywej) Wherem; andmj are defined as
above. Therfu=t # z;": sincepituck = fuck Butif

that(q) =

me Yw Yw

Twemi 75 ””““—J then by Lemma 3.3, avalld graph execution

Ywei

is not pOSS|bIe with finite memory. Therefore if the graph is
valid, R,, = (z,y.) derived with Equation (2) using the
Y(a) = (u,w) pair is the same for alb € Vandq € E
such that)(q) = (v, w). O

It is reassuring (and necessary for correctness since gnd,,
Equation (1) and Equation (2) define minimal intervals in
which a valid rate specification exists) that Equation (2) Thusr

Therefore, Equation (2) is equal to Equation (1) when a

node has only one input queue and either expression can

be used to calculate the consumer node’s execution rate.
We now return to the problem of finding the execution

rate of nodew in Figure 2. Slncem zww we can

use Equation (2) to derive the executlon rate of nede

yo = lem{ S5y cns) g,
ged(prd(a) - @, CHS(a)) " ged(prd(B) - @, cng(3))
3 2
=lemi a3 YAz 2y Y
2
=lem{ i) 18 ey
3 2
= 1cm{5 16, 5 - 12}
=lem{16,12} = 48
_ . (prd(a)-zu
= Tw = Yw <Cn$(a)-yu>
4-3 12
s (23) —as (2) e
= Y - <prd(ﬁ) '$v>
“ \engB) -y
3.2 6
— 13- (_2.12> T (24> 12
ThereforeR,, = (2w, Yw) = (12,48).
For example, given nodesandv in Figure 2 withR,, =
(3,16) andR, = (2,12), the execution rate ab is:
_ cnga)yu cng(B)yw
vo = (@), ong@) ged(pa(B)as, nsB)) |
~ lem{ 3-16 2.12 )
= MGcd(4 - 3,3) ged(3 - 2, 2)
- m{—3 22 < em{16,12) = 48

_ .prd()xu_.4-3_
= (Bare) =0 (55) =12
w = (Tw,yw) = (12,48) and, after its first exe-

reduces to Equation (1) when a node has only one inputeysion, nodew in Figure 2 will execute 12 times in every

queue:

cngg)
ged(prd(q) - =y, cndgq
_ cngq)
- ged(prd(q) - ., cngq))
prd(q) - -TU>

Yo = lem{ 0 “Yu}

“Yu

cngq) - yu

_ cngg) o (prd(q) xu>
ged(prd(q) - zy,cndq)) 7" \cndq) - yu

_ prd(q) - «

- ged(prd(q) - z., cngq))

_ prd(q) .

- ged(prd(q) - wu,cngg)) "

= mv:yv'<

interval of length 48.

The processor utilization created by the execution of
the nodes in a graph can be calculated using Equation (3),
wheree,, is the execution time of node

Yo 3)

i=1 Yi

iy, £ < 1, the nodes can be scheduled using a sim-
ple on-line scheduler such that the nodes execute at their
required execution rate and no incoming data is lost [11].
Theorem 3.4 can also be applied to cyclic graphs if each
back edgey in every cycle is initialized such that it is al-
ways over threshold. (dack edges a queugy that joins
nodewv to an ancestotv when the graph is topologically



sorted.) Letg be a back edge withh(q) = (v, w). Ifit infinitely fast computer. The inherent latency any sample
can be guaranteed that nodevill always finish executing  encounters in a cyclic graph is bounded by Theorem 3.5.
within d, t|rrt|e ulr)utskof \évheqlllt |Is ellgltt))le for eﬁcutlk(‘)r}avne Theorem 3.5. Let G = (V, E, ) be a cyclic PGM graph
ﬁa}n.gﬂgrlgn (ej:e ar(]: the tgem always be over threshold | with rate-based source nodes. Let € O, and let the
1S inftiahized such tha execution rate of source nogee 7, be R; = (zj,y;).
- [ svtdy — 8w + Yy Let lengttig) denote the current number of tokens in queue
init(q) = [ Y w ~@w - Cngg) + thr(g) g € E. LetP denote the set of acyclic paths from source
(4) nodej to nodew. Let every back edge be initialized such
that it is always over threshold. The inherent latency a sam-

wheres, is the latest possible time nodewill first be eli- ple will encounter is bounded such that

gible to executes, + d, is the latest possible time node

will complete its first execution angl, is the earliest pos- F,-1

sible time nodev can begin its first execution [11]. Before r;le"‘;‘ <0’ { T; J yJ) < Sample Latency

we can present equations to compsiteands,,, we need to F

introduce the concept of latency and how it is computed in < max <1, [_ﬂ ~yj> (5)
PGM graphs. peP i

A signal processing engineer describes latency as thewherep represents a path~»w and F,,.,, is defined as
time delay between the sampling of a signal and the pre-

sentation of the processed signal to the output device (which (max (0, [WD if 3¢ : ¥(q) = (u,w)
may be a screen, speaker, or another computer). While intu-

itive, this definition is not precise enough for our purposes max (0 "(Fva71)-Cn9(q)+lhr(q)7lengtr(q)])
since individual input samples cannot be identified in the ~Fu~w = ’ prd(a)

prd(¢) tokens produced at one time by an external source. if3g:9(q) = (w, ) Av#F wA Fovw >0

We define a sample to be the set of tokens delivered by a

source node at one time. Under the strong synchrony hy- (0 if3g:9(q) = (w,) AvF#FwA Fouw =0
pothesis, latency is the delay between when a source node (6)
produces a sampl@(d(¢) tokens) and when the graph out-  Equation (6) computes the number of times source node

puts the processed signal. The total latency encountered b;j must execute before enough data is produced to execute
a sample is an integral unit of time created by the sum of gjnk nodeuw. Equation (5) then uses this value to bound
the latency inherent in the signal processing graph and théie interval of time in which node will next be eligible to
additional latency imposed by the implementatiorherent  oyecyte, which is the inherent latency a signal encounters in
latencyin a graph is created by non-unity dataflow attributes pathj~ w.

and the graph topology. Inherent latency exists even if the'  \we now have the necessary theory to show kovand
graph is executed on an infinitely fast machilmeposed la- 5, are computed such that we can guarantee that a back
tencycomes from the scheduling and execution of nodes in edge that joins node to nodew in a cycle is always over

the graph since we do not have an infinitely fast machine. {reshold. (Recall that, is the latest possible time node

Thus latency has two components, and the total latency anyyij| first be eligible to execute angl, is the earliest possible
sample encounters can be expressed with the simple equajme nodew can begin its first execution.)

fon Theorem 3.6. Let queug; be a back edge in a cycle with
Total Latency= Inherent Latency Imposed Latency Y(q) = (v,w). LetP,, denote the set of acyclic paths from
source nodg to nodew. Let P, denote the set of acyclic
paths from source nodgto nodew. If queuey is initialized
with a number of tokens given by Equati@h), wheres,, is

Let nodeu be a source node in the set of graph source
nodesZ, and let queug be an output queue to source node
u. Inherent latency is the delay between the enqueuing of
prd(q) tokens onto queug by source node and the next - (0, {Fp - 1J ':Uj) @)

execution of the sink node when the graph is executed on w = ;Ielif
an infinitely fast computer, as assumed by the strong syn-
chrony hypothesis. In simple dataflow models that require
unity dataflow attributes and only allow one source node, o - max (1 {_ﬂ y> ®)
the inherent latency of the graph is 0 under the strong syn- Y eps U T 1)

chrony hypothesis. However, non-unity dataflow values (as .

supported by PGM) or multiple source nodes can create sig—then queue will always be over threshold.
nificant latency in processing the signal, even if we have an  The proofs of Theorems 3.5 and 3.6 are in [11].
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4. DIFAR Application tection filter). The vernier processing is performed by the
nodesDDAD, VernFilter (vernier filter), VernSpegvernier

spectral analysis), andlernDet (vernier detection filter).

The analysis presented here is based on a portion of th
actual DIFAR graph. However, the same analysis method;arhe nodeBndMrg (band merge) merges data from all of

have been applied to the complete DIFAR graph, as well as_the active bands into one data stream. The DIFAR graph

all of the other graphs in the worst-case concurrency modeg" Figure 3 only shows one processing band for each of the

that the ALFS system must support [12]. The actual pro- three modes. In the full DIFAR graph, there would be 8 sets

cessing performed by the DIFAR graph is classified by the 0f CPR, CR, and vernier T“’des’ each re"’?dy“’ process a sep-
U.S. Government, so the following is an unclassified and arate band of data partitioned from the input signal by the

abbreviated description of the graph [13]. An understanding nodeBDF (band definition filter). The heaviest processing

of the actual processing is not necessary to compute CPLJr(T)SgéS Egezftg\i,\éhsgntthtigt[\iriﬁl?jrrr?(t)%sem'Fhi??/(i?ﬁi?rthls
utilization or to analyze latency in the graph. ’ ' ’

The DIFAR graph receives directed low frequency processing is inactive in the CR mode, and nodaw(filter,

. VernSpecandVernDetdo not execute.
acoustic data from a sonobuoy and analyzes the data for ernspee

possible targets, such as enemy submarines or surface ships. ]

The DIFAR graph has over 80 nodes and 400 queues andt-1. Node Execution Rates

operates in three different modes: constant percent reso-

lution (CPR), constant resolution (CR), and vernier. The  Let Rsouce= (16, 625mg be a well-defined rate speci-
ALFS subsystem can execute many different graphs simul-fication for source nod8ourcebeginning at time 0. That is,
taneously on a distributed system of processors. One worstnodeSourcedelivers 16 samples of the signal (tokens) in ev-
case concurrency mode that it supports is the execution ofery interval of625ms Table 1 lists, in topological order, the
16 instances of the DIFAR graph, each processing data fronrate specifications for the other nodes in the graph derived
one sonobuoy. The frequency spectrum of data received byusing Equation (2) of Theorem 3.4. Excluding self-loops,
the DIFAR graph is usually partitioned into bands, and the two back edges are detected with a topological sort of the
graph can be configured to process from one to eight bandsgraph: the queue connecting nadsetrMCSto nodeBDF,
Thus, while the full DIFAR graph has over 85 nodes and which is initialized with one token, and the queue connect-
400 queues, there are many duplicate paths in the graphng nodeGramDatato nodeSIVMCS which is initialized
with each path operating on a different portion of the signal. with two tokens. However, before we can be guaranteed that
The graph of Figure 3 is an abstract representation of a onethe rate specifications derived using Equation (2) are well-
band DIFAR graph. It is a cyclic graph with 31 nodes and defined, the number of initial tokens on both back edges
59 queues. All queues have unity produce, consume, andnust be increased so that they are guaranteed to always be
threshold attributes unless otherwise labeled. Non-unity over threshold. In the calculation of the number of tokens
produce values are labeled near the tail of the queue, andvith which back edges must be initialized, assuipe= y,
non-unity threshold and consume values are labeled near théor each node attached to the tail of a back edge in a cy-
head of the queue. The dataflow attributes used here are natle. Let?,, denote the set of acyclic paths from a node
the actual values from the graph (the actual values are clasSourceto nodew, andP, denote the set of acyclic paths
sified). However, the ratio between the attributes of a queuefrom source nod&ourceto nodev in the DIFAR graph. By

is the same. For example, if quegsbad a produce of 1024 Theorem 3.6, back edgg connecting node to nodew,
tokens; a threshold of 2048 tokens; and a consume of 1024will always be over threshold if it is initialized with at least
tokens, these values would be representegefy) = 1,

thr(q) = 2, andcngq) = 1. All back edges, including Sy +dy — Sy + Yy
self-loop edges, are initialized so that they are over thresh- Yuw

old. The number of initial tokens is shown on all queues

that are initialized except self-loop edges. Self-loop edgestokens where

are initialized so that they are always over threshold, but the

-‘ - Ty - CNYq) + thr(q)

number of initial tokens is not shown to reduce clutter in the Sy = max (1, [ F -‘ 'ySource> , and
figure. peP, TSource

The processing specific to the modes CPR, CR, and s —max [0 F,-1 '
vernier are located in the upper left portion of the graph Y eps | Tsource Ysource

in Figure 3. The CPR processing is performed by the node

DDAD (DIFAR direction and detection filter). The CR pro- Using these expressions and the rate specifications listed in
cessing is performed by the nodeBAD, CRfilter (CR fil- Table 1 to compute the number of initial tokens on the queue
ter), CRspedCR spectral analysis), ari@Rdetec(CR de- connecting node = MstrMCSto nodew = BDF, the
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Figure 3. The PGM DIFAR Graph. All back edges, including self-loop edges, are initialized so that

they are always over threshold.



gueue must be initialized with at least 4.2. CPU Utilization

[1250ms+ 1250ms— 625ms+ 1250mj 1142 The last column of Table 1 lists the worst-case execution
1250ms time of each node when it is executed on the AN/UYS-2A
—342=5 [12]. Using the node execution rates, the worst case exe-
cution time for each node, and Equation (3) (on page 6),
tokens since the processor utilization for a single instance of the DI-
F FAR graph executing on a single arithmetic processor of
SMstrMCS =  max (1, ’V r “ ySource> the AN/UYS-2A is 4.84%:
PEPumstrmcs T'Source .
= gw -625ms= 1250ms and > M = .0484.
16 = v
F,—-1 .
SBDF = Imax (0, { J 'ySource> However, this graph only processes one band of one
PEPeor Tsource sonobuoy. If data from all 16 sonobuoys is processed si-
32-1 multaneously, then 16 instances of the graph are required,
o 16 J +625ms= 625ms which results in a cumulative processor utilizatior0df7.

o o (The worst case concurrency requirement for the full 80
S|m|!arly, the number of initial tokens on the queue con- ,u4e DIFAR graph requires 5 bands to be processed for
necting node» = GramDatato nodeu = SIVMCSmustbe  g4ch sonobuoy, which results in a cumulative processor uti-
at least lization of 2.11 [12]. Hence, the AN/UYS-2A used in the

92500ms+ 2500MS— 625Ms-+ 2500Ms ALFS system h_as atotal of_3 arithmetic proc_e_sso_rs.)_ Ingen-
[ 1250ms -‘ -1-141 eral, the analytical calcula’gon Qf the CPU 'ut|I|zat|on is only
as accurate as the execution times used in the computation.
=6+1=7 Since we are concerned with guaranteeing latency, we used
worst case node execution times rather than average execu-
tion times.
F, We also measured the CPU utilization of one AN/UYS-
-‘ ' yso“’°e> 2A arithmetic processor executing one instance of the one-
band DIFAR graph using real-time data collection features

tokens since

SGramData=—  MaXx (1: ’V

PE PGrambata TSource

= %-‘ -625ms= 2500ms and of the AN/UYS-2A. The peak processor utilization mea-
16 sured was 4.7%, as compared to our predicted 4.84%. (The
ssnmcs=  max (0, {Fp - 1J ~y50urce> full DIFAR graph that processes 5 bands of sonobuoy data
PEPsiwmcs TSource resulted in a peak processor utilization of 13.09%, as com-
32 -1 pared to a predicted 13.2% [12].) It should be noted that
= I—GJ -625ms= 625ms the worst case execution times are regularly encountered in

this graph, and that the worst case execution times for the
The original implementation of the DIFAR graph on AN/UYS-2A are extremely accurate. Thus, it is not sur-

the U.S. Navy’s standard signal processing computer, theprising that our predicted processor utilization values were
AN/UYS-2A (a multi-processor computer), was sched- so close to measured values.
uled with a non-preemptive first-come-first-served (FCFS)
scheduler. The application had trouble meeting its latency 4.3, Computing Inherent Latency
requirement when multiple DIFAR graphs were executing
at the same time [12]. It turns out that part of the problem  The worst case latency cannot be less than the inherent
was the initialization of the two back edges found during the |atency defined by the graph topology and dataflow param-
topological sort of the graph. When the amount of initial- eters, no matter what type of hardware is used to host the
ized data was increased as described above, the applicatiogpplication. In the DIFAR graph, the first sample produced
was determined by simulation to meet its latency require- encounters the maximum |atency []_]_] Thus, to Verify a
ment with a non-preemptive FCFS scheduler. However, this|atency requirement, only the latency for the first sample
is not the same as a guarantee that it will always meet its la-needs to be checked. However, there are six graph sink

tency requirement under non-preemptive FCFS schedulingnodes so the latency of the first sample must be checked
In contrast, after successfully completing synthesis methodat each graph sink node.

presented in [11], the DIFAR application can be guaranteed By Theorem 3.5, the latency between the time the first
to always meet is latency requirement. sample arrives and when sink no#ligOut can first be eligi-
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Node ty ( Loy Yu ) €u Node ty ( Ly » Yu ) €u
Source | 0 | (16, 625m9 — AliScale | 0 | (1, 10000mg 8.68ms
FlowCntl | O | (1, 1250ms 2.02ms AliMrg 0| (1, 10000ms 0.18ms
BDF 0| (1, 1250mg 25.62ms AliOut 0| (1, 10000ms —
MstrMCS | 0 | (1, 1250ms 0.13ms BBC 0| (2, 2500mg  4.08ms
MnsMrg | O | (0, 1250mg 0.23ms BrgAngle | O | (1, 10000ms 16.67ms
MnsOut | O | (0, 1250ms — BrgMrg 0| (1, 10000ms 0.18ms
SIVMCS | 0 (1, 1250mg  0.07ms BrgOut 0 (1, 10000ms —
DDAD 0 (1, 1250mg  2.58ms AutDet 0 (1, 30000ms  3.22ms
CRfiter | O | (1, 1250mg 4.12ms ||| AutDetMrg | O | (1, 30000mg 0.13ms
CRspec | 0 | (1, 1250mg 10.28ms||| AutDetOut| O | (1, 30000ms —
CRdetect| 0 | (1, 2500ms 1.37ms BinMrg 0| (1, 30000ms 0.07ms
BndMrg | O | (2, 2500ms 0.0lms BinOut 0| (1, 30000ms —
SAD 0| (2, 2500ms 1.26ms VernFilter | O | (0, 1250ms N/A
GramData| 0 | (2, 2500mg 7.85ms VernSpec | 0 | (0, 1250mg N/A
GramMrg | 0 | (2, 2500ms 0.07ms VernDet | O | (0, 1250m9 N/A
GramOut| 0 | (2, 2500ms —

Table 1. DIFAR node execution rates and worst case execution times.

ble for execution is bounded such that At first it is rather surprising that latency as high as 60
seconds is tolerable in an embedded application. Acous-
max (0, {MJ ) ySource> < Sample Latency tic signal processing applications can tolerate much higher
Esource latency bounds than other real-time applications such as

< max <1 ’VISOUI'C&»AIiOut—‘ i ) radar applications. The main reason for this is that sound

) YSource -
Tsource waves travel much slower than radar waves, and, thus, it

takes longer to accumulate acoustic samples than radar sam-
ples — at least 30 seconds must elapse before enough data
is available to execute some of the DIFAR signal process-
256 ing functions. Consequently, the high latency is due to the
< max (1, {ﬁ-‘ . 625ms> time it takes for data to accumulate in a node’s input queues
(where it is buffered) until enough data exists for the node
to execute.

256 — 1
max (0, { 5616 J -625ms> < Sample Latency

9.375 seconds < Sample Latency < 10 seconds.

Thus, no matter how fast the processor or how many are5. Summary and Conclusions

used, the minimum latency a sample encounters from the

source node to nod&liOut is 9.375 seconds and it may be We presented the analysis and verification of the real-
almost 10 seconds. If we can guarantee that nilidrg time properties of the DIFAR signal processing graph of
completes its execution within 10 seconds of when it is first the ALFS system using analytical techniques. Prior to this
eligible for execution (i.e., if 10 seconds is the bound on Work, the two most common ways to verify the real-time
imposed latency), then we can guarantee that the maximunfequirements of applications developed using general pro-
latency any sample encounters in the path is less than 2@essing graph models was to simulate graph execution or to
seconds since total latency is equal to inherent latency pluscreate a static schedule off-line to determine the period of
imposed latency. the schedule.

The maximum inherent latency the first sample encoun- ~ While the U.S. Navy has spent millions of dollars devel-
ters in the path from nodBourceto each of the other output ~ 0ping applications with PGM, it has never before been able
nodes is computed in the same manner. The upper boundo analytically verify the real-time requirements of PGM
on inherent latency from nodgourceto: nodeGramOutis graphs. Thus, we claim to extend the state of the art in
2.5 seconds, nodBrgOutis 10 seconds, nodéutDetOut real-time analysis and verification by showing that it is pos-
is 30 seconds, and no@nOutis 30 seconds. Thus, if the Sible to analytically compute the inherent latency of cyclic
processing simply keeps up with the input data rates, totalgraphs independent of the hardware hosting the application.

latency may be as high as 60 seconds on some paths. We also showed how to compute the real-time execution
rate of each node in the graph. Using the execution rate of
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each node and the time it takes per execution on a given pro- Graphs” Ph.D. Dissertation, University of North Carolina
cessor, the resulting CPU utilization can also be computed, at Chapel Hill, 1998. _ _
as shown here. Using a deterministic scheduling algorithm http://www.cse.unl.edgoddard/Papers/Dissertation.ps

to bound imposed latency, it is also possible to bound total [12
latency and memory requirements for any PGM graph [11].
The analysis presented here is based on a portion of the

] Goddard, S., “Graph Performance Analysis Report on the
ALFS Worst-Case Concurrency Modes,” Technical Report
300832-980514-01, S.M. Goddard & Co., Inc., under con-
tract to General Dynamics, May 14 1998.

actual DIFAR graph. However, the same analysis methods[13] airborne Low Frequency Sonar Subsystem System Require-
have been applied to the complete DIFAR graph, as well as ments Specificationprepared by Hughes Aircraft Corpora-
all of the other graphs in the worst-case concurrency modes tion, Version 1.0, Apr. 1991.

that the ALFS system must support [12]. Moreover, our [14] System/Segment Specificaton for the Airborne Low Fre-
analysis methods are applicable to any application devel- quency Sonar (ALFS) (Dipper & Integrated Sonobuiqyg-
oped using a general processing graph model such as PGM. ~ Pared by Hughes Aircraft Corporation, Aeorspace & De-

fense Sector, Document Number SS12070, Revision D,
April 1994.
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