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Abstract— New source-level models for aggregated
HTTP traffic and a design for their integration with the
TCP transport layer are built and validated using two
large-scale collections of TCP/IP packet header traces. An
implementation of the models and the design in the ns
network simulator can be used to generate web traffic in
network simulations.
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I. INTRODUCTION

Networking research has long relied on simulation as
the primary vehicle for demonstrating the effectiveness
of proposed algorithms and mechanisms. Typically one
constructs either a network testbed and conducts experi-
ments with actual network hardware and software, or one
simulates network hardware and software in software and
conducts experiments via simulation of the network. In
either case, experimentation proceeds by simulating the
use of the real or simulated network by a population
of users with applications such as file transfer, web
browsing, or peer-to-peer file sharing. Source traffic
generators are used to inject synthetic traffic into the
network according to a model of how the corresponding
applications or users behave.

For nearly the last 10 years (and for the foreseeable
future) traffic generators for synthetic web traffic have
been an essential component of virtually every simu-
lation of the Internet. While newer applications such
as peer-to-peer file sharing are consuming a significant
share of network resources, by any measured quantity —
bytes, packets, flows — the web remains the dominant
application on most wide-area links. The reason is that
the web has evolved from a simple hypertext document
delivery system to a sophisticated client-server system
for delivering a vast array of static and dynamic media.
The HTTP protocol is now routinely used to deliver
content once carried on more specialized application-
level protocols. For example, the web is now often the
de facto end-user interface for remote data processing
systems, commercial transactions, and sending and re-
ceiving email, news, and instant messages. A recent
(April 2003) measurement study by Sprint [27] on 19

of the OC-48 links in their network found that on 16
of them web traffic was the largest application class and
ranged from 31% to 59% of the total bytes transmitted.
On the other 3 links, web traffic was the second largest
(behind peer-to-peer file sharing) with 16% to 31% of
the total bytes.

Thus when performing network experiments and sim-
ulations involving web usage, it is essential that one
consider both the effects of web traffic on the mecha-
nism/protocol under study and the effects it has on the
performance (e.g., response times) of web applications.
Good characterizations of how web traffic “looks” in the
network are, therefore, essential for networking experi-
ments.

This paper presents a new model of HTTP 1.0 and
1.1 traffic as it appears in aggregate on backbone or
high-speed access links. The model derives from a large-
scale empirical study of web traffic on the two access
links that connect Bell Labs and the University of North
Carolina at Chapel Hill to the Internet. The model is
novel in that it expresses web traffic as a collection
of independent TCP connections, each characterized by
values of source variables: arrival time of the connection,
round-trip time for the client, round-trip time for the
server, number of request/response exchanges, time gaps
between exchanges, sizes of individual requests, sizes
of individual responses, and server delays. As explained
below, this approach differs from the dominant present-
day approach of constructing “page-based” models of
web traffic. We argue that our “connection-based” mod-
eling method is more appropriate for network traffic
simulation, as opposed to server workload simulation,
because it both captures relationships and dependencies
not present in existing page-based models and it is an
approach that is more likely to scale to modeling the
traffic generated by other application classes such as
peer-to-peer file sharing traffic.

Our model of aggregate HTTP traffic has been im-
plemented in the ns network simulator and is available
for use in generating realistic synthetic web traffic in
network simulations. The model and its implementation
in ns have been validated through both empirical and
analytical analyses that are presented here.
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The remainder of the paper is organized as follows.
Section 1l reviews the state-of-the-art in synthetic web
traffic generation and discusses the important issues in
developing application-level models of network traffic.
Section 111 presents the architecture: what is modeled and
how it interacts with the TCP transport layer. Section IV
describes the source-level variables that are modeled and
that are necessary for a connection-based generator of
synthetic web traffic, how these variables are measured,
the process of building models for the source variables,
and the process of validation. Section V describes the
stochastic models for the source variables. Section VI
describes the validation of the models and the architec-
ture that encompasses them. The Appendix provides a
description of how this design has been implemented in
the ns network simulator and how to obtain the ns code
for the traffic generator.

II. BACKGROUND AND MOTIVATION
A. Source-Level Generation of Synthetic Traffic

Our vision of network simulation follows the philoso-
phy of using source-level descriptions of network traffic
advocated by Floyd and Paxson [15]. In this paradigm
one simulates the use of the network by either an ap-
plication (or set of applications) or a collection of users.
Traffic generators inject synthetic traffic into the network
according to a model of how some application or class of
users behave. This is in contrast to a network simulation
using packet-level descriptions of traffic wherein one
simply simulates the arrival process of packets at a par-
ticular network element according to some mathematical
process. For applications using TCP, packet-level traffic
generators cannot be used to model traffic because TCP’s
end-to-end congestion control (perhaps influenced by
router-based mechanisms such as RED packet drops or
ECN markings) shapes the low-level packet-by-packet
arrivals in a feedback control loop which is not modeled
with an “open loop” packet-level generator. For this
reason Floyd and Paxson stress the importance of using
source-level traffic generators layered over real or simu-
lated TCP implementations. Therefore, a critical prob-
lem in network simulations is generating application-
dependent but network-independent synthetic traffic that
corresponds to a valid, contemporary model of applica-
tion or user behavior.

B. Empirically-Derived Web Models

Web-traffic generators in use today are usually based
on data from the two pioneering measurement projects
that focused on capturing web-browsing behaviors: the
Mah [18], and Crovella, et al., [3], [2], [13], [14] studies.
Traffic generators based on both of these sources have
been built into ns, which has been used in a number
of studies related to web-like traffic, e.g., [20]. These

models have also been used to generate web-like traffic
in network testbeds [4], [10]. For both of these web
measurement studies, the populations of users were quite
distinctive and the sizes of the traces gathered were
relatively small. Mah captured data reflecting a user
population of graduate students in the Computer Science
Department at UC Berkeley. His results were based on
analysis of approximately 1.7 million TCP segments
carrying HTTP protocols. The more extensive measure-
ment programs by Crovella and colleagues reflected a
user population consisting primarily of undergraduate
students in the Computer Science Department at Boston
University and in aggregate represented around 1 million
references to web objects. Both sets of data are now
relatively old. The Mah data were collected in 1995 and
the Crovella, et al., data in 1995 and 1998.

It is especially important to note that these studies
were conducted before significant deployment of HTTP
version 1.1 protocol implementations that introduced
the concepts of persistent connections and pipelining
[19]. Persistent connections are provided to enable the
reuse of a single TCP connection for multiple object
references at the same IP address (typically embedded
components of a web page). Pipelining allows the client
to make a series of requests on a persistent connection
without waiting for a response between each request
(the server must, however, return responses in the same
order as the requests are sent). Persistent connections are
widely implemented in both web servers and browsers
but pipelining is largely supported only in server imple-
mentations. A more contemporary measurement study of
web traffic that produced models suitable for page-based
traffic generation was reported by Smith, et al., [26].
They found that approximately 40% of all data bytes
transmitted by web servers were carried on persistent
connections used for two or more requests.

C. Page vs Connection Models

These empirical studies influence (and are influenced
by) the way traffic generators have been designed for
web traffic. The studies of web traffic cited above
have been used to design traffic generators that we
characterize as “page based.” Traffic generators designed
around these models explicitly use web-page structure,
the location of page components on servers, and the
human actions of thinking and page selection to in-
directly control the creation of new TCP connections
and the dynamic request/response data transfers within
a connection. For example, the web traffic generator used
in [17] consisted of a program to emulate client-side user
actions and a server-side program to respond to client
generated requests.

For networking studies this “paged-based” design for
modeling TCP connection arrivals and their internal data-
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transfer dynamics makes the traffic generation programs
somewhat complicated. Further each random variable
in such models is considered to be independent and is
sampled from an independent distribution. Potentially
important correlations between different variables are not
explicitly modeled. We show in Section V that there
are significant dependencies between variables associ-
ated with different connections. To generate web traffic
carried by network links, routers, and protocol stacks,
we claim that it is better to model TCP connections in
terms of connection establishment rates and the sizes and
timing of exchanges of request and response data within
the connections (including persistent connections). We
call such a model “connection-based” in contrast to the
page-based approach described above.

Perhaps the most important reason to prefer the ap-
proach of modeling TCP connection usage instead of
application-specific details like page structure is that it
scales better to large mixes of applications. The HTTP
model presented here is a first step toward a more general
framework of TCP connection modeling. If we can
model the inter-arrival process of TCP connections and
the size and timings of exchanges of abstract “data units”
within the connection, we can model any arbitrary mix
of TCP applications without having to explicitly know
or represent any other application-specific information.
Given the large and ever-changing mix of application-
level protocols used in the Internet today, this approach
clearly scales better than an approach that attempts to
include more application details such as page structure.
The TCP connection model for the web presented here
is a first step in this direction.

I11. A TCP CONNECTION-BASED ARCHITECTURE

We now describe the architecture of our approach —
what is modeled and how it interacts with the TCP
transport layer. We also describe a high-level view of
using this model to generate web traffic in network
experiments. As stated earlier, our approach models TCP
connections when used to carry HTTP protocols rather
than explicitly modeling web page structure or user
browsing actions. The design described here assumes
that web traffic uses a mix of HTTP/1.0 and HTTP/1.1
protocols at the application level. More specifically, it
assumes that some TCP connections will be used for only
one HTTP request/response exchange (a non-persistent
connection) and some TCP connections will be used
for two or more HTTP request/response exchanges (a
persistent connection).

At a very high level, the web traffic in a network is
modeled as flowing between a set of clients (browsers)
whose traffic is aggregated at some link in the network
and a set of servers whose traffic is also aggregated at
some link in the network. (We use the term “cloud”

to refer to a set of clients or servers whose traffic is
aggregated at some link). A simple example of modeling
web traffic where the traffic from one set of clients and
one set of servers is aggregated at a single link is shown
in Figure 1. This example would be used to model a
single access link connecting an enterprise or campus
network to the Internet. All the web clients are on the
enterprise or campus network and all the servers are
someplace on the Internet. By using multiple client and

ﬁ web servers

web clients

Internet

Fig. 1. Client cloud, server cloud, and link carrying web traffic.

server “clouds”, arbitrary configurations and loadings of
the links in a testbed or simulation can be achieved.

A fundamental parameter for the model is the rate
at which new TCP connections are initiated by the
cloud of web clients. Many other variables necessary
to model TCP connection usage for HTTP protocols
have statistical properties that depend on the connection
rate. Given a value for the rate parameter, the inter-
arrival times between TCP connections in a cloud is
determined by generation from the stochastic model
for the inter-arrival process. Once a TCP connection
is established between a client and server pair, the
number of request/response transactions is generated as
well as delays between these transactions if there is
more than one. The number of bytes in the first client
request sent to the server is stochastically generated and
transmitted over the connection. After the server receives
the request, it waits for a stochastically generated server-
delay interval. A size for the response is generated and
transmits that number of bytes back to the client. This
continues until the number of requests is satisfied, when
the TCP connection is then terminated. This constitutes
the application-dependent aspects of our model of TCP
connections used for HTTP protocols.

To provide more complete modeling support for
testbeds and simulations, we also model certain aspects
that are clearly network-dependent but may be useful
for certain types of experiments. One important factor
in TCP connection throughput is the round-trip time
experienced by the connection in the cloud of clients
or the cloud of servers due to propagation and queueing
delay. For each connection, one time is generated for the
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client cloud and one for the server cloud; all packets of
the connection are delayed by these amounts within each
cloud. To model drops for packets entering or exiting
each cloud, a cloud drop probability is generated for the
connection, and each packet of the connection is dropped
with that probability. Similarly, a cloud bottleneck link
speed is generated for the connection and each packet
of the connection is delayed according to the packet size
and the link speed. In other words we assume the hosts
within a cloud are widely distributed and use simulated
delay and loss process to influence the packets along the
path from an individual client or server to or from the
aggregation link.

IV. SOURCE VARIABLES AND THEIR MODELING
A. The Modeling Process: Building and Validation

The HTTP models were built and validated based on
packet traces (time-stamps and TCP/IP protocol headers
for packets in TCP connections used for HTTP proto-
cols) from two Internet links. The measured links are
well modeled by an architecture like that in Figure 1;
that is, for the connections that we studied, clients are on
one side of the link, servers are on the other side, and all
packets in both directions use the link. The packet trace
database is described in more detail later in this section.

We analyzed the data using the S-Net system for the
analysis and visualization of packet traces [9], employing
a large number of tools to build and validate the model.
There were two stages of the analysis — source-level
model building and packet-level validation of synthetic
traffic generated using the model.

In the source-level model building, the packet traces
are used to construct measurements of the source vari-
ables that are modeled. The measurements allowed us to
identify initial models for the variables, then to check
the models, then to alter them to improve the fits, then
to check the new models, and so forth in an iterative
fashion. It was vital in this process to have the two links,
with certain quite different measured characteristics, so
we could determine which modeled variables changed
based on the characteristics. Section V describes the
source-level models, but, in the interest of space, not
the model building process. A detailed account of the
model building is given elsewhere [5].

The packet-level validation consists of a set of simula-
tion experiments using the ns implementation (described
in the Appendix) to model the traffic carried on one
of the links for which we have packet traces. First we
estimate parameters of the HTTP source models and
derive the network-dependent properties needed; this is
done so that the simulation matches the characteristics of
the client and server clouds aggregated at the measured
link. Then we use the models to create and utilize TCP
connections (using the TCP protocol model provided in
ns) and produce synthetic packet traffic on the simulated

link between clients and servers. We record both direc-
tions of traffic on the simulated link, just as we did for
the live traces. We then compare synthetic and live values
of a number of traffic variables. This validation process
is described in Section VI.

B. Packet Traces

We collected packet traces on two links. The first is
a 100 Mbps Ethernet link at Bell Labs that connects a
network of 3000 hosts to the rest of the Internet [6].
For HTTP, all clients are on one side of the link and
all servers are on the other side (incoming packets on
the link are from servers and outgoing are from clients).
The time period of the traces used for analysis is from
1/1/00 through 2/16/00. The second link is a 1 Gbps
Ethernet link connecting the Chapel Hill campus of the
University of North Carolina to an OC48 fiber ring that
carries UNC traffic from over 35,000 users to other local
campuses and to the rest of the Internet [26]. There
are HTTP clients on both sides of this link. We only
use traces for the outbound traffic (from UNC clients
to Internet servers), since the monitored link is close to
the the clients, similar to the Bell Labs link. The UNC
database consists of 42 traces collected during six one-
hour sampling periods over 7 consecutive days in late
September 2000.

The time-stamps of the BELL trace data are accurate
to a few ps. At 100 Mbps, time-duration variables
as small as packet inter-arrival times are sufficiently
accurate to study their statistical properties. This means
the BELL data can be used for the source-level model
building and for the packet-level validation. The UNC
trace data have time-stamps accurate enough to model
source-level variables — the connection inter-arrivals,
client time gaps, and round-trip times involve differences
of time-stamps large enough to be supported by the time-
stamp accuracy. But the accuracy is not sufficient for
study of the inter-arrival times of successive packets at
1 Ghps, so we do not use the UNC data for packet-level
validation.

Recent work has shown that the connection variables
are nonstationary [12], [6] and their statistical properties
change with p, the number of new TCP connections
per second or, simply, the connection rate. To study the
dependence of connection variables on p, we break the
measurements into 5 minute time blocks, and obtain
a sample of blocks with the log of connection rate
spaced as uniformly as possible from the minimum to
the maximum log of rate. For the BELL database, there
are 500 such blocks with the connection rate ranging
from 0.18 connections/sec (c/s) to 34 c/s. For the UNC
database, there are 318 such blocks with the p ranging
from 2.41 c/s to 230 c/s.
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C. Source Variables and Their Measures

The source-level variables describe information about
the data transfers, such as the size of the response data
from the server, as well as information about the Internet
environment at the time of request such as the round-trip
time between the server and the client at the time of the
request. In the following, we define the source variables,
give mathematical notation, and in parentheses, describe
how we measured the variables from the time-stamps of
the packet arrivals on the links and the corresponding
TCP/IP headers.

» a;: arrival time of sth connection (time stamp of
client SYN arriving on the link)

o t;: inter-arrival time (¢; = a;+1 — a;)

o R;: server-side nominal round-trip time (time be-
tween the client SYN and the server SYN+ACK)

« 74 client-side nominal round-trip time (time be-
tween the server SYN+ACK and the client ACK
that completes the 3-way handshake)

« m;: number of request/response exchanges using the
connection (each exchange is a transmission from
the client of packets containing request data fol-
lowed by a transmission from the server of packets
containing response data)

o fit, fi2,---, fin,: client request size for each re-
quest (computed from sequence numbers)

o Fi1,F;o,...,F;,,: server response size for each
response (computed from sequence numbers)

e D;1,D;o,...,D;p,: server delay (maximum of (1)
zero and (2) time between the last client data packet
and the first server data packet, minus the server-
side round trip time R;)

® Gil, -- Gin;—1- inter-exchange time gap between
the end of a server response and the start of the
next client request (time between arrival of last data
packet from server and the next data packet from
client).

There are certain weaknesses in using these measures
in simulations. For example, variables such as g; ; are
defined and used as if they are observed at the client
but in fact were measured at the link monitor. Analysis
during the validation shows that the discrepancies do not
produce more than minor problems [5]. However, the
problems for the a; would be more than minor were it
not the case that for each of the links we traced, the
clients are very close to the monitoring point.

V. SOURCE MODELS
A. Per-Connection Models and Per-Request Models

Each TCP connection carries one or more request-
response exchanges between an HTTP client and server
pair. Each exchange consists of request data sent from
client to server and response data sent from server
to client. TCP connections used for more than one

HTTP request-response exchange are called persistent
connections.

Per-request, or request, variables are those that
can take on more than one value per TCP con-
nection because it may be a persistent connection.
They are the request sizes f;1,fi2,-..,fin; the
response sizes Fj1,F;o,...,F;,,, the server delays
D;1,D;2,...,D;y,, and the time gaps ¢; 1, - - -.9ini—1-
All other variables together with the first values of
the request variables (e.g., f; 1) are per-connection, or
connection, variables. There is one value per connection
of these variables.

The connection models are stochastic models for the
connection variables. Each model treats the sequence of
values of its connection variable (e.g., R1, Ro, R3,...)
as a time series. Driving the statistical behavior of each
connection variable is the sequence of client-server pairs
in i. The temporal locality of these sequences induces
persistent long-range dependence in the resulting packet-
level traffic: positive autocorrelations that fall off slowly.
Empirical study, both for our modeling purposes here
and in other work in modeling, shows that the magnitude
of the locality and therefore the long-range dependence
dissipates as the new connection rate p increases because
the intermingling of connections from different clients
breaks up the locality [12], [6]. We account for this
in the modeling. Furthermore, the different connection
variables are taken to be independent of one another.

The request models are stochastic models for all val-
ues of the request variables beyond the first, conditional
on the first. Empirical study shows that, conditionally,
the subsequent values are independent of the values of
request variables of all other connections. For example,
the fio2,..., fin, Qiven f; 1 are independent of f;, for
all 5 #4 and all k.

B. Fractional Sum-Difference (FSD) Time Series Models

Most of the connection variables are well modeled by
fractional sum-difference, or FSD, time series models
[12], [6], [8]. Let y; be an FSD time series. The marginal
cumulative distribution function of y;, which is general,
is used to transform the variable to z;, a variable that has
a normal marginal distribution with mean 0 and variance
1. z; is assumed to be a Gaussian time series with two
parameters d and 8 and with the following form: z; =
V1—=0 s, + V0 n;, where 0 < 6 < 1. n; is a Gaussian
white noise time series with mean 0 and variance 1. s;
is a long-range dependent time series with mean 0 and
variance 1, is independent of n;, and has the form (I —
B)%s; = €; + €;_1, Where ¢; is normal white noise with
mean 0 and variance o2 = (1 — d)T'?(1 — d)(2I'(1 —
2d))~!, B is the backward shift operator Bs; = s;_1,
and d is the fractional-difference exponent. (d + 0.5 is
the Hurst parameter.)



HTTP SOURCE TRAFFIC MODELING

z; 1S made up of two components, the long-range
dependent component /1 — @ s; and the white noise
component v/8 n;. Thus @ is the variance of the white
noise component. When 6 is close to 1, z; is nearly
independent, and when not, z; has significant long-range
dependence. For all of our connection variables modeled
by an FSD, we will see that # — 1 as p — oo, so the
long-range dependence dissipates and the series tend to
white noise.

C. Per-Connection Models

1) Connection Inter-Arrivals ¢;: The connection inter-
arrivals ¢; are modeled by an FSD time series. The
marginal distribution is Weibull with shape parameter
0 < A(p) < 1 and scale parameter «(p) that change with
the new connection rate p. Let logit,(z) = logy(z/(1 —
z)) be the logistic transformation where log, is the
log base 2. The model for A(p) is a logistic that is
linear in logy(p): logity(A(p)) = 0.352 + 0.3881ogs(p),
where the numeric values are estimates from the com-
bined UNC and BELL traces. (Separate estimates were
found to be close.) From the properties of the Weibull,
a(p) = [pT'(1 + A~1(p))] ' . The time series parameter
0(p) is also modeled by a logistic linear in logy(p):
logity((p)) = 0.333 + 0.4141log,(p). Finally, the frac-
tional exponent d is constant with p and its estimate is
0.33.

2) Client-Side Round-Trip r;; Server-Side Round-Trip
R;: The r; and R; are modeled by FSD time series. For
BELL and UNC, r; and R; have marginal distributions
that do not change with the rate. However, there is a
large difference in the marginals between the two links.
The R; of UNC tends to be somewhat bigger than that
of BELL: the median is 89msec for UNC and 67msec
for BELL. Most of r; in the two datasets are close to
zero except that of connections generated from client
remote access (typically dial-up modem connections).
There are a little over 20% such connections in BELL
and around 6% in UNC. Because the marginals of
round trip times are network dependent, they need to be
specified for generation. The marginal distributions of
the r; and R; are each modeled by piecewise Weibulls.
The shape parameter is 1/3 for the r; and 1/5 for the
R;. A piecewise Weibull is specified in the following
way. Let 0 < by < by... < b, < oo be r specified
break points which divide the positive real line into
r + 1 intervals where the last interval is b, to infinity.
Probabilities 1, for £k = 0 to r are assigned to the
interval whose left endpoint is by,. Interestingly, although
BELL and UNC have vastly different marginals, the
time dependence of the FSD models is consistent in
that @ and d can be modeled in the same way. As with
all variables, 6 changes with p but d is constant. For
ri, d = 0.31 and é(p) is logistic linear in log,(p):

logit, (A(p)) = —0.445+0.554 1og,(p). Similarly, for R;,
d = 0.32 and logit,(6(p)) = —0.053 + 0.396 logs (p).

3) First Request Size f; 1, First Response Size Fj ;:
The marginal distributions of the f; ; and the F; ; do not
change with p and were fitted using an approach similar
to that for the r; and the R; except that the marginal is
piecewise Pareto, including the upper tail above the final
breakpoint b, which is consistent with previous work on
response size distributions [21], [22], [1], [23], [13].
Interestingly, the marginal distributions of the request
and response sizes for both BELL and UNC data are
very similar.

The time series f; 1 is modeled by an FSD model. The
estimated value of d is 0.31 and the logistic model for
0(p) is logity(6(p)) = 0.123 + 0.494 log,(p)-

For the F; 1, we discovered that a specialized model
fitted the data better than the FSD because of the special
nature of the F; ; which generally contain two types of
responses, “not modified” messages and content objects
(HTTP “entity-body”). We found that response sizes less
than 275 bytes were largely “not modified” messages,
but there are few such messages above 275 bytes, so we
took 275 bytes to be a cut-off to distinguish the two.

To model the dependence of the Fj i, let ¢; be an
indicator variable, which is 1 if the response contains
a content object and O otherwise. The time sequence ¢;
consists of alternating runs of 0’s and 1’s. The lengths of
the sequences are taken to be independent. For the first
0 of each run, we generate the response size using the
portion of the distribution below 275 bytes; and for a 1,
we do the same, but using the portion of the distribution
above 275 bytes.

We use a discrete Weibull distribution, a probability
distribution on the positive integers, to model the run
length distributions. The distribution is formed by taking
a Weibull with scale « and shape A and rounding up to
the nearest integer. If the shape parameter is 1, then the
run length distribution is geometric; when this occurs,
the ¢; is a Bernoulli series, that is, independent.

The shape parameter A depends on p, and can be
modeled by a logistic that is linear in logy(p). For
the “not modified” messages, logity(A(p)) = 0.718 +
0.357logs(p). For the content objects, logit,(A(p)) =
1.293+4-0.316 log,(p). For the scale parameter «, because
the probability of “not modified” message derived from
the fitted piecewise Pareto distribution of F;; is ¢ =
27.5% and because ¢; approaches to a Bernoulli series
as p goes to infinity, the scale parameters of the run
lengths tend to —1/log(g) = 0.775 for “not modified”
message and —1/log(1 — ¢) = 3.11 for content. For
simplicity, we take the scale parameters to be constant
with these values.

4) First Server Delay D; ;: Our measurements of D; ;
can determine their marginal distributions, but because
data are routinely missing through time, it is not possible
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to determine their time series characteristics. Thus we
take D; ; as an independent series. The marginal distri-
bution of D, ; for BELL and UNC are quite similar and
are well modeled by an inverse Weibull. The parameter
estimate of the inverse Weibull distribution based on the
BELL data is shape @ = 0.63 and scale A = 305.

D. Per-Request Models

Each persistent connection may contain HTTP re-
quests resulting from different references to top-level
web pages (typically a file with HTML content). Em-
pirical analysis reveals that connection variables tend to
be similar within top-level pages, so explicit clustering
of the requests according to top-level pages adds to the
verisimilitude of the models. Similar to the approach
developed in [18], [3], [26], we use time gaps between
consecutive requests to do the clustering, because the
time gap tends to be small if they are related to the
same top-level page. We set a time threshold, and gaps
above this threshold are taken to be the start of a new
top-level page.

Since the measured time gap includes the client round
trip time, and there is a significant population of home
users with modem access in the BELL data, (which
produces large client-side round trip times), we use only
the UNC data to set the threshold and to model the gaps
Gi1,---,9in:—1 and the number of requests n;.

We first fit the distribution of time gap ¢ by a two
component mixture model of log-normal distributions,
where we use the log-normal with the smaller mean for
the conditional distribution of g between requests within
the same top-level page, and the one with the larger mean
for the conditional distribution of ¢ between requests
from different top-level pages. For UNC data, since the
two log-normal components cross at 0.5 log base 2 sec,
we use a threshold of 205 sec = 1.4 sec for the clustering.

1) Number of Requests, n;: Let p; be the number of
top-level pages that have requests using the ith connec-
tion, and let m;;,1 < j < p; be the number of requests
for these top-level pages. Then n; = "% | m;;. Each set
of variables — n;, p;, and m;; — and are independent
and identically distributed.

We model the n; by a sequence of models. We
begin by modeling the probability of a non-persistent
connection, i.e., n; = 1. This is a special case in which
p; = my1 = 1. The estimate of this probability is 0.91 for
both BELL and UNC. Next we model n; for persistent
connections. We first model the probability that p; = 1
given n; > 1. The estimate of the probability here using
UNC data is 0.82. Next we model p; given p; > 1 by
1 plus a discrete Weibull with shape parameter A and
scale parameter «. (The discrete Weibull is introduced
in Section V-C.3). The estimate of A is 0.89 and the
estimate of « is 0.37. Finally, we model m;; first by
considering the probability of m;; = 1; this is estimated

to be 0.69. Then conditional on m;; > 1, m;; is modeled
by 1 plus a discrete Weibull; the estimate of X is 0.74
and the estimate of « is 2.12.

2) Time Gaps, g;,1,---,in,—1- We find the variabil-
ity of time gaps either within or between page requests
is much smaller when compared to the overall variability
across all connections. In addition, this reduced variabil-
ity varies from connection to connection. To reflect these
observations, we developed a mixed-effects model with
random location and scale effects. The random location-
scale model has been investigated in [11], and we use
the method of moments based on the estimates of mean
and variance within each persistent connection to obtain
estimates of parameters.

The g;;, j = 1 to n; for different 4 are independent.
We now specify the model for g;; for fixed i. Let y;
be independent normal random variables with mean p
and variance o2(u). This random variable will serve as
a random location effect across 4. Let v2 be independent
Gamma random variables with shape A and scale 1/\.
Note that E(y?) = 1. The model is log, gij = i + vi€ij,
where ¢;; is a normal random variable with mean 0 and
variance o (). For time gaps within top-level pages, the
parameter estimates from UNC data are 4 = —5.26,
o?(u) = 2.14, X = 2.18, and o%(¢) = 2.40. For time gaps
between top-level pages, the fitted parameters are u =
1.73, 0?(p) = 0.19, A = 1.77, and o%(¢) = 0.85.

3) Persistent Connection Request Sizes, fi o, ..., fin,:
We found the variability of the request sizes relative to
the mean within a persistent connection is small. Thus
we model the f;o,..., fin, by taking them equal to f; ;.

4) Persistent Connection Response Sizes,
Fio,....F;n,: We found that for the responses, it
is almost always the case that all are “not modified”
messages or all are content objects. So the model, for
simplicity, makes all responses within a connection of
the same type.

For the “not modified” cases, the variability of the
sizes relative to the mean is small, so we model the
Fio,...,F;y, by taking them equal to F; ; when F; ; is
less than 275 bytes.

For the content objects, it has been observed that the
embedded objects tend to be smaller than the top-level
object (typically HTML content) [26]. This suggests that
the first response size in a top-level page tends to be
larger than the remaining sizes in the page (embedded
objects). We did see evidence of this in BELL and UNC
traces, with the average ratio of the two types of response
sizes at about 90%. This is a rather small difference, and
for simplicity, we ignore this in the modeling.

We found that the response sizes are less variable
within persistent connections relative to the mean than
across all connections. We model this using the mixed-
effects model with random location and scale effects that
we use for the time gaps. The estimates we obtained
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from BELL and UNC traces are very similar, and we
use the average of the two in the model. The model
is logy Fij = pi + 7vieij, Where p; has a piecewise
Pareto distribution same as that of the content objects
(F3,1|F3,1 > 275) but rescaled to have a variance of 0.94,
72 is a Gamma random variable with shape 3.22 and
scale 3.227!, and ¢;; is a normal random variable with
mean 0 and variance 2.43.

Although the marginal distribution of sizes of content
objects derived from the above mixed effects model
is different from that derived from F;; in SectionV-
C.3, it is a very close approximation: the body of the
distribution is very similar but the tails are somewhat
heavier. Also note that F;; for the top-level page is
independent across connections, we can simply generate
all sizes F 1, ..., F; », (including the first) independently
from the mixed effects model.

5) Persistent Connection Server Delay, D;., ...,
D;,.: We found the variability of the server delays
relative to the mean within a persistent connection is
small. Thus we model the D, o, ..., D; 5, by taking them
equal to D; ;.

E. Specifying the Models for Generation

There are two categories of source-model variables
that need to be specified to utilize the ns implemen-
tation to generate packet-level traffic — those that are
application dependent and those that are dependent on
the network properties of the clouds. The most salient
application variable is the new connection rate p, and
for this reason it must be specified. For other applica-
tion variables, the defaults will frequently suffice. For
network-dependent variables, the marginal distributions
of the client round-trip time and the server round-
trip time are salient network properties and need to
be considered as part of the cloud network properties.
Their marginal is specified by the break points and the
interval probabilities. The default server delay marginal
distribution will frequently suffice.

VI. PACKET-LEVEL VALIDATION

We carried out a packet-level validation by comparing
the measured BELL packet traffic with synthetic packet
traffic generated from an ns simulation of HTTP traffic
on the Bell Labs link. The traffic variables studied
are the packet inter-arrival time series, the packet size
time series, connection duration, bit rate, packet rate,
and the number of simultaneous active connections. An
important aspect of these variables is that they are not
directly specified by the source traffic models, but rather
are derived from the packet-level process. Except for
the connection duration, the variables are studied as a
function of the new connection rate p. The reason is that

studies show that the statistical properties of the variables
change with the magnitude of the multiplexing [6], [7].

We ran 18 simulations to produce 18 synthetic traces:
two at each of 9 connection rates ranging from 1 c/s to
256 c/s in multiplicative steps of 2. We ran each simu-
lation to produce about 1 million packets if the duration
is at least 600 sec; otherwise we kept running to achieve
a duration of 600 sec. This provides a large sample size.
The BELL traces are 300 sec. The different durations
does not interfere with the validation process but it does
mean that when we compare a BELL parameter for
the 500 traces and the corresponding synthetic traffic
parameter for the 18 traces we can expect to see more
variability in the BELL results. In these simulations the
connection bottleneck link speeds for each cloud is cho-
sen independently from the interval 1 Mbps to 10 Mbps.
The connection packet drop rates for each cloud are
also chosen independently from a marginal distribution
that with probability 0.95 is uniformly distributed on the
interval 0% to 1% and with probability 0.05 is 30%; this
reflects a phenomenon of most connections having low
loss but a small number experiencing serious congestion.
Because the BELL traces encounter very little congestion
on the measured link, we kept the utilization of the
aggregate link low.

A. Rates: Packet and Bit

Figure 2 graphs the log packet rate against the log
new connection rate, log,(p) for the 500 BELL traces
and the 18 synthetic traces. Figure 3 graphs the log bit
rate against logy(p). Clearly the synthetic traffic is in
close agreement with the live traffic. In addition, as one
would expect, the patterns on the plots are linear, so the
bit rate and the packet rate are each proportional to p.
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Log Packet Rate (log base 2 p/s)

Log New Connection Rate (log base 2 c/s)

Fig. 2. Log packets/sec is graphed against log new connection rate.
Dots: live traces. Circles: synthetic traces.

B. Connections: Number Active and Duration

At any given moment, there is a number of simulta-
neous active HTTP connections. For each trace, live and
synthetic, we computed the average number of active
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Fig. 3. Log bits/sec is graphed against log new connection rate.

Dots: live traces. Circles: synthetic traces.

connections, ¢, across the trace. Figure 4 graphs logs(c)
against logy(p). Both patterns, live and synthetic are
linear and in agreement.
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Fig. 4. Log average number of active connections is graphed against
log new connection rate. Dots: live traces. Circles: synthetic traces.

c is p times the average duration of a connection. We
found that the duration distribution of the live traces
and of the synthetic traces did not change with p, as
one would expect, because there is little congestion.
Figure 5 is a quantile-quantile (g-g) plot that compares
the distribution of the log synthetic durations on the
vertical scale with that of the log live durations on the
horizontal scale. On the plot, corresponding quantiles
of each distribution of values are graphed against one
another; for example, the median is graphed against the
median, the upper quartile is graphed against the upper
quartile, and so forth. The vertical lines on the plot show,
left to right, certain quantiles: 1%, 10%, 25%, 75%, 90%,
and 99%. If the points follow the line with intercept 0
and slope 1, drawn on the plot, then the distributions are
identical. The live and synthetic distributions are close,
but there are discrepancies in the tails; for the non-
persistent connections the synthetic values are greater
and for the persistent connections the synthetic values
are smaller. Of course, the source modeling could be the
cause, but our validation for the source variables showed
good agreement. The likely source of the discrepancy is
the packet loss distribution since the durations in the tails

are sensitive to it. We did not pursue this further since
the discrepancy is minor, but a study of the dependence
of the durations on loss would an interesting topic.
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Fig. 5. Quantile-quantile plot of log connection durations. Left panel:
non-persistent connections. Right panel: persistent connections.

C. Marginal Distributions: Inter-Arrivals and Sizes

Studies have shown that the marginal distribution of
packet inter-arrivals are well approximated by a Weibull
distribution with a heavier upper tail than the expo-
nential [23], [6], [8]. Starting with a quite low new
connection rate p, for example, 1 c/s, the approximation
is reasonable but with clear departures, but improves with
the rate and is quite good about 16 c/s.

The synthetic inter-arrivals show the same character-
istics with increasing p, an improving approximation.
Figure 6 shows Weibull quantile plots for two traces, one
live Bell trace and one synthetic, both with p close to 32
c/s. Each panel graphs quantiles of log, (;) against quan-
tiles of the log, of an exponential distribution with mean
1. If the pattern of the points form a line, the distribution
of the data is well approximated by a Weibull distribution
with a shape parameter the inverse of the slope of the
line. The vertical lines indicate the 1%, 10%, 25%, 75%,
90%, and 99% quantiles of the distribution. The oblique
line is drawn through the quartiles. Overall, the Weibull
approximation is excellent. The only deviation, a minor
one, is a truncation at the bottom end of the distribution
of the data for both the synthetic and the live data, so
we still have a very close match of live and synthetic.
The truncation occurs because the there is a minimum
inter-arrival time, the smallest packet size divided by the
link speed.

Earlier we cited results that as p increases, the packet
arrivals tend to Poisson. This means the Weibull shape
parameter, A, less than 1, increases toward 1, the shape
parameter of the exponential distribution. In fact, for live
traces, logy(A/(1 — X)) = logity(A) increases linearly
with log,(p) [8]. (Note that as A — 1, logity(A) —
oo and conversely.) Figure 7 graphs logit,(A) against
log,(p) for the live and synthetic traces. For both live
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Fig. 6. Weibull quantile plot of inter-arrivals. Left panel: live trace.
Right panel: synthetic trace.

and synthetic there is marked trend of A\ toward 1. The
pattern on the plot is linear for the live traces but slightly
curved for the synthetic traces, a small but consistent
departure.
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Fig. 7. The logit function of the Weibull shape is graphed against

log new connection rate. Dots: live traces. Circles: synthetic traces.

The packet size distribution for live traces is a discrete-
continuous distribution that does not change appreciably
with p on a link, but does change from link to link [8].
The HTTP packet sizes in a single direction on the
link depend on the mix of clients and servers in the
transmitting cloud; servers send a higher proportion of
1500 byte packets (data) than clients and clients send a
higher proportion of 40 byte packets (ACKSs). Figure 8
shows quantile plots of packets sizes for a random
sample of live BELL connections and for all connections
of the synthetic traces. The distributions are similar.

D. Time Dependence: Inter-Arrivals and Sizes

The packet inter-arrivals and size processes of live
traces are long-range dependent [24], [16], [6]. This
is evident in the live BELL packet traces. It is also
evident in the synthetic traces. We used the power
spectrum of the live and synthetic inter-arrivals and sizes
to study their time dependence. First, though, using their
marginal distributions, we transformed these series to
have Gaussian marginals with mean 0 and variance 1 so
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Fig. 8. Packet size quantile plot. Left panel: live trace. Right panel:
synthetic trace.

that the power spectrum would come closer to fully char-
acterizing their dependence. We found that the synthetic
spectra followed closely the live spectra, including the
form of the dissipation of the long-range dependence in
the series. Figure 9 shows packet size spectrum estimates
for two traces, one live Bell trace and one synthetic, both
with p close to 16 c/s. The rapid ascent at the origin is
the result of the long-range dependence; in both cases
the spectra decline nearly monotonically as the frequency
increases. Similar results hold for the packet inter-arrival
spectra, graphed in Figure 10.

| | I | |
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10 Log Power Sepctrum (decibel)

Frequency (cycle/packet)

Fig. 9. Packet size spectrum is graphed against frequency. Left
panel: live trace. Right panel: synthetic trace.
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Fig. 10. Packet inter-arrival spectrum is graphed against frequency.
Left panel: live trace. Right panel: synthetic trace.
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As p increases, the live and synthetic packet size
spectra tend toward a constant, a white noise spectrum;
this is the dissipation of the long-range dependence cited
earlier. As p increases, the fraction of power at low-
frequencies decreases and the fraction of power at high
frequencies increases. The one-step entropy 7; reflects
this change; it is the variance of the error of linear
prediction one step ahead from the infinite past. Because
our packet sizes are transformed and rescaled to have
mean 0 and variance 1, 0 < 4 < 1. If 4 = 1, the
series is independent (uncorrelated); if 7; is close to
0, the series is highly dependent in the sense that it
can be predicted reliably from the past. As p increases,
71 — 1. For a wide range of live traces, the logit one-
step entropy, logy(71/(1 — 11)) = logity(71), is linear in
p [8]. Figure 11 graphs logit,(71) against log,(p). The
patterns of the live and synthetic traces agree. Similar
results hold for the entropy of the packet inter-arrival
process, which is displayed in Figure 12.
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Fig. 11. Logit one-step entropy is graphed against log new con-
nection rate for the packet sizes. Dots: live traces. Circles: synthetic
traces.

Logit Packet Inter-Arrival Entropy
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Fig. 12. Logit one-step entropy is graphed against log new
connection rate for the packet inter-arrivals. Dots: live traces. Circles:
synthetic traces.

APPENDIX

PackMime-NS is the ns object that drives the
generation of HTTP traffic using the models and
integration described in this paper. It is available
at http://www.isi.edu/nsnam/ns/ns-contributed.html. The
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object consists of one client cloud and one server cloud.
Each cloud is represented by a single ns node that can
produce and consume multiple HTTP connections at a
time. For each HTTP connection, PackMime-NS creates
a new web client and a new web server, sets up a
TCP connection between the client and server, has the
client sends an HTTP request, and sets a timer to expire
when the next new connection should begin. The time
between new connections is governed by the connection
rate parameter supplied by the user. New connections are
started according to the connection arrival times without
regard to the completion of previous requests, but a new
request between the same client and server pair begins
only after the previous request-response pair has been
completed.

Each web client controls the HTTP request sizes that
are transferred. The client is started when a new TCP
connection is started. PackMime-NS samples the number
of requests for this connection from the number-of-
requests distribution, and then samples the inter-request
times and the HTTP request sizes from the appropriate
distributions. Then the client sends the first HTTP re-
quest to the server, and listens for the HTTP response.
When the entire HTTP response has been received the
client sets a timer to expire when the next request should
be made. When the timer expires, the next HTTP request
is sent, and the above process is repeated until the
requests are exhausted.

Each web server controls the response sizes that are
transferred. The server is started by when a new TCP
connection is started. The server listens for an HTTP
request from its associated client. When the request
arrives, the server samples the server delay time from the
server delay distribution and sets a timer to expire when
the server delay has passed. When that timer expires, the
server samples the HTTP response sizes from the HTTP
response size distribution. This process is repeated until
the requests are exhausted. (The server is told how many
requests will be sent in the connection.) Then the server
sends a FIN.

PackMime-NS uses ns to model the TCP-level inter-
action between web clients and servers on the simulated
link. To simulate network-level effects of HTTP transfer
through the clouds, we implemented a new ns module
called DelayBox. DelayBox is an ns analog to dum-
mynet [25], often used in network testbeds to delay and
drop packets. The transit times model cloud propagation
and queueing delay. Since all HTTP connections in
PackMime-NS take place between only two ns nodes,
there had to be an ns object to delay packets in each flow,
rather than just having a static delay on the link between
the two nodes. DelayBox also models bottleneck links
and packet loss on an individual connection basis. Two
DelayBox nodes are used as shown in Figure 13. One
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Fig. 13. PackMime-NS network with DelayBox

node is placed in front of the web client cloud ns node
to handle client-side delays, loss, and bottleneck links.
The other DelayBox node is placed in front of the web
server cloud ns node to handle the server-side delays,
loss, and bottleneck links.

DelayBox manages the per-flow delays and packet
drops by maintaining a rule table and a flow table. The
rule table is specified by the user and describes how
flows from a specific source node to a specific destination
node should be treated. The fields in the rule table
include the source node, the destination node, the delay
distribution, the loss rate distribution, and the bottleneck
link speed distribution. The loss rate and bottleneck link
speed distributions are optional. Packets in a flow are
guaranteed to be transmitted in the same order they
arrived at the DelayBox node. More information on
DelayBox is given at the above web site.
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