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Abstract—We describe a novel approach to managing the
application-level performance of servers within an enterprise
network given only passively-collected TCP/IP headers of packets
from a link connecting clients to servers. The analysis is driven
by constructing, in real-time, a source-level model of the request-
response exchanges between each server and all of its clients. By
continuously monitoring traffic, we generate a statistical profile
of numerous application-layer measures of server performance.
Given these measures, and their distributions over time, a net-
work manager can quickly triage server performance problems
in generic terms without any knowledge of the servers operation
or a priori interaction with the server’s operators. This approach
is illustrated by using a continuous, 2-month dataset taken from a
border router on the UNC campus to diagnose an actual problem
with a UNC web portal.

I. INTRODUCTION

“Network management” in an enterprise environment often

carries an implicit responsibility for ensuring the performance

of network resources attached to the network, such as servers

and printers. For better or worse, users tend to view the

“network” broadly to encompass the services they rely on as

well as the interconnections between machines.

In this paper we report on a novel means of monitoring the

performance of network servers through the use of continuous,

passive network measurement. The goal is to enable network

managers to triage server problems using easily obtainable

data, without ever having to instrument the server itself and

without having any knowledge of the operation or function of

the server. We also believe our methods can be easily extended

to enable managers to discover server problems in real-time.

The essence of our approach is to passively collect TCP/IP

headers of all connections transiting a network link connecting

users to servers. The TCP/IP headers are “reverse compiled,”

in real-time, into a source-level model of the request-response

dialog between every client and server. That is, given only

TCP and IP packet headers, and without any knowledge of

the application or application-level protocol generating the

packets, we construct and store for each connection a structural

model of the request-response application-level dialog between

a server and a client. The model is application-independent and

consists of the number and sizes of requests and responses,

along with the times between each chunk. (See Section III.)

Using these data, over time we can generate a detailed

historical profile of the application-level performance of every

server on a network. This profile is expressed in generic

terms such as the distribution of request sizes, response

sizes, number of request-response exchanges per connection,

response time, connection duration, connection arrival rate,

etc. With these statistics, network managers are now in a

position to discover and triage server performance problems

by looking for unexpected deviations in short or medium

term distributions of these measures. Most importantly, these

analyses are performed using application-level measures of

performance but without ever having to instrument any server

or even have knowledge of the operation or function of the

server.

To illustrate the method, we present a case study, using our

methods to understand an actual server problem that occurred

on the UNC campus. We have been passively monitoring the

main campus Internet link continuously since March 2008.

The results presented here are based on 1.5 TB of data on

the more than 1.6 billion connections established to UNC

servers up to May 23, 2008. (See Section V.) On April 8,

2008, a performance problem was reported for a UNC web

portal (“server is slow”).

Using our data we were able to quickly determine the most

likely cause of the problem (an unexpected increase in request

volume) and rule out a number of equally likely alternate

causes (e.g., an increase in the content being returned on

each connection). In addition, we were also able to inform the

server operators of quite detailed micro-performance measures

such as a marked increase in the response time for the

transfer of the third, fourth, and fifth objects returned within

a connection. This suggested a possible linkage between the

user-observed performance problem and any back-end server

or database responsible for generating common content for the

third through fifth responses.

Although the performance problem we analyze turned out

to be a rather mundane problem, we were able to diagnose

the problem and provide sophisticated data to the server’s

operators without any knowledge of the servers operation or a

priori interaction with the operators. We believe the methods

we have developed and are developing provide a powerful

new means for network managers to understand both the

performance of their network in broad terms that now include

the application-layer performance of arbitrary servers attached

to their network.



II. RELATED WORK

Other network research is built on passive and continuous

measurement. Caceres et al. [1] discuss the AT&T trace

collection project, involving an elaborate infrastructure and

many types of active and passive measurements. Fraleigh et

al. [2] collect 3.3 TB per day of packet header traces, taking

care to synchronize clocks on distributed monitoring points.

Hussain et al. [3] design a traffic monitoring infrastructure for

collection of packet header traces. All three of these works

involve a much more elaborate and expensive infrastructure

than ours, and they require more work to setup the infrastruc-

ture. Packet header traces are nearly as detailed a data source

as one can reasonably hope to get, yet we claim that most of

the information of interest to a network manager is preserved

in our data, in much less space (roughly 4-5 %).

Malan and Jahanian’s Windmill system [4] also collects

continuous passive measurements. Like our work, theirs is a

one-pass approach to processing the traffic stream, and there is

a focus on application-level effects. Unlike our work, however,

they use incoming packets to trigger events in application

protocol “replay” modules, requiring significant work to cre-

ate each such module. Instead, we measure application-level

phenomena in a generic fashion, requiring no knowledge of

any particular application.

Feldmann’s BLT [5] describes in detail a method for cap-

turing HTTP information, including request/response pairs.

Like our work, it abstracts network and transport effects such

as out-of-order delivery and retransmissions, instead focusing

on the application-level data units exchanged between hosts.

However, BLT focuses on HTTP and gleans information

from the TCP payload, so it is not appropriate for encrypted

traffic. Furthermore, it uses a multi-pass algorithm, and so is

not suitable for high-speed links, which require a one-pass

approach. Another approach, based on BLT, that has similar

drawbacks relative to our focus is Fu et al.’s EtE [6].

Olshefski et al. introduce ksniffer in [7]. This work is sim-

ilar to ours in approach in that it passively infers application-

level response times on a high-speed link (therefore using a

one-pass algorithm). Their goal is to measure, at the server,

the time from a client’s request of a web page to the receipt

of all data by the client. Like other related work, however,

the focus is on HTTP, leveraging knowledge of HTTP’s

functionality and requiring access to HTTP headers—which,

again, is not possible in encrypted communication such as

HTTPS. Furthermore, their work is not entirely passive, since

the measurement occurs in the kernel of the server host and

therefore steals cycles from the HTTP server application. Later

work by Olshefski and Nieh on RLM [8] fixes this problem by

performing the measurement on a separate machine; however,

the machine is placed in-line with the HTTP server so that it

can affect the traffic, so it also is not purely passive. Our work

is purely passive, generic, and does not require access to TCP

payloads, thus functioning equally well on HTTPS and HTTP

(as well as any other sequential protocol).

An idea that we heavily exploit was introduced (as far as

we can tell) by Barford and Crovella [9]. That idea was a user-

level think-time, and it was used to realistically model HTTP

users. We extend the idea to an application-level think-time,

which functions the same whether the think-time is due to a

user thinking or an application processing some input. This

idea is the basis of our server-side response time metric, as

introduced in Section IV.

III. BACKGROUND

Our approach is based on a model of source-level inter-

actions called the a-b-t model, described in [10]. The model

focuses on application-level exchanges of data between hosts

using a TCP connection. The application processes at the

end systems exchange data in units defined by their specific

application-level protocol. The sizes of these application-

specific data units (called ADUs) are mostly independent of the

sizes of transport-layer units (segments) or network-layer units

(datagrams/packets). For example, in the file transfer protocol

(FTP), a complete downloaded file is considered to be a single

ADU.

There are three components of the model: the ADUs sent

by the client (or connection initiator) to the server (a-units);

ADUs sent by the server (or connection acceptor) (b-units);

and think-times between exchanges (t). For our purposes,

we will call the a-units requests and the b-units responses

since most of the results presented here are for sequential,

client/server applications. For example, consider HTTP. In the

simple case of a non-persistent HTTP connection, there will be

one request, followed by the (response) think-time, followed

by one response. In the case of persistent HTTP connections,

there will be a series of request-response exchanges, with

server response times between the request and response and

client think-times before each request. Each request, think-

time, response, think-time pattern is called an epoch.1

The reason for using this model (and a key contribution of

our entire approach) is that it reveals the internal structure of

TCP connections from which application and user behavior

can be inferred. In the results section we exploit this struc-

ture to examine the possible causes of observed poor server

response times.

The key contribution of our approach is an online algorithm

for constructing an a-b-t model of each TCP connection ap-

pearing on a monitored link in real-time. This online algorithm

allows us to generate the models in an streaming fashion,

requiring a single pass on a packet stream. An online approach

is required for management purposes; otherwise, the data will

become stale, and it will not be useful for urgent performance

issues.

A complete description of the online modeling algorithm is

beyond the scope of this paper, but it is based on the concepts

and methods that have been evaluated and used in prior

work ( [11], [12], [13]). Briefly, we maintain per-connection,

per-flow-direction state that is initiated upon seeing a SYN

1For pipelined HTTP requests and responses, the entire pipeline is treated
as 1 request ADU and 1 response ADU.



packet and terminated at a FIN/RST. Whenever the algorithm

determines that an ADU has ended, it prints a corresponding

record, with the size and ensuing think time. There are many

complications to this approach, and it is difficult to get right for

all cases. For example, the algorithm must deal correctly with

transport-layer and network-layer effects such as segmentation,

retransmissions, out-of-order delivery, and losses.

A thorough validation of our algorithms is also beyond the

scope of this paper. However, we have compared the output of

the carefully validated offline algorithm used in [12] with our

method using 109,000 randomly selected TCP connections.

We found only a few minor differences related to the streaming

algorithm’s inability to “look into the future”, none of which

affected the calculation of ADU sizes, number of epochs, or

server response times.

One complication is worth mentioning in more detail. In the

common case of a sequential connection, in which each host

waits to receive a complete ADU before sending a subsequent

ADU, any new data sent in one direction will acknowledge all

data previously sent in the other direction, thus ensuring that

there is only one direction containing unacknowledged data

at all times. However, in concurrent connections (e.g. NNTP,

BitTorrent), a host might send new data without waiting to

finish receiving an ADU. All connections are assumed to be

sequential unless proved otherwise. In concurrent connections,

we cannot be certain that the server is actually responding

to the most recent request; instead, it could be sending a

new ADU independent of the request. When we consider

response times in this paper, we ignore those from concurrent

connections because the servers we monitor are dominated (i.e.

95%) by sequential connections. 2

IV. MEASUREMENT

The measurement setup for our approach is remarkably

simple, and this is one of the key contributions in our work.

We have a single monitor system with a passive tap of the

bidirectional network traffic flowing between UNC and the

Internet. The monitored link (a 1 Gbps Ethernet) is close to the

core campus network switches to which a number of servers

are attached.

The monitor system consists of four components: a Dell

(Intel architecture) server-class system, an Endace DAG card

for packet capture, a custom program that we call adudump

that reads and processes the output of the DAG card, and disks

for long-term data storage.3 Taken together, the measurement

setup provides a reasonably comprehensive picture of the

operation of the network at an affordable cost and with

minimal deployment issues.

The adudump program reads the memory-buffered stream

of packet headers and timestamps provided by the DAG card

2More precisely, we ignore response times from connections that have
already proved to be concurrent. Since we use a one-pass algorithm, we cannot
know whether the connection will later be flagged as concurrent.
3The long-term storage system is actually on a distinct system from the

monitor.

and builds a model of the application-level dialog exchanged

over each TCP connection.

The metric of most interest to users (and therefore of most

concern to network managers) is server response time, defined

specifically to be the time between the last packet of a client’s

request and the first packet of the server’s response. The server

response time typically involves highly variable operations,

such as the scheduling of the server processes, the use of disk

or remote resources such as distributed databases, and the

execution of application code, all of which are components

that contribute to the performance of a server. Furthermore,

note that the transmission of packets on the UNC core network

switches between the monitor and switches, except in very rare

cases, add less than a millisecond to the response time. Since

we are interested in response times of a hundred milliseconds

or more, we can consider the transmission component of the

response times measured at the monitor to be negligible.

V. DATA

We ran adudump on the monitor continuously, save out-

ages, for a period of 10 weeks. Overall, we collected about

1.5 terabytes of data modeling 1.6 billion TCP connections.

Table I shows the individual adudump processes, interrupted

by outages. adudump does not track a connection unless

it sees the SYN segment; thus, there is a short “startup”

period at the beginning of each collection time. Furthermore,

note that, for reasons of privacy and scope, only incoming

connections (i.e. connections with the initial SYN packet

originating outside of UNC) were tracked.

The data is a sequence of records. All records share two

things in common: the timestamp of the segment prompting

the record, and the 4-tuple ID of the connection to which the

record pertains. There are several types of records:

• the first SYN segment seen

• the RTT estimated from the connection handshake

• the connection establishment (i.e. completion of the TCP

3-way handshake)

• the connection termination (with either FIN’s, RST’s, or

a combination)

• each ADU with its corresponding size and ensuing re-

sponse or think time

The records are stored in uncompressed, human-readable

text, with one record per line and fields separated by a single

space. Compared to recording a full trace of all packet headers

from this link (which could be used in an off-line analysis) we

achieve a compression ratio of about 25:1 (about 22 GB/day

vs over 550 GB/day on average). Further, as we show in

Section VI, this data has a wealth of information useful for

forensic analysis. More importantly, since the data is produced

in real-time, it can be used in an “early warning” system to

alert network managers to impending issues.

VI. RESULTS

We have mined the archived data looking for incidents

of poor response-time performance by the top-25 most-used

servers at UNC. Almost all of them had at least one (and



TABLE I
DATA COLLECTION. ALL TIMES LOCAL (EDT); ALL DATES 2008. DATA FOR MONDAY, MARCH 17, WAS LOST.

# begin end duration outage duration size records ADUs connections established

1 Fri Mar 14 22:25 Thu Apr 17 03:50 33d 5h 25m 1d 14h 11m 813 GB 11.8 B 8.8 B 820 M

2 Fri Apr 18 18:01 Wed Apr 23 07:39 4d 13h 37m 0d 3h 35m 106 GB 1.6 B 1.1 B 116 M

3 Wed Apr 23 11:14 Thu Apr 24 03:00 0d 15h 46m 0d 7h 38m 16 GB 234 M 161 M 19 M

4 Thu Apr 24 10:38 Fri May 16 11:19 22d 0h 41m 0d 7h 4m 530 GB 7.7 B 5.7 B 532 M

5 Fri May 16 18:23 Fri May 23 00:06 6d 5h 43m n/a 108 GB 1.6 B 1.07 B 148 M

* 66d 17h 12m 2d 8h 28m 1.54 TB 22.9 B 16.8 B 1.6 B

often several) such incidents lasting from a few minutes to

several hours during the 10 week period. Unfortunately, due

to space constraints, we opt for depth rather than breadth: we

restrict our discussion to a more detailed analysis of a user-

reported performance issue on a particular server. We present

this analysis using data and graphs that could be generated

with minimal delay, just as if we were responding to it as it

happened.

At 4:28 P.M. on Tuesday, April 8th, 2008, the UNC net-

work services group was notified that a server on campus

was responding slowly to requests. We will henceforth refer

to the time of this first report as T . We will dissect the

behavior of this server in order to illustrate the power of our

approach to inform the decisions of system administrators and

network managers. From the real-time analysis, we would have

available data for the server on (at least) two time scales: the

summarized historical data over a long past interval and the

data for one-hour intervals during the past few weeks. The

latter is included because we do not expect any aspect of the

traffic to be completely stationary. Furthermore, this sort of

data is available for all servers within the UNC network. In

fact, all data related to the particular server involved in this

incident makes up only 2.5 GB, or about 0.02% of the dataset.

The email stated that the server was responding slowly to

requests. Figure 1 plots the distribution of response times over

the immediately past hour against historical response times.

Two historical distributions are plotted: (1) the entire data set,

from the beginning of measurement on March 14th until T

minus 1 hour; and (2) the hour between 3:28 P.M. and 4:28

P.M. on Tuesday afternoons, for the three Tuesdays in the data

set prior to April 8th.

Clearly, the server is now taking much longer to generate

responses to requests, just as the incident report stated. There

are several reasons why this could be. First, let’s determine

whether the application and user interactions are qualitatively

different. Figure 2 shows the distributions of request sizes

over the same time periods. There is no discernible difference

between the distributions. Figure 3 plots the distributions of

response sizes. Again, there is little real difference between

past responses and current responses.

Figure 4 plots the number of epochs seen in each con-

nection. (Recall that an epoch is a single request/response

exchange.) This plot confirms that there is little qualitative

difference between the connection structures in the historical

data for this server and the current data. Further confirmation

is found in the similarity of the distributions of total request
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Fig. 2. CDF of request sizes for the server of interest.

bytes and total response bytes per connection, which are not

shown here.

At this point, given the unique structure of the request

and response distributions, and the fact that the distributions

are unchanged during the event, we can conclude that the

application profile for the server is not qualitatively different

than it is at other times. We emphasize that none of this data

required any instrumentation of the server in question and can

be derived solely from passive analysis of network packets in

real-time.
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Another obvious reason that the server might be responding

slowly is that it could be simply overloaded with a higher load

than normal. Figure 5 shows the number of requests to the

server per hour. Note that the number of application requests

per interval is a more direct performance metric than network-

centric volume metrics such as the number of bytes or number

of packets per interval. Since the server application is required

to do processing per request, this metric is a better indicator

of the server load than raw byte and packet counts.

There is clearly a large spike in the request count at the

time of the incident. Therefore, we conclude that the server’s

performance woes are likely related to a request higher load

than normal. One possibility is that the request count has

increased because of a change in the content served by the

server. For example, a web server could change its index

page to one that references more objects, and we would

expect that the requests (one HTTP request per object) would

thus increase without a corresponding increase in the number

of clients. However, Figure 6 shows that the number of

unique users also increased along with the number of requests.

Unless the content structure changed, the increased number of

requests is likely a spike in users (a small “flash crowd”).

The a-b-t model also allows us to look more deeply into the
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structure of the application data exchanges. Figure 7 shows

the median response time for each epoch of connections by

its order in the connection (persistent connections have > 1

epoch). In other words, the median of the i
th epoch’s response

time is plotted for each value of i. The median is plotted with

range bars representing the first and third quartile (Q1 and

Q3) of the response times. For example, the diamond with

error bars at x = 3 is the median of all the 3
rd response

times in the latest hour, along with the Q1 and Q3 of the

same distribution. The count of response times is plotted as

well (right axis). (Note that the count always decreases as i

increases.)

There are many interesting things in this figure. First, it

shows that the first two response times are not much different

between normal operation and the hour containing the incident.

However, the striking difference is in the third response time

and beyond. The third, fourth, and fifth response times have

a median roughly an order of magnitude greater than during

regular load. Also, their variation (in terms of the inter-quartile

range) is several times greater during high load. Note that
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beyond the third response time, the number of responses drops

precipitously. Thus, if we wanted to improve the average

response time of the server during high load, we should focus

on the third request/response exchange.

This information is, necessarily, rather generic. We do not

know why the third request/response pair is distinguished,

nor why most connections end after three exchanges. These

questions can only be answered with some application-level

knowledge, such as the application protocol or, in the case

of web servers, the content structure. However, we claim

that such information could be a useful clue when provided

to the administrator responsible for the server. For example,

perhaps the third request to a web server is typically for

dynamically generated content, possibly with accesses to a

distributed database. The administrator could then investigate

whether the generation process could be optimized, cached, or

otherwise improved.

Of course it is possible that all of this information could be

retrieved for many applications by parsing server log files.

Clever parsing, and maybe some augmentation to provide

response times, could perhaps generate most of the results

here. However, the contribution of our approach is that it

works regardless of the particular server software used—or

even the application-level protocol. Instead of gaining access

to many servers, installing or writing code to parse logs (with

augmentations as necessary), and combining the results across

the servers, we simply monitor the network packets from a

single vantage point and infer the application-level behavior;

thus, our approach is more generic and elegant. Furthermore,

our response times are passively measured are not subject to

measurement artifacts from server instrumentation.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that by using an easily obtainable trace

of TCP/IP headers, we can construct a source level model in

real-time of all the client-server dialogs occurring on the UNC

campus. The collected data enables a detailed characterization

of the application-level performance of servers that is sufficient

for diagnosing actual performance problems.

By continuously collecting data for the entire UNC campus,

when a problem was reported, we were able to quickly extract

historical performance data for the specific server and identify

the most likely cause of the problem while simultaneously

ruling out other equally possible causes. We were able to

provide detailed information to the server’s operators without

any instrumentation of the server or even knowledge of the

server’s operation or function.

While the study reported here concerns an analysis of a

server’s performance after a report was received of a suspected

problem, we believe that the methods we have employed

are sufficiently generic that they could be employed in an

automated fashion in an attempt to detect performance anoma-

lies prior to their being noticed by a human operator. Such

application-level performance anomaly detection is the subject

of our current work.
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