
Statistical Clustering of

Internet Communication Patterns

Félix Hernández-Campos F. Donelson Smith
Kevin Jeffay

Department of Computer Science
University of North Carolina at Chapel Hill
{fhernand,smithfd,jeffay}@cs.unc.edu

Andrew B. Nobel
Department of Statistics

University of North Carolina at Chapel Hill
nobel@email.unc.edu

Abstract

We describe a new methodology for analyzing Internet traffic based on
an abstract model of application-level communication and statistical cluster
analysis, and argue that this method of analysis can serve as a foundation for
building flexible traffic generation tools. We present the details of two case
studies in which the new analysis tools are applied to data from the University
of North Carolina at Chapel Hill and Internet2.

1 Introduction

The rigorous evaluation of new Internet technologies and changes in existing tech-
nologies requires careful simulation in controlled environments. A critical compo-
nent of such simulations is the realistic reproduction of the workload of the Inter-
net, i.e., Internet traffic. However, modeling and synthetic reproduction of Internet
traffic are themselves major challenges. Over the last two decades, the Internet has
emerged as the most flexible communication infrastructure in the world. Hundreds
of millions of hosts continuously exchange information using a broad spectrum of
applications and protocols which exhibit a wide range of communication patterns.
In this paper, we seek to address and study the heterogeneity of Internet traffic
by combining an abstract model of application level communication with statistical
cluster analysis. A central goal of our analysis is to enable new and more flexible
approaches for traffic modeling and generation.

Internet traffic is composed of data exchanges between two end-points, driven
by the details of a particular application, such as web browsing or electronic mail.
Data exchanges are carried out by packets that travel through a world-wide fabric
of network links and store-and-forward routers. Routers and links in the Internet
see packet arrival processes in which packets from different data exchanges combine
to form a heterogeneous traffic mix. For example, Table 1 summarizes the types of
network traffic that were observed on Internet2 [19] during the week of November
4, 2002. The second row shows that World Wide Web data exchanges accounted
for only 5.75% of the bytes in this network (13.76 Terabytes), and 5.89% of the

1

Application Type Bytes Packets
Newsgroups 15.84% 37.90T 9.93% 36.76G
World Wide Web 5.75% 13.76T 5.89% 21.79G
File Transfer Protocol 3.02% 7.226T 2.70% 9.985G
Rsync 0.28% 665.6G 0.26% 950.9M
File Sharing 21.37% 51.15T 22.79% 84.39G
Audio/Video 3.56% 8.517T 2.97% 11.00G
Misc 2.35% 5.623T 4.66% 17.24G
Encrypted Traffic 2.22% 5.311T 1.65% 6.111G
Games 1.89% 4.512T 2.45% 9.071G
Advanced Apps 1.04% 2.486T 0.88% 3.253G
Measurement 0.84% 2.019T 1.03% 3.811G
Unidentified 41.85% 100.1T 44.80% 165.9G
Total 100.00% 239.3T 100.00% 370.2G

Table 1: Traffic mix observed on Internet2 during the week of November 4, 2002
[5]. The first four rows correspond to individual applications, while the remaining
ones report on groups of applications.

individual packets (21.79 Gigapackets). Other rows provide information for groups
of applications that have a similar purpose. For example, the fifth row includes
traffic from file-sharing applications, such as Gnutella, eDonkey and FastTrack,
which accounted for a large percentage of the total traffic. In summary, traffic
mixes combine many different applications, that exchange data according to specific
patterns.

The composition and type of traffic found on a link in the Internet vary with the
location and size of that link, as well the time of day. For example, the traffic in the
link that connects the University of North Carolina at Chapel Hill with the Internet
is typically dominated by web browsing, which amounts for 50% of the total number
of bytes transmitted, and by File Transfer Protocol data, which amounts for 25%.
The traffic at other network locations can be substantially different. For example,
Sprint’s backbone links carry a much lower percentage of FTP data traffic, and a
much higher percentage of traffic devoted to file-sharing applications, such as Kazaa
[13]. By contrast, Table 1 shows that newsgroups traffic is much more prominent
in Internet2 than in the other two networks. To be of broad utility, a method for
analyzing or generating network traffic must account for this heterogeneity in a
systematic fashion.

Concerning traffic generation, one approach is to separately model each individ-
ual application. However, given the large number of application currently in use,
this is not practical. Here we take a different approach (see Section 2). As an alter-
native to application specific models, we define an abstract communication model
that captures the pattern of data exchange in an abstract manner. This is sufficient
to capture the workload of the Internet for a wide range of applications. In addition,
the simplicity of the model makes it feasible to develop an efficient techniques to
analyze a large number of data sets from many different network locations.

Our abstract description of Internet communication patterns enables the study
of the population of connections observed on the Internet and the development of a
taxonomy of the most important patterns. We propose statistical clustering as the
basic technique for this study, and Section 3 describes our methodology. Section 4

2

TIME341 bytes341 bytes

2,555 bytes2,555 bytes

WEB BROWSER

WEB SERVER

HTTP Request

HTTP Response

TIME329 bytes329 bytes

403 bytes403 bytes

BROWSER

SERVER

HTTP Request 1

HTTP Response 1

403 bytes403 bytes

25,821 bytes25,821 bytes

HTTP Request 2

HTTP Response 2

356 bytes356 bytes

1,198 bytes1,198 bytes

HTTP Request 3

HTTP Response 3

0.12 secs 3.12 secs

Document 1 Document 2

TIME

93 bytes93 bytes

SMTP SENDER

SMTP RECEIVER

220 Host Info

32 bytes32 bytes

HELO

191 bytes191 bytes

250 Domain Info

MAIL

77 bytes77 bytes

59b59b

250 Ok

RCPT

75b75b

38b38b

250 Ok

DATA

6b6b 22,568 bytes22,568 bytes

Email Message

50b50b

250 Ok

44b44b

250 Ok

Figure 1: Examples of application-level data exchanges. From top to bottom, non-
persistent HTTP connection, persistent HTTP connection and SMTP connection.

presents two examples of traffic clustering. Finally, Section 5 reviews related work.

2 Abstract Communication Model

Our approach to the synthetic generation of network traffic is based on treating
traffic sources as network-independent entities. We begin with the observation
that, from the perspective of the network, the vast majority of application-level
protocols are based on a small number of data exchange patterns that occur within
a logical connection between the endpoint processes. In our model, the two endpoint
processes exchange data in units defined by their specific application-level protocol.
In our model, two endpoint processes exchange data in a sequential fashion as they
execute a particular application. The transferred data is summarized by application-
data units (ADU’s) whose size depends on the application protocol and the data
objects used in the application. For example, a common type of interaction between
a web browser and a web server using the HyperText Transfer Protocol (HTTP)
consists of a single exchange of data, as shown in the upper diagram in Figure
1. The browser first opens a connection to the server and sends a request for an
specific object (e.g., an HTML page or an image). This request is the first ADU
in the data exchange. After the server receives the entire request, it replies with
the requested object and closes the connection. This object (the response) is the
second ADU in this connection. The sizes of the request and the response do not
depend on network characteristics, such as the time required to send a packet from
the browser to the server or the bandwidth available between these two hosts. As a
consequence, we simply model the data exchange in this example as a pair of data
unit sizes (341 bytes, 2555 bytes). In a simulation, this communication pattern
can be reproduced by establishing a connection between two end-points and then
exchanging the data units in the specified order1.

In the general form of our abstract communication model, which we call the
1Note that this model assumes causality in the exchange of data, in the sense that the first

data unit, the request, must be received in its entirety before the second data unit, the response,
is sent in the opposite direction.

3

a-b-t model, each point-to-point communication can be represented as a connection
vector (c1, . . . , cn). Here n is the total number of epochs in the connection and
cj = (aj , bj, tj) is a triplet describing the data (aj , bj) and time (tj) parameters of
the j’th transmission epoch. Each ai captures the amount of data sent from the
initiator of the communication (e.g., a web browser) to the other end-point, while
each bi represents data flowing in the reverse direction. In the previous example, the
data exchange between the web browser and the web server would be summarized
as a vector with a single epoch (n = 1), in which a1 equals 341 and b1 equals 2,555.
The time parameters tj are used to model quiet times between data exchanges,
that, if sufficiently long, represent application-level behavior, such as human think
times and long processing delays.

Figure 1 shows, in a compact graphical representation, three examples of con-
nections that were captured on the main Internet link at the University of North
Carolina at Chapel Hill. The first one, as mentioned above, corresponds to a single
data exchange between a web server and a web browser. The second example illus-
trates a persistent HTTP connection, in which browser and server exchange three
pairs of data units. The representation of this connection in the a-b-t model is

((329, 403, 0), (403, 25821, 3.12), (356, 1198, φ))

We generally ignore values of tj below an idle time threshold τ = 1 second, since
we are only interested in capturing inter-epoch times that are clearly network-
independent. Notice that t3 is not an inter-epoch time, so we mark it as φ. The third
example shows a Simple Mail Transfer Protocol (SMTP) connection established
between two email servers, that may be represented in the a-b-t model as

((0, 93, 0), (32, 191, 0), (77, 59, 0), (75, 38, 0), (6, 50, 0), (22568, 44, φ))

In this protocol, the two servers engage in a conversation that includes a number
of small data units, such as b4, which carries the email address of the intended
recipient, and a single large large data unit, a6, with the text of the email. Notice
that the first data unit in this example is not sent by the connection initiator,
making a1 equal to 0.

The patterns of data exchange shown in Figure 1 correspond to applications that
use the Transport Control Protocol (TCP) as their underlying process-to-process
communication protocol. This protocol, used in the vast majority of the data ex-
changes on the Internet, carries both application data and control data. Control
data includes sequence numbers and other bookkeeping information in each packet.
Some packets, such as those used to establish a TCP connection, do not carry
any application data. Application behavior is independent of control data, which is
transparently handled by the operating system. Consequently, the a-b-t model does
not capture control data, since we are only concerned with modeling the way appli-
cations exchange data. As a consequence, we can use the same workload, modeled
as a set of connection vectors, for comparing the performance of two network mech-
anisms. For example, we can compare two flavors of TCP that employ different
control strategies.

A further refinement of the model is that time intervals longer than τ in which
there is no activity within a connection also define exchange boundaries. This helps
capture unidirectional communications patterns. For example, some applications
refresh the state of the clients periodically. Without an idle time threshold, this
unidirectional sequence of updates would be combined into a single epoch, with
a large value of ai or bi, rather than a sequence of epochs. In addition, the in-
activity threshold overcomes a potential limitation of the model, which does not

4

capture times between successive a- and b-type data units; if the time between two
such data units is larger than τ , then they are placed in separate epochs, resulting
in a subconnection of the form ((ai, 0, ti), (0, bi+1, ti+1)). This properly reflects a
prolonged time between a request and its response, and similar application level
characteristics of other communication patterns.

The simplicity of the a-b-t model makes it possible to convert any connection2

into a connection vector by looking only at transport-level headers of packets. We
have developed a tool to convert any TCP/IP protocol header trace into a set of
connection vectors. This tool, based on a generalization of the techniques presented
in [33], requires only one direction of the packet trace (i.e., segments flowing from
the connection initiator to the other end-point, or vice versa), making large-scale
data acquisition possible. We have successfully applied our techniques to publicly
available traces, such as those provided by NLANR [26]. In addition, we are using
this approach to analyze our own collection of packet header traces obtained at the
link that connects the University of North Carolina at Chapel Hill and the Internet.
This data set is one of the largest currently available (more than 2 Terabytes), and
it includes traces collected during the last 4 years.

3 Clustering Communication Patterns

The a-b-t model provides a framework for the systematic identification and study of
application-level communication patterns in Internet traffic. Traffic modeling, sam-
pling techniques, and other research areas within networking can certainly benefit
from the analysis and classification of such patterns. For example, the performance
of transport protocols depends heavily on the patterns of data exchange within
transport connections, so a good understanding of these patterns and their impact
is needed for balancing among the tradeoffs that exist in the design of these proto-
cols. For instance, TCP can be tuned to provide better performance for transferring
small data units at the price of higher instability and less fair allocation of band-
width. We can analyze the real benefits of this tuning using simulations, helping to
decide whether this change of TCP’s parameters is benefitial or not for the Internet
as a whole. Only those simulations that make use of a broad and representative set
of data exchange patterns in their workloads can help to draw general conclusions
the effectiveness of new network mechanisms.

Statistical clustering techniques, see e.g., [14, 20, 9], provide a useful and flexible
tool for grouping connections into traffic classes that represent similar communi-
cation patterns. Formally, a clustering scheme is a procedure that divides a given
set of feature vectors x1, x2, . . . , xm ∈ R into k disjoint groups S1, S2, . . . , Sk, which
are known as clusters. The goal of clustering is to find a small number k of clus-
ters such that feature vectors within the same clusters are close together, while
vectors in different clusters are far apart. In our approach, each application-level
connection vector derived from a transport connection is first summarized using a
vector of statistical features. Each feature captures some relevant characteristic of
the sequence, such as the number of exchanges, the total number of bytes send by
the initiator, the homogeneity in the sizes of the data units, and so on. We then
measure the similarity between two connection vectors by the similarity between
their associated feature vectors. We consider two alternative distance measures (see

2To be more precise, concurrent data exchanges are not supported in this model. We are
considering extensions of the model to accomodate this type of communication, which is generally
much less frequent than non-concurrent data exchange.

5

Packet Header TracePacket Header Trace

Traffic Capturing

Set of Connection VectorsSet of Connection Vectors

Packet Header Analysis

Internet Link

Set of Feature VectorsSet of Feature Vectors

Feature Extraction

Normalized Feat. VectorsNormalized Feat. Vectors

Feature Normalization

DendrogramDendrogram

Hierarchical Clustering

Set of Traffic ClustersSet of Traffic Clusters

Pruning

Figure 2: Overview of our approach for clustering Internet communication patterns.

[9]), the standard Euclidean distance, i.e.,

dij =

√√√√
m∑

k=1

(xik − xjk)2,

and Pearson correlation coefficient. Once the distance between each pair of connec-
tion vectors has been defined, these vectors can be grouped using any number of
standard clustering algorithms. We have applied a number of different clustering
schemes to our data, but have focused on agglomerative and divisive hierarchical
methods. These methods have proven to be effective, and their graphical represen-
tation as trees (dendrograms) provides a useful way of identifying and analyzing
groups of related communication patterns. Figure 2 provides an overview of the
basic steps in our methodology, which are described in greater detail in the rest of
this section.

As a first step in clustering source level communication patterns, we extract from
each connection vector a number of numerical features that are designed to capture
important aspects of the two-way data transfer it describes. Let v = (c1, . . . , cn) be
a given connection vector whose j’th epoch is given by the triple cj = (aj , bj , tj),
as described above. The most critical features of v are the number of epochs,
denoted by e, and the total number of bytes sent by each of the connection hosts,
atot =

∑n
j=1 aj and btot =

∑n
j=1 bj. Let A = {a1, . . . , an} be the collection of

a-type data units measured during the connection. Other useful features include

6

1 8

3

2 6

5

4

7
1
0

9

1
1

1
2

1
6

1
4

1
5

1
8

1
9

1
3

1
7

2
0

0
.4

0
.8

1
.2

1
.6

D
is
s
im
il
a
r
it
y

Figure 3: Result of clustering a training set of 20 connections using agglomerative
hierarchical clustering. Leaves labeled from 1 to 10 correspond to Telnet connections,
while those labeled from 11 to 20 correspond to HTTP connections.

amax = max{aj ∈ A} and amin = min{aj ∈ A}, the mean aµ and standard
deviation aσ of A; and the first, second and third quartiles of A, denoted by a1q,
a2q and a3q respectively. In order to better capture the sequential structure of the
a-type data units, we measure the total variation avs =

∑n
j=2 |aj −aj−1|, maximum

first difference afd = maxj |aj − aj−1|, lag-1 autocorrelation aρ, and homogeneity
ah = (amax + 1)/(amin + 1) of a1, . . . , an in cases where n ≥ 2. Analogous features
can be extracted from the collection B = {b1, . . . , bn} of b-type data units. As inter-
epoch times will reflect network, as well as application-level behavior, we restrict
our attention to tmax, t2q, and ttot.

To assess the relationship between the a- and b-type data units, we also measure
directionality dir = log(atot/btot) and the lag 0 and 1 cross-correlations between
B and A, denoted ρ1 and ρ2 respectively. In our preliminary analysis we found
that rank correlations exhibited a a more diverse and meaningful spectrum of val-
ues across different connections. Thus all correlation measurements are based on
Spearman’s rank correlation coefficient, rather than the more common Pearson co-
efficient.

The features defined above provide us with a reasonable starting point for our
cluster analysis of connections, but they are not the final word. The selection of new
features, and the refinement (or possibly elimination) of existing ones, is a subject
of current research. Different sets of features are used in the examples given below.

Whichever features one ultimately chooses, there are a number of practical issues
that need to be addressed before they can profitably be used to cluster connections.
The first issue involves scale. While correlations will range between −1 and +1,
features such as e and atot can range anywhere from one to several million. To
address this disparity, we first take logarithms of those features that vary over
several orders of magnitude. Each feature is then translated and scaled so that, for
the vast majority (more than 96%) of measured connections, its value is between 0
and 1. In exceptional cases, e.g., a connection with 107 epochs, we allow features

7

Feature Description
n Number of epochs

atot btot Total bytes
amax bmax tmax Maximum bytes or seconds
amin bmin Minimum bytes
aµ bµ Mean bytes
aσ bσ Standard deviation
a1q b1q First quartile
a2q b2q Second quartile
a3q b3q Third quartile
avs bvs Total variation
ah bh Homogeneity (amax + 1)/(amin + 1))
aρ bρ Lag-1 autocorrelation

ρ1(a1..n, b1..n) Spearman’s Rank Correlation
ρ2(b1..n−1, a2..n) Spearman’s Rank Correlation with Lag 1

Table 2: The 26 statistical features used in the divisive hierarchical clustering ex-
ample shown in Figure 4.

greater than 1 or less than 0. Allowing features to take values outside the unit
interval avoids the possible compression of their dynamic range by a small fraction
of outliers.

Once normalized, each feature plays a role in determining the Euclidean distance
between two feature vectors. One may weight the contributions of different features
differently, but we have not done this in our experiments. A second practical issue is
that some features (e.g., correlations and total variation) are not well-defined or not
meaningful for connection vectors with fewer than three epochs. When comparing
a connection with ten epochs to one with two epochs, we look only at the Euclidean
distance (or correlation) between those features that are defined in both associated
vectors, and then normalize by the number of such “active” features, so that the
resulting distance can be compared to distances between longer connections.

We initially tested our approach by clustering training data sets with a small
number of connections. Figure 3 shows the result of clustering 20 connections col-
lected at the University of North Carolina at Chapel Hill. We analyzed this data
set using divisive hierarchical clustering as implemented in R [17], after converting
each connection vector into a feature vector that included all of the statistical fea-
tures described above. Ten of the connections in the data set carried Telnet traffic
(i.e., interactive remote shell), while the other ten carried web traffic. The com-
munication patterns used by these two protocols are quite different, so appropriate
clustering should be able to split the data set into two subpopulations. As shown
in the figure, two distinct clusters, emanating from the root of the dendrogram, are
readily apparent.

4 Clustering Examples

4.1 Divisive Hierarchical Clustering Example

In our first example of clustering traffic, we study a packet header traces collected
during April 2002 at the main network link that connects the University of North

8

0
1

2
3

4
5

6

5000 1952

1915

864

1914

7

37

5

6

32

5

3048

626

71

4

555

32422

1468

2
954

1

D
is
s
im

il
a
ri
ty

Figure 4: Dendrogram obtained from the divisive hierarchical clustering of data set
of 5,000 connections, pruned at depth 4.

Carolina at Chapel Hill and the Internet. We first converted this trace into a set of
several million connection vectors, from which we drew a random sample of 5,000
connection3 vectors with 2 epochs or more. We then computed the feature vectors
of the connections in this sample, using the features reported in Table 2. After
normalizing the feature vectors, we analyzed them using the diana procedure with
Euclidean distance as implemented R [17], which follows the algorithm described in
[22].

The result of clustering the set of 5,000 are shown in Figure 4, using a new visu-
alization function that we implemented in the R language. The dendrogram shown
is the result of pruning the full dendrogram at depth 4. The plot depicts pruned
internal nodes as green triangles with a cluster number, and leaves as red squares
with a connection vector number below them. Each internal node is annotated
with the number of connection vectors grouped under its branches. For example,
the root of the tree is annotated with 5,000, since all of the connection vectors fall
under this internal node. The first triangle on the left, marked as cluster number
1, groups 954 connection vectors. The height of each internal node corresponds to
the dissimilarity between its children.

The dendrogram reveals some useful structure in the set of connection. Con-
nections in cluster 1 mostly correspond to HTTP, HTTPS (encrypted web traffic)
and AOL traffic, while those in cluster 3 correspond to mail transfer protocols, such

3This number is relatively small due to computational difficulties, but it should be sufficient to
identify the most important clusters in the full data set.

9

Feature Description
n Number of epochs

atot btot ttot Total bytes or seconds
a2q b2q t2q Second quartile (Median)
afd bfd Maximum first difference
ah bh Homogeneity (amax + 1)/(amin + 1))

dir Directionality (log(atot/btot))
ρ1(a1..n, b1..n) Spearman’s Rank Correlation

ρ2(b1..n−1, a2..n) Spearman’s Rank Correlation with Lag 1

Table 3: The 14 statistical features used in the agglomerative hierarchical clustering
example illustrated in Figure 5.

as SMTP and the Post Office Protocol (POP). The clustering algorithm accurately
separated two clearly different communication patterns. Clusters 5 and 6 include
connections in which all the b-type data units are zero, and whose port numbers
did not map to known applications. Finally, cluster 7 grouped together HTTP,
HTTPS, Microsoft Directory Service and RTSP connections. The only leaf shown
in the dendrogram (connection vector 864) was an FTP-DATA connection with
n = 2, atot = 50K and btot = 0.

While the reveled structure is suggestive, it is difficult to explain the observed
hierarchy, and this motivated us to use a different tool in our more recent work (see
the next subsection). Furthermore, computation of the full dendrogram was slow;
this 5,000-connection example required many hours of processing time. Another
difficulty we experienced is the O(n2) memory requirement, present in most sta-
tistical clustering algorithms, which comes from the need to compute the distance
between each pair of connection vectors as the first step.

4.2 Agglomerative Hierarchical Clustering Example

We applied our methodology to the clustering of a sample of connections from the
Abilene-I data set [24]. The sample consisted of 717 TCP connections4. Each
connection was first transformed into a connection vector, and then summarized
into a feature vector. The result was a matrix of 717 rows and 14 columns. Table
3 describes the 14 statistical features that were part of each vector.

Feature vectors were clustered using the average-linkage agglomerative method
proposed by Sokal and Michener [34], with Pearson correlation coefficient as the
similarity measure5. For this clustering, we employed the implementation of the
algorithm and the visualization tool developed by Eisen et al. in the context of
gene expression arrays (microarrays) [8]. The result of the clustering is shown in
Figure 5. The colored array in the center of the figure is a heat map that represents
the matrix of feature vectors. Each row in the array corresponds to one connection,
and each column corresponds to one statistical feature. Therefore, the fourteen
colored cells within a row represent the values of the statistical features of a single
connection. Values are displayed using a scale of increasingly lighter shades of blue

4While this number is relatively small, we believe it is representative of the coarse-grained
structure in the data set, and it makes it possible to include graphical output in this paper. We
have applied our method to larger sets with up to 25,000 connections.

5We recently obtained similar results with a newer version of the software that support Eu-
clidean distance

10

D

G

E

F

C

B

A

Figure 5: Result of clustering a sample of connections from the Abilene-I
data set. From left to right, the columns of the heat map correspond to
n, atot, a2q, afd, ah, btot, b2q, bfd, bh, ttot, t2q, dir, ρ1 and ρ2.

11

(in other words, the larger the value, the lighter the color). On the left side of the
array, a binary tree is used to display the hierarchical clustering of connections.
Each internal node represents a group of connections, and these connections are
divided among its two children. Each leaf represents an individual connection (they
are hard to see at this scale). The height of an internal node represents the average
dissimilarity between its children. On the right side of the array, seven rectangles
(labeled from A to G) are used to highlight seven clusters that exhibit a high
degree of internal cohesion (correlation is 0.6 or more) and substantial separation
from other clusters (dissimilarity sharply increases when any of these clusters is
joined to another cluster).

The interpretation of the resulting clusters confirms the effectiveness of our ap-
proach for grouping connections into homogeneous communication patterns. Clus-
ters A and B group together connections with small a-type data units. By looking at
the destination port numbers of these connections, we found that most correspond
to file sharing applications, mainly Kazaa (port number 1214), eDonkey (4662),
and Gnutella (6346). Connections in cluster A show substantially smaller b-type
data units than those in cluster B, and they also exhibit much longer inter-exchange
times. We believe that connections in the former cluster mainly correspond to file-
sharing sessions in which only searches and no file downloads took place, while file
downloads did occur in the connections grouped in the latter cluster. Some num-
ber of connections in these two clusters used other destination ports, such as 80,
but their intra-connection dynamics did match those of file-sharing applications.
These connections provide a good example of port number hijacking, a technique
frequently employed to overcome firewalls and bandwidth caps.

Cluster C includes connections that have small a-type data units, and a number
of exchanges that is significantly larger than that in the connections contained in
clusters A and B. The destination port numbers correspond to a variety of applica-
tions, including Gnutella, HTTPS and Telnet.

Connections in cluster D are almost exclusively destined to port 119 (NNTP),
and they show a clearly different pattern of data exchanges (large a-type data units
and moderate b-type data units). Cluster E groups together connections destined
to ports 80 (HTTP), 443 (HTTPS) and other ports that are also used for the web
traffic, such as 8080 and 8443. Cluster F is mostly composed of SMTP connections
(port 25) and some number of POP (110) and Oracle (1521). Finally, cluster G
contains FTP-Data connections. Some of these connections used source port 20,
but the vast majority used other dynamically-negotiated port numbers. We have
confirmed that these connections carried FTP-Data traffic by verifying that parallel
FTP-Control connections existed.

The seven clusters described above can be further explored and decomposed into
subclusters, an operation naturally supported by the hierarchical structure of the
binary tree. For instance, we found other smaller clusters that group together other
types of communication dynamics, such as those exhibited by streaming media and
FTP-Control connections.

5 Related Work

A compelling case for identifying traffic generation as one of the key challenges in
Internet modeling and simulation is made by Floyd and Paxson in [11]. In particular,
they emphasize the importance of generating traffic from source-level models. Two
important measurement efforts that focused on application-specific traffic models,
but which preceded the growth of the web, were conducted by Danzig et al. [7, 2, 7]

12

and by Paxson [31]. These researchers laid the foundation for TCP traffic modeling
at the source level using empirical data to derive distributions for the key random
variables that characterize traffic sources. A more recent study of Real Audio traffic
by Mena and Heidemann [25] provides a source-level view of streaming-media, much
of it carried on UDP flows.

Measurements to characterize web usage have become a very active area for
research. Web traffic generators in use today are usually based on data from the two
pioneering measurement projects that focused on capturing web-browsing behaviors:
the Mah [23], and Crovella et al. [30, 6, 1] studies. Traffic generators based on both
of these sources have been built into the widely used ns-2 network simulator [27],
which has been used in a number of studies related to web-like traffic, e.g., [28, 10].
These models have also been used to generate web-like traffic in laboratory networks
[1]. More recent models of web traffic suitable for source-level traffic generation have
been published by Smith et al. [33] and Cleveland et al. [4, 3]. Finally, we note
that source modeling for multimedia data, especially variable bit-rate video, was an
active area of research recently (see [12, 15, 21]). Other approaches to traffic source
modeling with an emphasis on packet-level traffic are surveyed in [16].

A current research project with similar goals to ours is the SAMAN project [32]
at ISI. Their goal is to “develop tools and approaches that integrate multi-point net-
work measurements to rapidly generate compact, accurate, application-level models
that are accurate across a wide range of time-scales.” They have produced a soft-
ware tool, RAMP, that “takes a live tcpdump trace from network and generates
a set of CDF (Cumulative Distribution Function) files that model web and FTP
traffic.” Portions of their RAMP software is based on the trace analysis tools we
developed at UNC for web traffic [33] (our tools are also distributed as part of the
ns-2). Commercial synthetic traffic generation products such as Chariot [18] exist,
however, these generators are typically based on a limited number of traffic source
types. Moreover, it is not clear that any are based on empirical measurements of
Internet traffic.

While not directly applicable as a traffic-generation method, modeling of packet-
level arrival processes is an important element of our approach to validating syn-
thetic traffic. The breakthrough results in this field identified self-similarity and
long-range dependency as fundamental features of network traffic that must be
reproduced in synthetic traffic. The book by Park and Willinger [29] (and the
references therein) is an excellent resource and guide to the results in this area.

6 Conclusion

Our methodology for the study of data exchange patterns in transport connec-
tions provides an effective way of visualizing and clustering the behavior of Internet
sources. We believe that the deeper understanding of Internet traffic that can be
gained with our approach will help develop better traffic measurement and modeling
techniques. We also believe that traffic workloads for testing and simulation should
reflect the clearly distinguished patterns of communication uncovered by clustering
data set of Internet connections.

Acknowledgments

We would like to thank the NLANR Measurement and Network Analysis Group
for making their data and tools publicly available. Support for their work was

13

provided by the National Science Foundation (NSF) (cooperative agreement no.
ANI-9807479). We are also indebted to Michael Eisen, for making his clustering and
visualization tools freely available for academic researchers, and to the developers
of the R language. We also thank Michele C. Weigle for helpful comments.

This work was supported in parts by the National Science Foundation (grants
ITR-0082870, CCR-0208924, EIA-0303590, and ANI-0323648), Cisco Systems Inc.,
the IBM Corporation, and a doctoral fellowship from the Computer Measurement
Group. Andrew Nobel was supported in part by NSF grant DMS 997 1964.

References

[1] Paul Barford and Mark Crovella. Generating representative web workloads for
network and server performance evaluation. In Proc. of the ACM SIGMET-
RICS, pages 151–160, 1998.

[2] Ramon Caceres, Peter B. Danzig, Sugih Jamin, and Danny J. Mitzel. Char-
acteristics of wide-area TCP/IP conversations. In Proc. of the conference on
Communications architecture and protocols, pages 101–112. ACM Press, 1991.

[3] Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun. On the nonsta-
tionarity of Internet traffic. In Proc. of SIGMETRICS/Performance, pages
102–112, 2001.

[4] William S. Cleveland, Dong Lin, and Don X. Sun. IP packet generation: sta-
tistical models for TCP start times based on connection-rate superposition. In
Measurement and Modeling of Computer Systems, pages 166–177, 2000.

[5] Internet 2 Consortium. Internet2 Netflow Weekly Report: Week of 20021104,
http://netflow.internet2.edu/weekly/20021104, November 2002.

[6] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE/ACM Transactions on Networking,
5(6):835–846, 1997.

[7] Peter B. Danzig and Sugih Jamin. tcplib: A library of TCP/IP traffic char-
acteristics. USC Networking and Distributed Systems Laboratory TR CS-SYS-
91-01, October, 1991.

[8] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Bot-
stein. Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci., 95:14863–14868, December 1998.

[9] Brian S. Everitt, Sabine Landau, and Morven Leese. Cluster Analysis. Arnold,
4th edition, 2001.

[10] W. Feng, D. Kandlur, D. Saha, and Kang G. Shin. BLUE: A new class of active
queue management algorithms. Technical Report CSE-TR-387-99, University
of Michigan, 15, 1999.

[11] S. Floyd and V. Paxson. Difficulties in simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392–403, August 2001.

[12] Mark W. Garrett and Walter Willinger. Analysis, modeling and generation of
self-similar VBR video traffic. In SIGCOMM, pages 269–280, 1994.

14

[13] Sprint Advanced Technology Laboratory (IP Group). IP monitoring project:
Data management system, 2002. http://ipmon.sprintlabs.com.

[14] John A. Hartigan. Clustering Algorithms. Wiley, 1975.

[15] D. Heyman and T.V. Lakshman. Source models for VBR broadcast video
traffic. IEEE/ACM Trans-actions on Networking, 4(1):37–46, February 1996.

[16] Helmut Hlavacs, Gabriele Kotsis, and Christine Steinkellner. Traffic source
modeling. Technical Report TR-99101, Institute of Applied Computer Science
and Information Systems, University of Vienna, 1999.

[17] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graph-
ics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[18] NetIQ Software Inc. Chariot performance evaluation platform. http://www.
netiq.com/products/chr/default.asp.

[19] Internet2. http://www.internet2.edu.

[20] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley, 1990.

[21] E. W. Knightly and H. Zhang. D-bibd: An accurate traffic model for provid-
ing QoS guarantees to VBR traffic. IEEE/ACM Transactions on Networking,
5(2):219–231, April 1997.

[22] P. Macnaughton-Smith, W. T. Williams, M. B. Dale, and L. G. Mockett.
Dissimilarity analysis: A new technique of hierarchical sub-division. Nature,
202:1034–1035, 1965.

[23] Bruce A. Mah. An empirical model of HTTP network traffic. In Proc. of IEEE
INFOCOM, pages 592–600, 1997.

[24] NLANR Measurement and Network Analysis Group. Trace IPLS-CLEV-
20020814-090000-0 (Abilene-I data set). http://pma.nlanr.net/Traces/
long/ipls1.html.

[25] A. Mena and J. Heidemann. An empirical study of real audio traffic. In
Proceedings of IEEE INFOCOM ’00, March 2000.

[26] National laboratory for applied network research (NLANR). http://www.
nlanr.net.

[27] ns-2 (Network Simulator). http://www.isi.edu/nsnam/ns/.

[28] Teunis J. Ott, T. V. Lakshman, and Larry H. Wong. SRED: Stabilized RED.
In Proceedings of INFOCOM, volume 3, pages 1346–1355, 1999.

[29] K. Park and W. Willinger. Self-Similar Network Traffic and Performance Eval-
uation. Wiley, 2000.

[30] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file
sizes, transport protocols, and self-similar network traffic. Technical Report
1996-016, Boston University, 30, 1996.

[31] Vern Paxson. Empirically derived analytic models of wide-area TCP connec-
tions. IEEE/ACM Transactions on Networking, 2(4):316–336, 1994.

15

[32] Simulation augmented by measurement and analysis for networks (SAMAN)
project. http://www.isi.edu/saman/.

[33] F. Donelson Smith, Félix Hernández-Campos, Kevin Jeffay, and David Ott.
What TCP/IP protocol headers can tell us about the web. In Proc. of SIG-
METRICS/Performance, pages 245–256, 2001.

[34] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic
relationships. Univ. Kansas Sci. Bull., 38:1409–1438, 1958.

16

