
Fair On-Line Scheduling of a

Dynamic Set of Tasks on a Single Resource ?

Sanjoy K. Baruah 1

Department of Computer Science, University of Vermont, Burlington, VT 05405. E-mail:
sanjoy@cs.uvm.edu.

Johannes E. Gehrke

Computer Sciences Department, University of Wisconsin{Madison, 1210 West Dayton Street,

Madison, WI 53706{1685. E-mail: johannes@cs.wisc.edu.

C. Greg Plaxton 2

Department of Computer Science, University of Texas at Austin, Austin, TX 78712{1188.
E-mail: plaxton@cs.utexas.edu.

Ion Stoica

Department of Computer Science, Old Dominion University, Norfolk, VA 23529{0162. E-mail:

stoica@cs.odu.edu.

Hussein Abdel-Wahab

Department of Computer Science, Old Dominion University, Norfolk, VA 23529{0162. E-mail:
wahab@cs.odu.edu.

Kevin Je�ay

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill,

NC 27599{3175. E-mail: je�ay@cs.unc.edu.

Abstract

Consider a set of \tasks" competing for the use of a single \resource", where: (i) only one
task is allowed to use the resource at a time, (ii) the resource is scheduled in unit-time intervals,
(iii) each task requires a speci�c fraction of the resource capacity over an extended period, and
(iv) tasks arrive and depart at any time. We refer to such a task system as an instance of the
single-resource scheduling problem. The problem of designing a \fair" scheduling algorithm for such
task systems has recently received a great deal of attention in the literature. This paper makes
two main contributions. First, we point out that Tijdeman's work on the so-called \chairman

Preprint submitted to Elsevier Science

assignment problem" provides a simple and e�cient on-line algorithm for the static version of the
single-resource scheduling problem (i.e., where the set of tasks competing to use the resource does
not change over time). We then extend Tijdeman's algorithm to obtain a simple and e�cient on-line
algorithm for the dynamic single-resource scheduling problem.

Keywords: algorithms, fairness, on-line scheduling, periodic tasks.

1 Introduction

In many computer systems, various \resources" (e.g., processors, disks, network bandwidth)
may be shared among di�erent \tasks" (e.g., user processes), where each task requires ac-
cess to a particular shared resource at a steady rate for an extended period of time. For
example, a network link may support a number of real-time data streams with each data
stream requesting a certain bandwidth. Or, a movie-on-demand server may retrieve several
programmes concurrently from storage disks with a limited number of read heads. Or, a
processor may support a number of long-term processes, each of which requires a certain
fraction of the processor capacity.

In such instances, the resource is often characterized by the property that it is assigned to
a task for integer multiples of some basic time unit. For a �xed-size packet network, this
unit might correspond to the time required to send a single packet. For disk access, it is
determined by such factors as the size of a disk block and the seek and scan times, while
for shared CPUs a scheduling quantum might correspond to a �xed number of clock cycles.
This property is formalized as the integer boundary constraint: Time is viewed as being
divided into a countably in�nite number of equal-sized \slots", numbered from 0, with each
slot corresponding to one basic time unit. The resource is allocated to exactly one task (or
remains unallocated) during each slot.

Suppose that a given task X requires a fraction w, 0 < w < 1, of a shared resource over an
extended period of time. Ideally, the resource would be assigned to X in w � t of the �rst t
slots, for all t. However, this is clearly impossible due to the integer boundary constraint;
for example, after one time slot the resource will have been assigned to X either 0 or 1
times, and not w times. The best we can hope to do is to assign the resource to X in
either bw � tc or dw � te of the �rst t slots, for all t. A schedule that simultaneously provides
such proportionate progress to all tasks is said to be P-fair [1]. More generally, a schedule
for which the number of allocations to any task is at all times within an additive � of

?Related results appear in the conference paper [14] as well as the technical reports [2,12].
1 Supported by the National Science Foundation under Research Initiation Award No. CCR{

9596282.
2 Supported by the National Science Foundation under Grant No. CCR{9504145, and the Texas

Advanced Research Program under Grant No. ARP{93{00365{461.

2

the ideal value is said to achieve a lag bound of �. (Note that a P-fair schedule achieves
a lag bound of less than 1.) The problem of designing an e�cient on-line algorithm for
single-resource scheduling that achieves a small lag bound has recently received a great deal
of attention in the literature [8,13,16{18]. In the context of scheduling network tra�c in
packet-based networks, Demers, Keshav, and Shenker [7] have proposed the Packet Fair
Queueing algorithm (PFQ). Parekh and Gallager [10,11] have analyzed the behavior of PFQ
when the tra�c conforms to the (�; �) model [6], and shown that any task X receives the
resource for at least bw � tc of the �rst t slots; it has been shown, however [4,12,16], that
X may in fact receive the resource for w � t + �(n) of the �rst t slots, where n denotes
the number of tasks sharing the resource. Thus, none of the algorithms presented in the
aforementioned papers achieves a constant lag bound (i.e., independent of n, the number of
tasks), let alone P-fairness. In this paper, we extend a result of Tijdeman [15] to obtain a
simple P-fair algorithm for scheduling a dynamic set of tasks on a single resource.

When the cumulative request of all tasks of a resource exceeds the capacity of the resource,
at least two di�erent strategies are possible. One strategy is to identify a maximal subset of
the requesting tasks whose requests can all be accommodated, and to deny service to the
rest. Another strategy, the one adopted in this research, is to o�er every task a fraction of its
requested capacity, the fraction o�ered depending upon the degree of overload. (Thus, if all
the requests made of a resource of capacity C sum to R, R > C, each task is o�ered a fraction
C=R of its requested capacity.) This strategy reacts to slight overload by o�ering a slightly
degraded quality of service to all tasks, rather than choosing to maintain optimal service to
some tasks while providing no service to others. The task semantics determine what to do
with this reduced capacity. For example, a process representing an MPEG stream of video
data can tolerate a certain amount of slowdown that is indiscernible to the human eye. On
the other hand, an audio stream may choose to discard some data, and maintain the rate of
data delivery. (A task that does not wish to accept this lesser level of service can, of course,
decline to do so.)

The remainder of this paper is organized as follows. In Section 2, we de�ne some basic
terminology and formulate several variants of the single-resource scheduling problem. In
Section 3, we discuss certain consequences of Tijdeman's work on the so-called \chairman
assignment problem" [15], including an e�cient on-line scheduling algorithm for the static
version of the single-resource scheduling problem. In Section 4, we state our main result, an
e�cient on-line scheduling algorithm for a dynamic version of the single-resource scheduling
problem. In Section 5, we present this algorithm, prove its correctness, and discuss the details
of an e�cient implementation. In Section 6, we o�er some concluding remarks.

2 Terminology

We now de�ne a number of terms to be used in the description and analysis of the scheduling
problems addressed in this paper.

3

We have a (possibly in�nite) set of tasks � competing for the use of a single resource that can
accommodate only one task at a time. The resource is available to be scheduled (i.e., assigned
to some speci�c task, or to no task) during a (possibly in�nite) number of non-overlapping
intervals of time that we refer to as slots. The slots are numbered from 0.

Let �t � � denote the �nite set of tasks that are available to be scheduled in slot t. For
t > 0, we view the set �t as being obtained from �t�1 by inserting the tasks in �t n �t�1 and
deleting the tasks in �t�1 n�t. If a particular task x is deleted at slot t, we do not allow x to
be inserted at any later slot t0 > t. If �t = � for all t, we say that the set of tasks is static.
Otherwise, it is dynamic.

A schedule S is a function fromN to �[f#g such that S(t) is an element of �t[f#g for all
t. Schedule S is interpreted as follows: (i) if S(t) = x where x is in �t, then task x is assigned
to the resource in slot t, and (ii) if S(t) = #, then no task is assigned to the resource in slot
t.

A scheduling algorithm computes a schedule S by successively computing S(0), S(1), S(2),
and so on. A scheduling algorithm has preprocessing cost a(n), per-slot cost b(n), insertion
cost c(n), and deletion cost d(n) if: (i) the time to compute S(0) is O(a(n) + b(n)) where
n = j�0j, (ii) for all t > 0 the time to compute S(t) (excluding the time to compute
S(0); : : : ; S(t � 1)) is O(b(n) + x � c(n) + y � d(n)) where x = j�t n �t�1j, y = j�t�1 n �tj,
and n = maxfj�t�1j; j�tjg.

For each slot t and each task x in � there is an associated nonnegative real number r(x; t),
which we refer to as the request of task x at slot t. If x is not in �t then r(x; t) = 0. We say
that the task requests are constant if for each task x, and for any pair of slots t and t0 such
that x 2 �t \ �t0, r(x; t) = r(x; t0). Otherwise, we say that the task requests are variable.

The total request at slot t, denoted R(t), is the sum over all x in � of r(x; t). The scaling
factor at slot t, denoted f(t), is 1 if R(t) � 1, and 1=R(t) otherwise. The weight of task x
at slot t, denoted w(x; t), is r(x; t) � f(t). Note that 0 � w(x; t) � 1, and that the sum of the
task weights at any given slot also lies in the real interval [0; 1].

In applications, r(x; t) will typically be less than 1, and should be interpreted as the fraction
of the resource that task x would ideally like to receive during slot t. Unfortunately, each slot
is indivisible so a scheduling algorithm cannot assign the resource to task x for a non-trivial
fraction of a slot. Even if the slots were divisible, a scheduling algorithm could not hope to
satisfy the requests of all tasks at slot t unless R(t) � 1; the task weights w(x; t) should be
viewed as adjusted (in a fair manner) task requests that take this observation into account.
In particular, note that w(x; t) = r(x; t) if R(t) � 1 (i.e., the system is not overloaded and no
adjustment is necessary), and w(x; t) = r(x; t)=R(t) if R(t) > 1 (i.e., the system is overloaded
and so we uniformly scale down all the task requests to obtain a set of corresponding task
weights that sums to 1).

As indicated above, we still need to address the indivisibility of the slots. To do so, we

4

introduce a couple of additional de�nitions. For each task x and slot t, let

W(x; t)=
X

0�t0<t

w(x; t0):

Informally, W(x; t) represents the \ideal" number of times for task x to be assigned the
resource in slots 0 through t � 1. It will prove to be useful to generalize the preceding
de�nition of W(x; t) to allow for arbitrary nonnegative real values of t. However, for the sake
of clarity, we prefer to reserve the variable t to denote only integer slots; the variable � will
be used to denote real slots, as in the following de�nition.

W(x; �)=

0
@ X
0�t<b�c

w(x; t)

1
A+ (� � b�c) � w(x; b�c):

For any given schedule S, task x, and slot t, let A(S; x; t) denote the number of times that
task x is allocated the resource in slots 0 through t� 1 under schedule S, and de�ne the lag
of task x at slot t with respect to schedule S as

Lag(S; x; t)=W(x; t)� A(S; x; t):

Because of the indivisibility of slots we cannot hope to maintain a lag of 0 for all tasks at
all slots. Instead, we focus on the design of schedules S for which

max
x;t

jLag(S; x; t)j

is as small as possible.

A lag bound L is a pair (�L;�L) where �L is either < or �, and �L is a real number.
The results of the present paper are concerned with lag bounds of the form (<; 1) and
(�; 1� 1=(2n� 2)), where n is a given upper bound on maxt j�tj. For the sake of brevity, we
will often refer to these lag bounds as < 1 and � 1 � 1=(2n � 2), respectively. A scheduling
algorithm achieves a lag bound of L if and only if any schedule S produced by the algorithm
satis�es jLag(S; x; t)j �L �L for all tasks x and slots t. A schedule or scheduling algorithm
that achieves a lag bound of < 1 is said to be P-fair [1]. Note that P-fairness is a very
strong fairness property: A schedule S is P-fair if and only if for all tasks x and slots t, either
A(S; x; t) = bW(x; t)c or A(S; x; t) = dW(x; t)e. All of the algorithms described in this paper
are P-fair.

For any schedule S, task x, slot t, and lag bound L, let the predicate Contending(S; x; t; L)
be de�ned as

��L�L Lag(S; x; t) + w(x; t)� 1: (1)

Note that Contending(S; x; t; L) holds if and only if task x could be scheduled in slot t without
violating the lower bound on lag associated with L. We also de�ne Deadline(S; x; t; L) as the
(least, if �L is <, and greatest, if �L is �) real slot � such that

5

Lag(S; x; t) +W(x; �)�W(x; t)=�L:

Note that if �L is < (resp., �), then task x must be scheduled in at least one of the slots
ft; t+ 1; : : : ; d�e � 1g (resp., ft; t+ 1; : : : ; b�cg) in order to avoid violating the upper bound
on lag associated with L.

A scheduling algorithm is on-line if for all slots t it computes S(t) without any knowledge
of: (i) future task sets (i.e., �t0 for t0 > t), in cases where the set of tasks is dynamic, and
(ii) future task requests (i.e., r(x; t0) for t0 > t), in cases where the task requests are variable.
Otherwise, it is o�-line.

In this paper, we discuss the complexity (in terms of preprocessing cost, per-slot cost, inser-
tion cost, and deletion cost) of both on-line and o�-line scheduling algorithms achieving lag
bounds of < 1 or better. We consider the following speci�c variations of the basic scheduling
problem discussed above:

{ Problem A: Static task set, constant task requests.
{ Problem B: Dynamic task set, constant task requests, given upper bound n on maxt j�tj.
{ Problem C: Dynamic task set, constant task requests.
{ Problem D: Dynamic task set, variable task requests, given upper bound n on maxt j�tj.
{ Problem E: Dynamic task set, variable task requests.

Note that we do not consider the case of a static task set with variable task requests; that case
is equivalent to Problem D. We further remark that the above list of problems is arranged in
increasing order of di�culty, except that Problems C and D are incomparable. (It turns out
that Problem C is easier than Problem D in the on-line setting, which is our main interest,
but that a slightly better lag bound is achievable for Problem D in the o�-line setting.) Thus:
(i) any upper bound on the complexity of Problem B also applies to Problem A, (ii) any
upper bound on the complexity of Problem C or D also applies to Problems A and B, and
(iii) any upper bound on the complexity of Problem E also applies to Problems A, B, C,
and D.

3 Previous Results

Work of Tijdeman [15] on the so-called \chairman assignment problem" has direct implica-
tions for the problems considered in this paper.

Lemma 1 (Tijdeman) There exists a schedule with lag bound � 1 � 1=(2n � 2) for any
instance of Problem D (hence also for Problems A and B). Furthermore, there exists a
schedule with lag bound < 1 for any instance of Problem E (hence also for Problem C).

6

The following scheme is implicit in [15], and underlies a number of scheduling algorithms for
Problems A through E.

Tijdeman's Scheme. We wish to generate a schedule for a given instance of Problem A,
B, C, D, or E, subject to a given lag bound L that is known to be achievable by Lemma 1.
Assume that S(0) through S(t� 1) have already been computed, t � 0. We now compute
S(t) as follows. First, de�ne task x to be contending if and only if Contending(S; x; t; L)
holds. Next, de�ne the deadline of each contending task x as Deadline(S; x; t; L). If there
are no contending tasks, set S(t) = #; otherwise, set S(t) to any earliest-deadline task x.

We have chosen to refer to the above procedure as a \scheme", and not an \algorithm",
because in general it is not possible to calculate the task deadlines in a �nite number of
steps. For example, if the task requests are variable and the length of the schedule being
computed is in�nite, it may be necessary to examine an in�nite number of future task requests
in order to compute even a single task deadline. (By contrast, it is easy to determine the set
of contending tasks, even in an on-line sense.) On the other hand, in cases where the task
deadlines can be computed in a �nite number of steps (e.g., if the length of the schedule is
�nite), Tijdeman's Scheme provides an o�-line algorithm.

Theorem 1 (Tijdeman) Restricting attention to problem instances that admit an o�-line
algorithm for computing the task deadlines, there is an o�-line algorithm for Problems A, B,
and D (resp., C and E) with lag bound � 1 � 1=(2n � 2) (resp., < 1).

Of course, if we could give an on-line algorithm for computing the task deadlines, then
Tijdeman's Scheme could also be implemented on-line. Unfortunately, it is easy to see that
the task deadlines cannot possibly be computed on-line for general instances (even �nite
instances) of Problems B, C, D, and E. On the other hand, for instances of Problem A, it
is easy to compute task deadlines on-line; because the task requests are constant and the
set of tasks is static, w(x; t) does not depend on t. Tijdeman [15] gives the following on-line
algorithm for Problem A with L = (�; 1� 1=(2n � 2)), and where we write w(x) to denote
w(x; t).

Algorithm A. Proceed as in Tijdeman's Scheme above, but calculate Deadline(S; x; t; L)
using the formula t+ � where

�=
�L � Lag(S; x; t)

w(x)
:

The correctness of Algorithm A follows immediately from the correctness of Tijdeman's
Scheme. Note that Algorithm A remains correct if we replace the deadline t + � with �
(\slack"). (In fact, the algorithm given in [15] makes use of � instead of t+ �.)

A naive implementation of Algorithm A leads to a preprocessing cost of O(n) and a per-slot
cost of O(n). Using standard algorithmic techniques (see, for example, the implementation of
Algorithm PD in [3]) these bounds can be improved to obtain the following result. (Although
no implementation details are provided in [15], we attribute the result to Tijdeman since these

7

details are straightforward.)

Theorem 2 (Tijdeman) Problem A can be solved by an on-line algorithm with lag bound
� 1� 1=(2n � 2), preprocessing cost O(n), and per-slot cost O(log n).

4 Our Results

In this paper we show that Tijdeman's Scheme admits an e�cient on-line implementation
for solving Problems B and C with small lag bounds. We refer to this implementation as
Algorithm BC. Interestingly, these results are achieved in spite of our earlier observation
(Section 3) that task deadlines cannot be computed on-line. The main idea underlying Al-
gorithm BC is that it is possible to compute on-line a \virtual" deadline for each task such
that the relative order of the virtual deadlines is the same as the relative order of the (un-
known) deadlines. Thus, virtual deadlines can be used instead of deadlines within Tijdeman's
Scheme.

Theorem 3 Problem B (resp., Problem C) can be solved by an on-line algorithm with lag
bound � 1�1=(2n�2) (resp., < 1), preprocessing cost O(n log n) (resp., O(n)), per-slot cost
O(log n), insertion cost O(log n), and deletion cost O(log n), under the assumption that no
task is ever deleted when its lag is negative.

The technical assumption regarding deletion in the statement of Theorem 3 may seem some-
what arti�cial, but cannot be dropped while maintaining a lag bound of < 1 or better. For
example, consider an instance of Problem B with 10 tasks where the request of each task
is 0.1 at each slot. If no tasks are inserted or deleted in the �rst 8 slots, then some pair of
tasks x and y will have lag 0.8 at t = 8 (since at least two tasks have not been scheduled in
any of the �rst 8 slots). If the other 8 tasks are deleted at t = 8, then at least one of x and
y will have lag 1.3 at t = 9 (whichever one is not scheduled in slot 8).

In practice, our assumption regarding deletion should not pose any serious concern, since
the deletion of a task with negative lag can simply be \delayed" until the lag of that task
reaches 0. (Note that the lag of a task increases as long as the task is not scheduled, and
so we only need to ensure that the scheduling algorithm does not assign the resource to a
\deleted" task.)

5 An On-Line Algorithm for Problems B and C

In this section we prove Theorem 3 by giving an on-line algorithm for Problems B and C,
along with an e�cient implementation of the algorithm. The algorithm is parameterized by
a lag bound L which should be set to � 1 � 1=(2n � 2) for Problem B, and to < 1 for
Problem C.

8

Since Problems B and C involve constant task requests, we write r(x) instead of r(x; t)
throughout this section.

With any real slot � we associate a virtual slot v(�), de�ned as

v(�)=

0
@ X

0�t<b�c

f(t)

1
A+ (� � b�c) � f(b�c):

Lemma 2 For any real slots � and � 0, � � � 0 if and only if v(�) � v(� 0).

Proof: Straightforward since f(t) � 0 for all slots t.

Lemma 3 For any task x and real slot � , we have

r(x) � v(�)=W(x; �):

Proof: Straightforward since r(x) � f(t) = w(x; t).

We can assume that our scheduling algorithm initially discards all tasks x with r(x) = 0,
since such tasks never need to be scheduled. Thus, in the pair of de�nitions that follow, we
can divide by r(x) without worrying about dividing by zero.

For any schedule S, task x, slot t, and lag bound L, we de�ne

VirtualReleaseSlot(S; x; t; L)=
1��L + A(S; x; t)

r(x)

and

VirtualDeadline(S; x; t; L)=
�L + A(S; x; t)

r(x)
:

Lemma 4 For any schedule S, task x, slot t, and lag bound L, Contending(S; x; t; L) holds
if and only if

VirtualReleaseSlot(S; x; t; L)�L v(t) + f(t):

Proof: Multiplying both sides of the given inequality by r(x), we obtain

1��L + A(S; x; t)�LW(x; t) + w(x; t);

which is logically equivalent to

��L�LW(x; t)� A(S; x; t) + w(x; t)� 1

= Lag(S; x; t) + w(x; t)� 1;

and hence also to Contending(S; x; t; L).

9

Lemma 5 For any schedule S, task x, slot t, and lag bound L, we have

VirtualDeadline(S; x; t; L)= v(Deadline(S; x; t; L)):

Proof: Let Deadline(S; x; t; L) = � . Thus

Lag(S; x; t) +W(x; �)�W(x; t)=�L

and hence

VirtualDeadline(S; x; t; L)=
Lag(S; x; t) +W(x; �)�W(x; t) + A(S; x; t)

r(x)

=
W(x; �)

r(x)

= v(�);

where the last equation follows from Lemma 3.

Lemma 6 For any schedule S, tasks x and y, slot t, and lag bound L, we have

VirtualDeadline(S; x; t; L)�VirtualDeadline(S; y; t; L)

if and only if

Deadline(S; x; t; L)�Deadline(S; y; t; L):

Proof: Immediate from Lemmas 2 and 5.

Algorithm BC. Proceed as in Tijdeman's Scheme, but use VirtualDeadline(S; x; t; L) instead
of Deadline(S; x; t; L).

The correctness of Algorithm BC follows immediately from the correctness of Tijdeman's
Scheme and Lemma 6. It remains to establish the time bounds claimed in Theorem 3. A
straightforward implementation of Algorithm BC results in an O(n) per-slot cost.

In order to obtain an e�cient implementation of Algorithm BC, we make use of an abstract
data structure for maintaining a dynamic set X of triples T = (T:x; T:a; T:b), where T:x is a
task and T:a and T:b are real numbers. The set X contains at most one entry associated with
any particular task at any given time, that is, if T and T 0 belong to X then either T:x 6= T 0:x
or T = T 0. For any real number a and lag bound L, let Triples(X; a; L) denote the set of
all T in X such that T:a �L a, and let MinTriple(X; a; L) denote: (i) #, if Triples(X; a; L)
is empty, and (ii) T:x for some triple T in Triples(X; a; L) such that T:b � T 0:b for all T 0 in
Triples(X; a; L), if Triples(X; a; L) is non-empty.

The operations allowed on the set X are as follows: (i) Insert(T), which is applicable only if
T is a triple satisfying T:x 6= T 0:x for all T 0 in X, and which inserts T into the set X; (ii)
Delete(x), which is applicable only if there is a (unique) triple T in X such that T:x = x,

10

and which returns and deletes the triple T from the set X; (iii) 2D-FindMin(a; L), which is
applicable for any real number a and lag bound L, and which returns MinTriple(X; a; L). All
three of these operations can easily be implemented to run in worst-case O(log jXj) time
using an appropriately augmented red-black tree data structure [5,9].

Given the aforementioned data structure, we implement Algorithm BC as follows. At slot 0,
we set v(0) = 0 and compute f(0) (at a cost that is linear in j�0j). For each task x in �0, we
perform an Insert(T) operation to add the triple

T =(x;VirtualReleaseSlot(S; x; 0; L);VirtualDeadline(S; x; 0; L))

to the (initially empty) dynamic set X. We remark that the cost of these insertions is
O(n log n) where n = j�0j, but that this cost can be reduced to O(n) if L = (<; 1), because
in that case all of the virtual release slots are initially equal to 0. (The underlying red-black
tree is ordered by virtual release slot.)

Having properly initialized the set X, we assign S(0) to 2D-FindMin(v(0)+ f(0); L). If S(0) =
x 6= #, then we apply the operation Delete(x) followed by the operation Insert(T) where

T =(x;VirtualReleaseSlot(S; x; 1; L);VirtualDeadline(S; x; 1; L)):

Assuming that we have computed S(0) through S(t� 1) for some t > 0, we now determine
S(t) as follows. First, we compute v(t) = v(t� 1) + f(t� 1) and the scaling factor f(t) (given
f(t � 1), this is easily accomplished at a cost that is linear in j�t�1 n �tj + j�t n �t�1j). For
each task x in �t�1 n �t, we perform a Delete(x) operation. For each task x in �t n �t�1, we
perform the operation Insert(T) where

T =(x;VirtualReleaseSlot(S; x; t; L);VirtualDeadline(S; x; t; L)):

Having properly updated the set X, we assign S(t) to 2D-FindMin(v(t) + f(t); L). If S(t) =
x 6= #, then we apply the operation Delete(x) followed by the operation Insert(T) where

T =(x;VirtualReleaseSlot(S; x; t+ 1; L);VirtualDeadline(S; x; t+ 1; L)):

We remark that if T 0 is the triple returned by Delete(x), then T = (x; T:a+ (1=r(x)); T:b+
(1=r(x))). Thus it is easy to calculate T in constant time. (The same remark holds for the
case t = 0 discussed earlier.)

The correctness of the above implementation of Algorithm BC follows immediately from
Lemma 4 and the observation that the virtual release time or virtual deadline of a task x
only needs to be updated when x is scheduled. The performance bounds claimed in Theorem 3
are straightforward to verify.

11

6 Concluding Remarks

We have addressed the problem of sharing a resource among a set of contending tasks, where:
(i) only one task is allowed to use the resource at a time, (ii) the resource is scheduled in
unit-time intervals, (iii) each task requires a speci�c fraction of the resource capacity over an
extended period, and (iv) tasks arrive and depart at any time.We provided a formal criterion,
P-fairness, to evaluate the fairness of such systems, and presented an e�cient on-line P-fair
scheduling algorithm.

In related work [1,3], e�cient P-fair algorithms have been developed for themultiple-resource
periodic scheduling problem, which may be viewed as the multiple-resource version of Prob-
lem A: (i) there is a static set of tasks, (ii) each task has constant weight less than or
equal to 1, (iii) there are m � 1 resources, (iv) the sum of the task weights is at most
m, and (v) up to m distinct tasks can be scheduled in each slot. Interestingly, the known
P-fair scheduling algorithms for the multiple-resource periodic scheduling problem are quite
a bit more complicated than Algorithm A. (The obvious generalization of Algorithm A to
the case of multiple-resources is known not to be P-fair.) Given Theorem 3, an interesting
open question is whether a polynomial-time P-fair on-line scheduling algorithm exists for the
multiple-resource version of either Problem B or C.

Finally, the reader may wonder why we have not presented an on-line algorithm for Prob-
lem D (or E). The reason is that, in the present paper, we have focused our attention on
the development of P-fair scheduling algorithms (note that all of the scheduling algorithms
discussed in this paper, both o�-line and on-line, are P-fair) and, unfortunately, Problems D
and E do not admit such P-fair scheduling algorithms in the on-line case. To prove this claim,
consider the following instance of Problem D (or E). At each slot t, the request r(x; t) of a
task x is determined by the set of tasks

Xt=
[

0�i<t
S(i)6=#

S(i)

as follows: r(x; t) = 0 if x belongs to Xt and r(x; t) = 1 otherwise. Let n = j�j and let t0

denote the least slot t such that jXtj = n. (If t0 is not well-de�ned then some task is never
assigned the resource and the lag of that task goes to in�nity.) Let x = S(t0�1) and observe
that

Lag(S; x; t0)�Hn � 1

=�(log n);

where Hn =
P

1�i�n 1=i denotes the nth harmonic number. This bound demonstrates not
only that there is no on-line P-fair scheduling algorithm for Problem D (or E), but also that
there is no on-line scheduling algorithm for Problem D (or E) that achieves any constant lag
bound.

12

References

[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion
of fairness in resource allocation. Algorithmica, 15:600{625, 1996.

[2] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple
resources. Technical Report TR{95{02, Department of Computer Science, University of Texas
at Austin, February 1995.

[3] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple
resources. In Proceedings of the 9th International Parallel Processing Symposium, pages 280{
288, April 1995.

[4] J. Bennett and H. Zhang. WF2Q: Worst-case fair queueing. In Proceedings of IEEE
INFOCOM'96, pages 120{128, March 1996.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[6] R. L. Cruz. A calculus for network delay, Part I: Network elements in isolation. IEEE
Transactions on Information Theory, 37:114{131, January 1991.

[7] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.
Journal of Internetworking Research and Experience, pages 3{26, September 1990.

[8] U. Maheshwari. Charge-based proportional scheduling. Technical Memorandum,
MIT/LCS/TM{529, Laboratory for Computer Science, Massachusetts Institute of Technology,
July 1995.

[9] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257{276, 1985.

[10] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach to
ow
control in integrated services networks: the single node case. IEEE/ACM Transactions on

Networking, 1(3):344{357, June 1993.

[11] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach to
ow
control in integrated services networks: the multiple node case. IEEE/ACM Transactions on
Networking, 2(2):137{150, April 1994.

[12] I. Stoica and H. Abdel-Wahab. Earliest eligible virtual deadline �rst: A
exible and
accurate mechanism for proportional share resource allocation. Technical Report TR{95{22,
Department of Computer Science, Old Dominion University, November 1995.

[13] I. Stoica and H. Abdel-Wahab. A new approach to implement proportional share resource
allocation. Technical Report TR{95{05, Department of Computer Science, Old Dominion
University, April 1995.

[14] I. Stoica, H. Abdel-Wahab, K. Je�ay, S. K. Baruah, J. E. Gehrke, and C. G. Plaxton.
A proportional share resource allocation algorithm for real-time, time-shared systems. In
Proceedings of the 17th Annual IEEE Real-Time Systems Symposium, December 1996. To
appear.

13

[15] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32:323{330, 1980.

[16] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share Resource
Management. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology, September 1995.

[17] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share resource
management. In Proceedings of the First Symposium on Operating System Design and

Implementation, pages 1{12, November 1994.

[18] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Deterministic proportional-share
resource management. Technical Memorandum, MIT/LCS/TM{528, Laboratory for Computer
Science, Massachusetts Institute of Technology, July 1995.

14

