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Abstract

We consider Pfair scheduling in real-time multiprocessor systems. Under Pfair scheduling, tasks are

required to execute at steady rates. The most e�cient Pfair scheduling algorithm proposed to date is an

algorithm called PD developed by Baruah and colleagues. PD schedules periodic tasks by breaking them into

quantum-length subtasks that are subject to intermediate deadlines. Ties among subtasks with the same

intermediate deadline are broken by inspecting four tie-break parameters. PD improved upon a previous

algorithm called PF, which relies on a less-e�cient procedure for resolving ties.

In this paper, we show that the priority de�nition used in PD can be simpli�ed to consist of one interme-

diate deadline and only two tie-break parameters. We also show that further simpli�cations are, in general,

unlikely. In particular, we show if either tie-break parameter is eliminated, then there exists a feasible task

set that is not correctly scheduled. Although both tie-breaks are needed in general, for the important special

case of a two-processor system, we show that no tie-breaking information is required. In proving that our

simpli�ed version of PD is correct, we use an inductive \swapping" argument in which a schedule produced by

an optimal scheduler is converted into one allowed by our priority de�nition by systematically interchanging

pairs of subtasks. This proof reveals many fundamental properties inherent to Pfair scheduling.
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1 Introduction

A major step forward in the evolution of processor scheduling techniques was recently achieved in the work of

Baruah and colleagues on Pfair scheduling [4, 5, 6]. Pfair scheduling di�ers from more conventional real-time

scheduling disciplines in that tasks are explicitly required to make progress at steady rates. In most real-time

scheduling schemes, the notion of a rate is implicit. For example, in the classic periodic task model, a period

T:p and an execution cost T:e are associated with each task T . Every T:p time units, a new invocation of T

with cost T:e is released into the system, and each invocation of a task must complete execution before the next

invocation of that task begins. In this model, each task T executes at a rate given by T:e=T:p. However, this

notion of a rate is a bit inexact: during each interval of length T:p, there are no guarantees as to exactly which

T:e time units will be allocated to task T . In particular, an invocation of T may be allocated T:e time units

at the beginning of its period, or at the end of its period, or its computation may be spread out more evenly.

Under Pfair scheduling, this implicit notion of a rate is strengthened to require each task to be executed at a

rate that is uniform across each invocation.

Executing tasks at steady rates has important consequences. For instance, the Pfair scheduling algorithms

proposed by Baruah et al. optimally solve the problem of scheduling periodic tasks on a multi-processor system in

polynomial time. This is a problem that was previously viewed by most researchers as being almost undoubtedly

NP-hard. Pfair scheduling algorithms schedule tasks by breaking them into quantum-length \subtasks" and

by requiring each subtask to complete execution by an intermediate deadline. By breaking tasks into smaller

executable units, Pfair scheduling algorithms circumvent many of the bin-packing-like problems that lie at the

heart of intractability results involving multiple-resource real-time scheduling problems. Intuitively, it is easier

to evenly distribute small, uniform items among the available bins than larger, nonuniform items.

Baruah et al. presented two Pfair scheduling algorithms called PF and PD [4, 5]. The two algorithms di�er

in the way in which ties are broken when two subtasks have the same intermediate deadline. In PF, ties are

broken by comparing future intermediate deadlines, which is somewhat expensive. In PD, ties are broken in

constant time by inspecting four tie-break parameters.

In this paper, we take a new look at the question of how to de�ne subtask priorities in a Pfair-scheduled

system. There are four main contributions of this paper. First, we show that the priority de�nition used in

PD can be simpli�ed to consist of one intermediate deadline and only two tie-break parameters. Both tie-

break parameters are needed for reasons that are quite easily explained. Second, we present a collection of

counterexamples that show that further simpli�cations are, in general, unlikely. In particular, we show if either

of the two tie-break parameters is eliminated, then there exists a feasible task set that is not correctly scheduled.

Third, although further simpli�cations are unlikely in general, for the important special case of a two-processor

system, we show that no tie-breaking information is required.

The �nal main contribution of this paper is the proof of correctness we give for our simpli�ed version of PD.

In [5], PD is proved correct by means of a simulation argument that shows that PD \closely" tracks the behavior

of PF. In contrast, we prove that our algorithm is correct by means of an inductive \swapping" argument in
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which a schedule produced by an optimal scheduler is converted into one allowed by our priority de�nition

by systematically interchanging pairs of subtasks. This proof gives researchers interested in Pfair-scheduled

systems a new set of techniques that can be applied to reason about such systems. We ourselves have been able

to extend the arguments given in this paper to show that our algorithm can be applied to optimally schedule

sporadic tasks [2]. In proving this result, much of the swapping proof presented in this paper was used intact.

It is not obvious to us how one would modify the proof given in [5] for PD to deal with sporadic tasks. (Baruah

has told us it is not obvious to him either.)

The rest of this paper is organized as follows. In Section 2, we present a brief overview of Pfair scheduling.

Then, in Section 3, we present the priority de�nition that de�nes our Pfair scheduling algorithm. We prove that

this algorithm is correct in Section 4. In Section 5, we show that our priority de�nition can be simpli�ed on

two-processor systems by eliminating all tie-breaking information. In Section 6, we present the counterexamples

mentioned above, which show that our results are tight. We end with concluding remarks in Section 7.

2 Pfair Scheduling

Consider a collection of periodic real-time tasks to be executed on a system of multiple processors. We assume

that processor time in such a system is allocated in discrete time units, or quanta; the time interval [t; t+ 1),

where t is a nonnegative integer, is called slot t. Associated with each task T is a period T:p and an execution

cost T:e. Every T:p time units, a new invocation of T with a cost of T:e time units is released into the system;

we call such an invocation a job of T . Each job of a task must complete execution before the next job of that

task begins. Thus, T:e time units must be allocated to T in each interval [k � T:p; (k+ 1) � T:p), where k � 0. T

may be allocated time on di�erent processors in such an interval, as long as it is not allocated time on di�erent

processors at the same time.

Following Baruah et al. [4], we refer to T:e=T:p as the weight of task T . A task's weight de�nes the rate at

which it is to be scheduled. Because processor time is allocated in quanta, we cannot guarantee that a task T

will execute for exactly (T:e=T:p)t time during each interval of length t. Instead, in a Pfair-scheduled system,

processor time is allocated to each task T in a manner that ensures that its rate of execution never deviates

too much from that given by its weight T:e=T:p. More precisely, correctness is de�ned by focusing on the lag

between the amount of time allocated to each task and the amount of time that would be allocated to that task

in an ideal system with a quantum approaching zero. Formally, the lag of task T at time t, denoted lag(T; t),

is de�ned as follows:

lag(T; t) = (T:e=T:p)t � allocated(T; t); (1)

where allocated(T; t) is the amount of processor time allocated to T in [0; t). A schedule is Pfair if and only if

(8i; t :: �1 < lag(T; t) < 1): (2)
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Figure 1: The eight \windows" of a task T with weight T:e=T:p = 8=11. Each of T 's eight units of computation
must be allocated processor time during its window, or else a lag-bound violation will result.

Informally, the allocation error associated with each task must always be less than one quantum. It is straight-

forward to show that any Pfair schedule is periodic. In particular, in a Pfair schedule, lag(T; t) = 0 for

t = 0; T:p; 2T:p; 3T:p; : : : . This is because, for these values of t, (T:e=T:p)t is an integer, and therefore by (1),

lag(T; t) is an integer as well. By (2), if lag(T; t) is an integer, then it must be 0.

The lag bounds given in (2) have the e�ect of breaking a task into smaller executable units that are subject

to intermediate deadlines. To see this, consider a task T with weight T:e=T:p = 8=11. This task consists of

eight units of computation, which we refer to as \subtasks". Suppose that a job of T is released at time t and

let the subtasks of this instance be denoted Ti; : : : ; Ti+7; as shown in Figure 1. It can be shown that Ti must

execute within either slot t or slot t+ 1, or else T 's lag bounds as given by (2) will be violated. In e�ect, there

is a two-slot \window" during which Ti must be scheduled. In total, a task T with T:e=T:p = 8=11 will consist

of eight windows as shown in Figure 1. Note that successive windows of T overlap by one slot. In general,

consecutive windows of a task are either disjoint or overlap by one slot. (In Appendix C, a C program appears

that can be used to generate the windows corresponding to tasks of various weights. Readers unfamiliar with

Pfair scheduling may �nd it instructive to experiment with this program before continuing.)

Baruah et al. showed that a periodic task set � has a Pfair schedule on M processors if and only if

X
T2�

T:e

T:p
�M: (3)

In addition, they presented two algorithms for producing Pfair schedules, called PF and PD, respectively [4, 5].

In PF, tasks are prioritized by focusing on the intermediate deadlines de�ned by their windows. We call these

intermediate deadlines pseudo-deadlines. For example, subtask Ti in Figure 1 has a pseudo-deadline at time slot

t+1 (the last slot into which it can be scheduled). If subtasks Ti and Uj are both \ready" to execute, then Ti is

given priority over Uj if its pseudo-deadline is earlier than that of Uj . Some tie-breaking strategy must be used if

several subtasks have equal pseudo-deadlines. PF breaks such a tie by considering subsequent pseudo-deadlines

of each task. To give the reader some insight as to why this works, we brie
y sketch the correctness proof for PF.

Our intent here is to be as intuitive as possible; remaining formal de�nitions concerning Pfair-scheduled systems

are given in the next section. For simplicity, we assume in this proof sketch that T:p and T:e are relatively
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prime for each task T . As explained in the next section, this is a reasonable assumption because, under Pfair

scheduling, two tasks T and T 0 for which T:e=T:p = T 0:e=T 0:p are scheduled in exactly the same way. If T:e and

T:p are relatively prime, then it can be shown that the windows of any pair of consecutive subtasks of T overlap

(by one slot) if and only if they are part of the same job. As we shall see next, the PF priority de�nition makes

a distinction between consecutive windows that overlap and those that do not. By our assumption, consecutive

windows that do not overlap occur only at job boundaries.

PF priorities: At time t, if subtasks Ti and Uj are both ready to execute, then Ti has higher priority than

Uj if one of the following holds:

� Ti's pseudo-deadline is less than Uj 's.

� Ti and Uj have equal pseudo-deadlines, neither is the �nal subtask of its job, and Ti+1 has higher priority

over Uj+1. (In essence, future subtasks of T and U are inductively considered in turn until the tie between

Ti and Uj can be broken.)

� Ti and Uj have equal pseudo-deadlines and Uj is the �nal subtask of a job of U . (If Ti also is the �nal

subtask of a job of T , then the tie between Ti and Uj can be broken arbitrarily.) 2

The correctness proof for PF proceeds by inducting over the interval (0; L], where L is the least common

multiple of fT:p j T 2 �g. The crux of the argument is to show the following: if there exists a Pfair schedule S

such that all the scheduling decisions in S before slot t are in accordance with PF priorities, then there exists a

Pfair schedule S0 such that all the scheduling decisions in S0 before slot t+1 are in accordance with PF priorities.

If all scheduling decisions in S at slot t are in accordance with PF, then we can take S0 to be S. Otherwise, we

construct S0 from S by means of a swapping argument in which some subtasks in S are interchanged. Suppose

that, in S, (i) Uj is scheduled at slot t, (ii) Ti is ready to execute at t but is scheduled at a later slot, and (iii)

Ti has higher priority than Uj at t. By the priority de�nition of PF, one of the following holds.

� Ti's pseudo-deadline is less than Uj 's. Because Ti's pseudo-deadline is less than Uj 's pseudo-deadline,

and because the windows of consecutive subtasks overlap by at most one slot, Uj+1 is scheduled at a later

slot than Ti. Therefore, Ti and Uj can be directly swapped, as shown in Figure 2(a).

� Ti and Uj have equal pseudo-deadlines, neither is the �nal subtask of its job, and Ti+1 has

higher priority than Uj+1. The swapping shown in Figure 2(a) may not work here because Ti and Uj+1

can be scheduled in the same slot. This can happen only if Ti is scheduled in the last slot of its window,

as shown in Figure 2(b). To create a schedule in which Ti is scheduled in slot t, we �rst inductively swap

Ti+1 and Uj+1, as shown in Figure 2(b). (Note that this may cause future subtasks of T and U to be

swapped as well.) This results in a schedule in which Ti and Uj can be safely swapped.

� Ti and Uj have equal pseudo-deadlines and Uj is the �nal subtask of a job of U . The swapping

shown in Figure 2(a) is valid in this case too (although, in this case, Uj's pseudo-deadline is at slot t0
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Figure 2: Correctness proof for PF. A double arrow indicates two subtasks that are to be swapped. In (a), \no
U" means no subtask of U is scheduled in slot t0.

instead of later). In particular, because Uj is the �nal subtask of its job, the windows of Uj and Uj+1 do

not overlap. Therefore, Uj+1 cannot be scheduled in the same slot as Ti.

The problem with PF is that it is ine�cient: to determine which of two subtasks has higher priority, a vector

of pseudo-deadlines must be compared. In PD, ties are resolved more e�ciently by inspecting four tie-break

parameters. We do not describe the four tie-break parameters used in PD here, as they are similar to those

used in our algorithm. After presenting our algorithm, we discuss how it di�ers from PD.

Baruah et al. proved PD correct not by a swapping argument, but by a simulation argument that shows that

PD \closely" tracks the behavior of PF. In contrast, we do use a swapping argument to show that our simpli�ed

version of PD is correct. Our proof is more complicated than the proof of PF because it involves multiple tasks.

The key to our proof is a collection of properties involving subtasks and windows. These properties, which are

proved in Appendix A, are used to show the existence of a valid swapping in all cases.

3 Simpli�ed Pfair Scheduling Algorithm

In this section, we specify the priority de�nition used in our simpli�ed Pfair scheduling algorithm. We begin by

de�ning some additional terms that will be used in this and subsequent sections.

A schedule S is a mapping S : � �N 7! f0; 1g, where � is a set of periodic tasks and N is the set of natural

numbers. If S(T; t) = 1, then we say that T is scheduled at slot t. St denotes the set of tasks scheduled in slot

t. The statements T 2 St and S(T; t) = 1 are equivalent.

As stated earlier, each release of task T is called a job of T . We assume that T:p (T 's period) and T:e

(T 's execution cost) satisfy T:e
T:p

< 1 for each task T , because a task with T:e
T:p

= 1 can be easily scheduled by

assigning it to a dedicated processor. A task with weight less than 1/2 is called a light task, while a task with

weight at least 1/2 is called a heavy task.
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Windows and related de�nitions. The lag bounds given in (2) have the e�ect of breaking each task T into

an in�nite sequence of unit-time subtasks. We denote the ith subtask of task T as Ti, where i � 1. As in [4], we

associate with each subtask Ti a pseudo-release

r(Ti) =

�
(i� 1)�T:p

T:e

�
(4)

and a pseudo-deadline

d(Ti) =
l
i�T:p
T:e

m
� 1: (5)

(These expressions are actually derived in Appendix A.) The interval [r(Ti),d(Ti)] is called the window of

subtask Ti and is denoted by w(Ti). r(Ti) is the �rst slot into which Ti could potentially be scheduled, and

d(Ti) is the last such slot. For example, in Figure 1, r(Ti) = t and d(Ti) = t + 1. For brevity, we often refer

to pseudo-deadlines and pseudo-releases as simply deadlines and releases, respectively. We de�ne subtask Ti to

be ready at time t 2 w(Ti), denoted subtask(T; t) = i, if Ti�1 has been scheduled prior to t but Ti has not.

We sometimes write Ti 2 St as an abbreviation for T 2 St ^ subtask(T; t) = i. The length of window w(Ti),

denoted by jw(Ti)j, is de�ned as d(Ti) � r(Ti) + 1. A window spanning n time slots is called an n-window .

Claim 1 If T and T 0 are two tasks such that T:e
T:p

= T 0:e
T 0:p

, then r(Ti) = r(T 0
i) and d(Ti) = d(T 0

i) for all i � 1.

Proof: Follows directly from (4) and (5). 2

Given Claim 1, we henceforth make the simplifying assumption that T:e and T:p are relatively prime for

each task T .

(4) and (5) imply that r(Ti+1) is either d(Ti) or d(Ti)+1, i.e., successive windows are either disjoint or

overlap by one slot. We de�ne a bit b(Ti) that distinguishes between these two possibilities.

b(Ti) =

8<
:

1; if r(Ti+1) = d(Ti)

0; otherwise.
(6)

Claim 2 b(Ti) = 0 if and only if w(Ti) is the last window of a job of T .

Proof: \If": If w(Ti) is the last window of a job of T , then i is a multiple of T:e. Therefore, r(Ti+1) =

d(Ti) + 1 = k � T:p, where k = i
T:e . It follows that b(Ti) = 0.

\Only If": If b(Ti) = 0, then by the de�nition of b, r(Ti+1) = d(Ti)+1. Therefore, by (4) and (5),
j
i�T:p
T:e

k
=l

i�T:p
T:e

m
. This implies that i�T:p

T:e
is an integer. Because we have assumed that T:p and T:e are relatively prime,

it follows that i is a multiple of T:e. Thus, w(Ti) is the last window of a job of T . 2

The following properties concerning windows are proved in Appendix A.

(P1) The windows of each task T are symmetric within each job of T , i.e., jw(Tke+i)j = jw(Tke+e+1�i)j, where

e = T:e, 1 � i � T:e, and k � 0.
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(P2) The length of each of task T 's windows is either
l
T:p
T:e

m
or
l
T:p
T:e

m
+ 1. A window of task T with lengthl

T:p
T:e

m
(respectively,

l
T:p
T:e

m
+1) is called a minimal (respectively, maximal) window of T .

(P3) The �rst window of each job of a task is a minimal window of that task.

(P4) A task has a 2-window if and only if it is heavy. By (P1) and (P3), the �rst and last windows of any job

of a heavy task are both of length two.

Group deadlines. Consider a sequence Ti; : : : ; Tj of subtasks of a heavy task T such that jw(Tk)j = 2 ^

b(Tk) = 1 for all i < k � j and either jw(Tj+1)j = 3 or w(Tj+1) = 2 ^ b(Tj+1) = 0 (e.g., Ti, Ti+1 or Ti+2, Ti+3,

Ti+4 or Ti+5, Ti+6 in Figure 1). If any one of the subtasks Ti; : : : ; Tj is scheduled in the last slot of its window,

then each subsequent subtask in this sequence must be scheduled in its last slot. In e�ect, Ti; : : : ; Tj must be

considered as a single schedulable entity subject to a \group" deadline. Formally, we de�ne d(Tj) + 1 to be the

group deadline for the group of subtasks Ti; : : : ; Tj. Intuitively, if we imagine a job of T in which each subtask

is scheduled in the �rst slot of its window, then the slots that remain empty exactly correspond to the group

deadlines of T . For example, in Figure 1, T has group deadlines at slots t+ 3, t+ 7, and t+ 10. Note that each

group deadline of a heavy task is either the middle slot of a 3-window or the second slot of the �nal 2-window

of some job. The following properties concerning group deadlines are proved in Appendix A.

(P5) If t and t0 are successive group deadlines of a task T , then t0 � t is either
j

T:p
T:p�T:e

k
or
j

T:p
T:p�T:e

k
+ 1.

(P6) Let T be a heavy task with more than one group deadline per job. Let t and t0 (respectively, u and u0) be

successive group deadlines of T , where t0 (respectively, u0) is the �rst (respectively, last) group deadline

within a job of T (for the �rst job of T , take t to be �1). Then, t0 � t = u0 � u+ 1.

We let D(Ti) denote the group deadline of subtask Ti. Formally, if T is heavy, then

D(Ti) = (min u :: u > d(Ti) and u is a group deadline of T ):

For example, in Figure 1, D(Ti) = t + 3 and D(Ti+5) = t + 10. (Note that, according to this de�nition, Ti+7

in Figure 1 would be assigned a group deadline within the next job of T . It actually turns out that group

deadlines are not needed to break a tie involving a subtask like Ti+7, which occurs at the end of its job.) The

above de�nition of D is valid only for heavy tasks. If T is light, then D(Ti) = 0.

Priority De�nition: Task T 's priority at time t is de�ned to be (d(Ti); b(Ti); D(Ti)), where subtask(T; t) = i.

Priorities are ordered according to the following relation.

(d0; b0; D0) � (d; b;D) � [d < d0] _ [(d = d0) ^ (b > b0)] _ [(d = d0) ^ (b = b0) ^ (D � D0))]

If subtask(T; t) = i and subtask(U; t) = j, then T 's priority is at least U 's at time t if (d(Uj); b(Uj); D(Uj)) �

(d(Ti); b(Ti); D(Ti)). 2
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According to this de�nition, T has higher priority than U if the pseudo-deadline of T 's current subtask is

less than that of U 's. If two subtasks have the same pseudo-deadline, then the bit that we de�ned for each

pseudo-deadline is used as a tie-breaker. The reason for this is the same as with PF, i.e., to distinguish between

pseudo-deadlines that occur within a job and those that occur at the end of a job. If two heavy subtasks have

equal pseudo-deadlines and the bits associated with them are the same, then the subtask with the greater group

deadline has higher priority. Note that, due to the de�nition of D, if a heavy subtask and a light subtask have

identical pseudo-deadlines and associated bits, then the tie is always resolved in favor of the heavy subtask.

Also note that if a set of light-only tasks is to be scheduled, then the D parameter is not needed. Finally, note

that it is possible for two tasks to have identical priorities; such ties can be broken arbitrarily.

Given our priority de�nition, the mechanics of producing a schedule on-line are exactly as with PD. Thus,

the scheduling algorithm proposed in [5] can be used (this algorithm is described in Appendix B). A task's next

pseudo-deadline and b-bit tie-break can be computed at run-time in constant time using Equations (4), (5), and

(6). A task's next group deadline can also be computed in constant time, using Equation (32) in Appendix A.

The priority de�nition used in PD is similar to ours, except that two additional tie-break parameters are

used. The �rst of these is a task's weight. The second is a bit associated with each group deadline that is

similar to the b bit we associate with pseudo-deadlines. For example, in Figure 1, the bit corresponding to

D(Ti) would be de�ned to be 1 and the bit corresponding to D(Ti+5) would be de�ned to be 0. These bits are

used to distinguish between group deadlines that correspond to a 3-window and ones that correspond to a �nal

2-window of a job. Our results show that these two additional tie-break parameters are not needed.

4 Correctness Proof

We now prove that our algorithm produces a Pfair schedule. Throughout this section, we assume that
P

T2�
T:e
T:p

= M (refer to (3)), where M is the number of processors. If less than M , then several dummy tasks can be

added to make
P

T2�
T:e
T:p

= M . Like the PF proof sketched earlier, correctness is established by showing that

if there exists a Pfair schedule S for which scheduling decisions are in accordance with our priority de�nition

up to time t � 1, then there exists a Pfair schedule for which scheduling decisions are in accordance with our

priority de�nition up to time t. The number of scheduling decisions in S at time t that are not in accordance

with our priority de�nition can be inductively reduced to zero by interchanging (swapping) some subtasks. Such

interchanges will be valid if all subtasks are still scheduled within their windows, no two subtasks of the same

task are scheduled in the same time slot, and M tasks are scheduled in each time slot.

We now state and prove two lemmas. The second of these, Lemma 2, gives the inductive step of our

correctness proof. Lemma 1 deals with a situation that arises in one of the cases in Lemma 2. According to

Lemma 1, if subtasks Ti, Uj , and Uj+1 are scheduled as shown in Figure 3(a), then a valid swapping exists that

moves Uj out of slot t.

Lemma 1 Let S be a Pfair schedule such that for light tasks T and U and t < t0, subtask(T; t) = i, subtask(U; t)
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Figure 3: We use the following notation in this and subsequent �gures. \[" and \]" indicate the release and
deadline of a subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow
from subtask Ti to subtask Uj indicates that Ti is now scheduled in place of Uj . An arrow over \[" (or \]")
indicates that the actual position of \[" (or \]") can be anywhere in the direction of the arrow. Time is divided
into unit-time slots that are numbered. (Although all slots are actually of the same length, due to formatting
concerns, they don't necessarily appear as such in our �gures.) If Ti is released at slot t, then \[" is aligned
with the left side of slot t. If Ti has a deadline at slot t, then \]" is aligned with the right side of slot t. (a)
Conditions of Lemma 1. (b) d(Vk) > t0� 1. (c) d(Vk) = t0� 1 and r(Vk) � t. (d) d(Vk) = t0� 1 and r(Vk) � t.

= j, Uj 2 St, Uj+1 2 St0 , Ti 2 St0 , r(Uj) = t, d(Uj) = t0, r(Uj+1) = t0, d(Ti) = t0, where w(Uj) is a minimal

window of U . Then, there exists a Pfair schedule S0 such that U =2 S0t, Su = S0u for 0 � u < t, and St�fUg � S0t.

Proof: Note that Ti and Uj cannot be swapped directly because this would result in a schedule in which

two subtasks of U are scheduled in the same slot. Instead, we identify another subtask Vk that can be used

as an intermediate between Uj and Ti for swapping. Because T and U are both light, by (P2), all windows

of each span at least three slots. Thus, t0 > t + 1 and fT; Ug 6� St0�1. Because all processors are fully

utilized and fT; Ug 6� St0�1 and fT; Ug � St0 , there exists a task V such that V 2 St0�1 and V =2 St0 . Let

k = subtask(V; t0 � 1). If d(Vk) > t0 � 1, then the swapping shown in Figure 3(b) gives the desired schedule. In

the rest of the proof, we assume

d(Vk) = t0 � 1: (7)

If r(Vk) < t or if r(Vk) = t ^ V =2 St, then the swapping shown in Figure 3(c) produces the desired schedule.

The remaining possibility to consider is

(r(Vk) > t) _ (r(Vk) = t ^ V 2 St): (8)

In this case, we show that the swapping in Figure 3(d) is valid (this �gure actually depicts the case r(Vk) =

t ^ V 2 St). From (7), (8), and the statement of the lemma, we have d(Vk) = d(Uj) � 1 and r(Vk) � r(Uj).
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Figure 4: (a) Conditions of Lemma 2. (b) The \di�cult" case to consider.

This implies that

jw(Vk)j < jw(Uj)j: (9)

Because w(Uj) is a minimalwindow of U , jw(Uj+1)j � jw(Uj)j. By de�nition, jw(Uj+1)j = d(Uj+1)�r(Uj+1)+1.

From the statement of the lemma, this implies that d(Uj+1) = jw(Uj+1)j+ t0 � 1. Therefore,

d(Uj+1) � t0 � 1 + jw(Uj)j: (10)

Now, by (7) and the fact that consecutive windows of a task overlap by at most one slot, Vk+1 is released at

either t0 � 1 or t0. We now show that in either case, d(Vk+1) � t0 � 1 + jw(Vk)j. If r(Vk+1) = t0, then by (P1),

jw(Vk+1)j = jw(Vk)j. By de�nition, jw(Vk+1)j = d(Vk+1)� r(Vk+1) + 1. Therefore, d(Vk+1) = t0 � 1 + jw(Vk)j.

On the other hand, if r(Vk+1) = t0 � 1, then we reason as follows. By (P2), jw(Vk+1)j � jw(Vk)j + 1.

Because jw(Vk+1)j = d(Vk+1) � r(Vk+1) + 1, it follows that d(Vk+1) � t0 � 1 + jw(Vk)j. Hence, in both cases,

d(Vk+1) � t0� 1+ jw(Vk)j. By (9) and (10), this implies that d(Uj+1) > d(Vk+1). Thus, the swapping shown in

Figure 3(d) is valid, and produces the required schedule. 2

We now state and prove Lemma 2; the conditions of the lemma are depicted in Figure 4(a).

Lemma 2 Let S be a Pfair schedule such that all scheduling decisions before slot t are in accordance with our

priority de�nition. Let A denote the set of tasks that would be scheduled in slot t according to our priority

de�nition. Suppose A 6= St. Let T be a task of highest priority in A� St, and let U be a task of lowest priority

in St �A. Then, there exists a Pfair schedule S0 such that S0u = Su for 0 � u < t and S0t = (St � fUg+ fTg).

Proof: Let i = subtask(T; t) and j = subtask(U; t). Because S is a valid schedule, there exists t0 such that

t < t0 � d(Ti) ^ Ti 2 St0 ^ (8u : t � u < t0 :: T =2 Su). If d(Ti) < d(Uj) or if d(Ti) = d(Uj) ^ b(Uj) = 0,

then no subtask of U can be scheduled in the interval (t; t0]. Therefore, Ti and Uj can be directly swapped to

get the required schedule. In the remainder of the proof, we assume that

d(Ti) = d(Uj) ^ b(Uj) = 1: (11)

Because T has higher priority than U at time t, we have

b(Ti) = 1: (12)

10
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Figure 5: Case 2. T is heavy, U is light, and d(Ti) = d(Uj).

If Uj+1 =2 St0 , then T and U still can be directly swapped to get a valid schedule. Thus, we henceforth assume

Uj+1 2 St0 , i.e., Ti and Uj+1 are both scheduled in slot t0. By (11), this can happen only if d(Ti) and d(Uj) both

equal t0 (otherwise, w(Uj) and w(Uj+1) would overlap by more than one slot). Thus, we have the following.

Uj+1 2 St0 ^ d(Ti) = t0 ^ d(Uj) = t0: (13)

We now consider four cases, which depend on the weights of tasks T and U . We remind the reader that, in all

of these cases, (11) through (13) are assumed to hold. These conditions are depicted in Figure 4(b).

Case 1: T is light and U is heavy. By the de�nition of D, T cannot have higher priority than U at time t.

Case 2: T is heavy and U is light. In this case, we show that the swapping in Figure 5 is valid. By (P2)

and (P4), all windows of T are of length two or three, and the last window of each job of T is of length two.

By (12), w(Ti) is not the �nal window of its job. Thus, there exists r such that

jw(Ti+r)j = 2 ^ (8k : 0 < k < r :: jw(Ti+k)j = 3 ^ b(Ti+k) = 1):

(Note that r could be one, i.e., T could have no three-windows between w(Ti) and w(Ti+1).) Because U is light,

by (P4), jw(Uk)j � 3 for all k. This implies that d(Ti+r) < d(Uj+r). Let q denote the smallest value of k that

satis�es d(Ti+k) < d(Uj+k). (Note that q � r.) Then,

(8k : 0 < k < q :: d(Ti+k) = d(Uj+k) ^ jw(Ti+k)j = 3 ^ jw(Uj+k)j = 3 ^ b(Ti+k) = 1) ^ d(Ti+q) < d(Uj+q):

Because d(Ti+q) < d(Uj+q), we have d(Ti+q) < r(Uj+q+1). Thus, Ti+q is scheduled before Uj+q+1. Let p be the

smallest value for k such that Ti+k is scheduled prior to Uj+k+1. (Again, note that p � q). To summarize, we

have

� (8k : 0 < k < p :: d(Ti+k) = d(Uj+k) ^ jw(Ti+k)j = 3 ^ jw(Uj+k)j = 3 ^ b(Ti+k) = 1) ^ d(Ti+p) � d(Uj+p),

� Ti+p is scheduled before Uj+p+1, and

11



� for each k in the range 0 < k < p, Ti+k is not scheduled before Uj+k+1.

It is straightforward to see that the relevant subtasks must be scheduled as shown in Figure 5. Thus, the

swapping shown in this �gure is valid.

Case 3: Both T and U are light. (This case and Case 4 are somewhat lengthy.) We show that one of the

swappings in Figure 6 is valid. Because U is light, by (P4), jw(Uj+1)j � 3. Therefore, Uj+2 is released after

t0 + 1 (refer to Figure 4(b)), and so U =2 St0+1. Therefore, because U 2 St0 , and because all processors are

fully utilized, there exists a task V such that V =2 St0 and V 2 St0+1. Let k = subtask(V; t0 + 1). Because Vk

is scheduled at time t0 + 1, we have r(Vk) � t0 + 1. If r(Vk) < t0 + 1, then the swapping shown in Figure 6(a)

produces the desired schedule. In the rest of the proof for Case 3, we assume

r(Vk) = t0 + 1; (14)

in which case this swapping is not valid. If Vk�1 is scheduled in the interval (t; t0), then the swapping shown in

6(b) is valid. If Vk�1 is not scheduled in (t; t0), then it is scheduled at or before t. We now show that it cannot

be scheduled in slot t.

Suppose, to the contrary, that Vk�1 is scheduled in slot t, as depicted in Figure 6(c). Because r(Vk) = t0+1,

d(Vk�1) is either t
0 + 1 or t0. If d(Vk�1) is t

0, then b(Vk�1) = 0. In either case, Vk�1 has lower priority than

Uj at t. Hence, because Uj is in St � A (i.e., it is not among the subtasks that would be scheduled at time t

according to our priority de�nition), Vk�1 must be in St �A as well. However, this contradicts our choice of Uj

as a subtask of lowest priority in St �A. Thus, Vk�1 is not scheduled in slot t.

In the rest of the proof for Case 3, we consider the remaining possibility, i.e., that Vk�1 is scheduled at a

time v < t. Now, it must be the case that Ti was not eligible to be scheduled at time v. To see this, note that

if Ti were eligible at time v, then according to our priority de�nition, it should have been scheduled at time

v, as Ti has higher priority than Vk�1 (the reasoning here is similar to that in the previous paragraph). Thus,

either r(Ti) > v or r(Ti) = v ^ Ti�1 2 Sv. Because r(Vk�1) � v, this implies that either (r(Ti) > r(Vk�1)) or

(r(Ti) = v ^ r(Vk�1) = v ^ Ti�1 2 Sv). We consider these two subcases next.

Subcase 3.A: r(Ti) > r(Vk�1). We show that d(Vk) > d(Ti+1), which implies that the swapping in Figure

6(d) is valid. There are two possibilities to consider, depending on the value of b(Vk�1).

b(Vk�1) = 0. In this case, by the de�nition of b(Vk�1), we have d(Vk�1) = r(Vk) � 1. By (13) and (14), this

implies that d(Vk�1) = d(Ti). Since b(Vk�1) is 0, w(Vk�1) is the last window of its job, and w(Vk) is the

�rst window of its job. Thus, by (P1), jw(Vk)j = jw(Vk�1)j. Because r(Vk�1) < r(Ti) (our assumption for

Subcase 3.A) and d(Vk�1) = d(Ti), we have jw(Ti)j � jw(Vk�1)j � 1. Therefore, jw(Ti)j � jw(Vk)j � 1. By (P2),

jw(Ti+1)j � jw(Ti)j + 1, and hence, jw(Vk)j � jw(Ti+1)j. Because r(Vk) = r(Ti+1) + 1 (see Figure 6(d)), this

implies that d(Vk) > d(Ti+1).
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Figure 6: Case 3. (a) r(Vk) � t + 1. (b) r(Vk) = t + 2 ^ r(Vk�1) < r(Ti). (c) d(Wh) � v0. (d) d(Wh) =
v0 � 1 ^ r(Wh) � t + 1 ^W =2 St+1. (e) d(Wh) = v0 � 1 ^ r(Wh) � t + 2. (f) d(Wh) = v0 � 1, r(Wh) = t+ 1,
and W 2 St+1.

b(Vk�1) = 1. In this case, by the de�nition of b(Vk�1), we have d(Vk�1) = r(Vk). By (13) and (14), this implies

that d(Vk�1) = d(Ti) + 1. Because r(Vk�1) < r(Ti) (our assumption for Subcase 3.A) and d(Vk�1) = d(Ti) + 1,

we have

jw(Vk�1)j � jw(Ti)j+ 2: (15)
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By (P2), jw(Vk)j � jw(Vk�1)j�1 and jw(Ti)j � jw(Ti+1)j�1. Hence, by (15), jw(Vk)j+1 � jw(Ti+1)j�1+2, i.e.,

jw(Vk)j � jw(Ti+1)j. Because r(Vk) = r(Ti+1) + 1 (again, see Figure 6(d)), this implies that d(Vk) > d(Ti+1).

Subcase 3.B: r(Ti) = v ^ r(Vk�1) = v ^ Ti�1 2 Sv. Reasoning as in Subcase 3.A, it is possible to show

that

d(Vk) � d(Ti+1): (16)

We now show that a valid swapping exists in all cases. First, note that if Ti+1 is scheduled before Vk+1,

then the swapping shown in Figure 6(d) is still valid. This will be the case if d(Vk) > d(Ti+1) or if d(Vk) =

d(Ti+1) ^ r(Vk+1) = d(Vk) + 1. In the rest of the proof for Subcase 3.B, we assume that Ti+1 is not scheduled

before Vk+1. By (16), this can happen only if there exists v0 such that

d(Vk) = v0 ^ r(Vk+1) = v0 ^ d(Ti+1) = v0 ^ Vk+1 2 Sv0 ^ Ti+1 2 Sv0 : (17)

Before considering other possible swappings, we �rst show that w(Vk) is a minimal window of V ; this fact

is used several times in the reasoning that follows. By (14) and the fact that consecutive windows of the same

task overlap by at most one slot, d(Vk�1) is either t0 or t0+1. If d(Vk�1) = t0, in which case w(Vk�1) and w(Vk)

do not overlap, then w(Vk) is the �rst window of its job. Hence, by (P3), w(Vk) is a minimal window. On the

other hand, if d(Vk�1) = t0 + 1, in which case w(Vk�1) and w(Vk) do overlap, then we have the following:

� Ti and Vk�1 are both released at slot v (our assumption for Subcase 3.B),

� Ti has a deadline at t0 (see (13)) and Vk�1 has a deadline at t0 + 1 (by assumption), and

� Ti+1 and Vk have equal deadlines (by (17)).

By (P1)-(P3), this can happen only if jw(Vk)j = jw(Vk�1)j � 1, which implies that w(Vk) is a minimal window

of V .

Now, because Ti and Vk�1 are both released at slot v (our assumption for Subcase 3.B), and because

Ti has a deadline at t0 and Vk is released at t0 + 1 (see (13) and (14)), either jw(Vk�1)j = jw(Ti)j + 1 or

jw(Vk�1)j = jw(Ti)j ^ b(Vk�1) = 0. In either case, because T is light, by (P2)-(P4), V must also be light, and

hence jw(Vk)j � 3. By (14) and (17), w(Vk) = [t0 + 1; v0]; hence, v0 � t0 + 3. Because Vk 2 St0+1 ^ Vk+1 2 Sv0 ,

this implies that V =2 Sv0�1. Thus, by our assumption that all processors are fully utilized, there exists a task

W such that W 2 Sv0�1 and W =2 Sv0 . Let h = subtask(W; v0 � 1). We now show that at least one of the

swappings in Figure 6(e)-(h) is valid.

d(Wh) � v0. In this case, the swapping in Figure 6(e) is clearly valid. We henceforth assume

d(Wh) = v0 � 1: (18)

(r(Wh) < t0) _ (r(Wh) = t0 ^ W =2 St0 ). In this case, the swapping shown in Figure 6(f) is valid.
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r(Wh) > t0. In this case, we show that d(Wh+1) < d(Vk+1), which implies that the swapping in Figure 6(g) is

valid. r(Wh) > t0 implies that jw(Wh)j < jw(Vk)j (see Figure 6(g)). Because w(Vk) is a minimal window of V

(as shown above), jw(Vk)j � jw(Vk+1)j. Thus,

jw(Wh)j < jw(Vk+1)j: (19)

Now, consider b(Wh). If b(Wh) = 0, then by (18), r(Wh+1) = v0, which by (17) implies that r(Wh+1) = r(Vk+1).

In addition, by (P1), jw(Wh+1)j = jw(Wh)j. Hence, by (19), we have jw(Wh+1)j < jw(Vk+1)j. Therefore,

d(Wh+1) < d(Vk+1).

If b(Wh) = 1, then by (18), r(Wh+1) = v0�1, which by (17) implies that r(Wh+1) < r(Vk+1). In addition, by

(P2), jw(Wh+1)j � jw(Wh)j+1. Hence, by (19), we have jw(Wh+1)j � jw(Vk+1)j. Therefore, d(Wh+1) < d(Vk+1).

r(Wh) = t0 ^ W 2 St0 . In this case, analysis similar to that above shows that d(Wh+1) � d(Vk+1). Let

d(Wh+1) = w. If d(Wh+1) < d(Vk+1) or if d(Wh+1) = d(Vk+1) ^ Vk+2 =2 Sw, then the swapping shown in

Figure 6(g) is valid (the �gure actually shows Wh being released after time t0, but the swapping is still valid).

On the other hand, if d(Wh+1) = d(Vk+1) and Vk+2 2 Sw, then we have the following (see Figure 6(h)):

� Wh is released at slot t0 and Vk is released at slot t0 + 1,

� Vk+1 is released at slot v0, and

� Vk+1 and Wh+1 have deadlines at slot w.

By (P1)-(P3), this can happen only if jw(Vk+1)j = jw(Vk)j. Because w(Vk) is a minimal window of V , this

implies that w(Vk+1) is a minimal window as well. Thus, by Lemma 1, there exists a schedule in which Vk+1 is

not scheduled at time v0. The swapping shown in Figure 6(h) is therefore valid. This exhausts all the possibilities

if T and U are both light.

Case 4: Both T and U are heavy. In the proof for this case, we refer to successive group deadlines of a

task. The following notation will be used. If g is a group deadline of task X, then pred(X; g) (respectively,

succ(X; g)) denotes the group deadline of task X that occurs immediately before (respectively, after) g. For

example, in Figure 1, pred(T; t + 7) = t+ 3 and succ(T; t + 7) = t+ 10.

As before, we are dealing with the situation depicted in Figure 4(b). Because Ti has higher priority than

Uj at time t according to our priority de�nition, D(Uj) � D(Ti). Because Ti 2 St0 and t0 = d(Ti) (refer to

Figure 4(b)), each subsequent subtask of T with a deadline at or before D(Ti) is scheduled in the last slot of

its window. Note that, because T and U are heavy tasks, t0 is either t+ 1 or t + 2. Let u be the earliest time

after t0 such that U =2 Su. Then, u � D(Uj). Because D(Uj) � D(Ti), this implies that either u < D(Ti) or

u = D(Ti). If u < D(Ti) holds then we have the following (refer to Figure 7(a)):

� in all slots in [t0; u], a subtask of T is scheduled in the last slot of its window;
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Figure 7: Case 4. We use the following notation in Figures 7-9. A group deadline at slot t is denoted by an
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� in all slots in [t0; u� 1], a subtask of U is scheduled in the �rst slot of its window;

� no subtask of U is scheduled in slot u.

This implies that the swapping in Figure 7(a) is valid. If u = D(Ti) ^ T 2 Su, then a similar swapping is valid

(in this case, the subtasks of T to be swapped occupy all slots in the interval [t0; D(Ti)]).

The remaining possibility to consider is u = D(Ti) ^ T =2 Su. In this case, because u � D(Uj) � D(Ti), we

have the following.

D(Ti) = D(Uj ) ^ D(Uj) = u ^ T =2 Su

Let j + j0 = subtask(U; u� 1). Then, u = t0 + j0, as shown in Figure 7(b)). As the �gure shows, each of the

subtasks Ti+1; : : : ; Ti+j0�1 and Uj+1; : : : ; Uj+j0�1 has a window of length two. In addition, because T =2 Su,

w(Ti+j0) is either a 2-window starting at slot u or a 3-window starting at slot u � 1; however, if w(Ti+j0) is a

2-window starting at slot u, then T has a group deadline at u� 1 rather than u. We conclude that w(Ti+j0) is

a 3-window and Ti+j0 is scheduled in slot t0 + j0 + 1.

Our strategy now is to identify another task that can be used as an intermediate for swapping. Because

fT; Ug � Su�1 and fT; Ug 6� Su and all processors are fully utilized, there exists a task V such that V 2 Su

and V =2 Su�1. Let k = subtask(V; u).

If r(Vk) < u, then the swapping shown in Figure 7(b) gives the required schedule. Also, if r(Vk) = u ^ V =2

Su+1, then the swapping in Figure 7(c) is valid. In the rest of the proof, we assume

r(Vk) = u ^ V 2 Su+1:

Note that V 2 Su+1 implies that d(Vk) = u+ 1, i.e., jw(Vk)j = 2. Therefore, by (P4), V is heavy. Consider the

group deadline of Vk, D(Vk). Let v be the earliest slot after u such that V =2 Sv. Note that

v � D(Vk): (20)

(See Figure 7(d).) Let Vk+i0 be the subtask of V that is scheduled in slot v � 1. If either v < D(Ti+j0 ) or

v = D(Ti+j0 ) ^ b(Ti+j0+i0 ) = 0, then Ti+j0+i0 is scheduled in slot v, and the swapping shown in Figure 7(d) is

valid. In the rest of the proof, we assume that neither of these conditions holds, i.e.,

[D(Ti+j0) < v] _ [v = D(Ti+j0 ) ^ b(Ti+j0+i0) = 1]: (21)

We claim that u � 1 is a group deadline of V . As seen in Figure 7(d), Vk�1 is not scheduled in slot u� 1.

Because r(Vk) = u, d(Vk�1) is either u� 1 or u. If d(Vk�1) = u� 1, then b(Vk�1) = 0 and w(Vk�1) is the �nal

window of a job of V , and thus u � 1 is a group deadline. If d(Vk�1) = u, then we reason as follows. Because

V is a heavy task, by (P2) and (P4), jw(Vk�1)j � 3. Because Vk�1 is not scheduled in slots u� 1 or u, r(Vk�1)

has to be u� 2. This implies that jw(Vk�1)j = 3. Therefore, u� 1 is a group deadline of V .
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Figure 8: Subcase 4.A. t0 = t+ 2.

Having shown that u � 1 is a group deadline of V , we now show that pred(V; u � 1) � pred (T; u). T has

consecutive group deadlines at u and succ(T; u) = D(Ti+j0 ). Therefore, by (P5), the di�erence between u and

pred(T; u) is at most one more than D(Ti+j0 )� u, i.e., u� pred(T; u) � D(Ti+j0 ) � u+ 1. Therefore,

pred(T; u) � 2u�D(Ti+j0 )� 1: (22)

V has consecutive group deadlines at u� 1 and succ(V; u� 1) = D(Vk). Hence, by (P5), the di�erence between

u� 1 and pred(V; u� 1) is at least one less than D(Vk)� (u� 1), i.e., u� 1� pred(V; u� 1) � D(Vk)�u. Thus,

pred(V; u� 1) � 2u�D(Vk) � 1: (23)

By (20), (21), (22), and (23), pred(V; u � 1) � 2u � D(Vk) � 1 � 2u � D(Ti+j0 ) � 1 � pred(T; u). Thus,

pred(V; u� 1) � pred(T; u). Note also that pred(V; u� 1) = pred(T; u) if and only if D(Ti+j0 ) = D(Vk) = v. In

addition, as seen in Figure 7(d), T cannot have a group deadline in the interval [t0; u� 1]. Therefore, we have

the following.

pred(V; u� 1) � pred(T; u) � t0 � 1 (24)

(pred(V; u� 1) = pred(T; u)) ) (D(Ti+j0 ) = v ^ D(Vk) = v) (25)

Recall that t0 is either t+ 2 or t+ 1. We consider these two subcases next.

Subcase 4.A: t0 = t + 2. In this case, we show that the swapping in Figure 8 is valid. To begin, note that

t0 = t+ 2 implies that T =2 St+1 and U =2 St+1. Let k0 = k � j0 + 1. As Figure 8 shows,

� w(Vk�1) is either a 2- or 3-window beginning in slot u� 2 = t0 + j0 � 2 (this is because u � 1 is a group

deadline of V );

� for each l in the range k0 � l < k � 1, w(Vl) is a 2-window (this is because, by (24), pred (V; u� 1) < t0);
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� each of Vk0,. . . ,Vk�1 is scheduled in the �rst slot of its window (this can be seen by inducting from right

to left, starting with Vk�1).

Because Vk0 is released at t0 = t+2, Vk0�1 has a deadline at either t+1 or t+2. We now prove that d(Vk0�1)

cannot equal t+1. Assume, to the contrary, that d(Vk0�1) = t+1. This implies that b(Vk0�1) = 0, i.e., w(Vk0�1)

is the �nal window of its job. Thus,

pred(V; u� 1) = t+ 1: (26)

If V has multiple group deadlines per job, then by (P5) and (P6), the di�erence between pred(V; u�1) and u�1

is at least the di�erence between u�1 and succ(V; u�1), i.e., succ(V; u�1)� (u�1) � (u�1)�pred (V; u�1).

If V has one group deadline per job, then clearly succ(V; u� 1)� (u� 1) = (u� 1)� pred(V; u� 1). In either

case, by (26),

succ(V; u� 1) � 2u� t� 3: (27)

Because t0 = t + 2, w(Ti) is a 3-window. Thus, pred(T; u) = t0 � 1 = t + 1. By (P5), the di�erence between

succ(T; u) and u is at least one less than u � pred(T; u), i.e., succ(T; u) � u � u � (t + 1) � 1. Because

succ(T; u) = D(Ti+j0 ), this implies that D(Ti+j0) � 2u � t � 2. Thus, by (21), v � 2u � t � 2. Because

succ(V; u�1) = D(Vk), by (20), we have succ(V; u�1) � v. Thus, succ(V; u�1) � 2u� t�2, which contradicts

(27). Therefore, we conclude that d(Vk0�1) cannot be t+ 1. Thus, we have the following.

d(Vk0�1) = t + 2

We now show that Vk0�1 is scheduled in slot t + 1, which implies that the swapping in Figure 8 is valid.

Assume, to the contrary, that Vk0�1 is not scheduled at t + 1. We have established that V is heavy and

d(Vk0�1) = t+ 2. Moreover, Vk0�1 is not scheduled in slot t+ 1 (by assumption) or in slot t+ 2 (because Vk0 is

scheduled there). By (P2)-(P4), this implies that w(Vk0�1) is a 3-window, r(Vk0�1) = t, and Vk0�1 is scheduled

in slot t. As seen in Figure 8, d(Vk0�1) = d(Uj), b(Vk0�1) = b(Uj), and D(Vk0�1) < D(Uj). Therefore, Vk0�1 has

lower priority than Uj at time t. Recall that A is the set of tasks selected for execution in slot t according to

our priority de�nition. Also recall that U =2 A. Because U =2 A, we have V =2 A. Therefore, V 2 St � A. This

contradicts our choice of U as a task of lowest priority in St � A.

Subcase 4.B: t0 = t + 1. In this case, we show that one of the swappings in Figure 9 is valid. We begin by

showing that

pred(V; u� 1) = t: (28)

As in Subcase 4.A, it is possible to show that

� each of the subtasks Vk0 ; : : : ; Vk�2 has a window of length two and is scheduled in the �rst slot of its

window, and
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Figure 9: Subcase 4.B. In each inset, t0 = t + 1, D(Ti) = D(Uj), and D(Vk) = D(Ti+j0 ). (a) pred(V; u � 1) =
pred(T; u). (b) d(Wh) > u. (Continued on the following page.)

� Vk�1 has a window of length two or three and is scheduled in the �rst slot of its window.

This is depicted in Figure 9(a). Because r(Vk0) = t + 1, d(Vk0�1) is either t or t + 1. If d(Vk0�1) = t, then

w(Vk0�1) is the �nal window of its job. Therefore, pred(V; u� 1) = t.

If d(Vk0�1) = t + 1, then we reason as follows. Because V is heavy, by (P2) and (P4), w(Vk0�1) is of length

two or three. If w(Vk0�1) is of length three, then clearly, pred(V; u � 1) = t. Thus, it su�ces to show tnat

w(Vk0�1) is not of length two. Suppose, to the contrary, that w(Vk0�1) = 2. Because d(Vk0�1) = t + 1, and

because Vk0 is scheduled in slot t+ 1, Vk0�1 is scheduled in slot t. Observe that d(Vk0�1) = t+ 1, d(Uj) = t+ 1,

b(Vk0�1) = 1, b(Uj) = 1, and D(Vk0�1) < D(Uj). Thus, Vk0�1 has lower priority than Uj at t. This implies that

V =2 A, i.e., Vk0�1 2 St � A. However, this contradicts our choice of U as a task of lowest priority in St � A.

This completes our proof of (28). By (24) and (28), we have the following.

pred(T; u) = pred(V; u� 1)

By (25), this implies that D(Ti+j0 ) = D(Vk) = v (see Figure 9(a)).

Because T =2 Su and T 2 Su+1, and because the processors are fully utilized, there exists a task W such

that W 2 Su and W =2 Su+1. Let h = subtask(W;u). If d(Wh) > u, then the swapping shown in Figure 9(b) is
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Figure 9: (Continued) (c) d(Wh) = u and W =2 Su�1. (d) d(Wh) = u, W 2 Su�1, and W =2 Sw for some w in
[t0; u� 1]. (e) d(Wh) = u, W 2 Su�1, and W 's most recent group deadline before the one at u or u+ 1 is at or
before t.

valid. In the rest of the proof, we assume that

d(Wh) = u:
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In this case, we show that one of the swappings in Figure 9(c)-(e) are valid. If W =2 Su�1, then the swapping

shown in Figure 9(c) is valid. In the rest of the proof, we assume

W 2 Su�1:

In this case, we have r(Wh) = u� 1, i.e., jw(Wh�1)j = 2. Thus, by (P4), W is heavy.

We now show that W has a group deadline at time u or u+ 1 (refer to Figure 9(d)). Because Wh+1 =2 Su+1

and W is heavy, by (P2) and (P4), Wh+1 has to be scheduled at time u+ 2, and w(Wh+1) is either a 3-window

beginning at slot u or a 2-window beginning at slot u + 1. In the former case, u + 1 is the middle slot of a

3-window, and hence a group deadline of W . In the latter case, u is the �nal slot of a job of W , and hence a

group deadline of W .

We now look at earlier subtasks of W . If there exists w such that t0 � w � u � 1 and W =2 Sw, then a

swapping similar to that shown in Figure 9(d) is valid and produces the desired schedule. In the rest of the

proof, we assume that for each w in the range t0 � w � u,W 2 Sw . This implies that, at each slot in the interval

[t0; u], a subtask of W is scheduled in the last slot of its window (recall that W is heavy). This is illustrated

in Figure 9(e). As seen in the �gure, each of the subtasks Wh�j0+1; : : : ;Wh has a window of length two. This

implies that the most recent group deadline of W before the one at u or u+ 1 occurs at or before time t, i.e.,

(u is a group deadline of W ) pred(W;u) � t) ^

(u+ 1 is a group deadline of W ) pred(W;u+ 1) � t): (29)

We now show that W 's next group deadline after the one at u or u + 1 occurs after time v, which implies

that the swapping shown in Figure 9(e) is valid. There are two possibilities to consider, depending on whether

W has a group deadline at u or u+ 1. In both cases, by (20), (23), and (28), we have

v � 2u� t� 1: (30)

u is a group deadline of W . In this case, Wh is the last subtask of its job. By (P5) and (P6), the di�erence

between succ(W;u) and u is at least the di�erence between u and pred(W;u), i.e., succ(W;u)�u � u�pred(W;u).

Furthermore, by (29), pred(W;u) � t. Therefore, succ(W;u) � 2u�t. By (30), this implies that succ(W;u) > v.

u+ 1 is a group deadline of W . In this case, by (P5), the di�erence between succ(W;u + 1) and u + 1

is at least one less than the di�erence between u + 1 and pred(W;u + 1), i.e., succ(W;u + 1) � (u + 1) �

(u + 1) � pred(W;u + 1) � 1. Therefore, succ(W;u + 1) � 2u � pred(W;u + 1) + 1. Furthermore, by (29),

pred(W;u+ 1) � t. This implies that succ(W;u+ 1) � 2u� t+ 1. Therefore, by (30), succ(W;u+ 1) > v.

This exhausts all the possibilities if T and U are both heavy, and concludes the proof of Lemma 2. 2
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Theorem 1 Our algorithm generates a Pfair schedule for any feasible task set.

Proof: If a task set � is feasible, then it has a Pfair schedule S. By repeatedly applying Lemma 2, as

necessary, �rst at time slot 0, then at time slot 1, etc., we can show the existence of Pfair schedules S =

S0; S1; : : : ; SL�1; SL, where where L is the least common multiple of fT:p j T 2 �g, such that, in each St, the

scheduling decisions within the �rst t time units are in accordance with our priority de�nition. The existence

of schedule SL shows that a Pfair schedule can be produced for � by scheduling tasks according to our priority

de�nition. 2

5 Two-Processor Systems

In this section, we prove that no tie-breaking information is needed in two-processor systems, i.e., pseudo-

deadlines alone su�ce. The proof makes use of the following two properties, which are proved in Appendix A.

(P7) Let S be a Pfair schedule forM = 2 processors. Suppose that Ti 2 St, Uj 2 St, and d(Uj) > t. Then, there

exists a subtask Vk scheduled in S after slot t such that r(Vk) � t. Informally, if Uj is \right-movable"

out of slot t, then some Vk must be \left-movable" into t.

(P8) Let S be a Pfair schedule for M = 2 processors. Consider time slots t and u, where t < u. Let A be the

set of all subtasks scheduled by S in [t; u]. Suppose that there exists some task W that has no subtask in

A. Then, there exists a subtask Ti 2 A such that r(Ti) < t or d(Ti) > u.

Theorem 2 If M , the number of processors, is two, then no tie-breaking information is needed.

Proof: As in Lemma 2, the \di�cult" case depicted in Figure 10(a) is the main problem: we wish to swap Uj

and Ti, where Uj is scheduled in slot t and Ti is scheduled in slot t0 > t, but Uj+1 is scheduled in slot t0. This

case can arise only if d(Ti) = d(Uj) = t0.

Because Uj+1 is scheduled in slot t0 and d(Uj) = t0, we have d(Uj+1) > t0 | informally, Uj+1 is \right-

movable" out of slot t0. Thus, by (P7), there exists a subtask released at or before t0 that is scheduled after t0

| informally, such a subtask is \left-movable" into slot t0. Let Wk be the earliest such \left-movable" subtask.

Assume that Wk is scheduled in slot w, where w > t0, as shown in Figure 10(a) (note that Wk could be Ti+1).

We would like to swap Wk with Uj+1. However, we may not be able to directly swap Wk and Uj+1 because

slot w may be after Uj+1's deadline. If Wk and Uj+1 are not directly swappable, then we instead try to

inductively move Wk to the left by swapping it with other subtasks, one step at a time.

Suppose we have managed to move Wk from slot w to slot v, as shown in Figure 10(b). We claim that if

Wk and Uj+1 are not directly swappable, then there must be a subtask scheduled within [t0+ 1; v� 1] that can

be swapped with Wk. To see this, assume that none of the subtasks scheduled in [t0 + 1; v � 1] can be swapped

with Wk (see Figure 10(c)). Then, each of these subtasks has a deadline before v. Also, because Wk was chosen
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Figure 10: Two-processor systems. In each inset, d(Uj) = d(Ti) and r(Wk) � t0. (a) A depiction of the
\di�cult" case. (b) Wk is scheduled in slot v, and d(Vh) � v. (c) Each task in [t0 + 1; v � 1] is released in
[t0+ 1; v� 1] and has a deadline in [t0+ 1; v� 1]. (d)Wk is scheduled in slot t00 and can be swapped with Uj+1.

as the earliest subtask such that r(Wk) � t0, each subtask in [t0+ 1; v� 1] is released at or after t0 + 1. Clearly,

W has no subtask scheduled within [t0 + 1; v � 1]. Thus, we have a contradiction of (P8).

We conclude that if Wk and Uj+1 are not directly swappable, then there exists some subtask Vh scheduled

in [t0+1; v� 1] that can be swapped with Wk, i.e., Vh's deadline is at or after v. If Vh+1 is not scheduled in slot

v, then swapping Vh and Wk is easy. Unfortunately, if Vh+1 is scheduled in slot v, as depicted in Figure 10(b),

then we seem to have a problem. However, this problem is exactly of the same form as the original one we were

confronted with, i.e., this problem is exactly like the situation illustrated in Figure 10(a). We can therefore

recursively apply the procedure described here to move Vh+1 out of slot v. This recursive process cannot extend

past slot L, where L is the least common multiple of fT:p j T 2 �g, so it will eventually terminate.

It follows that we can eventually swap Uj+1 andWk directly, as depicted in Figure 10(d) (if Uj+2 is scheduled

in the same slot as Wk, then the above process once again must be applied recursively). Once Uj+1 and Wk

have been swapped, Uj and Ti | the two subtasks we originally wanted to swap | can be swapped. 2

A similar argument shows that no tie-breaking information is needed on one processor, but this was previously

known [3]. Looking at Figure 10, we can see why two-processor systems are di�erent from systems of three or

more processors. To move subtask Uj+1 to the right out of slot t0, some subtask Wk must be moved to the left
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into slot t0. If Wk�1 is scheduled in slot t0, then moving Wk into slot t0 potentially causes a new problem that

must be addressed. However, this can happen on a two-processor system only if Wk is Ti+1. The fact that Ti

is scheduled in slot t0 is not a problem, because this is the very subtask we wish to move to an earlier slot.

6 Counterexamples

According to our priority de�nition, each task T is prioritized at time t by the triple (d(Ti); b(Ti); D(Ti)), where

subtask(T; t) = i. In this section, we present a collection of counterexamples that show that this priority

de�nition cannot be substantially simpli�ed. We begin by considering b.

Theorem 3 If our priority de�nition is changed by eliminating b, then there exists a feasible task set that is

not correctly scheduled.

Proof: In each proof in this section, an example task set is considered that fully utilizes a system ofM processors

for some M . Each such task set consists of a set A of tasks of one weight and a set B of tasks of another weight.

We show that if this task set is scheduled with the newly-proposed priority de�nition, then a time slot is reached

at which fewer than M tasks are scheduled. This implies that more than M tasks are scheduled at some future

time slot, which is a contradiction. In the proof of Theorem 3, we explain the contradictory schedule in detail.

The subsequent proofs in this section are sketched more brie
y.

Consider a task set consisting of a set A of eight light tasks with weight 1/3 and a set B of three light tasks

with weight 4/9. Total utilization is four, so we should be able to schedule this task set on four processors.

Consider the schedule shown in Figure 11(a). In this �gure, tasks of a given weight are shown together. Each

window is shown on a separate line and is depicted by showing the time slots it spans. Each column corresponds

to a time slot. A slot t within a window is denoted by either an integer value or a dash. An integer value n

means that n of the subtasks that must execute within that window are scheduled in slot t. A dash means

either that no such subtask is scheduled in slot t, or the schedule at slot t is being left unspeci�ed | in this

and subsequent �gures, we show only enough of the schedule being considered to derive a contradiction.

As seen in Figure 11(a), each job of a task with weight 1/3 consists of one three-slot window. Each job of

a task with weight 4/9 consists of four three-slot windows, with consecutive windows overlapping by one slot.

The �rst subtask of each task has a pseudo-deadline at slot 2. Because b has been eliminated, we can break this

tie arbitrarily. In slot 0, we schedule four of the tasks from set A. In slot 1, we schedule the other four tasks

from set A. In slot 2, the three tasks from set B are the only tasks with subtasks that are eligible for execution.

This means that we can only schedule three subtasks in slot 2, which is a contradiction.

Although the counterexample given here involves only light tasks, other counterexamples exist that involve

either heavy tasks only or a mixture of light and heavy tasks. 2

Our de�nition of D(Ti) ensures that if T is light and U is heavy and if subtask(T; t) = i ^ subtask(U; t) =

j ^ d(Ti) = d(Uj) ^ b(Ti) = b(Uj), then U has higher priority. The following theorem shows that it is necessary
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slot number: 0 1 2 3 4 5 6 7 8

A(8x1/3): 4 4 _

B(3x4/9): _ _ 3

_ _ _

_ _ _

_ _ _

(a)

slot number: 0 1 2 3 4 5 6 7 8 9 10

A(5x5/11): 2 3 _

2 3 _

2 2 1

B(2x19/22): 2 _ 1 4 _

1 1 2 2 1

1 1

_ 2

_ 2

_ 2

_ _ 2

_ 2

_ 2 ...

(b)

slot number: 0 1 2 3 4 5 6

A(3x5/7): 3 _

3 _

2 1 _

B(2x13/14): 1 1 _ _

_ 2 _ _

_ 2

_ _

_ _

_ _ ...

(c)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A(3x8/9): 3 _

3 _

3 _

B(10x14/15): 9 1 3 _

8 2 3 _

7 3 3 _

6 4 3 _

5 5 2 1

4 6 _ _

3 7 _ _

3 7 _ _

3 _ _ _

_ _ _ _

_ _

_ _

_ _

_ _

(d)

slot number: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A(3x8/9): 2 1

1 2

_ 3

B(10x14/15): 10 _ _ 3

10 _ _ 3

10 _ _ 3

9 1 _ 3

8 2 _ 3

7 3 2 1

6 4 1 2

5 5 _ 3

4 6 _ 3

4 6 _ 3

4 6

4 6

3 7

2 8

(e)

slot number: 0 1 2 3 4 5 6 7 8

A(9x7/9): 9 _

9 _

9 _

B(12x5/6): 8 4 5 4 _

4 8 _ _

_ 12 _ _

_ 12 _ _

_ _

(f)

slot number: 0 1 2 3

A(3x1/2): 3 _

B(2x3/4): _ 2

_ _

_ _

(g)

Figure 11: Counterexamples. (a) Theorem 3. (b) Theorem 4. (c) Theorems 5 and 8. (d) and (e) Theorem 6.
(f) Theorem 7. (g) Theorem 9.
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to tie-break such a situation in favor of the heavy task.

Theorem 4 Let us change the de�nition of D as follows: if T is light, then D(Ti) is a randomly-selected value.

Then, there exists a feasible task set that is not correctly scheduled.

Proof: Consider a task set consisting of a set A of �ve light tasks with weight 5/11 and a set B of two heavy tasks

with weight 19/22. Total utilization is four, so we should be able to schedule this task set on four processors.

Consider the schedule shown in Figure 11(b), which is possible given the proposed priority de�nition. In time

slot 10, there are only three subtasks that are eligible for execution. Contradiction. 2

The previous counterexamples give rise to the possibility that D(Ti) is actually only needed to tie-break

heavy tasks over light tasks. The next theorem shows that this is not the case.

Theorem 5 Let us change the de�nition of D as follows: if T is heavy, then D(Ti) is one (if T is light, then

D(Ti) is zero as before). Then, there exists a feasible task set that is not correctly scheduled.

Proof: Consider a task set, to be scheduled on four processors, consisting of a set A of three heavy tasks with

weight 5/7 and a set B of two heavy tasks with weight 13/14. The proposed priority de�nition allows the

schedule shown in Figure 11(c). Note that only three subtasks are eligible at time slot 3. Contradiction. 2

Given the previous counterexample, one may wonder if the de�nition of D can be weakened so that ties

among heavy tasks are statically resolved. The following theorem shows that this is unlikely.

Theorem 6 If D is changed so that ties among heavy tasks are statically broken by weight (as before, D is

de�ned to favor heavy tasks over light tasks), then there exists a feasible task set that is not correctly scheduled.

Proof: Consider a task set, to be scheduled on 12 processors, consisting of a set A of three heavy tasks with

weight 8/9 and a set B of ten heavy tasks with weight 14/15. First, suppose that D is de�ned to statically

tie-break the set-A tasks over the set-B tasks. Then, the schedule shown in Figure 11(d) is possible. In this

schedule, only 11 subtasks are eligible at time slot 8, which is a contradiction. Second, suppose that D is de�ned

to statically tie-break the set-B tasks over the set-A tasks. In this case, the schedule shown in Figure 11(e) is

possible. In this schedule, only 11 subtasks are eligible at time slot 14. Once again, we have a contradiction. 2

From the previous theorem, it follows that D almost certainly must be de�ned to dynamically tie-break

heavy tasks. (Note, for example, that Theorem 6 leaves open the possibility of statically de�ning D so that

some set-A tasks are favored over set-B tasks, but other set-A tasks are not favored over set-B tasks.) One

obvious approach to try that is \less dynamic" than ours is to de�ne D(Ti) based on the time of the next job

release of task T , which gives the deadline of the current job release of T . The next two theorems show that

using job deadlines does not work; in the �rst of these theorems, farther job deadlines are given higher priority,

and in the second, nearer job deadlines are given higher priority.
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Theorem 7 Let us change the de�nition of D as follows: if T is heavy, then D(Ti) is the time of the next job

release of task T . Then, there exists a feasible task set that is not correctly scheduled.

Proof: Consider a task set, to be scheduled on 17 processors, consisting of a set A of nine heavy tasks with

weight 7/9 and a set B of 12 heavy tasks with weight 5/6. The proposed priority de�nition allows the schedule

shown in Figure 11(f) (note that the newly-proposed de�nition of D favors set-A tasks over set-B tasks). In

this schedule, only 16 subtasks are eligible at time slot 4. Contradiction. 2

Theorem 8 Let us change the de�nition of D as follows: if T is heavy, then D(Ti) is 1=t, where t is the time

of the next job release of task T . Then, there exists a feasible task set that is not correctly scheduled.

Proof: A contradiction is reached by using the task set and schedule shown in Figure 11(c), which was used

previously in the proof of Theorem 5 (note that the newly-proposed de�nition of D favors set-A tasks). 2

In Section 5, we showed that neither b nor D is needed in two-processor systems. We do not know if both are

needed on all systems of three or more processors, but we do know that at least one is needed in any such system.

This is shown next. (Note that Theorems 3 through 5 and 8 apply on systems of four or more processors.)

Theorem 9 If our priority de�nition is changed by eliminating both b and D, then there exists a task set that

is feasible on three processors that is not correctly scheduled.

Proof: Consider a task set, to be scheduled on three processors, consisting of a set A of three heavy tasks with

weight 1/2 and a set B of two heavy tasks with weight 3/4. The proposed priority de�nition allows the schedule

shown in Figure 11(g). In this schedule, only two subtasks are eligible at time slot 1. Contradiction. (Note that

either b or D would correctly tie-break these tasks.) 2

7 Concluding Remarks

We have shown that in a Pfair-scheduled multiprocessor system, each task can be prioritized using a pseudo-

deadline and only two tie-break parameters. We have also presented a collection of counterexamples that shows

that an even simpler priority de�nition is unlikely. For the special case of a two-processor system, we have

shown that no tie-break parameters are needed. In proving that our priority de�nition su�ces, we have used an

inductive swapping argument in which any arbitrary Pfair schedule is converted into one allowed by our priority

de�nition. This proof reveals many properties fundamental to Pfair scheduling. Indeed, we view this proof as

one of the most important contributions of this paper because it gives researchers interested in Pfair-scheduled

systems a new set of techniques that can be applied to reason about such systems.

We ourselves have been able to extend the arguments given in this paper to show that our simpli�ed PD

algorithm can be applied to optimally schedule sporadic tasks [2]. In addition, we have shown that our algorithm

can be applied within a model that allows subtasks to sometimes execute prior to their windows [1]: in this
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model, if Ti and Ti+1 are part of the same job, then Ti+1 becomes eligible for execution immediately after Ti

executes. This model is attractive because less bookkeeping information is required at run-time for determining

when a subtask is eligible for execution. The results in [1] and [2] were obtained by layering some additional

reasoning on top of the swapping proof given in this paper. In both cases, very few changes to the swapping

proof were required. We believe that such results would have been very di�cult to obtain using the proof

techniques of the original PD paper [5].

Acknowledgement: We are grateful to Sanjoy Baruah, Mark Moir, and Srikanth Ramamurthy for many helpful

discussion on the subject of this paper.

References

[1] J. Anderson and A. Srinivasan. Early release pfair scheduling. Unpublished manuscript.

[2] J. Anderson and A. Srinivasan. Pfair scheduling of sporadic tasks. Unpublished manuscript.

[3] S. Baruah. Fairness in periodic real-time scheduling. In Proceedings of the Sixteenth IEEE Real-Time Systems

Symposium, pages 200{209, December 1995.

[4] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource

allocation. Algorithmica, 15:600{625, 1996.

[5] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on multiple resources. In

Proceedings of the the 9th International Parallel Processing Symposium, pages 280{288, April 1995.

[6] S. Baruah, J. Gehrke, C.G. Plaxton, I. Stoica, H. Abdel-Wahab, and K. Je�ay. Fair on-line scheduling of a

dynamic set of tasks on a single resource. Information Processing Letters, 64(1):43{51, October 1997.

[7] J. Vuillemin. A data structure for manipulating priority queues. Communications of the ACM, 21:309{315,

1978.

29



Appendix A: Proof of Properties (P1) through (P8)

In this appendix, we prove properties (P1)-(P8). As before, we restrict attention to a task set that fully utilizes

the available M processors, i.e.,
P

T2�
T:e
T:p

= M . Recall that T:e and T:p are assumed to be relatively prime

for each task T . Throughout this appendix, we let S denote an arbitrary Pfair schedule.

Before proving (P1), we state a simple property that indicates how a task's lag changes from slot to slot.

This property follows directly from the de�nition of lag given in (1).

Claim 1: Let U be any task and let t � 0. Then,

lag(U; t+ 1) =

8<
:

lag(U; t) + U:e=U:p; if U =2 St

lag(U; t) + U:e=U:p� 1; if U 2 St.
2

(P1) through (P6) pertain to just a single task. For brevity, we let T denote this task and abbreviate T:e

and T:p as e and p, respectively.

(P1) The windows of each task T are symmetric within each job of T , i.e., jw(Tke+i)j = jw(Tke+e+1�i)j, where

1 � i � e, and k � 0.

Proof: As explained in Section 2, lag(T; t) = 0 for t = 0; p; 2p; 3p; : : : . This implies that the windows of each

job of T are exactly the same. Thus, we can prove (P1) by simply considering the �rst job of T , i.e., by showing

that jw(Ti)j = jw(Te+1�i)j holds, where 1 � i � e. Call this job J . The proof proceeds as follows. We �rst

obtain a formula for the length of each window of J . Using this formula, we establish that the length of the ith

window of J is equal to the length of the (e + 1� i)th window of J .

We begin by deriving an expression that gives the last slot of each window of J (i.e., the deadline of the

corresponding subtask). Let ui be the total number of time slots up to and including the last slot of the ith

window, where 1 � i � e. Note that ui is the earliest slot t such that, if i � 1 units of computation of T have

been previously scheduled, but the ith unit of computation of T has not been previously scheduled, then not

scheduling the ith unit of computation in slot t would result in T 's lag exceeding one. By Claim 1, this implies

that ui is the minimum t such that t e
p
� (i � 1) � 1� e

p
. (We get t instead of t � 1 in this expression because

slots are numbered starting at 0. Thus, slot t is the (t+1)st slot, i.e., there are t previous slots.) Solving yields

ui =

8<
:

b ip
e
c; if 1 � i < e

p� 1; if i = e,

or equivalently,

ui =

�
ip

e

�
� 1:

Note that this last expression expression for ui matches Equation (5) given in Section 3 for d(Ti).

We now derive an expression that gives the �rst slot of each window of J (i.e., the slot at which the

corresponding subtask is released). Let ti be the total number of time slots up to and including the �rst slot
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of the ith window, where 1 � i � e. Then, ti is the earliest slot t such that, if i � 1 units of computation of T

have been previously scheduled, but the ith unit of computation of T has not been previously scheduled, then

scheduling the ith unit of computation in slot t would not cause T 's lag to be less than �1. By Claim 1, this

implies that ti is the minimum t such that t e
p
� (i � 1) > � e

p
. Solving yields

ti =

�
(i � 1)p

e

�

Notice that this expression for ti matches Equation (4) given in Section 3 for r(Ti). By de�nition, jw(Ti)j =

ui + 1� ti. Therefore,

jw(Ti)j =

�
ip

e

�
�

�
(i � 1)p

e

�
: (31)

We are now in a position to prove (P1).

jw(Te+1�i)j =

�
(e + 1� i)p

e

�
�

�
(e� i)p

e

�

=

��
(1� i)p

e

�
+ p

�
�

��
�ip

e

�
+ p

�

=

�
(1 � i)p

e

�
�

�
�ip

e

�

=

�
�(i � 1)p

e

�
+

�
ip

e

�

= �

�
(i� 1)p

e

�
+

�
ip

e

�

Thus, jw(Ti)j = jw(Te+1�i)j. 2

(P2) The length of each of task T 's windows is either
�
p

e

�
or
�
p

e

�
+1.

Proof: As in the proof of (P1), we can limit attention to subtasks Ti, where 1 � i � e, i.e., the subtasks of the

�rst job of T . By (31), we have

jw(Ti)j =

�
ip

e

�
�

�
(i� 1)p

e

�

=

�
ip

e

�
�

�
ip

e
�
p

e

�

=

�
ip

e

�
+

�
p

e
�
ip

e

�
:

It is easy to see that this last expression equals either
�
p

e

�
or
�
p

e

�
+1. 2

(P3) The �rst window of each job of a task is a minimal window of that task.

Proof: By (31), jw(T1)j =
�
p
e

�
. Thus, by (P2), w(T1) is a minimal window of T . As noted before, this implies
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that the �rst window of each job of a T is a minimal window of T . 2

(P4) A task has a 2-window if and only if it is heavy.

Proof: As shown above, jw(T1)j =
�
p
e

�
. Note that jw(T1)j = 2 if and only if e

p
� 1

2
. Thus, a task is heavy if

and only if its very �rst window (and hence, the �rst window of each of its jobs) is a 2-window. 2

(P5) If t and t0 are successive group deadlines of a heavy task T , then t0 � t is either
j

p

p�e

k
or
j

p

p�e

k
+ 1.

Proof: As before, (P5) can be proved by considering just the �rst job J of T (taking the \last" group deadline

before J to be at time �1). Suppose that each subtask of J is scheduled in the �rst slot of its window. Then,

the slots that remain empty exactly correspond to the group deadlines of T . We can analytically determine

which slots must be empty, and thereby deduce expressions for characterizing each of J 's group deadlines. If J

has just a single group deadline, then it must be the last slot of J , i.e., all group deadlines of T are job deadlines.

It can be shown that this is the case if only if e = p� 1. Thus, the distance between any two consecutive group

deadlines is exactly p =
j

p

p�e

k
. In the rest of the proof, we assume that J has multiple group deadlines, which

implies that it has at least one 3-window.

Let t1 be the middle slot of the �rst 3-window of J . Because each subtask of J is executed in its �rst slot, a

subtask of T is scheduled in each slot prior to t1, and no subtask of T is eligible to be scheduled in slot t1. By

Claim 1, this implies that t1 is the minimum u satisfying

lag(T; u) = u(e=p� 1) � �e=p:

Thus, t1 is the minimum u satisfying u � e=(p � e). Because t1 is an integer, we have t1 =
l

e
p�e

m
. This gives

us the position of J 's �rst group deadline.

Suppose that J has a second 3-window. Let t2 be the middle slot of this window. We can calculate an

expression for t2 as above. In this case, t2 is the minimum u satisfying

lag(T; u) = (u� 1)(e=p � 1) + e=p � �e=p:

The above expression given for lag(T; u) follows from Claim 1 and the fact that subtasks of T have been

scheduled in all previous slots but one. Solving as before, we get t2 =
l
e+p

p�e

m
. This gives us the position of J 's

second group deadline.

Generalizing this argument, and using the fact that J 's last group deadline is at slot p� 1, we can conclude

that J has p� e group deadlines, t1; : : : ; tp�e, where

tj =

�
e + (j � 1)p

p� e

�
: (32)
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any subtask

t+1t

[

j
]

i+1
T i

Uj

[
k

Vk

Figure 12: Proof of P7. r(Ti+1) > t, d(Uj) > t, and each subtask scheduled after t is released after t.

Now, consider the following.

tj+1 � tj =

�
e + jp

p� e

�
�

�
e+ (j � 1)p

p� e

�

=

�
e + jp

p� e

�
�

�
e+ jp

p� e
�

p

p� e

�

=

�
e + jp

p� e

�
+

�
p

p� e
�
e + jp

p� e

�

It is straightforward to show that this last expression equals either
j

p
p�e

k
or
j

p
p�e

k
+ 1. 2

(P6) Let T be a heavy task with more than one group deadline per job. Let t and t0 (respectively, u and

u0) be successive group deadlines of T , where t0 (respectively, u0) is the �rst (respectively, last) group deadline

within a job of T (for the �rst job of T , take t to be �1). Then, t0 � t = u0 � u+ 1.

Proof: By (P1), the windows of each job J of T are symmetric. The reason why t0� t is one greater than u0�u

is that, while the last slot of T is a group deadline, the �rst slot of T is not. Thus, t0 is the middle slot of the

�rst 3-window of J and t is the last slot of the job of T before J (or �1 if J is the �rst job of T ). In contrast,

u0 is the last slot of J , and u is the middle slot of the last 3-window of J . 2

(P7) Let S be a Pfair schedule for M = 2 processors. Suppose that Ti 2 St, Uj 2 St, and d(Uj) > t. Then,

there exists a subtask Vk scheduled in S after slot t such that r(Vk) � t. Informally, if Uj is \right-movable"

out of slot t, then some Vk must be \left-movable" into t.

Proof: Because Ti 2 St, we have r(Ti+1) � t. If r(Ti+1) = t, then (P7) clearly holds | informally, Ti+1 is

\left-movable" into slot t. In the remainder of the proof, we assume that

r(Ti+1) > t: (33)

Suppose, to the contrary of (P7), that there is no subtask Vk that is scheduled in S after slot t such that

r(Vk) � t (see Figure 12). By Claim 1, this implies that for each task V other than T and U , lag(V; t) � �wt(V ),

where wt(V ) is the weight of V . (Note that, because M = 2, no such V has a subtask scheduled at time t.) Let
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� denote the set of all tasks. Then,

X
V 2��fT;Ug

lag(V; t) � �
X

V 2��fT;Ug
wt(V ): (34)

By Claim 1 and our assumption that
P

V2� wt(V ) = M , it follows that
P

V2� lag(V; t) = 0. Therefore,

X
V 2��fT;Ug

lag(V; t) = �lag(T; t)� lag(U; t) (35)

Because M = 2,
P

V2� wt(V ) = 2. This implies that

X
V 2��fT;Ug

wt(V ) = 2� wt(T )� wt(U ) (36)

By (34), (35), and (36), we have

lag(T; t) + lag(U; t) � 2� wt(T ) � wt(U ): (37)

Because d(Uj) > t, by Claim 1, we have lag(U; t) < 1� wt(U ). Thus, by (37),

lag(T; t) > 1�wt(T ): (38)

This implies that t is a pseudo-deadline of T , i.e., d(Ti) = t. We claim also that b(Ti) = 1. To see this, note

that b(Ti) = 0 holds if and only if t is the last slot of a job of T . As explained in Section 2, each task has a

lag of 0 at each slot that begins a new job. Thus, if b(Ti) = 0, then by Claim 1, lag(T; t) = 1 � wt(T ). This

contradicts (38).

We have thus established that d(Ti) = t and b(Ti) = 1. However, this implies that r(Ti+1) = t, which

contradicts (33). Thus, our assumption that (P7) does not hold is false. This completes the proof. 2

(P8) Let S be a Pfair schedule for M = 2 processors. Consider time slots t and u, where t < u. Let A be the

set of all subtasks scheduled by S in [t; u]. Suppose that there exists some task W that has no subtask in A.

Then, there exists a subtask Ti 2 A such that r(Ti) < t or d(Ti) > u.

Proof: Suppose, to the contrary, that

(8Ti : Ti 2 A :: r(Ti) � t ^ d(Ti) � u):

For any task V that has a subtask in A, let V:n denote the number of such subtasks in A. Let Vk (respectively,

Vl) be the �rst (respectively, last) subtask of V scheduled in the interval [t; u]. Then, V:n = l � k + 1. Because

V is in A, d(Vl) � u and r(Vk) � t. Thus, d(Vl)� r(Vk) � u� t. Therefore, by Equations (4) and (5) in Section
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3, we have
�l

l�V:p
V:e

m
� 1

�
�

�
(k � 1)�V:p

V:e

�
� u� t. Hence,

�
l � V:p

V:e

�
�

�
(k � 1) � V:p

V:e

�
� u� t + 1:

Because
l
l�V:p
V:e

m
�

l�V:p
V:e

and

�
(k � 1)�V:p

V:e

�
�

(k � 1)�V:p
V:e

, we have

l �
V:p

V:e
� (k � 1) �

V:p

V:e
� u� t+ 1:

This implies that
V:p

V:e
�

u� t+ 1

l � k + 1
;

which implies that
V:e

V:p
�

V:n

u� t+ 1
:

From this, we conclude that X
V s.t. Vi 2 A

V:e

V:p
�

X
V s.t. Vi 2 A

V:n

u� t+ 1
:

Because there are a total of 2(u� t + 1) slots in [t; u] (recall that M = 2), we have

X
V s.t. Vi 2 A

V:n = 2(u� t+ 1):

Therefore, X
V s.t. Vi 2 A

V:e

V:p
� 2:

Given that there exists some task W that has no subtask in A, it follows that total utilization exceeds two.

This contradicts the fact that the given task set is feasible for two processors. 2
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Appendix B: PD Run-time Algorithm

In this appendix, we brie
y describe the PD run-time algorithm proposed in [5]. This algorithm is shown in

Figure 13.

The PD algorithm uses binomial heaps [7] to make scheduling decisions e�ciently in O(M logN ) time, where

M is the number of processors in the system and N is the number of tasks. Multiple binomial heaps are used.

These include (i) a heap H that stores the subtasks that are currently eligible to be scheduled, and (ii) a heap

Ht for each future time slot t when one or more subtasks will become eligible. A subtask Ti is inserted into some

Ht when its predecessor, Ti�1, is scheduled. Because there are N tasks, the number of non-empty binomial

heaps is at most N + 1.

Binomial heaps require that a \key" be associated with each item to be stored. These keys determine the

internal structure of the heap. In the PD algorithm, each subtask's \key" is its priority. Of course, PD priorities

were assumed in [5], but the algorithm is still correct if the simpler priority de�nition given in Section 3 is used.

Binomial heaps support the following operations (in this list, H and H0 denote arbitrary binomial heaps).

� MakeHeap(): Returns a pointer to an empty heap.

� BuildHeap(S): Takes a set of elements S as input and returns a heap containing those elements.

� Insert(H;T ): Inserts task T into heap H.

� ExtractMin(H): Extracts the task with highest priority (minimum key) from heap H.

� Union(H;H 0): Returns a heap that is the union of H and H0.

Makeheap takes O(1) time and BuildHeap takes O(N ) time. The other operations take O(logN ) time.

Each iteration of the main loop in lines (3)-(14) schedules M tasks in time slot t (for simplicity, it is assumed

here that total utilization is M , so there are at least M eligible subtasks at all times). The processing of line

(1), i.e., building an initial heap of N subtasks, takes O(N ) time. This is not included in the per-slot time

complexity of the algorithm because this step is performed only once, at the start of the algorithm.

The per-slot time complexity is O(M logN ) if we assume that the tests in lines (9) and (17) take O(logN )

time. To see this, note that the repeat loop iterates M times at each step, and each iteration takes O(logN )

time. To ensure that the tests at lines (9) and (17) take O(logN ) time, an O(logN ) search structure can be

used that contains a pointer to each nonempty binomial heaps Ht, where t � 1. Examples of such structures

include red-black trees and AVL trees.
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Algorithm PD
(0) begin
(1) H := BuildHeap(� );
(2) t := 0;
(3) while true do
(4) repeat
(5) T := ExtractMin(H);
(6) \Schedule task T in slot t";
(7) t0 := \the earliest future time at which task T will be eligible again";
(8) Requeue(T , t0)
(9) until \M tasks have been scheduled in slot t";
(10) if \Heap Ht+1 exists" then
(11) H := Union(H, Ht+1)
(12) �;
(13) t := t + 1
(14) od
(15) end

Requeue(T , t)
(16) begin
(17) if \Heap Ht does not exist" then
(18) Ht := MakeHeap()
(19) �;
(20) \Determine T 's priority at time t";
(21) Insert(Ht, T )
(22) end

Figure 13: The PD run-time algorithm.
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Appendix C: C Program for Generating Windows

/* This program generates the windows of a task with weight e/p, where *

* e is the execution time requirement of the task and p is the period *

* of the task. This program can be downloaded from the web at the *

* following URL: http://www.cs.unc.edu/~anderson/ndraw.c */

#include <stdio.h>

main(){

int exec,period,gcd_of_ep;

int i,j;

int windowno; /* represents the window numbers */

int count; /* represents the number of slots from the start of the current period */

int start; /* represents the number of slots before the start of the current period */

int lag; /* represents the (lag_value * period) */

printf("\n---------------------------------------------------------------\n");

printf("This program prints out the windows of a task in a period given its weight.\n");

printf("The weight is assumed to be a fraction e/p, where e is the execution\n");

printf("requirement and p is the period.\n");

printf("\n---------------------------------------------------------------\n");

while(1){

printf("\nPlease enter the values of e and p (e = 0 to exit).\n");

printf("e : ");

scanf("%d",&exec);

if (exec == 0)

exit(0);

printf("p : ");

scanf("%d",&period);

if (exec > period){

printf("****************************************************\n");

printf("The value of e should be smaller than the value of p\n");

printf("****************************************************\n");

continue;

}
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for (i=0; i<period; i++){

printf("%2d ",i);

}

printf("\n-------------------------------------------------------------\n");

/* Normalize the weight so that e and d are relatively prime. */

gcd_of_ep = gcd(period,exec);

exec = exec/gcd_of_ep;

period = period/gcd_of_ep;

/* Initialize values */

count = 0;

start = 0;

windowno = 1;

lag = 0;

/* Start printing out the windows, with the window of each subtask on a *

* different line. The windows have to be repeated gcd number of times. */

for (i=1; i<=gcd_of_ep; i++){

while(count < period){

printf("%2d ",windowno);

count++;

lag += exec;

if (lag >= period){

/* a new window will start */

printf("\n");

for(j=1;j<start+count;j++)

printf(" ");

lag = lag - period - exec;

windowno++;

if (count != period)

count--;

}

}

/* Update values at the end of new period. */
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start += period;

lag = 0;

count = 0;

printf(" ");

}

}

}

/* Calculates GCD of a and b. */

int gcd(int a, int b){

if(b == 0)

return a;

else

return gcd(b, a%b);

}
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