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Abstract
Understanding the nature and structure of web traffic is

essential for valid simulations of networking technologies
that affect the end-to-end performance of HTTP connections.
We provide data suitable for the construction of synthetic
web traffic generators and in doing so retrospectively exam-
ine the evolution of web traffic. We use a simple and effi-
cient analysis methodology based on the examination of
only the TCP/IP headers of one-half (server-to-client) of the
HTTP connection. We show the impact of HTTP protocol
improvements such as persistent connections as well as
modern content structure that reflect the influences of “ban-
ner ads,” server load balancing, and content distribution
networks. Lastly, we comment on methodological issues
related to the acquisition of HTTP data suitable for perform-
ing these analyses, including the effects of trace duration and
trace boundaries.*

1. Introduction
Since the mid-1990s, web traffic has been the dominant

traffic type on the Internet, representing more bytes, pack-
ets, and flows on the Internet than any other single traffic
class. Given this dominance, when performing network
experiments and simulations involving end-to-end perform-
ance issues, it is essential that one consider both the effects
of web traffic on the mechanism/protocol under study as
well as the effects of the technology under study on the per-
formance of web traffic.

However, since the mid-1990s the web has evolved from
a simple hypertext document delivery system to a sophisti-
cated client-server system for delivering a vast array of static
and dynamic media. The HTTP protocol is now routinely
used to deliver content once carried on more specialized ap-
plication-level protocols. For example, the web is now the
de facto user-interface for many remote data processing sys-
tems, commercial transactions, and email, news, and instant
messaging systems. Our goal is to discover and document
the evolving nature and structure of web traffic and, by do-
ing so, inform researchers who need accurate characteriza-
tions of web traffic in order to simulate “Internet traffic.”
                                                
* This work supported in parts by grants from the National Science Foun-
dation (grants ITR-0082870, CCR-0208924, EIA-0303590, and ANI-
0323648), Cisco Systems Inc., and the IBM Corporation.

We report on the analysis of nearly 1 terabyte of TCP/IP
header traces collected in 1999, 2001, and 2003 from the
gigabit link connecting the University of North Carolina at
Chapel Hill (UNC) to its Internet service provider. In addi-
tion, we compare our results to smaller but similar meas-
urements taken by other researchers in the 1995 to 1998
time frame. Beyond documenting the evolution of the web,
we contribute to the simulation community:
• Empirical data suitable for constructing traffic generating

models of contemporary web traffic,
• New characterizations of TCP connection usage showing

the effects of HTTP protocol improvement, notably per-
sistent connections, and

• New characterizations of web usage and content structure
that reflect the influences of “banner ads,” server load
balancing, and content distribution.
A novel aspect of this study is a demonstration that a

relatively light-weight methodology based on passive trac-
ing of only TCP/IP headers from one direction of the TCP
connection (e.g., TCP/IP headers from packets flowing
from web servers to web clients) was sufficient for provid-
ing detailed data about web traffic. These data were obtained
without ever examining HTTP headers thus allowing us to
address users’ privacy concerns by simply anonymizing
source and destination addresses in our traces. Moreover,
unidirectional tracing of only TCP/IP headers greatly re-
duced the processing complexity and storage overhead of the
tracing effort (compared to capturing HTTP headers).

In this paper we present retrospective and new analyses
of web traffic and investigate some methodological issues
concerning the acquisition of the data. Specifically, to as-
sess the evolution of the web we present a comparison of
the UNC data to those obtained in the seminal Mah [10],
and Barford, Crovella, et al. [2-4, 7], measurement studies.
We also report new web-page-level and user-level statistics
including the use of primary and non-primary web servers to
deliver content, the number of request/response exchanges
(i.e., the number of “objects”) per page, and the number of
page requests per user.

Finally, we present an analysis of the impact of the trac-
ing duration on our ability to fully capture the complete
distribution of a variety of statistics. The issue here is to
determine (qualitatively) how sensitive various types of
characterizations are to the length of the trace. This issue is
important both for reasons of ensuring correctness/accuracy
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of the computed distributions and for assessing the compu-
tation and storage requirements to acquire and process traces.

Our primary observations and conclusions are:
• The size of HTTP requests has been steadily increasing,
• The majority of HTTP responses are decreasing in size,

while the very largest responses are increasing in size,
• Web page complexity, as measured by the number of

objects per page and the numbers of distinct servers pro-
viding content per page, is increasing, and

• When measuring HTTP traffic on high-speed links, 90-
second observation intervals are sufficient to capture rea-
sonable estimates of most structural properties (i.e.,
non-user behavioral properties) of HTTP connections.
In total these results demonstrate that usage of the web

by both consumers and content providers has evolved sig-
nificantly and make a compelling case for continual moni-
toring of web traffic and updating of models of web traffic.
Moreover, our work demonstrates that such continual moni-
toring can be performed with very modest effort.

The remainder of this paper presents these data. Section
2 briefly reviews related work in web traffic modeling. Sec-
tion 3 briefly reviews the tracing procedure and characteris-
tics of the UNC network. Section 4 presents new distribu-
tions of web page and user-level statistics for data collected
at UNC in 1999, 2001, and 2003. For a more historical
(and methodological) perspective, Section 5 compares these
UNC data with those obtained by Mah, Barford, and Crov-
ella, et al. in 1995 and 1998. Section 6 presents the results
of an analysis into the impact of tracing duration on the
reported distributions.

2. Related Work
Web traffic generators in use today are usually based on

data from the two pioneering measurement projects1 that
focused on capturing web-browsing behaviors: the Mah
[10], Barford, and Crovella, et al., [2, 4, 7] studies. Traffic
generators based on both of these sources have been built
into the widely used ns network simulator [5] that has been
used in a number of studies related to web-like traffic, e.g.,
[8, 11]. These models have also been used to generate web-
like traffic in laboratory networks [3, 6]. For both sets of
measurements, the populations of users were highly distinc-
tive and the sizes of the traces gathered were relatively
small. Mah captured data from a user population of graduate
students in the Computer Science Department at UC Ber-
keley. His results were based on analysis of approximately
1.7 million TCP segments carrying HTTP protocols. The
measurement programs by Barford and Crovella reflected a
user population consisting primarily of undergraduate stu-
dents in the Computer Science Department at Boston Uni-
versity and in aggregate represented around 1 million refer-
ences to web objects. In addition, both sets of data are now
quite old. The Mah data were collected in 1995 and the Bar-
ford and Crovella, et al., data in 1995 and 1998. It is espe-

                                                
1 Arlitt and Williamsom presented in [1] an earlier study of web traffic
conducted using modest-size data sets.

cially important to note that these studies were conducted
before significant deployment of HTTP version 1.1 protocol
implementations. For comparison, our study involved traces
consisting of over 1.6 billion TCP segments generated by a
user population of approximately 35,000 users and repre-
senting the transfer of almost 200 million web objects.

3. Data Sets Considered
The data used in our study were obtained using the

methods described in [12]. Briefly, our analysis method con-
sists of analyzing unidirectional traces of TCP/IP headers
sent from web servers to clients (browsers) in order to infer
application-level characteristics of HTTP. In particular, we
exploit properties of TCP’s sequence number and acknow-
ledgement number increases to determine request and re-
sponses sizes [12].

Here we provide results for three sets of traces: one set
taken in Fall 1999, one in Spring 2001, and one in Spring
2003. The Fall 1999 traces were collected during six one-
hour sampling periods (8:30-9:30 AM, 11:00-12:00 noon,
and 1:30-2:30, 4:00-5:00, 7:30-8:30, and 10:00-11:00 PM)
over seven consecutive days. This set of 42 traces will be
referred to “UNC 99.” In the following, a “trace set” con-
sists of all the TCP/IP headers collected during these sam-
pling intervals.

The Spring 2001 traces were collected during three 4-
hour sampling periods each day for seven consecutive days.
The sampling periods were 8:00-12:00 noon, 1:00-4:00PM,
and 7:30-11:30PM giving a total of 21 4-hour traces. This
set of traces will be referred to as “UNC 01.”

The third trace set (“UNC 03”) consists of 56 one-hour
traces collected at 5, 6, 10, and 11 AM, and 3, 4, 9:30 and
10:30 PM, also collected over seven consecutive days.

When the UNC 99 traces were gathered, our campus was
connected to the ISP by an OC-3 (155 Mbps) full-duplex,
ATM link. This link carried all network traffic between the
campus and the “public” Internet. Traffic between the cam-
pus and Internet 2 sites was routed over a separate OC-3
link. We placed the monitor on the OC-3 link to the “pub-
lic” Internet.

When the 2001 traces were collected 18 months later, the
ISP link had been upgraded to OC-48 (2.4 Gbps) and used
Cisco-proprietary DPT technology. Fortunately, all the
traffic between the campus and the Internet traversed a single
dedicated full-duplex Gigabit Ethernet link from the campus
aggregation switch to the edge router with the DPT inter-
face. In this configuration, both “public” Internet and Inter-
net 2 traffic are merged in one Gigabit Ethernet link. For
the 2001 and 2003 traces we placed a monitor on this link.

4. Analysis of TCP Connections Used for
HTTP

4.1  Request and Response Data Sizes
Given the analysis methods described above, it is

straightforward to compute empirical distributions of HTTP
request and response sizes. Figures 1 and 2 give the cumula-
tive distribution function (CDF) and complementary CDF
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(CCDF), respectively, for HTTP request sizes while Figures
3 and 4 give the CDF and CCDF, respectively, for HTTP
response sizes. These results confirm the observation that
HTTP requests are becoming larger over time in both the
body and tail of the distribution. In contrast, HTTP re-
sponses show a trend toward a larger proportion of smaller
responses in the range of 200 bytes to 10,000 bytes. For
example, in the 1999 traces about 47% of responses were
1,000 bytes or smaller while in the 2003 traces, about 59%
of the responses were 1,000 bytes or less. The tail of the
distribution shows a slight trend toward increased frequency
of very large responses.

We also observe that the CCDFs for the 2001 and 2003
response sizes are approximately linear over nearly five or-
ders of magnitude, which is consistent with a very heavy-
tailed distribution. Note also that the tails of the response
size distributions exhibit a systematic “wobbling,” with
knees around 100 KB and 3 MB. This phenomenon was
studied in detailed in [9] using data from 2000 and 2001.

4.2  User and Web Content Characterizations
Because we do not have access to any of the HTTP pro-

tocol headers, we must use heuristics to infer characteristics
of user and browser behavior from the analysis of TCP con-
nections. The first step in this process is to aggregate TCP
connection traces by unique client IP addresses. We then
create a time-sorted summary of the TCP connection activ-

ity between each individual client and the server(s) that cli-
ent used. We assume that in the vast majority of cases a
client IP address identifies a single human user running one
or more browser instances on a personal computer or work-
station. Although we know that there are times when mul-
tiple users concurrently run browsers on a shared compute
server (single client IP address), we believe this to be rare
on our campus where there are basically one or more com-
puters for each Internet user. Even though the vast majority
of computers on our campus have IP addresses assigned by
DHCP, we have confirmed that the reuse of a given IP ad-
dress on different machines during a single trace is rare be-
cause leases last eight hours or more. Further, many of the
larger DHCP servers maintain a fixed mapping of IP address
assignments to Ethernet MAC addresses.

The time-sorted summary of TCP connections used by a
client contains the connection start times, the server IP ad-
dress for each connection, the beginning time and size in
bytes of each request in all connections, the beginning and
ending times and size of each response, and the ending time
of the connection. We then use this time-ordered informa-
tion to infer certain characteristics of the activity of each
user or the browser software.

Using a heuristic approach similar to those developed
originally by Mah [10] and Barford and Crovella [2-4], we
attempted to identify points in each client’s activity that are
likely to mark a request for a new (or refreshed) page. We
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Figure 1: Cumulative distribution of request data sizes
(100 – 2,000 bytes).

Figure 2: Complementary cumulative distribution of
request data sizes greater than 100 bytes.
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Figure 3: Cumulative distribution of response data sizes
(100 – 100,000 bytes).

Figure 4: Complementary cumulative distribution of
 response data sizes greater than 10,000 bytes.
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use the term “page” as a convenient label for a web object
referenced in a “top-level” sense, i.e., not referenced through
interpreting references found internal to some other object
(e.g., embedded references in HTML). We also use the term
“object” synonymously with a response from a web server.
Server responses that are error reports (e.g., “404 – Not
found”) or responses to conditional-GET requests (e.g., “304
– Not Modified”) are counted as objects (or pages) in this
discussion. We assume that page references normally occur
after some period of idle or “think” time at the client, e.g.,
the time a user spends digesting the contents of one browser
display and selecting (or entering) a link to a new page.
This same model of a page request following an idle period
also captures the behavior of periodically refreshed pages.

We define an idle period heuristically by examining the
time-ordered set of TCP connections used by a client. We
identify periods in which the client either has no established
TCP connections or where no established connection has an
active request/response exchange in progress. We consider a
request/response exchange to be active from time the request
begins until the corresponding response ends. If any such
period persists for longer than a time threshold, it is classi-
fied as an idle period. We found empirically that a threshold
of 1 second works well for distinguishing idle periods (as
did Mah and Barford and Crovella). It is important to note
that this approach works only on traces for which we can be
reasonably certain that all the TCP connections for a given
browser appear in the traces.

We consider the initial request/response exchange follow-
ing an idle period to be for the “top-level” page object (typi-
cally HTML) and all the subsequent request/response ex-
changes before the next idle period to be for the “embedded”
object references (typically images) within the initial page
object. The server IP address involved in the request/re-
sponse exchange for the top-level page object is considered
to be the primary server for the page. All server IP addresses
not equal to the primary IP address involved in subsequent
request/response exchanges for objects related to that page
are considered to be non-primary servers. Embedded objects
may come from either the primary or non-primary server(s).

Using this approach we obtained a number of distribu-
tions that characterize user browsing activities and web con-
tent. Distributions for user “think” time and the number of
unique server IP addresses per page are reported in [12] for
the 1999 traces and are not repeated here for space considera-
tions. The distribution of server IP addresses reflects the
ways page content is obtained dynamically from a number
of sources including advertisements from agency sites and
explicit content distribution services (e.g., Akamai).

We now report briefly on additional interesting results
that provide some insight into how users access web objects
and how web content is organized and distributed among
servers. In interpreting these data it is important to keep in
mind that all the web traffic we observed represents only
objects that were not be obtained from local browser caches.
The six-year time span of our three data sets is used to draw
contrasts in the evolution of web traffic. In addition, in Sec-
tion 6 we illustrate the effect of longer tracing intervals by

comparing the 1999 and 2003 data sets (one-hour-long
traces) with the 2001 data set (4-hour-long traces).

Figures 5 and 6 give the CDF and CCDF, respectively,
of the number of top-level page requests per unique client
(browser) IP address observed in the traces. The same IP
address appearing in different traces is counted as a different
address and hence as a different “user instance.” We counted
140,522 client addresses for the 1999 traces, 238,287 for
2001, and 532,555 for 2003. If we assume that a unique
client IP address represents a single “user instance,” by the
reasoning given earlier, we can infer characteristics of user
browsing activity. A slight majority of users were observed
to make more than 10 top-level page requests during the
one-hour tracing intervals used in 1999. There were some
users, however, (about 5%) that made more than 100 page
requests in one hour. Notice that these distributions change
noticeably for 2001 because we traced for 4-hour intervals.
For example, in 2001 we found that about 65% of the iden-
tified users request more than 10 pages in a 4-hour interval
and 15% request more than 100 pages. Figure 6 likely indi-
cates the existence of pages that are automatically refreshed
at very short intervals (but greater than one second — the
threshold for identifying page boundaries).

Figures 7 and 8 give the CDF and CCDF, respectively,
of consecutive top-level page requests by a given user
(unique client IP address) to the same primary server IP ad-
dress. The plot of the body of the distributions shows that
an increasingly large percentage of consecutive top-level
page references made by the same user go to a different
server IP address than the immediately prior reference (from
68% in 1999 to 77% in 2003). We believe these results
reflect the basic organization of web servers for a web site
into “server farms” for load balancing and content distribu-
tion. The presence of a heavy tail in the distribution of con-
secutive page requests to the same server is consistent with
the earlier observation of automatically refreshed pages.

Web page structure is reflected to some extent in Figure
9 that shows the distribution of objects (top-level plus em-
bedded) per page as inferred from our analysis. While the
proportion of quite simple pages appears to be large (over
40% of pages have no embedded objects and 67-75% of
pages are composed of three or fewer objects), there are sig-
nificant numbers of pages with complex structure. It is
again important to keep in mind that many objects in pages
that a user views often may be cacheable (in browser caches)
and not be included in our traces.

Because embedded page content is often from a number of
sources including advertisements from agency sites and ex-
plicit content distribution sites, it is interesting to see if we
find differences in the characteristics between primary and
non-primary servers. Recall that a primary server is defined
as the server from which the top-level page is requested and a
non-primary server is any server other than the primary
server from which embedded content is obtained. Figure 10
gives the distribution of the number of objects per page
(top-level plus embedded) from primary and non-primary
servers (the top-level object comes from the primary server
by definition). We find that about 76% of pages in the 1999
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and 2001 data sets require only one object from the primary
server, and this percentage increases to 84% in 2003. We
also observe that around 40% of pages required more than
one object from a non-primary server, further reflecting the
popularity of multi-server website and content-distribution
networks. Furthermore, we see an increase in the number of
pages that have a large number of embedded objects from
non-primary servers. For example, in 1999, 34% of pages

required more than one object from a non-primary server,
compared with 40% in 2001 and 2003.

Figures 11 and 12 give the CDF and CCDF, respec-
tively, for request sizes from primary and non-primary serv-
ers. Figures 13 and 14 show the corresponding response
sizes. We find only minor differences in request and response
sizes between primary and non-primary servers and all of
them are in the tail of the distributions. More very large
requests are sent to primary servers compared to non-primary
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Figure 5: Cumulative distribution of the number of page requests
made from unique client IP addresses during a tracing interval

(1 hour in 1999 and 2003, 4 hours in 2001).

Figure 6: Complementary cumulative distribution of the
number of page requests made from unique client IP addresses

during a tracing interval.
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Figure 8: Complementary cumulative distribution of the
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servers, while non-primary servers appear to have a slightly
greater proportion of very large responses.

4.3  Limitations of the Methodology
Our analysis methods are based on making inferences

from the limited information available in the TCP/IP proto-
col header for one direction of a TCP connection. There are
a number of inherent limitations and uncertainties that arise
when making these inferences. However, the degree of un-
certainty in the results is not uniform. For characterizations
of TCP connection-level properties such as the sizes and
numbers of request/response exchanges, the methodology
should produce very good results. For other characterizations
of the Web, especially those that depend on identifying
pages or classifying requests and responses as belonging to
primary or non-primary servers, there is greater uncertainty.
We have identified four classes of issues that contribute to
uncertainty in the results: pipelined exchanges, user/browser
interactions (such as using the “Stop” and “Reload” browser
buttons), browser and proxy caches, and TCP segment proc-
essing to deal with packet loss, duplication and reordering in
the network. Each of these is discussed fully in [12].

5. Comparison with the Mah, Barford, and
Crovella, et al., Studies
In this section we compare our empirical distributions

with the published results from the Mah, Barford, and Crov-

ella, et al., studies. Barford, et al., presented in [4] two data
sets of HTTP traffic, collected in 1995 (“W95”) and 1998
(“W98”). (The well-known SURGE traffic generator for web
workloads [2] is based on the W98 data.) The data from
1995 was acquired by instrumenting the web browsers in a
computer lab used by computer science students at Boston
University. The 1998 data set was acquired by instrument-
ing a transparent proxy server used by a similar group of
students at Boston University. Mah’s data was acquired in
September 1995, using packet tracing on an Ethernet seg-
ment in the Computer Science department at the University
of California at Berkeley. Both studies reflect relatively
small and homogeneous populations of users.

A common element in all three studies is the distribu-
tion of response sizes. Summary statistics for these distri-
butions are given in Table 1. The number of samples con-
sidered in our distributions is two orders of magnitude larger
than that of Barford and Crovella, and four orders of magni-
tude larger than that of Mah. The maximum response size
observed in our study is significantly larger.

Barford, et al. present in [4] hybrid lognormal-Pareto
models of response sizes for both data sets that accurately
match their empirical data. Figure 15 compares the body of
these models (the lognormal part) with the distributions
obtained from our data. We believe the striking differences
seen in this figure are a clear reflection of how web objects
are evolving over time and make a clear statement about the
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Figure 11: Cumulative distribution of request data sizes
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Figure 12: Complementary cumulative distribution of request data
sizes greater than 100 bytes for primary and non-primary servers.
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need for continual updating of web models. For instance,
the percentage of responses that had a length of 1,000 bytes
or less increased from 23% as reported in W95 to 60% as
reported in our 2003 data with the W98, UNC99, and
UNC01 results falling between them. A similar result is
presented in Figure 17, which compares the empirical dis-
tribution of response sizes in Mah’s study with UNC data.

Barford, et al. model the tail of the distribution of re-
sponse sizes using Pareto distributions with different pa-
rameters for each of the sets. Figure 16 compares these tails
with UNC data. Our data matches the analytic model they
fit to the W98 data remarkably well. It is interesting to note
that this model matched their empirical data up to sizes of
105 (based on their observations of response sizes slightly
larger than about 106 bytes). It did, however, predict very

accurately the heavy tail we find in our data up to sizes of
109 bytes. Considering the differences in the sizes of the
data sets, the user populations, and the years the data were
obtained, this is a strong confirmation of their results.
However, this analytical fitting does not capture the wob-
bling of the tail, that is more properly modeled using a
mixture of distributions, as described in [9]. The compari-
son with the tail of Mah’s distribution as given in Figure
18 shows that the heavy tail properties of response sizes
were not adequately captured in his empirical distributions.

Another set of distributions common to the three studies
is the number of top-level and embedded objects per page.
The analytical distributions derived by Barford and Crovella
and used in two different versions of the SURGE workload
generator [2, 3] are compared with our results in Figure 19.

(Their analytical distributions are Pareto so we
evaluated them for integer values.) Their two dis-
tributions are quite different from each other, with
the first one (SURGE98) being much lighter than
the second (SURGE99). The model in SURGE99
[3] is remarkably close to our data for values be-
yond ten objects per page but differs substantially
for 5 or fewer objects per page. This may reflect
some differences in the methods and heuristics
used to identify pages. The corresponding distri-
bution from Mah’s study, shown in Figure 20,
differs substantially from the empirical distribu-
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Figure 15: Cumulative distribution of response
data sizes, SURGE v. UNC traces.

Figure 16: Complementary cumulative distribution of response
data sizes greater than 10,000 bytes, SURGE v. UNC traces.
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Figure 17: Cumulative distribution of response
data sizes, Mah v. UNC traces.

Figure 18: Complementary cumulative distribution of response
data sizes greater than 10,000 bytes, Mah v. UNC traces.

Table 1: Summary data for response size distributions.  (All sizes are in bytes.)

Data
Set

Sample Size
(Number of
responses)

Min
Response

Size

Max
Response

Size

Mean
Response

Size

Median
Response

Size
W95 269,811 3 20,135,435 14,826 2,245
W98 66,988 1 4,092,928 7,247 2,416
Mah 95 5,300 62 8,146,796 10,664 2,035
UNC99 18,526,201 1 135,294,044 6,734 1,164
UNC01 84,343,238 1 984,871,070 6,397 722
UNC03 96,836,703 1 718,067,386 7,296 632
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tions computed from our traces for all values. This differ-
ence likely reflects the increase in complexity in layout of
web pages that took place in the past 8 years.

6. Sampling Issues
In collecting traces for large-scale studies of Internet traf-

fic there are important issues related to the number and dura-
tion of tracing intervals. All traffic between the Internet and
the UNC-CH campus passes through a single Gigabit
Ethernet link that is shared by a large user population.
When we are tracing on this link, storage for traces is a
potential concern. For example, each 2001 trace spanned a
4-hour interval. During heavy traffic periods, a single trace
of just TCP/IP headers in one direction (68 bytes per
packet) consumes over 30 Gigabytes of storage. In contrast
to our 4-hour traces, most of the NLANR/MOAT trace col-
lection [13] is for 90-second intervals. For tracing the UNC-
CH Internet link, a 90-second interval would require storing
only about 200 MB for each of the inbound and outbound
traces, a very substantial reduction.

For this reason, we decided to analyze the effects on the
quality of our results if we were to use shorter tracing inter-
vals. We examined three inter-related issues:
• Can we obtain a sufficiently large sample with a small

number of short traces?

• How does the length of tracing intervals affect the over-
all empirical distribution shapes?

• Should we include in the empirical distributions the data
from incomplete TCP connections at the beginning and
end of traces and does the length of the tracing interval
matter for deciding?
Our 2001 trace collection is comprised of 21 4-hour

traces taken at three intervals on each of seven days. Each of
the 4-hour traces was then sub-sampled by taking its initial
one-hour slice (using tcpslice to truncate the tcpdump trace)
to produce another set of 21 traces. The one-hour traces were
then sub-sampled by taking the initial 30-minute slice to
produce a third set of 21 traces. This procedure was repeated
to obtain the initial 15-minute slices of the 30-minute
traces, the initial 5-minute slices of the 15-minute traces,
and the initial 90-second slices of the 5-minute traces. Each
set of 21 traces was then processed separately to compute
some of the distributions described above. Figures 21 and
22 give the CDF and Complementary CDF (CCDF), re-
spectively, for request sizes while Figures 23 and 24 give
the CDF and CCDF, respectively, for response sizes.

Contrary to our expectations, we found that the 90-
second traces produce results for these distributions that are
virtually indistinguishable from the 4-hour traces up to the
99.5 percentile for request sizes and the 99.95 percentile for
response sizes. Clearly, if one is interested in the details of
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Figure 19: Cumulative distribution of number of objects per page,
SURGE v. UNC traces.

Figure 20: Cumulative distribution of number of objects per page,
 Mah v. UNC traces.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 500 1000 2000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Request Size (in bytes)

4 hr. (84.5 M)
1 hr. (19.9 M)

30 min. (10.3 M)
15 min. (5.1 M)

5 min. (1.7 M)
90 sec. (0.5 M)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 1000 10000 100000 1e+06 1e+07 1e+08

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Request Size (in bytes)

4 hr. (84.5 M)
1 hr. (19.9 M)

30 min. (10.3 M)
15 min. (5.1 M)

5 min. (1.7 M)
90 sec. (0.5 M)
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sample values in each empirical distribution.

Figure 22: Complementary cumulative distribution of request data
sizes greater than 100 bytes for sub-sampled traces. The legend shows

the number of sample values in the empirical distribution.
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the distribution tail (the extreme values), occasionally trac-
ing for longer intervals may add value. Note that because we
are tracing a high-speed link shared by a large user popula-
tion, we were able to obtain about 500,000 sample values
in 21 traces of 90-seconds duration. It appears reasonable to
conclude that much shorter traces of 5 minutes or even 90
seconds are appropriate so long as they contain an adequate
number of sample values. Accurate modeling of the “moder-
ate” tail (see [9]) of the distributions does require larger trac-
ing intervals, but 15 minutes seems to suffice provided a
large sample is obtained (e.g., by aggregating a number of
intervals as was done in Figures 21-24).

We next compared the results for the response size dis-
tributions for the one-hour trace collection and the 90-
second trace collection by altering the way truncated TCP
connections at the beginning and end of the trace are treated.
In one case we retained the data for incomplete responses
and in the other we used only those responses known to be
complete (both the initial SYN and the ending FIN for the
connection were in the trace). Figures 25 and 26 show these
results. Again we found that there was some effect only
beyond the 99.5 percentile and, furthermore, counting the
partial responses for the 90-second traces actually produces a
distribution slightly closer to the one-hour traces.

Finally we should note that these observations hold only
for distributions that are not used to characterize user activi-
ties over time. For example, Figures 27 and 28 show the
distribution of page requests per unique user during a tracing
interval (identified as unique client IP addresses as described
above). Clearly, the length of the tracing interval dramati-
cally alters the characterizations one obtains about any user
level activities that span significant amounts of time.

7. Summary and Conclusions
Accurate, contemporary characterizations of web traffic

are essential for simulations involving realistic Internet
traffic. We have reported data on the structure and makeup of
web traffic based on a comprehensive study of the usage of
the web by the 35,000 person UNC user community. Our
method has been to capture unidirectional traces of only the
TCP/IP headers flowing from the Internet to the UNC cam-
pus on a Gigabit Ethernet link. To date we have acquired
over a terabyte of headers and are using these data to con-
struct an (evolving) empirical model of web traffic.

In addition we have performed a retrospective analysis of
web traffic comparing UNC data from 1999, 2001, and
2003 with similar data obtained by Mah in 1995 and Barford
and Crovella, et al. in 1995 and 1998. The results hold nu-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Response Size (in bytes)

4 hr. (84.3 M)
1 hr. (19.8 M)

30 min. (10.3 M)
15 min. (5.1 M)

5 min. (1.7 M)
90 sec. (0.5 M)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

le
m

en
ta

ry
 C

u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Response Size (in bytes)

4 hr. (84.3 M)
1 hr. (19.8 M)

30 min. (10.3 M)
15 min. (5.1 M)

5 min. (1.7 M)
90 sec. (0.5 M)

Figure 23: Cumulative distribution of response data sizes (100 –
100,000 bytes) for sub-sampled traces. The legend shows the number of

sample values in each empirical distribution.

Figure 24: Complementary cumulative distribution of response data
sizes greater than 10,000 bytes for sub-sampled traces. The legend
shows the number of sample values in each empirical distribution.
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Figure 26: Complementary cumulative distribution of response data
sizes greater than 10,000 bytes for complete and partial responses. The

legend shows the number of sample values in each distribution.
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merous insights into the evolution of the web and web con-
tent; chief among them being:
• The size of HTTP requests has been steadily increasing.

This likely reflects the evolution of the use of the web
from a simple vehicle for requests for content to a means
for uploading forms, data, files, email (with attach-
ments), and other objects of arbitrary size.

• The majority of HTTP responses (those in the main
body of the response-size distribution) are decreasing in
size. This likely reflects the increase in the frequency of
both small objects (adds, page decorations) as well as
non-content server responses (error messages, condi-
tional-GET replies etc.).

• The largest HTTP responses (those in the tail of the
response-size distribution) are increasing in size. This
likely reflects the natural evolution of object sizes deliv-
ered via HTTP (e.g., MP3 files, software distribution
CD-images, DVD segments, etc.).

• Web page complexity, as measured by the number of
objects per page and the numbers of distinct servers pro-
viding content per page, is increasing. Pages have more
objects and more servers (be it through content distribu-
tion networks or server farms) are involved in delivering
content to the average web page.
In addition, from a methodological standpoint, we have

determined that when tracing on a high-speed link shared by
a large population (tens of thousands) of users, surprisingly
short traces, as short as 90 seconds, produce distributions
for many (non-user-behavioral-related) measures of web traf-
fic that are indistinguishable from those obtained from 4-
hour traces.

In total these results demonstrate that usage of the web
by both consumers and content providers has evolved sig-
nificantly and make a compelling case for continual moni-
toring of web traffic and updating of models of web traffic.
Moreover, our work demonstrates that such continual moni-
toring can be performed with very modest effort.
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Figure 27: Cumulative distribution of the number of page
requests made from unique client IP addresses during a

tracing interval for sub-sampled traces.

Figure 28: Complementary cumulative distribution of the
number of page requests made from unique client IP

addresses during a tracing interval for sub-sampled traces.


