Quantifying the Effects of Recent Protocol Improvements

to Standards-Track TCP’
(Extended Version)

Michele C. Weigle, Kevin Jeffay, and F. Donelson Smith
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA
{mcweigle,jeffay,smithfd}@cs.unc.edu

ABSTRACT

We assess the state of Internet congestion control and error
recovery through a controlled study that considers the integra-
tion of standards-track TCP error recovery and both TCP and
router-based congestion control. The goal is to examine and
quantify the benefits of deploying standards-track technolo-
gies for contemporary models of Internet traffic as a function
of the level of offered network load. We limit our study to the
dominant and most stressful class of Internet traffic: bursty
HTTP flows. Contrary to expectations and published prior
work, we find that for HTTP flows (1) there is no clear benefit
in using TCP SACK over TCP Reno, (2) unless congestion is
a serious concern (i.e., unless average link utilization is ap-
proximately 80% or higher), there is little benefit to using
RED queue management, (3) above 80% link utilization there
is potential benefit to using Adaptive RED with ECN marking,
however, complex performance trade-offs exist and the results
are dependent on parameter settings.

I. INTRODUCTION

Improvements to TCP’s error recovery and congestion
control/avoidance mechanisms have been a mainstay of con-
temporary networking research. Representative innovations in
error control include the use of fast transmissions (TCP Reno),
fast retransmission in the face of multiple losses (TCP New
Reno), and selective acknowledgements (TCP SACK). Repre-
sentative innovations in congestion control include the con-
gestion avoidance and the additive-increase, multiplicative
decrease algorithm (TCP Tahoe), fast recovery (TCP Reno),
early congestion detection in routers (RED), and explicit con-
gestion notification (ECN).

While simulation studies have shown performance im-
provements with the addition of each new piece of networking
technology, the evaluations have often been simplistic and
have largely considered each improvement in isolation. In this
work we assess the state of congestion control and error re-
covery proposed for the Internet through a controlled study
that considers the integration of standards-track TCP error

" This work supported in parts by grants from the National Science Foun-
dation (grants ITR-0082870, CCR-0208924, EIA-0303590, and ANI-
0323648), Cisco Systems Inc., and the IBM Corporation.

recovery and TCP/router-based congestion control. The goal is
to examine and quantify the benefits of deploying these tech-
nologies for contemporary models of Internet traffic as a
function of the level of offered network load.

Although numerous modifications to TCP have been pro-
posed, we limit our consideration to proposals that have either
been formally standardized or are being proposed for stan-
dardization as these are the most likely to be widely deployed
on the Internet. We report the results of an extensive study
into the impact of using TCP Reno versus TCP SACK in net-
works employing drop-tail queue management versus random
early detection queue management (specifically, adaptive,
gentle RED) in routers. We assess the performance of combi-
nations of error recovery and router queue management
through traditional network-centric measures of performance
such as link utilization and loss-rates, as well as through user-
centric measures of performance such as response time distri-
butions for Web request-response transactions.

The results are somewhat surprising. Considering both
network and end-user-centric measures of performance, for
bursty HTTP traffic sources:

* There is no clear benefit in using SACK over Reno, espe-
cially when the complexity of implementing SACK is con-
sidered. This result holds independent of load and pairing
with queue management algorithm.

* Adaptive RED (ARED) with ECN marking performs better
than ARED with packet dropping and the value of marking
increases as the offered load increases. ECN also offers
more significant gains in performance when the target delay
parameter is small (5 ms).

* However, unless congestion is a serious concern (i.e., for
average link utilizations of 80% or higher with bursty
sources), there is little benefit to using RED queue man-
agement in routers.

* In congested networks, a fundamental trade-off exists be-
tween optimizing response time performance of short re-
sponses versus long responses. If one favors short re-
sponses, ARED with ECN marking and a small target delay
(5 ms) performs better than drop-tail FIFO independent of
the level of congestion (at the expense of long responses).
This conclusion should be tempered with the caution that,
like RED, ARED performance is also sensitive to parameter

This is an extended version of a paper by the same name published in: Proceedings of the 11™ IEEE/ACM International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Orlando, FL, October 2003, pages 226-229.

settings. At all loads there is little difference between the
performance of drop-tail FIFO and ARED with ECN and a
larger target delay (60 ms). If one favors long responses,
drop-tail FIFO performs better than ARED with ECN
marking. In addition, as load increases FIFO also results in
higher link utilization.

In total, we conclude that for user-centric measures of per-
formance, router-based congestion control (active queue man-
agement), especially when integrated with end-system proto-
cols (explicit congestion notification) has a greater impact on
performance than protocol improvements for error recovery.
However, for lightly to moderately loaded networks (e.g., 50%
average utilization) neither queue management nor protocol
improvements significantly impact performance.

The following sections provide background on the specific
error recovery and congestion control improvements we are
considering as well as a summary of past evaluations of each.
Section 5 explains our experimental methodology and Section
6 presents a summary of our main results.

II. BACKGROUND — CONGESTION CONTROL
AND AVOIDANCE

A. TCP Reno

TCP Reno is by far the most widely deployed TCP imple-
mentation. Reno congestion control consists of two major
phases: slow-start and congestion avoidance. In addition, con-
gestion control is integrated with related fast retransmit and
fast recovery error recovery mechanisms.

Slow-start restricts the rate of packets entering the network
to the same rate that acknowledgments (ACKs) return from
the receiver. The receiver sends cumulative ACKs which ac-
knowledge the receipt of all bytes up to the sequence number
carried in the ACK (i.e., the receiver sends the sequence num-
ber of the next packet it expects to receive). The congestion
window, cwnd, controls the rate at which data is transmitted
and loosely represents the amount of unacknowledged data in
the network. For every ACK received during slow-start, cwnd
is incremented by one segment.

The congestion avoidance phase conservatively probes for
additional bandwidth. The slow-start threshold, ssthresh, is the
threshold for moving from slow-start to congestion avoidance.
When cwnd > ssthresh, slow-start ends and congestion avoid-
ance begins. Once in congestion avoidance, cwnd is increased
by one segment every round-trip time, or as commonly im-
plemented, by 1/cwnd of a segment for each ACK received.

When packet loss occurs, ssthresh is set to 1/2 the current
value of cwnd, and as explained below, the value of cwnd is
set depending on how the loss was detected. In the simplest
case, (a loss that is detected by the expiration of a timer) the
connection returns to slow-start after a loss.

B. Random Early Detection

Internet routers today employ traditional FIFO queuing
(called “drop-tail” queue management). Random Early Detec-
tion (RED) is a router-based congestion control mechanism
that seeks to reduce the long-term average queue length in

routers [3]. A RED router monitors queue length statistics and
probabilistically drops arriving packets even though space
exists to enqueue the packet. Such “early drops” are per-
formed as a means of signaling TCP flows (and others that
respond to packet loss as an indicator of congestion) that con-
gestion is incipient in the router. Flows should reduce their
transmission rate in response to loss (as outlined above) and
thus prevent router queues from overflowing.

Under RED, routers compute a running weighted average
queue length that is used to determine when to send conges-
tion notifications back to end-systems. Congestion notification
is referred to as “marking” a packet. For standard TCP end-
systems, a RED router drops marked packets to signal con-
gestion through packet loss. If the TCP end-system under-
stands packet-marking, a RED router marks and then forwards
the marked packet.

RED’s marking algorithm depends on the average queue
size and two thresholds, min,, and max,. When the average
queue size is below min,,, RED acts like a drop-tail router and
forwards all packets with no modifications. When the average
queue size is between min,, and max,,, RED marks incoming
packets with a certain probability. When the average queue
size is greater than max,, all incoming packets are dropped.
The more packets a flow sends, the higher the probability that
its packets will be marked. In this way, RED spreads out con-
gestion notifications proportionally to the amount of space in
the queue that a flow occupies.

The RED thresholds min,, and max,,, the maximum drop
probability max,, and the weight given to new queue size
measurements w,, play a large role in how the queue is man-
aged. Recommendations [4] on setting these RED parameters
specify that max,, should be set to three times min,,, w, should
be set to 0.002, or 1/512, and max, should be 10%.

C. Adaptive RED

Adaptive RED (ARED) [5] is a modification to RED
which addresses the difficulty of setting appropriate RED pa-
rameters. ARED adapts the value of max, so that the average
queue size is halfway between min,, and max,. The maximum
drop probability, max, is kept between 1-50% and is adapted
gradually. ARED includes another modification to RED,
called “gentle RED” [7]. In gentle RED, when the average
queue size is between max,, and 2 x max,,, the drop probability
is varied linearly from max, to 1, instead of being set to 1 as
soon as the average is greater than max,. When the average
queue size is between max,, and 2 x max,,, selected packets are
no longer marked, but always dropped.

ARED’s developers provide guidelines for the automatic
setting of min,,, max,, and w,. Setting min,, results in a trade-
off between throughput and delay. Larger queues increase
throughput, but at the cost of higher delays. The rule of thumb
suggested by the authors is that the average queuing delay
should only be a fraction of the round-trip time (RTT). If the
target average queuing delay is rarget,,,, and C is the link
capacity in packets per second, then min,, should be set to rar-
8elyy x C/2. The guideline for setting max,, is that it should
be 3 x min,, resulting in a target average queue size of 2 x
min,,. The weighting factor w, controls how fast new meas-

urements of the queue affect the average queue size and
should be smaller for higher speed links. This is because a
given number of packet arrivals on a fast link represents a
smaller fraction of the RTT than for a slower link. It is sug-
gested that w, be set as a function of the link bandwidth, spe-
cifically, 1 — exp(-1/C).

In addition to ARED, many extensions to RED have been
proposed and been studied. We use ARED in our study be-
cause it includes the “gentle” mode, which is now the recom-
mended method of using RED, and because we believe ARED
is the most likely RED variant to be standardized and de-
ployed.

D. Explicit Congestion Notification

Explicit Congestion Notification (ECN) [8, 9] is an opti-
mization of active queue management that allows routers to
notify end systems when congestion is present in the network.
When an ECN-capable router detects that its average queue
length has reached a threshold, it marks packets by setting the
CE (“congestion experienced”) bit in the packets’ TCP head-
ers. (The decision of which packets to mark depends on the
queue length monitoring algorithm in the router.) When an
ECN-capable receiver sees a packet with its CE bit set, an
ACK with its ECN-Echo bit set is returned to the sender.
Upon receiving an ACK with the ECN-Echo bit set, the sender
reacts in the same way as it would react to a packet loss (i.e.,
by halving the congestion window). Ramakrishnan and Floyd
[9] recommend that since an ECN notification is not an indi-
cation of packet loss, the congestion window should only be
decreased once per RTT, unless packet loss does occur. A
TCP sender implementing ECN thus receives two notifica-
tions of congestion, ECN and packet loss. This allows senders
to be more adaptive to changing network conditions.

ECN is recommended for use in routers that monitor their
average queue lengths over time (e.g., routers running RED),
rather than those that can only measure instantaneous queue
lengths. This allows for short bursts of packets without trig-
gering congestion notifications.

III. BACKGROUND — ERROR RECOVERY

A. Error Recovery in TCP Reno

TCP Reno provides two methods of detecting packet loss:
the expiration of a timer and the receipt of three duplicate ac-
knowledgements. Whenever a new packet is sent, the retrans-
mission timer (RTO) is set. If the RTO expires before the
packet is acknowledged, the packet is assumed to be lost.
When the RTO expires, the packet is retransmitted, ssthresh is
set to 1/2 cwnd, cwnd is set to 1 segment, and the connection
re-enters slow-start.

Fast retransmit specifies that a packet can be assumed lost
if three duplicate ACKs are received. This allows TCP Reno
to avoid a lengthy timeout during which no data is transferred.
When packet loss is detected via three duplicate ACKs, fast
recovery is entered. In fast recovery, ssthresh is set to 1/2
cwnd, and cwnd is set to ssthresh + 3. For each additional du-
plicate ACK received, cwnd is incremented by 1 segment.
New segments can be sent as long as cwnd allows. When the

first ACK arrives for the retransmitted packet, cwnd is set
back to ssthresh. Once the lost packet has been acknowledged,
TCP leaves fast recovery and returns to congestion avoidance.

Fast recovery also provides a transition from slow-start to
congestion avoidance. If a sender is in slow-start and detects
packet loss through three duplicate ACKs, after the loss has
been recovered, congestion avoidance is entered. The only
other way to enter congestion avoidance is if cwnd > ssthresh.
In many cases, though, the initial value of ssthresh is set to a
very large value, so packet loss is often the only trigger to
enter congestion avoidance.

TCP Reno can only recover from one packet loss during
fast retransmit and fast recovery. Additional packet losses in
the same window may require that the RTO expire before be-
ing retransmitted. The exception is when cwnd is greater than
10 segments. In this case, Reno could recover from two packet
losses by entering fast recovery twice in succession. This
causes cwnd to effectively be reduced by 75% in two RTTs
[10].

B. Selective Acknowledgments

A recent addition to the standard TCP implementation is
the selective acknowledgment option (SACK) [2, 10]. The
SACK option contains up to four (or three, if RFC 1323 time-
stamps are used) SACK blocks, which specify contiguous
blocks of received data. Each SACK block consists of two
sequence numbers which delimit the range of data the receiver
holds. A receiver can add the SACK option to ACKs it sends
back to a SACK-enabled sender. In the case of multiple losses
within a window, the sender can infer which packets have
been lost and should be retransmitted using the information in
the SACK blocks.

A SACK-enabled sender can retransmit multiple lost
packets in one RTT. The SACK recovery algorithm only op-
erates once fast recovery has been entered via the receipt of
three duplicate ACKs. Whenever an ACK with new informa-
tion is received, the sender adds to a list of packets (called the
scoreboard) that have been acknowledged. These packets
have sequence numbers past the current value of the highest
cumulative ACK. At the beginning of fast recovery, the sender
estimates the amount of unacknowledged data “in the pipe”
based on the highest packet sent, the highest ACK received,
and the number of packets in the scoreboard. This estimate is
saved in the variable pipe. Each time a packet is sent the value
of pipe is incremented. The pipe counter is decremented
whenever a duplicate ACK arrives with a SACK block indi-
cating that new data was received. When pipe is less than
cwnd, the sender can either send retransmissions or transmit
new data. When the sender is allowed to send data, it first
looks at the scoreboard and sends any packets needed to fill
gaps at the receiver. If there are no such packets, then the
sender can transmit new data. The sender leaves fast recovery
when all of the data that was unacknowledged at the beginning
of fast recovery has been acknowledged.

Allowing up to three SACK blocks per SACK option en-
sures that each SACK block is transmitted in at least three
ACKs, providing some amount of robustness in the face of
packet loss.

IV. RELATED WORK

A. Evaluations of TCP SACK

A simulation study [10] comparing the use of TCP Reno to
TCP SACK concluded that there were benefits to using
SACK. One of the most notable improvements arises from
decoupling the determination of the time to retransmit from
the determination of which packets to retransmit. In simula-
tions with up to four lost packets in a window, SACK avoided
costly retransmission timeouts and performed significantly
better than Reno. Additional studies [11] showed that the
presence of SACK flows does not detrimentally affect Reno
flows.

Mathis et al. [1] looked at the large-scale behavior of sev-
eral TCP congestion control algorithms, including SACK-
enhanced protocols. The authors ran simulations in NS-1 us-
ing two flows. They found that with large buffers on drop-tail
queues, TCP SACK flows kept large persistent queues be-
cause they avoided timeouts, which serve to drain the queue.
This behavior was not seen with RED queues, which random-
ize packet drops.

Yan and Xu [13] compared TCP SACK with TCP Reno
via simulations where bi-directional background traffic was
generated according to the zcplib model. Different ratios of
background to foreground traffic and different protocols for
the background traffic were used. In the foreground were bulk
transfers of 512 KB. In each case, SACK had the highest
throughput, but retransmitted almost as much as Reno did.
The authors speculated that due to the high aggregation and
short flows in web traffic, SACK may not have the same gains
as in a long-lived traffic mix. Experiments were also run
through a 17-hop path over the Internet again using 512 KB
transfers. In this case SACK still saw higher throughput and
fewer retransmitted bytes than Reno.

Bruyeron et al., ran experiments over a testbed with single
file transfers using a 16 KB receiver buffer size to compare
the performance of TCP Reno and TCP SACK [14]. Packet
losses were generated artificially using several degrees of
packet loss probability. With isolated drops, SACK performed
slightly better than Reno with a moderate drop probability
(3%). With a low loss probability (1%), Reno was able to re-
cover from most losses with a single fast retransmit (only one
loss in a window), so SACK did not offer improvement. With
a high loss probability (9%), SACK suffered many of the re-
transmission timeouts that Reno did. This is because SACK
must wait for a RTO to expire if a retransmitted packet is lost
or if several ACKs are lost. The authors also performed ex-
periments on the testbed with bursty losses. The burst size was
set to three packets (i.e., each time a loss event was scheduled,
three packets would be lost). Since there was only one flow, a
burst of three packet losses would always affect that flow,
meaning that most of the time, there would be multiple losses
in a window. Not surprisingly, SACK performed better than
Reno with bursty losses. With high loss probability (3%),
SACK performed no better than Reno.

Bruyeron et al. also ran experiments over a cross-country
Internet path were also run. A Reno FTP session was carried
out for 2 minutes, followed by 2 minutes of a SACK FTP

transfer. Experiments were run at different times during the
day to correspond to heavy congestion, average congestion,
and light congestion. In all instances, SACK got higher
throughput than Reno. In times of heavy and average conges-
tion, SACK saw about 30% higher throughput. The authors
found that the average loss burst size was between 20 to 30
packets.

Bolliger er al. [15] looked at the performance of several
congestion control protocols over various Internet links. Using
data gathered from running the network probe daemon, they
found that TCP SACK could have avoided about 12% of the
timeouts experienced by TCP Reno. The authors note that
Reno and SACK see the same performance with no packet
loss and with high packet loss (9% for single drops and 3% for
burst drops). In cases of medium levels of packet loss (less
than 10%), the SACK saw 49-89% higher throughput than
Reno.

Balakrishnan et al. [12] analyzed traces from a busy web
server (1996 Atlanta Olympics web server). They report that
almost 50% of all packet losses were detected via the expira-
tion of the RTO and conclude that using SACK would have
only avoided 4% of the timeouts.

B. Evaluations of RED

Christiansen et al. [6] ran experiments with one-way web
traffic using TCP Reno over a RED router. Using HTTP re-
sponse times as the main performance metric, they found that
RED offered no improvement over drop-tail. Tuning RED
parameters was done through extensive experimentation, and
the best parameters for web traffic were not intuitive. In fact,
the recommended values performed worse for web traffic than
drop-tail, especially at very high loads.

May et al. [21] ran experiments with web-like traffic over
commercial routers running RED. They found that RED does
not offer a large advantage over drop-tail, RED’s performance
was hindered by small buffers, and tuning RED parameters
was difficult.

Zhang and Qiu [22] compared RED, RED with ECN, and
drop-tail with various traffic mixes, using both Reno and
SACK. They ran 200-second simulations with both one-way
and two-way traffic scenarios. The main metric of perform-
ance used was average goodput for groups of flows (web or
FTP). Short-lived transfers saw improved goodput with RED
as opposed to drop-tail when competing against long-lived
flows. The long-lived flows had large congestion windows, so
the probability of seeing more than one drop in a window in-
creased. When SACK was used as the base protocol, the long-
lived transfers saw an increase in goodput, because SACK was
avoiding many of the timeouts that were experienced with
Reno. The benefit of SACK for long-lived flows diminished
when using RED because RED smoothed the loss pattern,
reducing the number of drops in a single window. Whenever
FTP flows saw increased goodput, the goodput of web flows
necessarily diminished. Conversely, whenever FTP flows saw
decreased goodput, web flows saw increased goodput. With
web traffic in both directions, the authors found that when the
congestion level in the reverse path was high, using RED re-
sults in higher goodput than drop-tail. When the congestion in

the reverse path was low and the congestion level in the for-
ward path was high, there was no meaningful difference be-
tween RED and drop-tail. When the congestion levels in each
direction were low, drop-tail saw slightly higher goodput than
RED.

C. Evaluations of ECN

In RFC 2884 [28], Ahmed and Salim report on experi-
ments run to evaluate the performance of ECN. They ran ex-
periments with competing ECN and non-ECN flows against
one-way background traffic. The RED parameters and the
amount of background traffic were selected so that the average
queue size remained between min,, and max,, for most of the
experiment. The authors observed that when the average
queue size was above max,,, RED acted like a full drop-tail
queue. The authors tested both bulk transfers and short web-
like transfers. In the bulk transfer experiments, the ECN flows
saw very little retransmissions hence the ECN flows saw bet-
ter goodput than the non-ECN flows. The authors also note
that at high congestion levels, the benefits of ECN over non-
ECN may be greater when the base protocol is Reno rather
than SACK, since Reno may suffer timeouts when multiple
packets are dropped in a single window. With the transactional
transfers (short, web-like transactions), the advantage of ECN
increased as the level of congestion increased. Also, they ob-
served that as object sizes increased there was more of a
chance for Reno’s fast retransmit mechanism to recover
quickly from packet loss, and so, ECN’s advantage dimin-
ished.

Pentikousis er al. [24] performed studies comparing the
performance of a set of ECN clients to a set of non-ECN cli-
ents. In these experiments, ECN flows did not compete against
non-ECN flows. The authors found that ECN did not see
higher goodput than non-ECN or drop-tail. Overall, they
found that ECN reduced the number of packet drops, but did
not necessarily improve goodput.

D. Summary

There have been many studies that look at SACK and RED
(with and without ECN) individually. Some of these studies
focus on long-lived traffic that is not representative of the traf-
fic on the Internet of today that is dominated by comparatively
short web transfers. When web-like traffic is used, measures
such as overall average goodput for a group of flows are used.
We prefer response time as a better indicator of the service
received by a user of the Web. Other studies use artificial
packet dropping mechanisms, sometimes to simulate wireless
transmission errors, sometimes to study the performance for a
specific loss rate. Studies also have used only one-way traffic,
which ignores phenomena such as ACK compression and
ACK loss. Some studies use very limited RTT distributions,
which may lead to synchronization of end-systems’ transmis-
sions. Other simulation studies have been performed using
NS-2’s one-way TCP model. Given the prevalence of short
transfers, one-way TCP is not a realistic simulation vehicle as
it lacks TCP’s connection setup' and teardown phases (which

' Although one-way TCP does not include specific mechanisms for co n-
nection setup, it does include an option to simulate the SYN packet and a 6
second timeout when the first data packet is lost.

can take longer than the actual data transfer). In addition one-
way TCP does not allow variable packet sizes and bi-
directional data traffic in the same connection.

We extend previous studies of SACK, RED, and ECN to
analyze the interactions between the mechanisms and their
effects on realistic two-way web traffic. Our traffic model
(and RTT model) is based on the analysis of recent Internet
traffic traces, combining both short-lived and long-lived
flows. As a result, we get different results from previous
studies.

V. METHODOLOGY

A. Experimental Setup
We ran simulations in NS-22[16] with varying levels of

two-way HTTP 1.0 traffic. These two-way traffic loads pro-
vide roughly equal levels of congestion on both the “forward”
path and “reverse” path in our network. The following pair-
ings of error recovery and queue management techniques were
tested: Reno with drop-tail FIFO queuing in routers, Reno
with ARED using packet drops, ECN-enabled Reno with
ARED using ECN packet marking, SACK with drop-tail
FIFO, SACK with ARED using packet drops, and ECN-
enabled SACK with ARED using packet marking. Table 1
presents a summary of the error-recovery and queue manage-
ment pairings that were run.

The network we simulate consists of two clouds of web
servers and clients positioned at each end of a 10 Mbps bottle-
neck link (Figure 1). There is a 10 Mbps bottleneck link be-
tween the two routers, a 20 Mbps link between each Pack-
Mime cloud and its corresponding aggregation node, and a
100 Mbps link between each aggregation node and the nearest
router. The 20 Mbps limit is so that transient spikes are limited
to 40 Mbps and will not overload the 100 Mbps link between
the aggregation node and the first router. The data we present
herein comes from measurements of the traffic on the “for-
ward” path in the network.

The aggregation nodes in our simulations are NS-2 nodes
that we developed called DelayBox to delay packets in the
simulation. DelayBox is an NS analog to dummynet [20],

Table 1: Experiments

TCP Queuing Queue Length ARED Delay
method (1,250 B packets) delay,, .., (ming,, max,,)
. 111 pekts (1.5 BDP)
R Drop-Tail
ene rop-tal 148 pekts (2 BDP)
Reno ARED 370 pekts (5 BDP) 5 ms (5,15)
60 ms (30, 90)
Reno | ARED+ECN | 370 pckts (5 BDP) 5 ms (5,15)

60 ms (30, 90)

111 pekts (1.5 BDP)

SACK | Drop-Tail | ¢ ckis (2 BDP)

SACK ARED 370 pekts (5 BDP) 5 ms (5,15)
60 ms (30, 90)

SACK | ARED+ECN | 370 pckts (5 BDP) 5 ms (5,15)

60 ms (30, 90)

% In order to use SACK and ECN in Full-TCP, we had to modify the ns-
2.1b9 source code. See http://www.cs.unc.edu/~mcweigle/ns/ for details.

PackMime

PackMime
client server
PackMime PackMime

forward congested path
client < server

10
DelayBox Router Mbps Router —{DelayBox

PackMime

PackMime
_ .
server reverse congested path client
PackMime PackMime
server client

Figure 1: Simulated network environment.

which is used in network testbeds to delay packets. With De-
layBox, packets from a TCP connection can be delayed before
being passed on to the next node. This allows each TCP con-
nection to experience a different minimum delay (and hence a
different round-trip time), based on random sampling from a
delay distribution. In our experiments DelayBox uses an em-
pirical delay distribution from the PackMime model. This re-
sults in RTTs ranging from 1 ms to 3.5 seconds. The median
RTT is 54 ms, the mean is 74 ms, and the 90™ percentile is
117 ms. RTTs are assigned independently of request or re-
sponse size and represent only propagation delay and do not
include queuing delays.

The mean packet size for the HTTP traffic (excluding pure
ACKs, but including headers) is 1,250 bytes.? This includes
the HTTP responses for the forward path and the HTTP re-
quests for the reverse path. For a target bottleneck bandwidth
of 10 Mbps, we compute the bandwidth-delay product (BDP)
to be 74 1,250-byte packets. In all cases, we set the maximum
send window for each TCP connection to the BDP.

The simulation parameters used for TCP and Adaptive
RED are listed in Tables 2-3.

B. HTTP Traffic Generation

The HTTP traffic we generate comes from the PackMime
model [17] developed at Bell Labs. This model is based on the
analysis of HTTP connections in a trace of a 100 Mbps
Ethernet link connecting an enterprise network of approxi-
mately 3,000 hosts to the Internet [18, 19]. The fundamental
parameter of PackMime is the TCP/HTTP connection initia-
tion rate (a parameter of the distribution of connection interar-
rival times). The model also includes distributions of the size
of HTTP requests, and the size of HTTP responses.

The request size distribution and the response size distri-
bution are heavy-tailed (Figure 2). There are a large number of
small request sizes and a few very large request sizes. Almost
90% of the requests are under 1 KB and fit in a single packet.
The largest request is almost 1 MB. 60% of the responses fit
into one packet and 90% of the responses fit into 10 packets,
yet the largest response size is over 100 MB. Using this distri-
bution, we will have many short-lived transfers, but also some
very long-lived flows.

* We assume an Ethernet MSS of 1,500 bytes and use a maximum TCP
data size of 1,420 bytes, counting for 40 bytes of base TCP/IP header and 40
bytes maximum of TCP options.

In each experiment we examine the behavior of traffic that
consists of over 250,000 flows, with a total simulated time of
40 minutes. The distribution of response sizes has an infinite
variance and hence simulations take a very long time to reach
steady-state. Running the simulation for only a few minutes
would take into account a small portion of the rich behavior of
the traffic model. We ran our simulation for as long as the
available hardware and software environments would support
to capture a significant amount of this behavior.

We implemented PackMime traffic generation in NS-2
using Full-TCP, which includes bi-directional TCP connection
flows, connection setup, connection teardown, and variable
packet sizes. In our implementation, one PackMime “node”
represents a cloud of HTTP clients or servers. The traffic load
is driven by the user-supplied connection rate parameter,
which is the number of new connections starting per second.
The connection rate corresponding to each desired link load-
ing was determined by a calibration procedure described be-
low. New connections begin at their appointed time, whether
or not any previous connection has completed.

Previous studies, including [25, 26, 27, 28], have shown
that the size of files transferred over HTTP is heavy-tailed.
With heavy-tailed file sizes, there are a large number of small
files and a non-negligible number of extremely large files.
These studies have also shown that the arrival pattern of web
traffic is self-similar, which exhibits burstiness over several
time scales. In other words, as the aggregation interval in-
creases, the rate of packet arrivals are not smoothed out.

Figures 3-4 demonstrate the burstiness of the traffic in the
PackMime model. We calculated the number bytes and pack-
ets arriving at the bottleneck link per interval over several
timescales. The goal is to show that as the timescale increases,
the traffic remains bursty. We plot 150 points at different
timescales starting at 500 seconds into the simulation. Figure 3

Table 2: TCP Parameters

TCP parameter Value
Initial window size 2 segments
Timestamp option false
TCP tick 10 ms
BSD 4.2 bug fix true
min RTO 1 second
Initial RTO 6 seconds
RFC 2988 RTT calculation true
delayed ACK false
SACK block size 8 bytes
max SACK blocks 3

Table 3: Adaptive RED Parameters

ARED parameter Value
Packet mode true
alpha 0.01
beta 0.9
Interval for adaptations 500 ms
max max, 0.5
min max, 0.01

shows the number of bytes arriving at the router for 150 inter-
vals. Over all aggregation intervals, from 10 ms to 10 seconds,
the traffic is bursty. The same observations can be made for
the number of packets arriving at the router (Figure 4).

C. Queue Management

1) Drop Tail Settings: Christiansen et al. [6] recom-
mend a maximum queue size between 1.25 x BDP and 2
x BDP for reasonable response times for drop-tail
queues. The maximum queue buffer sizes tested in our
drop-tail experiments were 1.5 x BDP and 2 x BDP.

2) Adaptive RED Settings: We ran sets of ARED ex-
periments using the default ARED settings in NS-2 (tar-
get delay = 5 ms) and with parameters similar to those
suggested by Christiansen (min, = 30 and max,, = 90)
giving a target delay of 60 milliseconds. Note that in
both cases, miny, and max,, are computed automatically
in NS based on the mean packet size, target delay, and
link speed. The maximum router queue length was set to
5 x BDP. This ensured that there would be no tail drops,
in order to isolate the effects of ARED.

D. Levels of Offered Load and Data Collection

The levels of offered load used in our experiments are ex-
pressed as a percentage of the capacity of a 10 Mbps link. We
initially ran our network at 100 Mbps and determined the
PackMime connection rates (essentially the HTTP request
rates) that will result in average link utilizations (in both for-
ward and reverse directions) of 5, 6, 7, 8, 8.5, 9, 9.5, 10, and
10.5 Mbps. The connection rate that results in an average
utilization of 8% of the (clearly uncongested) 100 Mbps link
will be used to generate an offered load on the 10 Mbps link
of 8 Mbps or 80% of 10 Mbps link. Note that this “80% load”
(i.e., the connection rate that results in 8 Mbps of traffic on the
100 Mbps link) will not actually result in 8 Mbps of traffic on
the 10 Mbps link. The bursty HTTP sources will cause con-
gestion on the 10 Mbps link and the actual utilization of the
link will be a function of the protocol and router queue man-
agement scheme used. (And the link utilization achieved by a
given level of offered load is a metric for comparing proto-
col/queue management combinations. See Figure 5.)

Given the bursty nature of our HTTP traffic sources, we
used a 120-second “warm-up” interval before collecting any
data. After the warm-up interval, we allow the simulation to
proceed until approximately 250,000 HTTP request-response
pairs have been transmitted. We also require that at least one
10 MB response has started a transfer before 1,000 seconds
after the warm-up period. This ensures that we will have some
very long transfers in the network along with the typical short-
lived web transfers.

E. Performance Metrics

In each experiment, we measured the HTTP response
times (time from sending HTTP request to receiving entire
HTTP response), link utilization, throughput (number of bytes
entering the bottleneck), average loss rate, average percentage
of flows that experience loss, and average queue size. These

Table 4: Summary of labels and abbreviations.

Abbreviation Description
DT-111q Drop-Tail with 111 packet queue (1.5 BDP)
DT-148q Drop-Tail with 148 packet queue (2 BDP)
ARED-5ms Adaptive RED with 5 ms target delay
ARED-60ms Adaptive RED with 60 ms target delay
ARED+ECN-5ms Adaptive RED with ECN & 5 ms target delay
ARED+ECN-60ms Adaptive RED with ECN & 60 ms target delay

summary statistics are given for each experiment in Figures 5-
6.

HTTP response time is our main metric of performance.
We report the CDFs of response times for responses that com-
plete in 1,500 ms or less. When discussing the CDFs, we dis-
cuss the percentage of flows that complete in a given amount
of time. It is not the case that only small responses complete
quickly and only large responses take a long time to complete.
For example, between a 500 KB response that has a RTT of 1
ms and a 1 KB response that has a RTT of 1 second, the 500
KB response will likely complete before the smaller response.

VI. RESULTS

We first present the results for different queue manage-
ment algorithms when paired with TCP Reno end-systems.
Next, results for queue management algorithms paired with
TCP SACK end-systems are presented and compared to the
Reno results. Finally, the two best scenarios are compared. In
the following response time CDF plots, the response times
obtained in a calibration experiment with an uncongested 100
Mbps link are included for a baseline reference as this repre-
sents the best possible performance. Table 4 lists the labels we
use to identify experiments.

For completeness, we include the response time CDFs for
all of the experiments we performed (Figures 7-21) at all load
levels.* However, for space considerations here we discuss
only the results for offered loads of 80-105%. This is moti-
vated by the observation that while generally HTTP response
time performance decreases as load increases, for loads less
than 80%, there is no difference in link utilization (Figures 5-
6) for any of the protocol/queue management combinations we
consider. Moreover the differences in response times are more
significant in the 80-10% load range.

A. Reno + DropTail

Figure 9 shows the CDFs of response times for Reno-DT-
111q and Reno-DT-148q. There is little performance differ-
ence between the two queue sizes, though there is a crossover
point in the response times. The crossover is described here
only for illustration purposes, since the difference is minimal.
At 80% load, the crossover is at coordinate (700 ms, 80%).
This means that for both DT-111q and DT-148q, 80% of the
HTTP responses completed in 700 ms or less. For a given
response time less than 700 ms, DT-111q produces a slightly
higher percentage of responses that complete in that time or
less than does DT-148q. For a given response time greater

* Note that our plots are best viewed in color.

than 700 ms, DT-148q yields a slightly higher percentage of
responses that complete in that time or less than DT-111q
does.

B. Reno + Adaptive RED

Response time CDFs for Reno-DT-111q, Reno-DT-148q,
Reno-ARED-5ms, and Reno-ARED-60ms are shown in Fig-
ure 10. At almost all loads both of the FIFO drop-tail queues
perform no worse than ARED-60ms. There is a distinct cross-
over point between Reno-ARED-5ms and Reno-ARED-60ms
(and Reno-DT-148q and Reno-DT-111q) at 400 ms. This
points to a tradeoff between improving response times for
some flows and causing worse response times for others. For
responses that complete in less than 400 ms, ARED-5ms of-
fers better performance. For responses that complete in over
400 ms, ARED-60ms, Reno-DT-111q, or Reno-DT-148q are
preferable. As the load increases, the crossover remains near a
response time of 400 ms, but the percentage of completed re-
sponses in that time or less decreases. Also, as load increases,
the performance of ARED-5ms for longer responses is poor.

ARED-5ms keeps a much shorter average queue than
ARED-60ms (Figure 5), but at the expense of longer response
times for many responses. With ARED-5ms, many flows ex-
perience packet drops. Many of these connections are very
short-lived, often consisting of a single packet (60% of re-
sponses consist of only one packet and 80% consist of five or
fewer packets) and when they experience packet loss, they are
forced to suffer a retransmission timeout, increasing their
HTTP response times. For ARED-5ms, the CDF of response
times levels off after the crossover point and does not increase
much until after 1 second, which is the minimum RTO in our
simulations. This indicates that a significant portion of the
flows suffered timeouts.

As congestion increased toward severe levels, the response
time benefits from the FIFO queue became substantially
greater. At 105% load about 60% of responses (those taking
longer than 300-400 milliseconds to complete) have better
response times with the FIFO queue while only 40% of re-
sponses are better with ARED-5ms. For this same 60% of
responses, ARED-60ms is also superior to ARED-5ms.

ARED should give better performance than the original
RED design without the “gentle” option. At high loads, a sig-
nificant number of packets arrive at the queue when the aver-
age queue size is greater than max,,. Without the “gentle” op-
tion, these packets would all be dropped, rather than being
dropped probabilistically. To see the full differences between
ARED including the gentle option and the original RED de-
sign we compared the results between the two designs at loads
of 80%, 90%, and 100% (Figure 11). In these comparisons,
two configurations of the original RED minimum and maxi-
mum thresholds were used: (5,15) and (30,90) which corre-
spond roughly to the Sms and 60ms target queue lengths used
for ARED. For the original RED experiments, we used the
recommended settings of w, = 1/512 and max, = 10%. For the
ARED experiments, w, was set automatically based on link
speed to 0.001, and max, was adapted between 1-50%. Figure
11 shows that the adaptation of max, and the linear increase in

drop probability from mazx, to 1.0 in ARED is an improvement
over the original RED design.

C. Reno + Adaptive RED + ECN

The full value of ARED is realized only when it is coupled
with a more effective means of indicating congestion to the
TCP endpoints than the implicit signal of a packet drop. ECN
is the congestion signaling mechanism intended to be paired
with ARED. Figure 12 presents the response time CDFs for
Reno-ARED-5ms, Reno-ARED-60ms, Reno-ARED+ECN-
Sms, and Reno-ARED+ECN-60ms. Up to 90% load,
ARED+ECN-5ms delivers superior or equivalent performance
for all response times. Further, ECN has a more significant
benefit when the ARED target queue is small. As before, there
is a tradeoff where the 5 ms target delay setting performs bet-
ter before the crossover point and the 60 ms setting performs
slightly better after the crossover point. The tradeoff when
ECN is paired with ARED is much less significant.
ARED+ECN-5ms does not see as much drop-off in perform-
ance after the crossover point. For the severely congested
case, ECN provides even more advantages, especially when
coupled with a small target delay.

At loads of 80% and higher, ARED+ECN-5ms produces
lower link utilization than ARED+ECN-60ms (Figure 5). This
tradeoff between response time and link utilization is ex-
pected. ARED+ECN-5ms keeps the average queue size small
so that packets see low delay as they pass through the router.
Flows that experience no packet loss should see very low
queuing delays, and therefore, low response times. On the
other hand, larger flows may receive ECN notifications and
reduce their sending rates so that the queue drains more often.
As expected, drop-tail results in the highest link utilization and
the lowest drop rates.

Finally, we ran a set of experiments with one-way traffic
to see how well ECN and ARED would perform in a less
complex environment. By one-way traffic, we mean that there
was HTTP response traffic flowing in only one direction on
the link between routers. Thus the reverse-path carrying ACKs
and HTTP request packet was very lightly loaded. This means
that ACKs are much less likely to be lost or “compressed” at
the router queue and that (1) TCP senders will receive a
smoother flow of ACKs to “clock” their output segments and
(2) ECN congestion signals will be more timely. In some
sense, this is a best case scenario for ARED with ECN. The
results for this case are given in Figure 14. With two-way traf-
fic, performance is significantly reduced over the one-way
case especially for the severe congestion at 105% offered load.
These results clearly illustrate the importance of considering
the effects of congestion in both directions of flow between
TCP endpoints.

D. SACK

The experiments described above were repeated by pairing
SACK with the different queue management mechanisms in
place of Reno. Figures 18-20 show a comparison between
Reno and SACK based on response time CDFs when paired
with drop-tail FIFO, ARED, and ARED+ECN. Overall,
SACK provides no better performance than Reno. When

paired with ARED+ECN, SACK and Reno are essentially
identical independent of load. When paired with drop-tail
FIFO, Reno appears to provide somewhat superior response
times especially when congestion is severe.

We expected to see improved response times with SACK
over Reno with drop-tail queues. SACK should prevent some
of the timeouts that Reno would have to experience before
recovering from multiple drops in a window. Why is there not
a large improvement with SACK over Reno with drop-tail?
Recall that with HTTP most TCP connections never send
more than a few segments and for loss events in these connec-
tions, SACK never comes into play. For the relatively small
number of connections where the SACK algorithm is invoked,
the improvement in response time by avoiding a timeout is
modest relative to the overall length of the responses that ex-
perience losses recoverable with SACK.

E. Drop-Tail vs. ARED+ECN

Here, we compare the performance of the two “best” error
recovery and queue management combinations. Figure 21
presents the response time CDFs for Reno-DT-148q and
Reno-ARED+ECN-5ms. With these scenarios, the funda-
mental tradeoff between improving response times for some
responses and making them worse for other responses is clear.
Further, the extent of the tradeoff is quite dependent on the
level of congestion. At 80% load, Reno-ARED+ECN-5ms
offers better response-time performance for nearly 75% of
responses but marginally worse for the rest. At levels of se-
vere congestion the improvements in response times for Reno-
ARED+ECN-5ms apply to around 50% of responses while the
response times of the other 50% are degraded significantly,
Reno-DT-148q and Reno-ARED+ECN-5ms are on the oppo-
site ends of the queue-management spectrum, yet, they each
offer better HTTP response times for different portions of the
total set of responses. Further complicating the tradeoff is the
result that Reno-DT-148q gives higher link utilization along
with a high average queue size, while Reno-ARED+ECN-5ms
gives low average queue sizes, but also lower link utilization
(Figure 5).

F. Performance for Offered Loads less than 80%

For load levels lower than 80%, there is an advantage for
ARED+ECN-5ms over DT-148q for shorter responses. The
same tradeoff is present for 50-80% load as with loads over
80% and hence is a fundamental tradeoff. ARED+ECN-5ms
has lower average queue sizes and the corresponding better
response time performance for shorter responses, with similar
link utilization as DT-148q. DT-148q performs better for re-
sponses that take longer than 600 ms to complete.

Much below 80% offered load, SACK and Reno have
identical performance and ARED+ECN performs only mar-
ginally better than drop-tail. At these loads, there is no differ-
ence in link utilization between any of the queue management
techniques. There is also very little packet loss (no average
loss over 3%). For loads under 80%, given the complexity of
implementing RED, there is no compelling reason to use
ARED+ECN over drop-tail. Our complete results are summa-
rized in Figures 7-8.

VII. CONCLUSIONS

Our results provide an evaluation of the state-of-the-art in
TCP error recovery and congestion control in the context of
Internet traffic composed of “mice” and “elephants.” We used
bursty HTTP traffic sources generating a traffic mix with a
majority of flows sending few segments (< 5), a small number
sending many segments (> 50), and a number in the [5, 50]
segment range.

Using NS simulations, we evaluated how well various
pairings of TCP-Reno, TCP-SACK, drop-tail FIFO, Adaptive
RED (with both packet marking and dropping), and ECN per-
form in the context of HTTP traffic. Our primary metric of
performance was the response time to deliver each HTTP ob-
ject requested along with secondary metrics of link utilization,
router queue size and packet loss percentage. Our main con-
clusions based on HTTP traffic sources and these metrics are:

* There is no clear benefit in using SACK over Reno, espe-
cially when the complexity of implementing SACK is con-
sidered. This result holds independent of load and pairing
with queue management algorithm.

* As expected, ARED with ECN marking performs better
than ARED with packet dropping and the value of ECN
marking increases as the offered load increases. ECN also
offers more significant gains in performance when the target
delay is small (5 ms).

* Unless congestion is a serious concern (i.e., for average link
utilizations of 80% or higher with bursty sources), there is
little benefit to using RED queue management in routers.

* ARED with ECN marking and a small target delay (5 ms)
performs better than drop-tail FIFO with 2xBDP queue size
at offered loads having moderate levels of congestion (80%
load). This finding should be tempered with the caution that,
like RED, ARED is also sensitive to parameter settings.

* At loads that cause severe congestion, there is a complex
performance trade-off between drop-tail FIFO with 2xBDP
queue size and ARED with ECN at a small target delay.
ARED can improve the response time of about half the re-
sponses but worsens the other half. Link utilization is sig-
nificantly better with FIFO.

¢ At all loads there is little difference between the perform-
ance of drop-tail FIFO with 2xBDP queue size and ARED
with ECN marking and a larger target delay (60 ms).

ACKNOWLEDGMENTS

We thank Jin Cao, Bill Cleveland, Dong Lin, and Don Sun
from Bell Labs for help in implementing their PackMime
model in NS-2.

REFERENCES

[1] Matthew Mathis, Jeffrey Semke, and Jamsid Mahdavi, “The
macroscopic behavior of the TCP congestion avoidance algo-
rithm,” Computer Communication Review, vol. 27, no.3, July
1997.

[2] M. Mathis, J. Mahdivi, S. Floyd, and A. Romanow, “TCP selec-
tive acknowledgement options,” RFC 2018, October 1996.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10

=

(1]

[13]

[14]

[15

[t}

Sally Floyd and Van Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions on
Networking, vol. 1, no. 4, pp. 397413, August 1993.

Sally Floyd, “RED: Discussions of setting parameters,” email,
available at http://www.icir.org/floyd/REDparameters.txt, No-
vember 1997.

S. Floyd, R. Gummadi, & S. Shenker, “Adaptive RED: An algo-
rithm for increasing the robustness of RED’s active queue man-
agement,?” (unpublished)
http://www.icir.org/floyd/papers/adaptiveRed.pdf, 2001.

Mikkel Christiansen, Kevin Jeffay, David Ott, and F. Donelson
Smith, “Tuning RED for web traffic,” [EEE/ACM Transactions
on Networking, vol. 9, no. 3, pp. 249-264, June 2001.

S. Floyd, “Recommendation on using the gentle variant of
RED,” note, available at
http://www.icir.org/floyd/red/gentle.html, March 2000.

Sally Floyd, “TCP and explicit congestion notification,” 4CM
Computer Communication Review, vol. 24, no. 5, pp. 10—23,
October 1994.

K.K. Ramakrishnan and S. Floyd, “A proposal to add explicit
congestion notification to IP,” RFC 2481, Experimental, January
1999.

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe,
Reno, & SACK TCP,” ACM Computer Communications Re-
view, July 1996.

S. Floyd, “Issues of TCP with SACK,” Tech. Rep., LBL, March
1996.

Hari Balakrishnan, Venkata Padmanabhan, Srini Seshan, Mark
Stemm, and Randy H. Katz, “TCP behavior of a busy internet
server: Analysis and improvements,” in Proceedings of IEEE
INFOCOM, 1998.

Elliot Limin Yan and Ya Xu, “Empirical analyses of SACK
TCP Reno and modified TCP Vegas,” unpublished, available at
http://citeseer.nj.nec.com/246505.html, 1997.

R. Bruyeron, B. Hemon, and L. Zhang, “Experimentations with
TCP selective acknowledgment,” ACM Computer Communica-
tion Review, vol. 28, no. 2, April 1998.

J. Bolliger, U. Hengartner, and T. Gross, “The effectiveness of

end-to-end congestion control mechanisms,” TR 313, ETH Zu-
rich, Feb. 1999.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[25]

[26]

[27]

(28]

10

s

S. McCanne and S. Floyd, “NS network simulator,’
http://www.isi.edu/nsnam/ns/, 1995.

J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “PackMime: an
Internet traffic generator,” National Institute of Statistical Sci-
ences Affiliates Workshop on Modeling and Analysis of Net-
work Data, March , 2001.

William S. Cleveland, Dong Lin, and Don X. Sun, “IP packet
generation: statistical models for TCP start times based on con-
nection-rate superposition,” in Proceedings of ACM SIGMET-
RICS, 2000.

J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “On the nonsta-
tionarity of Internet traffic,” in Proceedings of ACM SIGMET-
RICS, 2001.

Luigi Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols,” ACM Computer Communication Review,
vol. 27, no. 1, pp. 31—41, January 1997.

M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy
RED,” in Proceedings of IWQ0S'99, London, March 1999.

Yin Zhang and Lili Qiu, “Understanding the end-to-end per-
formance impact of RED in a heterogeneous environment,”
Cornell CS Technical Report 2000-1802, July 2000.

Jamal Hadi Salim and Uvaiz Ahmed, “Performance evaluation
of explicit congestion notification in IP networks”, RFC 2884,
July 2000.

K. Pentikousis, H. Badr, and B. Kharmah, “On the performance
gains of TCP with ECN,” in Proc. of the 2nd European Confer-
ence on Universal Multiservice Networks (ECUMN 2002), Col-
mar, France, April 2002.

B. Mah, “An empirical model of HTTP network traffic,” in
Proceedings of INFOCOM '97, April 1997.

P. Barford and M. E. Crovella, “Generating representative web
workloads for network and server performance evaluation,” in
Proceedings of Performance '98/ACM SIGMETRICS '98, pp.
151-160, 1998.

K. Park, G. Kim, and M. Crovella, “On the relationship between

file sizes, transport protocols, and self-similar network traffic,”
in Proceedings of ICNP, 1996.

W. Willinger and V. Paxson, “Where mathematics meets the
internet,” Notices of the American Mathematical Society, vol.
45, no. 8, pp. 961—970, Sept. 1998.

Cumulative Probability

bytes per interval

bytes per interval

CDF of Request Sizes CDF of Response Sizes

(250,000 responses) (250,000 responses)
100 100
80 > 80
/ =
©
Qo
60 I S 60
a
J g
| g
| €
/ 3
20 | 20
0 0
10 100 1000 10000 100000 1e+06 1e+07 10 100 1000 10000 100000 1le+06 1e+07 1le+08 1e+09
request size (B) response size (B)
Figure 2: Distribution of HTTP request and response sizes for a typical experiment using PackMime
Bytes per Interval Bytes per Interval
(10 ms interval, 90% offered load, 2-way fwd, unconstrained) (100 ms interval, 90% offered load, 2-way fwd, unconstrained)
35000 350000
30000 300000 .
25000 = 250000
c
20000 £ 200000
g
15000 «» 150000
[
S
10000 < 100000
5000 50000
o LR A AL » LT NI
500 500.5 501 501.5 500 505 510 515
time (s) time (s)
Bytes per Interval Bytes per Interval
(1 second interval, 90% offered load, 2-way fwd, unconstrained) (10 second interval, 90% offered load, 2-way fwd, unconstrained)
3.5e+06 3.5e+07
3e+06 3e+07
2.5e+06 = 2.5e+07
5
2e+06 £ 2e+07
4
1.5e+06 o 1.5e+07
[
| 2 \ |
1e+06 ‘ < 1et07 ‘ | i
500000 ‘”‘“ “H 5e+06
. LA .
500 550 600 650 500 1000 1500 2000
time (s) time (s)

Figure 3: lllustration of the bursty nature of the HTTP traffic: bytes arriving at the router in various intervals

11

packets per interval

packets per interval

Packets per Interval
(10 ms interval, 90% offered load, 2-way fwd, unconstrained)

30

25

20

15

10

501.5

500.5 501

time (s)

Packets per Interval
(1 second interval, 90% offered load, 2-way fwd, unconstrained)

3000

2500

2000

1500

1000

500

0
500 550 600 650

time (s)

packets per interval

packets per interval

Packets per Interval
(100 ms interval, 90% offered load, 2-way fwd, unconstrained)

300

250

200

150

100

50

500

30000

25000

20000

15000

10000

5000

0
500

505 510 515

time (s)

Packets per Interval
(10 second interval, 90% offered load, 2-way fwd, unconstrained)

1000 1500 2000

time (s)

Figure 4: lllustration of the bursty nature of the HTTP traffic: packets arriving at the router in various intervals

12

utilization (%)

loss %

gueue size (packets)

Link Utilization Average Throughtput

(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
100 T — 11 T — T
+ calibration + calibration o
x reno-dt-111q * * x reno-dt-111q §
¥ reno-dt-148q . X - 10 + * reno-dt-148q N °
90 F o reno-ared-5ms % " v e 1 o reno-ared-5ms)
L] reno-ared-60ms % . - o — L] reno-ared-60ms % H
© reno-ecn-5ms e . o 2 g9t ° reno-ecn-5ms i H
80 L . reno-ecn-60ms &] | g . reno-ecn-60ms X H
~ . [0)
o o - Q o
o a 8 o
oy 5]
70 ¥ R = g
o
£
L L] i
60 6L §
50 '] | | | | | | | | 5] | | | | | | | |
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load
Average Loss Percentage Average Percentage of Flows with Drops
(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
16 + calibration o 1 " calibration '
x reno-dt-111q 50 F x reno-dt-111q
14 * reno-dt-148q i * reno-dt-148q B
| reno-ared-5ms B reno-ared-5ms °
1L L] reno-ared-60ms 5 © | < 40 | L] reno-ared-60ms B
° reno-ecn-5ms < ° reno-ecn-5ms "
. - - [%2] . - - .
10| reno-ecn-60ms . : | g reno-ecn-60ms] .
5 30 . “
8 r e % 1 = a) *
a] ; o .
6| . R - ’ , 2 20t - .
o 4 o o o ®
4t X : . -
© 1 L L] :
2+ S -] ° L B
s ° ° ' 8 : h
y ! '
0 ¥ | | | | | | | 0 ¥ I | | | | | | |
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load
Average Queue Size Median HTTP Response Time
(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
120 T — 1100 T —— T
+ calibration + calibration =
x reno-dt-111q 1000 | x reno-dt-111q
100 + * reno-dt-148q i * reno-dt-148q
0 reno-ared-5ms * 900 0 reno-ared-5ms
" reno-ared-60ms @ " reno-ared-60ms
80 + © reno-ecn-5ms * ° i £ 800 © reno-ecn-5ms
. reno-ecn-60ms *] ~ . reno-ecn-60ms
+ : 2 700
* X g
1 X - n
40 ¢ . g 500 o
] X] - -3
. = 400 v . x
20 X B L . X x a 5
* o)] f 8 8 300 - 2 % 5 ° °
Q @ ° 200 + E + + + + + + + +
0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load

Figure 5: Summary statistics for Reno measured at the congested 10 Mbps link

13

utilization (%)

loss %

gueue size (packets)

Link Utilization Average Throughtput

(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
100 T — T 11 T — T
+ calibration + calibration .
+
a
] 10 + .
90 F o sack-ared-5ms v ' o 1 o sack-ared-5ms .
= sack-ared-60ms] o — = sack-ared-60ms M °
o sack-ecn-5ms s = 2 g9t o sack-ecn-5ms . 5
80 . sack-ecn-60ms g 9 8 | g 3 sack-ecn-60ms g 2
Q 4 o]
5 8l :
oy
70 B i =)
o
E 7y '
- L) .
60 6L g
50] L L L L L L L L 5 I’} L L L L L L L L
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load
Average Loss Percentage Average Percentage of Flows with Drops
(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
16 | + calibration] +" calibration ‘ o
[a} 50 L
14 i k i o
| sack-ared-5ms o sack-ared-5ms °
1L L] sack-ared-60ms B o | < 40 | L] sack-ared-60ms .
o sack-ecn-5ms S o sack-ecn-5ms E
e sack-ecn-60ms . g e sack-ecn-60ms
10 E 8 o
- 6 30 B - L] :
8 ° 8 R £ ! o
o - § o [] .
6 . ° i 2 20 .
L) o
4l o u) = . - % °
. 1! . 10 f . x
2 | o] ° . i g [} i
s o ° : e 5 .
0 n L] .\ | | | | | | 0 (] \' | | | | | | |
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load
Average Queue Size Median HTTP Response Time
(2-way fwd, 10 Mbps, 250,000 pairs) (2-way fwd, 10 Mbps, 250,000 pairs)
120 T — T 1100 T ——
+ calibration + calibration
1000
100 b
o sack-ared-5ms 900 o sack-ared-5ms
= sack-ared-60ms @ . sack-ared-60ms o
80| © sack-ecn-5ms . J £ 800 o sack-ecn-5ms
. sack-ecn-60ms L ~ o sack-ecn-60ms
e g 700
60 2 i k=
H Q r
. 8 600
o | []
40| ‘ ; g 500
o " s
s = 400 % " °
e - 8 °
al ’ o ¢} =] 8 8 8 8 1 800 r [.] g ; g S o ©
@ @ 200 + + + + + + + + +
0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
50% 60% 70% 80% 85% 90% 95% 100% 105% 50% 60% 70% 80% 85% 90% 95% 100% 105%
offered load offered load

Figure 6: Summary statistics for SACK measured at the congested 10 Mbps link

14

HTTP Response Time HTTP Response Time

(reno-dt-111q, 2-way fwd, 10 Mbps, 250,000 pairs) (reno-dt-148q, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
80 80
[} 5]
5 60 g 60 s
a calibration ~ + a Y calibration +
o 50% x 0 7 50% x
=] 60% * k=] 60% *
g 40 0% o] g 40 70% o]
IS 80% = IS / 80% =
=) 5 ;
(@] o { "/
20 . 1
95% & 95%
100% B 100% B
0 . ‘ 10‘5% v ‘ 10‘5% v
0 200 400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(reno-ared-5ms, 2-way fwd, 10 Mbps, 250,000 pairs) (reno-ared-60ms, 2-way fwd, 10 Mbps, 250,000 pairs)
100 — T 100 —
+ - tff‘;)‘—/;’ 'fgfijﬁiiﬁii o 75/;’:%;;%:5
B T e I e - — B
_ 80 e L, 8 e o]
= - - - - i — 2 - N e
< /. L [o -
g 60 e - g g 60 e
o calibration + o 7 calibration +
o o A 50% x o 50% x
= C = 60% * = 60% *
I 40 70% o] g 40 70% s]
£ 80% = 1S 80% =
>]
O (8]
20 1) . 20 1
-7 95% & 9%5% -
Y 4 100% -+ 100% -+
0 V4 ‘ 105% - 0 ‘ 105% -
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(reno-ecn-5ms, 2-way fwd, 10 Mbps, 250,000 pairs) (reno-ecn-60ms, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
+ L
80 80 o
< «
g 60 i - B 8
a e I e S calibration + o calibration +
Q)~ 50% x o 50% x
2 40 R 60% x 1 = 60% *]
= 70% = = 70% o
IS 80% = 1S 80% =
> / =]
O N/ O
20 + . 1
A 95% & 95% -
Vi 100% 100% -
o0 W ‘ 10‘5% 7 ‘ 10‘5% v
0 200 400 600 800 1000 1200 1400 600 800 1000 1200 1400
response time (ms) response time (ms)

Figure 7: Distribution of HTTP response times for Reno as load increases with varying queue management schemes: Drc
with 111-packet buffer (dt-111q), Drop-Tail with 148-packet buffer (dt-148q), Adaptive RED with 5 ms target delay (ared-5n
Adaptive RED with 60 ms target delay (ared-60ms), Adaptive RED + ECN with 5 ms target delay (ecn-5ms), Adaptive RE

ECN with 60 ms target delay (ecn-60ms) 15

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(sack-dt-111q, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration
50%
60%

o+
A %
+ j/'
Z
=
o
7

A 7
¥
o

70%
80%

O ¥ X +

Y 95% o
100% +

p 4 105% <

0 200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time
(sack-ared-5ms, 2-way fwd, 10 Mbps, 250,000 pairs)

7::;caﬁbration
i 50%
60%

O o¥ X +

70%
80%

95% o
100% -+

V 105% ~

0 200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time
(sack-ecn-5ms, 2-way fwd, 10 Mbps, 250,000 pairs)

- - V calibration
T 50%
60%

70%
80%

O ¥ X +

95% -
100% B
105% ~

0 200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time

(sack-dt-148q, 2-way fwd, 10 Mbps, 250,000 pairs)

100
80
2
°
[
§ 60 A 2
o - calibration ~ +
o ' 50% x
= 60% *
g 40 70% o]
1S 80% =
>
o §
95% -
100% -+
‘ 105% v
400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(sack-ared-60ms, 2-way fwd, 10 Mbps, 250,000 pairs)
100
80
2
B
[
S 60 0 R
a g calibration +
e ol 50% x
k=] 7 60% *
£ 40 70% o]
1S 80% =
3>
(@)
20 1
95% -
100% -
0 be ‘ 10‘5% v
0 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(sack-ecn-60ms, 2-way fwd, 10 Mbps, 250,000 pairs)
100
80
2 .
= ‘
[
S 60
a calibration +
o 50% x
= 60% *
g 40 70% o]
£ 80% L]
>
(&)
20 1
95%
100% B
o ‘ 105% v
0 600 800 1000 1200 1400

response time (ms)

Figure 8: Distribution of HTTP response times for SACK as load increases with varying queue management schemes

16

HTTP Response Time HTTP Response Time

(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 - 100 T
R P s s ey S
T o o
L o *
80 s 80 + -
E # x E * ol
© g <
g 60 A g 60
o # o e
() ; [}
2 =
& 40 % 8 40
S) S
IS S /7
} / > /
O Iy o F
20 / e 20 S
calibration + calibration +
reno-dt-111q x ¥ reno-dt-111q x
o reno-dt-148q - 0 reno-dt-148q .
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (Ms)
HTTP Response Time HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
. I - - +77:;’g:; R N - A " n
E + 7’{// 3{7;,;1;:7&;;:*7 == " + i . ,,,j;r;,%l/:ﬁ;;ﬁ::
+ *//x//' A //F,;,sz//**’
80 = 80 e e
3 & = * "
[: <
g 60 8 60 8
o # * o o+
o o o«
= =
T 40 8 40
> =}
IS 7 E
> >
O + ®) i ~
20 g e 20 e
/ calibration + ; calibration ~ +
reno-dt-111q x reno-dt-111q x
0 r‘eno—dt—lé‘18q - 0 - r‘eno—dt—lé‘18q +‘
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 — 100 —
-+ + . + e
s * 3 ’ 1 e o * e !]
+ ¥ ,;;—1:;;';"/%/ o i ”’*i,;;;/ o
80 = o 80 - i
> , — 2 T
z + % = + /
5] . < <
S 60 : o S 60 v
o ¥ o H
(0]]
= « > *
T 40 8 40
> >
S S
o 3 ,
20 e o 20 Lo o
; calibration + calibration +
) reno-dt-111q x : reno-dt-111q x
0 py r‘eno—dt—lé‘18q - 0 r‘eno—dt—lé‘18q L
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (Ms)

Figure 9: Distribution of HTTP response times for Reno Drop-Tail: Drop-Tail with 111-packet buffer (dt-111q), Drop-Tail wi
148-packet buffer (dt-148q)

17

Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

+ =+ + i+ + i * A
+ - L 4;;7}//%;,,—*;—’}
HF = Eo—
—
% K
+.
calibration +
reno-dt-111q x
% r‘eno—dt—lé‘18q -
200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

response time (ms)

H#+ +- + +- i+
+ + +
+
A+
! o —
R el
-
i /
| ! calibration +
| reno-dt-111q
reno-d-148q
200 400 600 800 1000 1200 1400

Cumulative Probability

100

80

60

40

20

HTTP Response Time
(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

. i + " + +
+ * i
* e
g = ’errr,;,’,iffé—::**' -
L
%l ¥
a calibration +
reno-dt-111q x
r‘eno—dt—lé‘18q “
200 400 600 800 1000 1200 1400

response time (ms)

Figure 9: (continued) Distribution of HTTP response times for Reno Drop-Tail

18

HTTP Response Time

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100 100
o i <—
== e
— 5
80 80
z z
= 3
[} 5]
g 60 8 60
o ¥ a
(0])
2 =
8 40 o 8 40
> > /
£ / £ /4
3 2 calibration ~ + 3 E calibration ~ +
20 : reno-dt-111q x . 20 reno-dt-111q x §
reno-dt-148q * reno-dt-148q *
reno-ared-sms © ¥ reno-ared-5ms = ©
0 reno-ared-60ms = 0 reno-ared-60ms =
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
b + + A R
+ * . ;r:—;;ﬁ:‘;._i‘—‘* |
+ " ,D,,n——ﬁ”""&j/ L -
80 . *7’5 S S = 80 = =
E Ly T ; 7
S 60 s 60 e
g J //zy L ; /)?/
[i [
= / =
8 40 g 3 40
> > /
£ / 1S /
3 E calibration ~ + 3 calibration ~ +
20 / reno-dt-111q x . 20 reno-dt-111q x
‘g reno-dt-148q * reno-dt-148q *
i/ reno-ared-5ms o reno-ared-5ms o
0 Y reno-ared-60ms = 0 reno-ared-60ms =
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100 -
+ e * * " N
- 80 o 80 e Vk?;ﬁﬂ g
= = - =1
3 3 o /./ e “
< «) L
g 60 8 60 - -
o o o+ f/
[} 3]
8 40 8 40
=} > il
IS 1S
3 , calibration ~ + 3 v calibration ~ +
20 ki reno-dt-111q x] 20 ~ reno-dt-111q x
! reno-dt-148q x A reno-dt-148q
reno-ared-5ms © S/ reno-ared-5ms ©
o ke reno-ared-60ms = 0 / reno-ared-60ms =
0 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

response time (ms) response time (ms)

Figure 10: Distribution of HTTP response times for Reno Drop-Tail and Adaptive RED: Drop-Tail with 111-packet buffer (
111q), Drop-Tail with 148-packet buffer (dt-148q), Adaptive RED with 5 ms target delay (ared-5ms), Adaptive RED with 60
target delay (ared-60ms)

19

Cumulative Probability

Cumulative Probability

100

o)
o

o]
o

IN
S

N
o

100

[o]
o

2]
o

N
o

N
o

HTTP Response Time
(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

i

e

e — e

calibration
reno-dt-111q
reno-dt-148q
reno-ared-5ms
reng—ared—6Qms

O ¥ X +

200 400 600

800

1000 1200

response time (ms)

HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

1400

-
i

¥ :é://

: % 7
=y

response time (ms)

calibration +
reno-dt-111q x -
reno-dt-148q *
reno-ared-5ms ©
reng-ared-GQms -
600 800 1000 1200 1400

Cumulative Probability

100

(e}
o

(o2}
o

N
o

N
o

HTTP Response Time
(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

/T
/
i
/ calibration ~ +
& reno-dt-111q x .
reno-dt-148q *
reno-ared-5ms B
2 renq—ared—GQms -
200 400 800 1000 1200 1400

response time (ms)

Figure 10: (continued) Distribution of HTTP response times for Reno Drop-Tail and Adaptive RED

HTTP Response Time HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100 - 100 -
. N 4 - + o+ + . L + o+ + 4 +-
4 o e]
+ 7,,,—"*".77)4.7 S N + e e
80 " e — 80 W i
2 '<,&——;5:::5:215'7—55)]“/ 2 * g~ ——
ke * e a e el
< = @ SV
g 60 g 60 -
o [on
g g
g 40 Z 40
=} =}
1S / IS
3 / calibration ~ + 3 / calibration ~ +
20 4 reno-red-5-15 x| 20 z reno-red-5-15 x]
#
"/ reno-ared-5ms o reno-ared-5ms = ©
/ reno-ared-60ms = reno-ared-60ms
200 1000 1200 1000 1200
response time (ms) response time (ms)
HTTP Response Time
(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 N——
.
+ * 3) 1
"
80 + s
£ -
3 * R PR
g 60 e
£ ; , b
o -
2 &
= 5
5 40 Vi
E %
> / . .
o / calibration +
20 e ’ reno-red-5-15 x §
reno-ared-5ms o
0 reno-ared-60ms =

0 200 400 600 800 1000 1200 1400
response time (ms)

Figure 11: Distribution of HTTP response times for RED and Adaptive RED: RED with 5-packet minimum threshold and
packet maximum threshold (red-5-15), RED with 30-packet minimum threshold and 90-packet maximum threshold (red-30
Adaptive RED with 5 ms target delay (ared-5ms), Adaptive RED with 60 ms target delay (ared-60ms)

21

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100
80 e g
> -
2 .
S 60 ‘
& /
(0] :
=
8 40
>
IS
8 i calibration +
20 ; reno-ecn-5ms x .
’ reno-ecn-60ms *
reno-ared-5ms |
0 reng—ared—6Qms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100
"
.
80 = = p—
2 a
E +y, /D‘/
s e
s 60 7
a <
8 40 /
>
g /
3 +/ calibration ~ +
20 reno-ecn-5ms x .
/ reno-ecn-60ms *
reno-ared-5ms ©
0 reng-ared-GQms "

0 200 400 600 800 1000 1200 1400
response time (ms)

HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100
+ *
vv+
80 +
© . _
g 60 s ol
o i e
/
2 //
8 40 /
=} /
1S
3 / calibration ~ +
20 ! reno-ecn-5ms x .
A reno-ecn-60ms
) reno-ared-5ms ©
0 reng—ared—GQms -

0 200 400 600 800 1000 1200 1400
response time (ms)

Figure 12: Distribution of HTTP response times for Reno Adaptive RED and Adaptive RED+ECN: Adaptive RED with 5 ms tal
delay (ared-5ms), Adaptive RED with 60 ms target delay (ared-60ms), Adaptive RED + ECN with 5 ms target delay (ecn-5

Adaptive RED + ECN with 60 ms target delay (ecn-60ms)

22

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

" + + ;/_P‘———
¥ —F —
calibration +
/ reno-ecn-5ms = x .
-2 reno-ecn-60ms *
o reno-ared-5ms o
’ renq—ared—GQms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
: calibration ~ +
il reno-ecn-5ms x .l
i reno-ecn-60ms *
reno-ared-5ms 0
renQ-ared-GQms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
D"'
{ calibration +
/ reno-ecn-5ms x .
/ reno-ecn-60ms *
reno-ared-5ms B
reng—ared—6Qms -
0 200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

Cumulative Probability

HTTP Response Time

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100
et + + " -
80
60
i
40 G
7
: calibration ~ +
20 b reno-ecn-5ms x]
/ reno-ecn-60ms *
reno-ared-5ms |
0 reng—ared—6Qms "
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100
N o+ e + i
"
"
4
80
— '*t:ji:: B
60 =
¥ =g
B =
calibration +
reno-ecn-5ms x .
reno-ecn-60ms *
reno-ared-5ms ©
reng-ared-GQms -
600 800 1000 1200 1400

response time (ms)

Cumulative Probability

100

80

60

40

20

HTTP Response Time

(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration
reno-ecn-5ms

reno-ecn-60ms
reno-ared-5ms
renq—ared—GQms

O o¥ X

400 600 800 1000 1200 1400
response time (ms)

Figure 12: (continued) Distribution of HTTP response times for Reno Adaptive RED and Adaptive RED+ECN

23

HTTP Response Time HTTP Response Time

(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100 "
i S = m— PR
s %pﬁ:ﬁ i
s s _—
- 80 ://5/ o 80 s o
% Ny % < /
g A g o
o 60 o S 60 ’ /
o £/ o s
Q / o //
>) > /,
8 40 ipf 8 40 :
S / = /o
£ / I //+
3 N calibration ~ + 3) calibration ~ +
20 : reno-dt-111q x . 20 /) reno-dt-111q x §
’ reno-dt-148q * R reno-dt-148q *
reno-ecn-5ms o * reno-ecn-5ms o
0 reqo—ecn—6Qms " 0 ’ reqo—ecn—GQms "
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
4 ‘ .
+ =
80 ¥ > 80 +
£ . £ r Z
< . [
g 60 : z// g 60 ‘
o ¥ ot a ; /
o /) 4 /
> >
T 40 7 8 40
> =}
€ /u 1S /
3 iy calibration ~ + 3 W calibration ~ +
20 / reno-dt-111q x J 20 il reno-dt-111q x -J
/ reno-dt-148q * ‘d /) reno-dt-148q *
reno-ecn-sms = © / reno-ecn-5ms = o
0 reno-ecn-60ms = 0 reno-ecn-60ms =
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
it 4 & + + . i\ + - + =+
4 * i —— e 3
A — 33’7//\3’,”; + —
_ 80 e i 80 . =
8 60 o 8 60 v
o ¥ // o + /
¢ 7 2 ¥
8 40 a 8 40
> 74 =}
IS ; / £ 74
3 / calibration ~ + 3 e calibration ~ +
20 x reno-dt-111q x] 20 e . reno-dt-111q x
‘b /) reno-dt-148q * /) reno-dt-148q x
/A reno-ecn-5ms © oy reno-ecn-5ms ®©
0 4 reno-ecn-60ms " 0 , reno-ecn-60ms "
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)

Figure 13: Distribution of HTTP response times for Reno Drop-Tail and Adaptive RED+ECN: Drop-Tail with 111-packet buf
(dt-111q), Drop-Tail with 148-packet buffer (dt-148q), Adaptive RED + ECN with 5 ms target delay (ecn-5ms), Adaptive REL
ECN with 60 ms target delay (ecn-60ms)

24

Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

HTTP Response Time

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100
ot + * " " -
.
¥ 80
, 2
* 3
‘ - S o
7 [=]
74 £
)
Y/ 2
d77 % 40
/ E
‘ calibration + 3
b reno-dt-111q x] 20
/ reno-dt-148q *
reno-ecn-5ms o
reqo—ecn—6Qms " 0
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
i +- i + -
+ - *
"
4
ha
r
i S E—
/ 4
/ calibration +
£ 4 reno-dt-111q x .
LAY reno-dt-148q *
.y reno-ecn-5ms = ©
: 4 reqo-ecn-GQms "
0 200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time
(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration
i reno-dt-111q

O o* X +

78 reno-dt-148q
Vi reno-ecn-5ms
2 reqo—ecn—GQms

200 400 600 800 1000 1200 1400
response time (ms)

Figure 13: (continued) Distribution of HTTP response times for Reno Drop-Tail and Adaptive RED+ECN

25

Cumulative Probability Cumulative Probability

Cumulative Probability

Figure 14: Distribution of HTTP response times for Reno Adaptive RED + ECN with 5 ms target delay for 1-way and 2-way tre

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time

(80% offered load, 10 Mbps, 250,000 pairs)

o+ e

+ e
. x/*/*f*—/M/

L

—

calibration
reno-ecn-5ms (1-way)
reno-ecn-5ms (2-way)

+
X
*

200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(90% offered load, 10 Mbps, 250,000 pairs)
L U + 1 v
.
e e 7]
- R

calibration +
reno-ecn-5ms (1-way) x

reno-ecn-5ms (2-way) ~ *

200 400 600 800 1000 1200
response time (ms)
HTTP Response Time
(100% offered load, 10 Mbps, 250,000 pairs)
i + i - " 3
L be —
e

v

calibration +
reno-ecn-5ms (1-way) x
reno-ecn-5ms (2-way) =~ x
200 400 600 800 1000 1200 1400

response time (ms)

26

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

HTTP Response Time

(85% offered load, 10 Mbps, 250,000 pairs)

N
. o + * * ;_,_/:,_/x’—/
e e —H— ¢ —
& /
K

calibration +

reno-ecn-5ms (1-way) x

reno-ecn-5ms (2-way) *_

200

400

600 800 1000
response time (ms)

HTTP Response Time

1200

(95% offered load, 10 Mbps, 250,000 pairs)

1400

A e

4

K /WW

calibration
reno-ecn-5ms (1-way)
reno-ecn-5ms (2-way)

+
X

*
L

200

400

600

800

1000

response time (ms)

HTTP Response Time

1200

(105% offered load, 10 Mbps, 250,000 pairs)

1400

. &

+

G

+

%—/6/ *—|
e
y/*/*/
O——

calibration
reno-ecn-5ms (1-way)
reno-ecn-5ms (2-way)

+
x

*
L

200

400

600

800

1000

response time (ms)

1200

1400

Cumulative Probability Cumulative Probability

Cumulative Probability

Figure 15: Distribution of HTTP response times for SACK Drop-Tail and Adaptive RED: Drop-Tail with 111-packet buffer (c
111q), Drop-Tail with 148-packet buffer (dt-148q), Adaptive RED with 5 ms target delay (ared-5ms), Adaptive RED with 60

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

o+

a— —
58

e + —
- ==

g

o

calibration

sack-ared-5ms
sack-ared-60ms

200 400

600 800 1000 1200
response time (ms)

HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

N
" R + + -
» + ./._/_ldkf]——’—’n o e
+ N SRS,
g
;/ﬂ/ o
&
¥ /
pra
J calibration +
Rl]
sack-ared-5ms |
sack-ared-GQms .

200 400

600 800 1000
response time (ms)

1200

HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

‘
. it r
A R + *
. S—
- [f.,/-/'//l} N
e -/./l'/- =
=
) /!/D e T
J 4
el V
pra
{ calibration +
&
) sack-ared-5ms = ®©
sack—ared—GQms .

200 400

target delay (ared-60ms)

600 800 1000
response time (ms)

1200

1400

27

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

R A
s ./;,/B —a—F
il
i calibration +
i]
sack-ared-5ms B
sack—ared—6Qms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
3 N i + - + o+
+ S
+ - ./._/—/Ff"’/./_/;r,iu— —
P et / [R it
¢ /D =
; / calibration +
Favi)
sack-ared-5ms B
saclg-ared-BQms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
i+ + H
. . T t+ +
+ ./._/~.—/—'
e — i =
+ ./:aﬂf{«}»ffﬂ’ -
=y
il
{ calibration +
) . sack-ared-5ms ©
sack-ared-60ms =
0 200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(95% offered load, 2-way fwd, 10 Mbps,

250,000 pairs)

T

A . i + o+ +

+
-
+
e i
+ F/._/l/

- o &

./I/ &
=

P sack-ared-5ms =
sack-ared-60ms =

calibration +

200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time

(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

¥
585
/E}’ —a—
; =

§ 4 + -
N + + +
+
+
+
ba
: -/'/l/
S
i)
e =
./I/ .

Iy sack-ared-5ms |
sack-ared-60ms =

calibration +

200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

100

80

60

40

20

HTTP Response Time

(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

3 . i\ + " + H
N +
.
A ——
-/./
- .,4/ o
) ./'/./k,i "
' ././ L e 7 :
=+ =
)a
i
{ calibration +
J]
P sack-ared-5ms B
sack—ared—6Qms -
200 400 600 800 1000 1200 1400

response time (ms)

Figure 15: (continued) Distribution of HTTP response times for SACK Drop-Tail and Adaptive RED

28

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100 100 A
_ 80 _ 80 f =
s = i
m ‘U E //
S 60 £ 60 %
o o %
(0]) /
= = /
8 40 & 40 /
2 : 4
3 K calibration ~ + 3 / calibration ~ +
+
20 / saﬁk-ecnégms x . 20 saﬁk-ecnégms x §
sack-ecn-60ms sack-ecn-60ms
sack-ared-5ms | sack-ared-5ms B
0 sack-ared-60ms = 0 sack-ared-60ms =
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
% offered load, 2-way , ps, , pairs b offered load, 2-way , ps, , pairs
(70% offered load, 2 fwd, 10 Mbps, 250,000 pairs) (80% offered load, 2 fwd, 10 Mbps, 250,000 pairs)
100 — 100 N—
- + T . +
M, T =
E‘ 80 - z/ﬂ/u E‘ 80 E g j‘/e/‘/:—af”a”*’ai -
g 60 g 60 :
L w74
() A [}
= =
o T
E 40 / E 40 /
3 E calibration ~ + 3 calibration ~ +
+
20 saﬁk-ecnégms x . 20 salfk-ecnégms x §
sack-ecn-60ms = . sack-ecn-60ms =
sack-ared-5ms | ' sack-ared-5ms B
0 sack-ared-GQms - 0 saclg-ared-BQms -
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
5% offered load, 2-way , 10 Mbps, 250, pairs % offered load, 2-way , 10 Mbps, 250, pairs
85% offered load, 2 fwd, 10 Mbps, 250,000 pai 90% offered load, 2 fwd, 10 Mbps, 250,000 pai
100 100
e i A T + i
e ’ﬂpﬁj;*‘j/ + e
. I - B w—)
. 80 Uk > 80 + V"/W =
= 5 = + / 5"
2 el / x//</r/ s
S 60 S 60 v - e
& 5 a ‘ y
(4] 3] a7
= = va
8 40 r 8 40 /
g E '/
3 v calibration ~ + 3 yavi calibration -
20 L, saﬁk—ecnégms x] 20 e ¢ saf(:k—ecnégms x]
; sack-ecn-60ms / sack-ecn-60ms
i sack-ared-5ms ®© ey sack-ared-5ms o
0) sack—ared—GQms - 0 Fa saclg—ared—GQms -
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

response time (ms) response time (ms)

Figure 16: Distribution of HTTP response times for SACK Adaptive RED and Adaptive RED+ECN: Adaptive RED with 5 1
target delay (ared-5ms), Adaptive RED with 60 ms target delay (ared-60ms), Adaptive RED + ECN with 5 ms target delay (
5ms), Adaptive RED + ECN with 60 ms target delay (ecn-60ms)

29

Cumulative Probability

Cumulative Probability

HTTP Response Time HTTP Response Time

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
L . + + 4 + oo . . i + i+ + i
e * " +
80 : pe=—— 80 o
H y P A i g - — =
60 e S 60 ; - e s S
/D S . % e
/ + g
7 A =
40 8 40 -
o > y
IS A)
i / calibration + 3 / calibration +
20 b saEk-ecnégms x . 20 E J saﬁk-ecnégms x §
sack-ecn-60ms sack-ecn-60ms
// sack-ared-5ms | //:/ sack-ared-5ms B
sack-ared-60ms = sack-ared-60ms =
O Il Il Il 0 Il Il Il
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)

HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100

. . + +
+ + +

80 E

- %/;V/ o

calibration
sack-ecn-5ms
sack-ecn-60ms
sack-ared-5ms
sack-ared-GQms

600 800 1000 1200 1400
response time (ms)

WO X+

Figure 16: (continued) Distribution of HTTP response times for SACK Adaptive RED and Adaptive RED+ECN

30

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

response time (ms)

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100 - 100 ——
e e e
80 o 80 N
E +' 7 E)/‘
© v [A
S 60 / £ 60 L
(0] i) (0] /
= / = /
8 40 2 8 40 /
> / >
IS / S /
3 calibration + 3 i/ calibration +
20 . 20 /. .
sack-ecn-5ms o sack-ecn-bms o
0 sagk—ecn—6Qms - 0 sagk—ecn—GQms "
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 — T 100 —
+ et :r—f;——f'*:” - — + i - " ’ ! ———
_—— 4 _ 8
N i = ;’_’_,E/E/E/ + - '7;,:,_/8/5/_'8/
80 . B 80 - =
:65 :/. % r /
§ 60 g 60 A
a8 /‘ o + //
o iy [o
= / = /
8 40 ’ 8 40
=] ¥ =]
£ 1S
3 y calibration ~ + 3 1y calibration ~ +
20 / . 20 1
sack-ecn-5ms |) / sack-ecn-5ms B
0 sac‘kfecn—GO‘ms " 0 _/' saqk—ecn—GQms -
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
A it 4 - + + — i\ + 4 + =+
4] +
. s V/'//,,rm—l'*"';;;/—’—/a—’—' . . J.?g/g)_zg.li;
> 80 ¥) = > 80 v ¥ E/‘/Mﬂa,ﬂ
= * 7 3 - /‘
© e © >
2 60 - 8 60 7
E ¥ // E H {
p > 7
= e 2 /
8 40 / 8 40 o
=} =}
IS / 1S
3 ’ calibration ~ + 3 J calibration ~ +
20 . 20 . 1
/ sack-ecn-5ms o S sack-ecn-5ms = ©
0 saqk—ecn—GQms - 0 / & saqk—ecn—GQms "
200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400

response time (ms)

Figure 17: Distribution of HTTP response times for SACK Drop-Tail and Adaptive RED+ECN: Drop-Tail with 111-packet buff
(dt-111q), Drop-Tail with 148-packet buffer (dt-148q), Adaptive RED + ECN with 5 ms target delay (ecn-5ms), Adaptive REL
ECN with 60 ms target delay (ecn-60ms)

31

Cumulative Probability

Cumulative Probability

HTTP Response Time HTTP Response Time

calibration +

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 . N - o -+ S + e 100 . L . i + + + -
+ - o + "
80 5 e 80 L i —
e = > e = 5
’ s ' e
60 09_ 60 i
F [} i /z//-/
40 8 40 _,
d 2 77
‘ calibration ~ + 3 calibration ~ +
20 : 1 20 ! 1
/ o
J sack-ecn-5ms @ 74 sack-ecn-5ms ©
0 e sack-ecn-60ms = 0 & sack-ecn-60ms =
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100
R + + +
+ + -
+
4
80 ¥
60 . T
N W///Q/E/B/
40 //
o

. sack-ecn-5ms o
' sack-ecn-60ms =

0 200 400 600 800 1000 1200 1400
response time (ms)

Figure 17: (continued) Distribution of HTTP response times for SACK Drop-Tail and Adaptive RED+ECN

32

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Figure 18: Distribution of HTTP response times for Drop-Tail: 111-packet buffer (dt-111q), 148-packet buffer (dt-148q)

HTTP Response Time

(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

=+ + e — S ey e
e ,/T/—' -
4 - —
- o
& A

‘ calibration +
reno-dt-111q .]

g reno-dt-148q .

200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time

(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

response time (ms)

HTTP Response Time

+ H -+ ‘* - ,,Jl—:
R M B Ly
N e
o
R
/ .
iy calibration +
reno-dt-111q x .
) reno-dt-148q *
W
200 400 600 800 1000 1200 1400

(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

response time (ms)

+ + + i+ + i - -
o e T
= = i
B } /;/ :
i

calibration +
foJ# reno-dt-111q x]

reno-dt-148q *

) ' /; Il Il Il
200 400 600 800 1000 1200 1400

33

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time

(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

e +: 4 T
o+ i+ ',,t,,,, S B -
* o a
+ //
o+
// g . .
' calibration +
reno-dt-111q " 1
: reno-dt-148q .
200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time

(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

response time (ms)

HTTP Response Time

o+ + o+
i - i’ 7:: e
e R
%
/ calibration +
! reno-dt-111q x|
/ reno-dt-148q *
- //V Il 1 L
200 400 600 800 1000 1200 1400

(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

+ + + + 4 T
+ +
+]
: KL e
/-/ =
oy
; calibration ~ +
iy reno-dt-111q x]
reno-dt-148q x
200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

Cumulative Probability

100

o)
o

o]
o

N
o

N
o

100

[o]
o

2]
o

IN
o

N
o

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

HTTP Response Time HTTP Response Time

(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

i 4+ . + =+ 100 W + " o+
o * i . - + * 3 i
+ = | +
* === S S 80 * e
> T 8 * e
% (U (//
8 60 -
¥ r o + "
)
= o
: 8 40 9
>
£
calibration ~ + 3 calibration ~ +
reno-dt-111q x 20 L reno-dt-111q x
reno-dt-148q * 2 reno-dt-148q *
Il Il Il 0 A i Il Il Il
200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)

HTTP Response Time

(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

) o o+

N + + +

4
v
o+
i i
I s
I
* VAN VIS

calibration +

X

reno-dt-111q -
reno-dt-148q *

400 600 800 1000 1200 1400
response time (ms)

Figure 18: (continued) Distribution of HTTP response times for Drop-Tail

34

100
80

2

E

8

S 60

o

()

2

8 40

=)

£

=]

(@]
20
0
100
80

2

5

®©

S 60

o

()

=

8 40

=)

£

)

o
20
0
100
80

2

E

©

g 60

o

()

=

8 40

>

=

=

O
20

Figure 19: Distribution of HTTP response times for Adaptive RED: 5 ms target delay (ared-5ms), 60 ms target delay (ared-6

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

i

— w;‘gr‘n—;’;:gj

g}

calibration
reno-ared-5ms

*

sack-ared-5ms

N
x
reno-ared-60ms *
a]
saclg-ared-GQms .

200 400 600 800 1000 1200

response time (ms)

HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

o ya
S
=

calibration
reno-ared-5ms

.
x

7 reno-ared-60ms *
a]

L]

sack-ared-5ms
sack-ared-60ms

200 400 600 800 1000 1200

response time (ms)

HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration

reno-ared-5ms
reno-ared-60ms
sack-ared-5ms
sack-ared-BQms

OO X+

200 400 600 800 1000 1200 1400

response time (ms)

35

Cumulative Probability Cumulative Probability

Cumulative Probability

100

o)
o

2]
o

IN
o

N
o

100

(o0}
o

(o2}
o

IN
o

N
o

100

[er]
o

(o2}
o

IN
o

N
o

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

- + i
R ——
+ g=i=
e
#/
/ .
i/ calibration +
1 reno-ared-5ms x]
reno-ared-60ms *
sack-ared-5ms B
saclg-ared-GQms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
L n G+ + o+ + o+
e e
ot ’ /f//*;}*;ﬁj;‘r/;f -
;//;&%% -
+ =
S
/ calibration +
il reno-ared-5ms x]
; reno-ared-60ms *
/ sack-ared-5ms a
sack-ared-60ms =
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
+ + + " * "
N — i
A R
¥ //.k;v.r_/': =
+ /%‘Z:&J:—f&—:—& =
E /é/ -
/ 4
/%
i
{ calibration +
~ reno-ared-5ms = x .
4 reno-ared-60ms *
sack-ared-5ms 0
sack(—ared-GQms -
0 200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

Cumulative Probability

HTTP Response Time HTTP Response Time

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
— + + 4 + oo . . i + i+ + i
i * " +
+ — +
80 W — 80 ¥ e
./,.,,,_.——4"/ — E . .,ﬂsa-v”"’/'/
" .,/'/ o 3 * e =
- e 8 i — e
60 i e o 60 v S -
¥) / a + /gz"ﬁ"':&bi/ R
)
= -
40 /E/ 8 40 2
¥ E "
F/ calibration ~ + 3 calibration ~ +
20 b reno-ared-5ms x . 20 E reno-ared-5ms x §
/ reno-ared-60ms * ‘. reno-ared-60ms *
/3 sack-ared-5ms | Z/ sack-ared-5ms B
/ sack-ared-60ms = sack-ared-60ms =
O Il Il Il 0 Il Il Il
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)

HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100

. + + +
X . N + + +
4
80
. L _ T
60 g s =
s
40
calibration +
20 reno-ared-5ms x .
reno-ared-60ms *
sack-ared-5ms |
0 sack-ared-GQms .

0 200 400 600 800 1000 1200 1400
response time (ms)

Figure 19: (continued) Distribution of HTTP response times for Adaptive RED

36

100

Cumulative Probability

1

Cumulative Probability

1

Cumulative Probability

Figure 20: Distribution of HTTP response times for Adaptive RED+ECN: 5 ms target delay (ecn-5ms), 60 ms target delay (

60ms)

80

60

40

20

00

80

60

40

20

00

80

60

40

20

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

+

e

e

S oS
o
%Mﬁ:

.

p

/

calibration
reno-ecn-5ms
reno-ecn-60ms
sack-ecn-5ms
sagk—ecn—GQms

200

400

600

800

1000 1200

response time (ms)

HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

it + .
_ a——

calibration
reno-ecn-sms
reno-ecn-60ms
sack-ecn-5ms
saqk-ecn—GQms

200

400

600

800

1000 1200

response time (ms)

HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration
reno-ecn-5ms
reno-ecn-60ms
sack-ecn-5ms
saqk—ecn—GQms

O ¥ X +

400

600

800

1000 1200

response time (ms)

1400

37

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

e
- ;%WW
/
o
i calibration +
reno-ecn-5ms x .
reno-ecn-60ms *
sack-ecn-5ms o
sagk—ecn—GQms "
0 200 400 600 800 1000 1200 1400
response time (Ms)
HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
1 N i " + +- o
+ o
¢ r/%'/
.+' V :
s
; /
/A
I,
p/ calibration +
il reno-ecn-5ms = x .l
/ reno-ecn-60ms *
sack-ecn-5ms o
sagk—ecn—GQms -
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
i+ + H
+ * i ’ ! ’
A -
P /}/ﬁ;}, -
; %/f/’ calibration +
o reno-ecn-5ms x .
/ reno-ecn-60ms *
i sack-ecn-5ms o
w4 sagk—ecn—GQms -
0 200 400 600 800 1000 1200 1400

response time (ms)

Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

calibration
reno-ecn-5ms
reno-ecn-60ms
sack-ecn-5ms
sagk—ecn—6Qms

O ¥ X +

600

800

1000 1200

response time (ms)

HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

1400

+

calibration
reno-ecn-5ms
reno-ecn-60ms
sack-ecn-5ms
saqk-ecn-GQms

O o X +

0 200

400

600

800

1000 1200

response time (ms)

1400

Cumulative Probability

100

80

60

40

20

HTTP Response Time

(100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

. + +

E—M

; calibration +
4 . reno-ecn-5ms x .
/ reno-ecn-60ms
J sack-ecn-5ms ©
& sack-ecn-60ms =
200 1000 1200 1400

response time (ms)

Figure 20: (continued) Distribution of HTTP response times for Adaptive RED+ECN

38

HTTP Response Time
(50% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

100
s + ,,i,,ﬁi—fjfffﬁ:
> 80 ;/x
s s
g .
8 60 %
& /
()
=
8 40
>
£
}
(8}
20 L
calibration +
reno-dt-148q
0 repo-ecn-ﬁms *
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(70% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100
L . " + i+ Jj/iff,,
+ e e]
+ ' x’—’—*/*’_/_%/
80 e
2 7
g 60
() /
=
8 40
>
IS
>
O
20 e
calibration +
reno-dt-148q
0 repo-ecn-ﬁms *
0 200 400 600 800 1000 1200 1400
response time (ms)
HTTP Response Time
(85% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 -
X . . G + + +
- B e
- e e
80 - - e
= , :
T‘? + /
S 60
o ¥
(0]
=
8 40
>
€
}
(8}
20 e
calibration +
reno-dt-148q
0 rqno—ecn—ﬁms *
0 200 400 600 800 1000 1200 1400

Figure 21: Distribution of HTTP response times for Reno Drop-Tail with 148-packet buffer and Adaptive RED + ECN with 5

target delay

response time (ms)

39

Cumulative Probability Cumulative Probability

Cumulative Probability

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

HTTP Response Time
(60% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

B s W S s
s ;/;/WW*’—’*J*—’—
calibration +
reno-dt-148q
reno-ecn-5ms x
200 400 600 800 1000 1200 1400

response time (Ms)

HTTP Response Time
(80% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

. + +
+ i - " !]
calibration +
reno-dt-148q
rqno-ecn-ﬁms *
200 400 600 800 1000 1200 1400

response time (ms)

HTTP Response Time
(90% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)

- + o+
e + . ! ’ | e
‘ A e ,,;—f/*/_*/_,k—’
+ M—/W*/
o
calibration +
reno-dt-148q
rqno—ecn—ﬁms *
200 400 600 800 1000 1200 1400

response time (Ms)

HTTP Response Time HTTP Response Time

(95% offered load, 2-way fwd, 10 Mbps, 250,000 pairs) (100% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100 100
. - G + “+ + t+ L . G + i+ + +
+ +
- — +
+ B — + ~ —
80 . 80 -
o e
> > *—]
£ e £ —
Qo * —* | o) + %—/*/
®©] ; W*’*—
g 60 S 60 v —
o " i a § %
g g //
= =
< 5
= 40 i/ % 40 %
IS S
3} ‘ 3
20 ? e 20 ! o
calibration + calibration +
reno-dt-148q reno-dt-148q
0 x rqno—ecn—ﬁms * 0 rqno—ecn—ﬁms *
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
response time (ms) response time (ms)
HTTP Response Time
(105% offered load, 2-way fwd, 10 Mbps, 250,000 pairs)
100
Y +- + + i+
+ + -
+
"
80 - - —
g 60) W*//*/x/
o ¥ /*f*/
()
g ; /
8 40
S .
£ /
>
O +
20 e
calibration +
. reno-dt-148q
0) reno-ecn-5ms)

0 200 400 600 800 1000 1200 1400
response time (ms)

Figure 21: (continued) Distribution of HTTP response times for Reno Drop-Tail with 148-packet buffer and Adaptive RED + E
with 5 ms target delay

40

