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Abstract
We assess the state-of-the-art in Internet congestion

control and error recovery through a controlled study that
considers the integration of standards-track TCP error
recovery and both TCP and router-based congestion con-
trol. The goal is to examine and quantify the benefits of
deploying standards-track technologies for Internet traffic
as a function of the level of offered network load. We limit
our study to the dominant and most stressful class of In-
ternet traffic: bursty HTTP flows. Contrary to expecta-
tions and published prior work, we find that for HTTP
flows (1) there is no clear benefit in using TCP SACK over
TCP Reno, (2) unless congestion is a serious concern (i.e.,
unless average link utilization is above approximately
80%), there is little benefit to using Adaptive RED queue
management, (3) above 80% link utilization there is po-
tential benefit to using Adaptive RED with ECN marking,
however, complex performance trade-offs exist and results
are sensitive to parameter settings.*

1. Introduction
Improvements to TCP’s error recovery and congestion

control/avoidance mechanisms have long been a mainstay
of networking research. In this paper, we evaluate the per-
formance of combinations of “standards-track” TCP error
recovery and congestion control techniques. We consider
standards-track TCP error recovery mechanisms to include
TCP Reno fast retransmission [1] and TCP with selective
acknowledgments (SACK) [2]. We consider standards-
track TCP congestion control mechanisms to include con-
gestion avoidance and fast recovery in TCP Reno and the
router-based congestion control found in routers that sup-
port Adaptive Random Early Detection (ARED) [3] and
Explicit Congestion Notification (ECN) [4].

Using ns simulations, we evaluated how well various
pairings of Reno, SACK, drop-tail, and ARED (with both
packet dropping and ECN marking) perform in the context
of HTTP traffic. Our results provide an evaluation of the
state-of-the-art in TCP error recovery and congestion con-
trol in the context of Internet traffic composed of “mice”
and “elephants.” We used bursty HTTP traffic sources gen-
erating a traffic mix with a majority of flows sending few
segments (< 5), a small number sending many segments (>
50), and a number in the [5, 50] segment range. Our pri-
mary metric of performance was the response time to de-
liver each HTTP object requested along with secondary
metrics of link utilization, router queue size, and packet
loss percentage.
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Section 2 explains our experimental methodology and
Section 3 presents a summary of our main results. Com-
plete experimental results, as well as a more detailed de-
scription of the experimental design, are presented in an
available technical report [5].

2. Methodology
2.1 Experimental Setup

We ran simulations in ns with varying levels of two-way
HTTP 1.0 traffic. These two-way traffic loads provide
roughly equal levels of congestion on both the “forward”
path (server-to-client) and “reverse” path (client-to-server).
The following pairings of error recovery and queue man-
agement techniques were tested: Reno with drop-tail
queuing in routers, Reno with ARED using packet drops,
ECN-enabled Reno with ARED using ECN marking,
SACK with drop-tail, SACK with ARED using packet
drops, and ECN-enabled SACK with ARED using ECN
marking. (SACK includes Reno congestion control.)

The HTTP traffic we generate comes from the Pack-
Mime model developed at Bell Labs [6]. The fundamental
parameter of PackMime is the TCP/HTTP connection ini-
tiation rate (a parameter of the distribution of connection
interarrival times). The model also includes distributions of
the size of HTTP requests and the size of HTTP responses.
Both the HTTP request size and response size distributions
are heavy-tailed. There are a large number of small re-
quests and a few very large requests. Almost 90% of the
requests are under 1 KB and fit in a single packet. The
largest request is almost 1 MB. 60% of the responses fit
into one packet and 90% of the responses fit into 10 pack-
ets, yet the largest response size is over 100 MB. Using this
distribution, we will have many short-lived transfers, but
also some very long-lived flows.

In each experiment, we examine the behavior of traffic
that consists of 250,000 HTTP connections, with a total
simulated time of 40 minutes. In our implementation of
PackMime in ns, one PackMime “node” represents a cloud
of HTTP clients or servers. The traffic load is driven by the
user-supplied connection rate parameter, which is the num-
ber of new connections starting per second. New connec-
tions begin at their appointed time, whether or not any pre-
vious connection has completed.

The network we simulate consists of two clouds of web
servers and clients positioned at each end of a 10 Mbps
bottleneck link (Figure 1). There is a 10 Mbps bottleneck
link between the two routers, a 20 Mbps link between each
PackMime cloud and its corresponding aggregation node,
and a 100 Mbps link between each aggregation node and
the nearest router. This configuration is designed to ensure
that all congestion in the network occurs on the bottleneck
link between the two routers.

The aggregation nodes in our simulations are ns nodes
that we developed called DelayBoxes to delay packets in
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the simulation.1 With DelayBox, packets from a TCP co n-
nection can be delayed before being passed on to the next
node. This allows each TCP connection to experience a
different minimum delay (and hence a different round-trip
time), based on random sampling from a delay distribution.
In our experiments, DelayBox uses an empirical delay dis-
tribution from the PackMime model. This results in min-
mum delays ranging from 1 ms to 3.5 seconds. The median
delay is 54 ms, the mean is 74 ms, and the 90th percentile is
117 ms. Delays are assigned independently of request or
response size and represent only propagation delay and do
not include queuing delays.

For a target bottleneck bandwidth of 10 Mbps, we com-
pute the bandwidth-delay product (BDP) to be 74 1,250-
byte packets. In all cases, we set the maximum send win-
dow for each TCP connection to the BDP.
2.2 Queue Management Settings

Christiansen et al. recommend a maximum queue size
between 1.25-2×BDP for reasonable response times for
drop-tail queues [7]. The maximum queue buffer sizes
tested in our drop-tail experiments were 1.5 and 2×BDP.

We ran sets of ARED experiments using the default
ARED settings in ns (target delay = 5 ms) and with pa-
rameters similar to those suggested by Christiansen, minth =
30 and maxth = 90, resulting in a target delay of 60 ms. The
maximum router queue length was set to 5×BDP to ensure
that there would be no tail drops, in order to isolate the
effects of ARED.
2.3 Performance Metrics

In each experiment, we measured the HTTP response
times (time from sending HTTP request to receiving entire
HTTP response), link utilization, average loss rate, and
average queue size. HTTP response time is our main metric
of performance. We report the CDFs of response times for
responses that complete in 1,500 ms or less. When dis-
cussing the CDFs, we discuss the percentage of flows that
complete in a given amount of time.
2.4 Levels of Offered Load and Data Collection

The levels of offered load used in our experiments are
expressed as a percentage of the capacity of a 10 Mbps
link. We initially ran our network at 100 Mbps to deter-
mined the PackMime connection rates (essentially the
HTTP request rates) that will result in average link utiliza-
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tions (in both forward and reverse directions) of 5, 6, 7, 8,
8.5, 9, 9.5, 10, and 10.5 Mbps. The connection rate that
resulted in an average utilization of 8% of the (clearly un-
congested) 100 Mbps link was used to generate an offered
load on the 10 Mbps link of 8 Mbps or 80% of 10 Mbps.
Note that this 80% load (i.e., the connection rate that re-
sults in 8 Mbps of traffic on the 100 Mbps link) will not
actually result in 8 Mbps of traffic on the 10 Mbps link.
The bursty HTTP sources will cause congestion on the 10
Mbps link and the actual utilization of the link will be a
function of the protocol and router queue management
scheme used.

3. Results
We first present the results for different queue manage-

ment algorithms when paired with TCP Reno end-systems.
Next, results for queue management algorithms paired with
TCP SACK end-systems are presented and compared to the
Reno results. Finally, the two best scenarios are compared.
In the following response-time CDF plots, the response
times obtained in a calibration experiment with the uncon-
gested 100 Mbps link are included for a baseline reference
as this represents the best possible performance. Table 1
lists the labels we use to identify experiments.

Figures 2-4 give summary network-centric performance
measures.2 For each experiment, Figure 2 shows the ave r-
age link utilization, Figure 3 shows the average packet loss,
and Figure 4 shows the average queue size at the bottleneck
router.
3.1 Reno + DropTail

Figure 5 shows the CDFs of response times for Reno-
DT-111q and Reno-DT-148q at 80% and 105% offered
loads. There is little performance difference between the
two queue sizes, though there is a crossover point in the
response times. For simplicity, when comparing drop-tail
to other queuing methods, we show only DT-148q results.
3.2 Reno + Adaptive RED

Response time CDFs for Reno-DT-148q, Reno-ARED-
5ms and Reno-ARED-60ms are shown in Figures 6-7. At
80% load (Figure 6) the drop-tail queue performs no worse
than ARED-60ms. There is a distinct crossover point be-
tween Reno-ARED-5ms and Reno-ARED-60ms (and
Reno-DT-148q) at 400 ms. This points to a tradeoff be-
tween improving response times for some flows and caus-
ing worse response times for others. ARED-5ms has a
larger percentage of responses completing in less than 400
ms, while there are a larger percentage of responses com-
pleting in less than 1,500 ms with ARED-60ms or Reno-
DT-148q. As the load increases (Figure 7), the crossover
                                                            
2 For more legible plots, see [5].
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Figure 1: Simulated network environment

Table 1: Summary of labels and abbreviations
Abbreviation Description

DT-111q Drop-Tail with 111-packet queue (1.5 x BDP)
DT-148q Drop-Tail with 148-packet queue (2 x BDP)
ARED-5ms Adaptive RED with 5 ms target delay
ARED-60ms Adaptive RED with 60 ms target delay
ARED+ECN-5ms Adaptive RED with ECN & 5 ms target delay
ARED+ECN-60ms Adaptive RED with ECN & 60 ms target delay
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remains near a response time of 400 ms, but the percentage
of completed responses in that time decreases. Also, as
load increases, the performance of ARED-5ms for longer
responses is poor.

ARED-5ms keeps a much shorter average queue than
ARED-60ms (Figure 4), but at the expense of longer re-
sponse times for many responses. With ARED-5ms, there
are also large numbers of packet drops (Figure 3). Many of
the HTTP connections are very short-lived, often consisting
of a single packet.  When these flows experience packet
loss, they are forced to suffer a retransmission timeout,
increasing their HTTP response times. For ARED-5ms, the
CDF of response times levels off after the crossover point
and does not increase much until after 1 second, which is
the minimum RTO in our simulations. This indicates that a
significant portion of the flows suffered timeouts.

As congestion increases toward severe levels, the re-
sponse time benefits from the drop-tail queue become sub-
stantially greater. Figure 7 shows that about 60% of re-
sponses (those taking longer than 300-400 ms to complete)
have better response times with the drop-tail queue.
3.3 Reno + Adaptive RED + ECN

The full value of ARED is realized only when it is cou-
pled with a more effective means of indicating congestion
to the TCP endpoints than the implicit signal of a packet
drop. ECN is the congestion signaling mechanism intended
to be paired with ARED. Figures 8-9 present the response
time CDFs for Reno-ARED and Reno-ARED+ECN with 5
and 60ms target delays. At 80% load, ARED+ECN-5ms
delivers superior or equivalent performance for all response
times. Further, ECN has a more significant benefit when
the ARED target delay is small. As before, there is a trade-
off where the 5 ms target delay setting performs better be-
fore the crossover point and the 60 ms setting performs
slightly better after the crossover point. The tradeoff when
ECN is paired with ARED is much less significant.
ARED+ECN-5ms does not see as much drop-off in per-
formance after the crossover point. For the severely con-
gested case, ECN provides even more advantages, espe-
cially when coupled with a small target delay.
3.4 SACK

The experiments described above were repeated by
pairing SACK (which includes Reno congestion control)
with the different queue management mechanisms. Figures
10-11 show a comparison between Reno and SACK error
recovery based on response-time CDFs when paired with
both drop-tail and ARED+ECN. Overall, SACK provides
no better performance than Reno. When paired with
ARED+ECN, SACK and Reno are essentially identical
independent of load. When paired with drop-tail, Reno
appears to provide somewhat superior response times espe-
cially when congestion is severe.
3.5 Drop-Tail vs. ARED+ECN

Here, we compare the performance of the two “best” er-
ror recovery and queue management combinations. Figures
12-13 present the response time CDFs for Reno-DT-148q
and Reno-ARED+ECN-5ms. With these scenarios, the
fundamental tradeoff between improving response times
for some responses and making them worse for other re-
sponses is clear. Further, the extent of the tradeoff is quite
dependent on the level of congestion. At 80% load, Reno-
ARED+ECN-5ms offers better response-time performance

for nearly 75% of responses but marginally worse for the
rest. At levels of severe congestion, the improvements in
response times for Reno-ARED+ECN-5ms apply to around
50% of responses, while the response times of the other
50% are degraded significantly. Reno-DT-148q and Reno-
ARED+ECN-5ms are on the opposite ends of the queue-
management spectrum, yet they each offer better HTTP
response times for different portions of the total set of re-
sponses. Further complicating the tradeoff is the result that
Reno-DT-148q gives higher link utilization (Figure 2)
along with a high average queue size (Figure 4), while
Reno-ARED+ECN-5ms gives low average queue sizes, but
also lower link utilization.

4. Conclusions
Our main conclusions based on HTTP traffic and our

performance metrics are:
• There is no clear benefit in using SACK over Reno, es-

pecially when the complexity of implementing SACK is
considered. This result holds independent of load and
pairing with queue management algorithm.

• As expected, ARED with ECN marking performs better
than ARED with packet dropping, and the value of ECN
marking increases as the offered load increases. ECN
also offers more significant gains in performance when
the target delay is small (5 ms).

• Below 80% offered load, SACK and Reno have identical
performance, and ARED+ECN performs only marginally
better than drop-tail.

• Unless congestion is a serious concern (i.e., for average
link utilizations of 80% or higher with bursty sources),
there is little benefit to using ARED queue management
in routers.

• ARED with ECN marking and a small target delay (5
ms) performs better than drop-tail with two times the
bandwidth-delay product (BDP) queue size at offered
loads having moderate levels of congestion (80% load).
This finding should be tempered with the caution that,
like RED, ARED is also sensitive to parameter settings.

• At loads that cause severe congestion, there is a complex
performance trade-off between drop-tail with 2×BDP
queue size and ARED with ECN at a small target delay.
ARED can improve the response time of about half the
responses but worsens the other half. Link utilization is
significantly better with drop-tail.

• At all loads there is little difference between the per-
formance of drop-tail with 2×BDP queue size and ARED
with ECN marking and a larger target delay (60 ms).
In total, we conclude that for user-centric measures of

performance, router-based congestion control has a greater
impact on performance than protocol improvements for
error recovery. However, for lightly to moderately loaded
networks, neither queue management nor protocol im-
provements significantly impact performance.
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Figure 2: Average link utilization. Figure 3: Average loss rate. Figure 4: Average queue size.
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Figure 5: CDF of HTTP response times for
Reno with drop-tail queuing.

Figure 6: CDF of HTTP response times for
drop tail and ARED at 80% offered load.

Figure 7: CDF of HTTP response times for
drop tail and ARED at 105% offered load.
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Figure 8: CDF of response times for ARED
with and without ECN at 80% offered load.

Figure 9: CDF of response times for ARED
with and without ECN at 105% offered load.

Figure 10: CDF of response times for drop-
tail and ARED/ECN at 80% offered load.
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Figure 11: CDF of response times for drop-
tail and ARED/ECN at 105% offered load.

Figure 12: CDF of response times for best
drop-tail and best AQM at 80% offered load.

Figure 13: CDF of response times for best
drop-tail and best AQM at 105% offered load.


