
In: Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), Atlanta, GA, September 2005, pages 35-44.

Understanding Patterns of TCP Connection Usage
with Statistical Clustering

Félix Hernández-Campos1 Andrew B. Nobel2 F. Donelson Smith1 Kevin Jeffay1

1Department of Computer Science
2Department of Statistics and Operations Research

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/Research/dirt

Abstract — We describe a new methodology for under-
standing how applications use TCP to exchange data. The
method is useful for characterizing TCP workloads and
synthetic traffic generation. Given a packet header trace,
the method automatically constructs a source-level model
of the applications using TCP in a network without any a
priori knowledge of which applications are actually pre-
sent in a network. From this source-level model, statisti-
cal feature vectors can be defined for each TCP connec-
tion in the trace. Hierarchical cluster analysis can then be
performed to identify connections that are statistically
homogeneous and that are likely exert similar demands
on a network. We apply the methods to packet header
traces taken from the UNC and Abilene networks and
show how classes of similar connections can be automati-
cally detected and modeled.

1. Introduction
TCP is the standard transport protocol for most Internet
applications and services. File-sharing, web browsing,
email, instant messaging, and many other applications
make use of the reliable, in-order transport service offered
by TCP to communicate their data across the Internet.

Our goal is to understand how applications use TCP in the
Internet today. There are three primary motivations for
studying this question. First, and most pragmatically, to
build a synthetic workload generator that can generate
realistic application-level inputs for a network simulator
or testbed that are provably representative of how a given
link, such as a link in the Abilene backbone, is used. Net-
working research has long relied on simulation as the
primary vehicle for demonstrating the effectiveness of
proposed algorithms and mechanisms. We are advocates
of the simulation philosophy described by Floyd and Pax-
son [6] of using application-level descriptions of network
usage as opposed to packet-level descriptions to populate
simulations. We observe that the networking community
suffers at present from a dearth of valid, contemporary
models of Internet applications. By understanding how
applications use TCP in the Internet today, and more im-
portantly, by developing automated methods to character-
ize how TCP is used, we will enable researchers to con-
struct application-level models that are representative of

the workloads found on any network on which they can
obtain simple packer header traces.1

A second, related motivation is to develop a method that
will allow one to measure and characterize, in generic
application-level terms, how traffic differs from one net-
work to another. That is, we seek an abstract characteriza-
tion of how one network is used differently than another
network and to frame this characterization in terms of the
data objects carried on TCP connections. An additional
and more refined motivation is that we seek to discover
and characterize different patterns of use within a given
application protocol such as HTTP. Given the large vari-
ety of uses of the web and the large fraction of network
resources consumed by web traffic, rather than simply
characterize web traffic as a single entity, we conjecture
that it is useful to identify and classify specific uses of the
web and develop source-level models of each dominant
sub-class of HTTP traffic. That is, we claim that since
different uses of HTTP place different demands on a net-
work, rather than construct a source-level model of
“HTTP traffic,” it is better to develop source-level models
of, for example, HTTP single-object file transfer traffic,
HTTP interactive traffic, and HTTP streaming media traf-
fic.

This motivates the final goal: to move from studying the
impact of specific application-level protocols on the net-
work to studying the impact of common uses of protocols.
For example, instances of HTTP, FTP, and many peer-to-
peer protocols are essentially used for unidirectional, sin-
gle-object file transfer. Instead of characterizing these
protocols individually, we would like to identify and
characterize the “data transfer traffic” that exists in a net-
work independent of the application-level protocol used
to carry the traffic. That is, we would like to characterize
the use of TCP for “streaming media traffic” across all
application-level protocols and to do so similarly for “in-
teractive traffic,” “file transfer traffic” etc. Our thesis is

1 Because applications are the ultimate sources of all data carried by the
network, we use the terms source-level and application-level inter-
changeably when referring to models of how TCP is used.

2

that the workload placed on a network by a given TCP
connection is more a function of the structure (pattern) of
how an application uses TCP than it is of the application-
level protocol used. Thus we seek to characterize com-
mon patterns of TCP usage rather than common proto-
cols.

This approach of characterizing uses rather than protocols
is motivated in part by the fact that both a large and grow-
ing percentage of the traffic seen on networks is “un-
known” in the sense that the traffic is carried on a connec-
tion using an unregistered port number, and that applica-
tions misuse the reserved port numbers of other applica-
tions to avoid detection or policing.

When constructing source-level traffic models, the only
means of identifying applications is to classify connec-
tions by port numbers. This is because user privacy con-
cerns dictate that it is inappropriate to record packet data
beyond the TCP/IP header without the prior approval of
users. For connections that use common reserved ports
(e.g., port 80), we can attempt to infer the application-
level protocol in use (HTTP) and construct a source-level
model of traffic generated by the application [6, 20, 22,
24]. However, this analysis technique does not scale be-
cause of the diverse and continually evolving set of appli-
cations. A recent measurement study we completed on the
UNC campus indicated that while approximately 90% of
the bytes on the UNC campus (91% of the packets) were
carried by TCP, the four largest TCP-based applications
that could be easily identified by “well-known” port num-
bers (HTTP port 80, FTP-DATA port 20), NNTP port
119, and SMTP port 25), accounted for less than half of
the total TCP bytes. (Whereas just 5 years ago, HTTP
traffic alone accounted for as much as 80% of the bytes
on Internet backbones.) The vast majority of the remain-
ing TCP bytes were carried on TCP connections using a
very large number (tens of thousands) of unassigned TCP
port pairs. Thus close to half of all the traffic observed on
our network is unidentified. (Similar data has been re-
ported for Internet2 [4].)

This paper presents an automatic method for understand-
ing how TCP is used by applications. The key to our ap-
proach is to study patterns of TCP usage within individ-
ual connections. The thesis is that (1) fundamental usage
patterns exist, (2) one can use knowledge of these patterns
to measure and characterize uses of the network by users
and applications without explicit knowledge of the appli-
cation-level protocol(s) in play, and (3) that the identifica-
tion and characterization process can be performed auto-
matically.

Our approach to discovering and characterizing patterns is
based on an abstract representation of a TCP connection
that captures the dynamics of both end-user interactions
and application-level protocols. The representation, called
an a-b-t connection vector, models a connection as a se-

ries of request/response exchanges separated by inter-
exchange think times (a bi-directional ON/OFF model).
Network packet traces of TCP/IP headers are “reverse
compiled” into a collection of a-b-t connection vectors
that can serve as inputs to a statistical cluster analysis
program that will classify connections into a set of ab-
stract connection types based on a set of feature vectors
defined over the space of a-b-t connection vectors. The
resulting connection types, or traffic classes, correspond
to application connections that are generating statistically
homogeneous network usage.

The premise of the cluster analysis work is that while
literally tens of thousands of port pairs are in use at any
one time, the number of distinct patterns of application
behavior that are in use is far smaller, most likely dozens.
By representing connections as a-b-t vectors we can use
statistical cluster analysis to identify connections that are
generating “similar” patterns of source-level traffic. This
eliminates the need for knowledge of the (sometimes pro-
prietary) application-level protocol to deconstruct a con-
nection and understand its behavior. By being able to
identify clusters of statistically homogeneous connections,
a researcher or practitioner will be able to characterize
uses of their network and thus better understand the fun-
damental make-up and structure of traffic seen on their
networks. For example, instead of seeing 20,000 active
connections on seemingly random port pairs they can
identify the 5-10 fundamental traffic classes present.
Moreover, using knowledge of well-known applications
that do use reserved port numbers, these traffic classes
can be speculatively labeled (e.g., ftp-like bulk transfer,
small-object web-like request-response traffic, streaming
media class 1 traffic, streaming media class 2 traffic,
peer-to-peer class 1 traffic, peer-to-peer class 2 traffic,
etc). In addition, the characterization of dominant traffic
classes will enable one to simulate their networks and to
vary the mix of traffic according to actual user-driven
usage patterns in a controlled manner.

In the following we present some results from a compre-
hensive measurement study of TCP connections using a-
b-t characterizations of TCP connections. We have ap-
plied our characterization method to a large collection of
packet header traces taken from a variety of Internet loca-
tions. We illustrate how features of a-b-t traces can be
used to identify clusters of similar traffic classes using a
set of statistical clustering tools developed originally for
the analysis of gene expression arrays.

We claim the a-b-t model is a natural step forward: it is
simple to describe, interpret, and implement, but flexible
enough to accurately capture a wide variety of existing
applications without knowing what those applications are.
More precisely, a-b-t models have the important feature
that they capture the source-level (e.g., above the socket-
layer) behavior of applications and can be constructed

3

directly from packet level traces without making any a
priori assumptions based on port numbers about the type
of applications present. The generality of this model
makes it possible to compute a set of meaningful statistics
(features) for connections and to apply statistical cluster-
ing to group connections into a small number of traffic
clusters. These traffic clusters group together connections
with similar application-level behavior and usage pat-
terns, and their study helps to understand the most impor-
tant communication strategies that are used by Internet
applications.

2. A Source-Level Characterization of TCP
 Connections
The foundation of our approach to modeling applications
as network-independent entities is the observation that,
from the perspective of the network, the vast majority of
application-level protocols are based on a few simple pat-
terns of data exchanges within a logical connection be-
tween the endpoint processes. Endpoint processes ex-
change data in units defined by their specific application-
level protocol. The sizes of these application-data units
(ADUs) depend only on the application protocol and the
data objects used in the application and, therefore, are
(largely) independent of the sizes of the network-
dependent data units employed at the transport level and
below. For example, HTTP requests and responses de-
pend on the sizes of headers defined by the HTTP proto-
col and the sizes of files referenced but not on the sizes of
TCP segments used at the transport layer.

The simplest and most common pattern used by TCP ap-
plications arises from the client-server model of applica-
tion structure and consists of a single ADU exchange. For
example, given two endpoints, say a web server and
browser, we can visualize their behavior over time as
shown in Figure 1a. A browser first opens an HTTP/1.0
connection to the server and sends a request for a specific
object (e.g., an HTML page or an image). This request is

the first ADU in the data exchange. After the server re-
ceives the entire request, it replies with the requested ob-
ject and closes the connection. This object (the response)
is the second ADU in this connection.

We model the pattern of ADU exchanges within a TCP
connection using a simple notion we call an a-b-t connec-
tion vector. Each TCP connection is represented as an n-
dimensional vector (c1, …, cn) where n represents the
number of discrete ADU exchanges, called epochs, in the
connection. An epoch ci is a triplet of the form ci = (ai, bi,
ti) that describes the sizes of data units exchanged and the
duration of any idle time in the connection’s ith ADU ex-
change. An ai represents the amount of data sent from the
initiator of the connection (e.g., a web browser) to the
acceptor of the connection (e.g., a web server) during the
ith exchange, while a bi represents the amount of data sent
in the reverse direction “in response to” the receipt of ai.
The time parameter ti is used to model quiet times be-
tween data exchanges (epochs), which, if sufficiently
long, represent application-level behavior, such as human
think times and long application processing delays. Note
that we do not record the time interval between the re-
quest and its corresponding response as this time depends
on network or end-system properties that are not directly
related to (or controlled by) the application or the user.

Thus a TCP application can be characterized as a process
that generates a number of time-separated epochs where
each epoch is characterized by ADU sizes and an inter-
epoch time interval. For example, the HTTP/1.1 connec-
tion in Figure 1b represents a persistent HTTP connection
over which a browser and server engage in a series of
sequential request-response exchanges to download a pair
of documents. A browser sends three requests of 329,
403, and 365 bytes, respectively, and a server responds to
each of them with HTTP responses (including object con-
tent) of 403, 25821, and 1198 bytes, respectively. The
second request was sent by the browser 120 milliseconds
after the last segment of the first response was received

a) The pattern of ADU exchange in
an HTTP 1.0 connection.

TIME341 bytes

2,555 bytes

WEB BROWSER

WEB SERVER

HTTP Request

HTTP Response

b) The pattern of ADU exchanges
in a sequential HTTP 1.1 con-
nection.

TIME329 bytes

403 bytes

BROWSER

SERVER

HTTP Request 1

HTTP Response 1

403 bytes

25,821 bytes

HTTP Request 2

HTTP Response 2

356 bytes

1,198 bytes

HTTP Request 3

HTTP Response 3

0.12 secs 3.12 secs

Document 1 Document 2

c) The pattern of concurrent ADU
exchanges in a BitTorrent con-
nection.

TIME68 b68 b

PEER A

PEER B

BitTorrent
Protocol

68 b68 b

BitTorrent
Protocol

657 b657 b

Bitfield

657 b657 b

Bitfield

5b5b

Unchoke

5b5b

Interested

5b5b

Interested

17b17b

16397 bytes16397 bytes

Piece i

Request
Piece i

17b17b

Request
Piece j

17b17b

Request
Piece k

17b17b

Request
Piece l

17b17b

Request
Piece m

16397 bytes16397 bytes

Piece j

16397 bytes16397 bytes

Piece k

16397 bytes16397 bytes

Piece l

16397 bytes16397 bytes

Piece m

Figure 1: Examples of three patterns of application-level data unit exchanges taken from measurements on the UNC campus.

4

and the third request was sent 3,120 milliseconds after the
second response was received. This connection would be
represented as the a-b-t connection vector

(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0).

Abstractly we say that the connection vector consists of
three epochs corresponding to the three HTTP request-
response exchanges. Note that the a-b-t characterization
admits the possibility of an application protocol omitting
one of the ADUs during an exchange (e.g., epochs of the
form (ai, 0, ti) or (0, bi, ti), are allowed). Single ADU ep-
ochs are commonly found in ftp-data and streaming media
connections.

a-b-t connection vectors are capable of representing the
request-response-like patterns of interaction common to a
wide variety of application-layer protocols including
SMTP and FTP-CONTROL, and most uses of HTTP/1.1,
and NNTP. The essential invariant of request-response
patterns is that endpoints of a connection do not transmit
data concurrently. Connections satisfying this invariant
are called sequential connections. A second class of con-
nections allows for ADU transmissions by endpoints to
overlap in time as shown in Figure 1c. This pattern of
concurrent ADU exchange is not commonly found in TCP
connections on the Internet today, but can occur in appli-
cation-level protocols such as HTTP/1.1, NNTP, and Bit-
Torrent. However, while uncommon, it is important to be
able to model such concurrent connections as they often
carry a significant fraction of the total bytes seen in a
network trace (e.g., 15%-35% of the total bytes in traces
we have processed).

To represent concurrent ADU exchanges, the actions of
each endpoint are considered to occur independently of
each other so each endpoint is a separate source generat-
ing ADUs that appear as a sequence of epochs following a
unidirectional flow pattern with one or more epochs of the
form (ai, 0, ti) or (0, bi, ti).

3.1 Computing a-b-t connection vectors from
 measurement data
Modeling TCP connections as a pattern of ADU transmis-
sions provides a unified view of connections that does not
depend on the specific applications driving each TCP
connection. The first step in the process is to acquire a
trace of TCP/IP headers from a network link of interest.
(We use tcpdump for this purpose.) The trace is then
processed to produce a set of a-b-t connection vectors;
one vector for each TCP connection in the trace. a-b-t
vectors can be computed using either unidirectional or
bidirectional traces. Here we primarily describe the (more
complex) method for processing unidirectional traces.

a-b-t connection vectors for sequential connections can be
computed from unidirectional traces. The basic method
for determining ADU boundaries and sizes, as well as

user think times, is described in detail in [24]. While this
method was originally specific to the analysis of HTTP
connections, we have generalized it to “reverse compile”
arbitrary TCP connections into an abstract source-level
model (an a-b-t connection vector).

The analysis proceeds by examining sequence numbers
and acknowledgement numbers in TCP segments.
Changes in sequence numbers are used to compute ADU
sizes flowing in the direction traced and changes in ACK
values are used to infer ADU sizes flowing in the opposite
(not traced) direction. There will be an alternating pattern
of advances in the ACK values followed by advances in
the data sequence values (or vice versa). This observation
is used to construct a rule for inferring the beginning and
ending TCP segments of an ADU and the boundary be-
tween exchanges. Put another way, an advance in the data
sequence numbers marks the end of an ADU flowing in
the direction opposite to the traced direction and an ad-
vance in the ACK sequence number marks the end of an
ADU flowing in the direction of the trace. Of course,
other events can mark ADU boundaries as well. These
include events such as the receipt of a FIN or RST seg-
ment, or the occurrence of idle times greater than a
threshold.

Figure 2 shows a TCP time-sequence number diagram for
the HTTP/1.0 connection shown in Figure 1a and illus-
trates the process of computing a’s and b’s. Timestamps
on the tcpdump of segments marking the beginning or end
of an ADU are used to compute the inter-epoch times and
timestamps on the SYN segments are used to compute
connection inter-arrival times. The complexity of this
analysis (per connection) is O(sW) where s is the number
of segments in the connection and W is the receiver’s
maximum advertised window size. (The window size
impacts the a-b-t connection vector computation process
when reconstructing connections that experience lost,

Connection
Initiator

ConnectionConnection
InitiatorInitiator

Connection
Acceptor

ConnectionConnection
AcceptorAcceptor

DATA

ACK

DATA

DATA

ACK

FIN
FIN-ACK

FIN

FIN-ACK

SYN

SYN-ACK
ACK

seqno 341 ackno 1

seqno 1 ackno 341

seqno 1461 ackno 341

seqno 2555 ackno 341

seqno 314 ackno 2555
TimeTime

Segments captured at the monitoring pointSegments captured at the monitoring point

341
bytes
341341

bytesbytes

2,555
bytes
2,5552,555
bytesbytes

Figure 2: An illustration of the process of computing ADU

boundaries and sizes from TCP sequence numbers and acknow-
ledgement numbers in a unidirectional trace.

5

duplicate, and out-of-order segments. See [24] for de-
tails.)

As a more complex example, consider again the pattern of
ADU exchanges illustrated in Figure 1b. This example,
taken from real measurement data, manifested itself in a
packet header trace as 29 TCP segments (including SYNs
and FINs). Applying the a-b-t connection vector computa-
tion method to this sequence of packet headers generated
the 3-epoch connection vector listed above. Note that
while the actual sizes and timing of the TCP segments
represented in the original packet header trace are operat-
ing system and network-dependent, the analysis has pro-
duced a summary representation that models the source-
level (browser and server) behaviors.

Application protocols that overlap rather than alternate
ADU exchanges between endpoints (the pattern in Figure
1c) are not handled correctly by the above method. To
fully detect and process a concurrent TCP connection, a
bidirectional packet header trace is required. To detect
instances of concurrent ADU exchanges in a TCP connec-
tion we look for instances in which both end points have
unacknowledged data in flight. Specifically, we look for
situations within a connection between end points A and B
in which there exists at least one pair of non-empty TCP
segments p and q such that p is sent from A to B, q is sent
from B to A, and the following two inequalities are satis-
fied: p.seqno > q.ackno and q.seqno > p.ackno. If the
conversation between A and B is sequential, then for
every pair of segments p and q, either p was sent after q
reached A, in which case q.seqno p.ackno, or q was sent
after p reached B, in which case p.seqno q.ackno. Thus,
every non-concurrent connection will be classified as
such by our algorithm. Situations in which all the seg-
ments in potentially concurrent data exchanges are sent
sequentially (purely by chance) are not detected by our
algorithm and the connection is treated as sequential.

3. Clustering Communication Patterns
The a-b-t model provides a framework for the systematic
identification and study of application-level communica-
tion patterns in Internet traffic. Internet measurement,
modeling, and other research areas can benefit from the
analysis and classification of such patterns. For example,
the performance of transport protocols depends heavily on
the patterns of data exchange within transport connec-
tions, hence an understanding of these patterns and their
impact is needed for balancing among the tradeoffs that
exist in protocol design. For instance, TCP can be tuned
to provide better performance for transferring small
ADUs at the price of higher instability and less fair allo-
cation of bandwidth. One can analyze the benefits of this
tuning by using simulations, however, only those simula-
tions that make use of a broad and representative set of
data exchange patterns in their inputs can help to draw

general conclusions about the effectiveness of new net-
work mechanisms.

Statistical clustering techniques (e.g., [14, 17, 10]) pro-
vide a useful and flexible tool for grouping connections
into traffic classes that represent similar communication
patterns. Formally, a clustering scheme is a procedure that
divides a given set of d-dimensional feature vectors v1, v2,
…, vm Rd into k disjoint groups S1, S2, …, Sk, known as
clusters. The goal of clustering is to find a small number k
of clusters such that feature vectors within the same clus-
ters (a set of points in a d-dimensional space) are close
together, while vectors in different clusters are far apart.

In our approach, each a-b-t connection vector, i.e., each
TCP connection, is first summarized using a vector of
statistical features. Each feature captures some relevant
characteristic of the connection, such as the number of
exchanges, the total number of bytes sent by the initiator,
the homogeneity in the sizes of the data units, and so on.
Each feature is appropriately normalized so that its values
lie between 0 and 1. We then measure the similarity be-
tween two a-b-t connection vectors by the similarity be-
tween their associated feature vectors. We consider two
alternative distance measures, the standard Euclidean dis-
tance between vectors x = (x1, …, xd) and y = (y1, …, yd),

d(x,y) = xi – yi()
2

i=1

d

1 2

and the Pearson correlation coefficient [10],

rp (x,y) =
Sxy

Sx
2Sy
2

where Sxy = (xi – x)i=1
d (yi – y) , Sx

2
= (xi – x)i=1

d 2 ,

Sy
2

= (yi – y)i=1
d 2 , and x and y are the mean values of x

and y respectively.

Once the distance between each pair of a-b-t connection
vectors has been defined, these vectors can be grouped
using any number of standard clustering algorithms. We
have applied a number of different clustering schemes to
our data, but have focused on agglomerative and divisive
hierarchical methods [10]. These methods have proven to
be effective in other applications such as clustering gene
expression arrays, and their graphical representation as
trees (dendrograms) provides a useful way of identifying
and analyzing groups of related communication patterns.

Figure 3 provides an overview of the basic steps in our
methodology. As a first step in clustering source level
communication patterns, we extract from each a-b-t con-
nection vector a number of numerical features that are
designed to capture important aspects of the two-way data
transfer described by this vector. Let v = (c1, …, cn) be an
a-b-t connection vector whose jth epoch is given by the
triple cj = (aj, bj, tj), as described above. The most critical

6

features of v are the number of epochs e, and the total
number of bytes sent by each of the connection endpoints,
atot and btot. Let A = a1, …, an be the collection of a-type
ADUs found in a connection. Other useful features in-
clude the size of the largest and smallest a-type ADU, amax
and amin respectively, the mean aµ and standard deviation
a of A, and the first, second, and third quartiles of A, de-
noted by a1q, a2q, and a3q respectively. In order to better
capture the structure of the sequence A, we measure the
total variation avs, maximum first difference afd, lag-1
autocorrelation a , and homogeneity ah of a-type ADUs
for cases where n 2 (i.e., for connections with more than
1 epoch). Analogous features can be extracted from the
collection B = {b1, …, bn} of b-type ADUs. Given that
inter-epoch times are influenced to a degree by network
and end-system properties (as opposed to the a’s and b’s
which depend only on application-level behavior), we
restrict our attention to a few time features: tmax, t2q, and
ttot. These features are defined more formally in Tables 1
and 2.

Another important feature is whether more total bytes are
transmitted from connection initiator to connection accep-
tor or vice versa. We capture the “directionality” of a
connection by the ratio atot/btot and define a feature dir to
represent the magnitude of directionality, dir =
log(atot/btot). To further asses the structure of a- and b-type
ADUs, we also compute the lag 0 and 1 cross-correlations
between B and A, denoted 1 and 2 respectively. In our
preliminary analysis we found that rank correlations ex-
hibited a more diverse and meaningful spectrum of values
across different connections. Thus all correlation meas-
urements are based on Spearman’s rank correlation coef-
ficient,

rs (x,y) = ranki (xi)ranki (yi)i=1
d – ud()vd–1

where ud = d(d + 1)2/4 and vd = d(d2 – 1)/12, and ranki is
the rank of the ith feature of vector x among the ith feature
of vectors v1, …, vm. This is the non-parametric equivalent
of Pearson’s correlation coefficient.

The features we have selected to investigate are simply
our first cut on this problem. However, whichever fea-
tures one ultimately chooses, there are a number of practi-
cal issues that need to be addressed before they can prof-
itably be used to cluster connections. The first issue in-
volves numerical scale. While correlations will range be-
tween -1 and +1, features such as the number of epochs in
a connection (e) and the total number of bytes transmitted
in given direction (atot, btot), can range anywhere from one
to several million. To address this disparity, we first nor-
malize features by taking logarithms of those features that
vary over several orders of magnitude. Each feature is
then translated and scaled so that, for the vast majority
(more than 96%) of measured connections, its value is
between 0 and 1. In exceptional cases, e.g., a connection
with 107 epochs, we allow features greater than 1 or less
than 0. Allowing features to take values outside the unit
interval avoids the possible compression of their true dy-
namic range by a small fraction of outliers.

Once normalized, each feature plays a role in determining
the Euclidean distance between two feature vectors. One
may weight the contributions of different features differ-
ently, but we have not done this in our experiments. A
second practical issue is that some features (e.g., correla-
tions and total variation) are either not well-defined or not
meaningful for a-b-t connection vectors with fewer than
three epochs. When comparing a connection with ten ep-
ochs to one with two epochs, we look only at the Euclid-
ean distance (or correlation) between those features that
are defined in both associated vectors, and then normalize
by the number of such “active’’ features, so that the re-
sulting distance can be compared to distances between
longer connections.

We initially tested our approach by clustering training
data sets with a small number of connections. Figure 4
shows the result of clustering 20 connections collected at
UNC. We analyzed this data set using divisive hierarchi-
cal clustering as implemented in R [16], after converting
each a-b-t connection vector into a feature vector that
included all of the statistical features described above.
Ten of the connections in the data set carried Telnet traf-
fic (i.e., interactive remote shell), while the other ten car-
ried persistent web traffic (HTTP 1.1). The communica-
tion patterns used by these two protocols are quite differ-
ent, so appropriate clustering should be able to split the
data set into two subpopulations. As shown in Figure 4,
two distinct clusters, emanating from the root of the den-
drogram, are readily apparent. This visualization is a bi-
nary tree in which internal nodes represents a split of the
set of connections (with a y-axis height that correspond to

Traffic Capture

Packet Header Analysis

Internet Link

Feature Extraction

Feature Normalization

Hierarchical Clustering

Packet Header TracePacket Header Trace

Set of Connection VectorsSet of Connection Vectors

Set of Feature VectorsSet of Feature Vectors

Normalized Feat. VectorsNormalized Feat. Vectors

DendrogramDendrogram

Set of Traffic ClustersSet of Traffic Clusters

Pruning

Figure 3: Overview of our approach for clustering patterns

of TCP connection usage.

7

the dissimilarity between its children). Leaves represent
individual connections. The first split in the example
cleanly separates Telnet connections from web connec-
tions.

4. Clustering Examples

4.1 Divisive Hierarchical Clustering Example
In our first example of clustering traffic, we study a
packet header trace collected during April 2002 at the
main (1 Gbps) network link that connects UNC to the
Internet. We first converted this trace into a set of several
million a-b-t connection vectors, from which we drew a
random sample of 5,000 connection vectors with 2 epochs
or more. We then computed the feature vectors of the
connections in this sample, using the features reported in
Table 1. After normalizing the feature vectors, we ana-
lyzed them using the diana procedure with Euclidean dis-
tance as implemented R [16]. This algorithm is described
in [19], and its basic idea is to sequentially split the clus-
ter with the largest diameter by finding its most dissimilar
observation. This observation is used as the seed of a new
cluster, which will be populated with some number of
similar observations from the original cluster.

The results of clustering the set of 5,000 are shown in
Figure 5, using a new visualization function that we im-
plemented in the R language. The dendrogram shown is
the result of pruning the full dendrogram at depth 4. The
plot depicts pruned internal nodes as green triangles with
a cluster number, and leaves as red squares with a connec-
tion vector number below them. Each internal node is
annotated with the number of a-b-t connection vectors
grouped under its branches. For example, the root of the
tree is annotated with 5,000, since all of the connection
vectors fall under this internal node. The first triangle on
the left, marked as cluster number 1, groups 954 connec-
tion vectors.

The dendrogram reveals some useful structure in the set
of connection. Connections in cluster 1 mostly correspond
to HTTP, HTTPS (encrypted web traffic) and AOL traf-
fic, while those in cluster 3 correspond to mail transfer
protocols, such as SMTP and the Post Office Protocol
(POP). The composition of clusters 2 and 4 was not so
clear. The clustering algorithm accurately separated two
clearly different communication patterns. Clusters 5 and 6
include connections in which all the b-type ADUs are
zero, and whose port numbers did not map to known ap-
plications. Finally, cluster 7 grouped together HTTP,
HTTPS, Microsoft Directory Service and RTSP connec-

1 8

3

2 6

5

4

7
1
0

9

1
1

1
2

1
6

1
4

1
5

1
8

1
9

1
3

1
7

2
0

0
.4

0
.8

1
.2

1
.6

D
is
s
im
il
a
r
it
y

Figure 4: Result of clustering a training set of 20 connections

using agglomerative hierarchical clustering. Leaves labeled from
1 to 10 correspond to Telnet connections, while those labeled

from 11 to 20 correspond to HTTP connections.

Table 1: The 26 statistical features used in the divisive hierarchi-
cal clustering example shown in Figure 5.

Feature Description

n Number of epochs

atot, btot Total bytes (xtot = x jj=1
n)

amax, bmax, tmax Maximum bytes, seconds (xmax = max{xj X})

amin, bmin Minimum bytes (xmin = min{xj X})

aµ, bµ Mean bytes

a , b Standard deviation

a1q, b1q First quartile

a2q, b2q Second quartile

a3q, b3q Third quartile

avs, bvs Total variation (xvs = x j – x j–1j= 2
n)

ah, bh Homogeneity ((xmax+1)/(xmin+1))

a , b Lag-1 autocorrelation

1(a1..n, b1..n) Spearman’s rank correlation

2(b1..n–1, a2..n) Spearman’s rank correlation with lag 1

0
1

2
3

4
5

6

5000 1952

1915

864

1914

7

37

5

6

32

5

3048

626

71

4

555

32422

1468

2
954

1

D
is
s
im

il
a
ri
ty

Figure 5: Dendrogram obtained from the divisive hierarchical
clustering of data set of 5,000 connections, pruned at depth 4.

8

tions. The only leaf shown in the dendrogram (connection
vector 864) was an FTP-DATA connection with n = 2, atot
= 50K and btot = 0.

While the revealed structure is suggestive, it is difficult to
explain the observed hierarchy. This motivated the use of
a different tool as described next. Furthermore, computa-
tion of the full dendrogram was slow; this 5,000-
connection example required several hours of processing
time. Another difficulty experienced was the O(n2) mem-
ory requirement, present in most statistical clustering al-
gorithms, which comes from the need to compute the
distance between each pair of a-b-t connection vectors as
the first step.

4.2 Agglomerative Hierarchical Clustering
We applied our methodology to the clustering of a sample
of connections from the Abilene-I data set [21]. The sam-
ple consisted of 717 TCP connections.2 As before, each
connection was first transformed into an a-b-t connection
vector, and then summarized into a feature vector. Half of
these connections were a random sample of port 80 con-
nections, while the other half were a random sample of
connections on other ports. The result was a matrix of 717
rows and 14 columns. Table 2 describes the 14 statistical
features that were part of each vector.

Feature vectors were clustered using the average-linkage
agglomerative method proposed by Sokal and Michener
[25], with Pearson correlation coefficient as the similarity
measure. For this clustering, we employed the implemen-
tation of the algorithm and the visualization tool devel-
oped by Eisen et al. in the context of gene expression
arrays (microarrays) [7]. The result of the clustering is
shown in Figure 6. Similar results were obtained using
Euclidean distance.

The shared region in the center of Figure 6 is a heat map
that represents the matrix of feature vectors. Each row in
the matrix corresponds to one TCP connection, and each
column corresponds to one statistical feature. The four-
teen colored cells within a row represent the values of the
statistical features of a single connection. Values are dis-
played using a scale of increasingly lighter shades of blue
(in other words, the larger the value, the lighter the color).
On the left side of the array, a rotated dendrogram dis-
plays the hierarchical clustering of connections. On the
right side of the array, seven rectangles (labeled from A to
G) are used to highlight seven clusters that exhibit a high
degree of internal cohesion (correlation is 0.6 or more)
and substantial separation from other clusters (dissimilar-
ity sharply increases when any of these clusters is joined
to another cluster).

2 While this number is relatively small, we believe it is representative of
the coarse-grained structure in the data set, and it makes it possible to
include graphical output in this paper. We have applied our method to
larger sets with up to 25,000 connections.

The interpretation of the resulting clusters confirms the
effectiveness of our approach for grouping connections
into homogeneous communication patterns. Note that this
interpretation is based on port numbers (that we know are
not very accurate), and it is only meant to illustrate the
power of the method. Clusters A and B group together
connections with small a-type ADUs. By looking at the
destination port numbers of these connections, we found
that most correspond to file sharing applications, mainly
Kazaa (port number 1,214), eDonkey (4,662), and
Gnutella (6,346). Connections in cluster A show substan-
tially smaller b-type ADUs than those in cluster B, and
they also exhibit much longer inter-exchange times. We
believe that connections in the former cluster mainly cor-
respond to file-sharing sessions in which only searches
and no file downloads took place, while file downloads
did occur in the connections grouped in the latter cluster.
Some number of connections in these two clusters used
other destination ports, such as 80, but their intra-
connection dynamics did match those of file-sharing ap-
plications. These connections provide a good example of
port number hijacking, a technique frequently employed
to overcome firewalls and bandwidth caps.

Cluster C includes connections that have small a-type
ADUs, and a number of exchanges that is significantly
larger than that in the connections contained in clusters A
and B. The destination port numbers correspond to a vari-
ety of applications, including Gnutella, HTTPS and
Telnet.

Connections in cluster D are almost exclusively destined
to port 119 (NNTP), and they show a clearly different
pattern of data exchanges (large a-type ADUs and moder-
ate b-type ADUs). Cluster E groups together connections
destined to ports 80 (HTTP), 443 (HTTPS) and other
ports that are also used for the web traffic, such as 8080
and 8443. Cluster F is mostly composed of SMTP con-
nections (port 25) and some number of POP (110) and
Oracle (1521) connections. Finally, cluster G contains
FTP-Data connections. Some of these connections used
source port 20, but the vast majority used other dynami-

Table 2: The 14 statistical features used in the agglomerative
hierarchical clustering example shown in Figure 6.

Feature Description

n Number of epochs

atot, btot, ttot Total bytes, seconds

a2q, b2q, t2q Second quartile (median)

afd, bfd Maximum first difference (xfd = maxj x j – x j–1)

ah, bh Homogeneity ((xmax+1)/(xmin+1))

dir Directionality (log(atot/btot))

1(a1..n, b1..n) Spearman’s rank correlation

2(b1..n–1, a2..n) Spearman’s rank correlation with lag 1

9

cally negotiated port numbers. We have confirmed that
these connections carried FTP-Data traffic by verifying
that parallel FTP-Control connections existed.

It is important to remember that even though we have
used knowledge of assigned port numbers to describe
each of the above clusters, the uses of the clustering ap-
proach for workload modeling described in Section 1 do
not depend on cluster labeling from port usage or any
other means. The fundamental advantage of the a-b-t
characterization and the clustering of TCP connections
based on a-b-t features is that we can model and generate
realistic Internet workloads without identifying specific
applications.

The seven clusters described above can be further ex-
plored and decomposed into sub-clusters, an operation
naturally supported by the hierarchical structure of the
binary tree. For instance, we found other smaller clusters
that group together other types of communication dynam-
ics, such as those exhibited by streaming media and FTP-
Control connections.

5. Related Work
Measuring and modeling traffic at the source-level has
been an active area of research over the last ten years.
Two important measurement efforts that focused on ap-
plication-specific traffic models, but which preceded the
growth of the web, were conducted by Danzig et al. [6, 2]
and by Paxson [22]. Web traffic has been studied in nu-
merous papers (e.g., [20, 5, 15]), and file-sharing applica-
tions are the focus of much current work (e.g., [13, 23]).

Traffic classification is known to be a difficult problem
that has not received much attention in the past. There are
a number of papers (e.g., [18, 9]) that study how to iden-
tify groups of traffic that are “remarkable,” e.g., consume
a large fraction of the traffic, but their focus is not on un-
derstanding the source-level structure of traffic. Other
relevant papers evaluate existing monitoring techniques
and propose more powerful alternatives (e.g., [8]).

A compelling case for identifying traffic generation as
one of the key challenges in Internet modeling and simu-
lation is made by Floyd and Paxson in [11]. Prominent
examples of research in traffic generation are Danzing et
al. tcplib [6], the work by Barford and Crovella on web
workload generation [1], and the SAMAN project by Lan
and Heidemann [3].

6. Conclusions
We presented an abstract model of Internet communica-
tion and developed a methodology for clustering TCP
connections into a small set of groups based on their pat-
terns of network usage. Recently developed visualization
techniques make it possible to easily interpret clustering
results. Our results demonstrate that an important short-

D

G

E

F

C

B

A

Figure 6: Result of clustering a sample of connections from the

Abilene-I data set. From left to right, the columns of the heat map
correspond to features: n, atot, a2q, afd, ah, btot, b2q, bfd, bh, ttot, t2q,

dir, 1, and 2.

10

coming of traditional clustering approaches is the diffi-
culty of interpreting the results in a way that is meaning-
ful for a network researcher. We overcame this problem
by adapting to traffic analysis visualization techniques
developed for the study of genetic data (in particular, gene
expression arrays, or microarrays). The key contribution
was the combination of traditional hierarchical visualiza-
tion (known as a dendrogram) and a heat map of connec-
tion features, making it possible to easily interpret the
clustering result in terms of application types.

We believe this provides a good starting point for under-
standing the types of application behaviors, and study
how they change over time and across different vantage
points. We are currently working on refining our meas-
urement techniques and systematically examining the
clustering structure of the application mixes at a large
number of sites. We are also developing a new traffic
generation tool that makes use of this structure to enable
flexible traffic generation that is more representative of
the wide variety of applications found on the Internet to-
day.

7. Acknowledgements
We would like to thank the NLANR Measurement and
Network Analysis Group for making their data and tools
publicly available. We are also indebted to Michael Eisen,
for making his clustering and visualization tools freely
available for academic researchers, and to the developers
of the R language.

This work was supported in parts by the National Science
Foundation (grants ITR-0082870, CCR-0208924, EIA-
0303590, ANI-0323648, and DMS-9971964), Cisco Sys-
tems Inc., the IBM Corporation, and a doctoral fellowship
from the Computer Measurement Group.

7. References
[1] P. Barford and M. Crovella, Generating representative web

workloads for network and server performance evaluation.
Proc. of ACM SIGMETRICS, pages 151-160, 1998.

[2] R. Caceres, P. B. Danzig, S. Jamin, and D. J. Mitzel, Char-
acteristics of wide-area TCP/IP conversations. Proc. of the
conference on Communications architecture and protocols,
pages 101-112. ACM Press, 1991.

[3] K. chan Lan and J. Heidemann, Rapid model parametera-
tion from traffic measurement. Technical Report 561,
USC/Information Sciences Institute, August 2002.

[4] Internet 2 Consortium, Internet2 Netflow Weekly Report,
http://netflow.internet2.edu/weekly/20040621, June 2004.

[5] M. Crovella and A. Bestavros, Self-similarity in World
Wide Web traffic: evidence and possible causes.
IEEE/ACM Trans. on Networking, 5(6):835-846, 1997.

[6] P. B. Danzig and S. Jamin, tcp-lib: A library of TCP/IP
traffic characteristics. USC Networking and Distributed
Systems Laboratory TR CS-SYS-91-01, October 1991.

[7] M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster
analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci., 95:14863-14868, December 1998.

[8] C. Estan, K. Keys, D. Moore, and G. Varghese, Building a
better netflow. Proc. of the ACM SIGCOMM, 2004.

[9] C. Estan, S. Savage, and George Varghese, Automatically
inferring patterns of resource consumption in network traf-
fic. Proc. of the ACM SIGCOMM, 2003.

[10] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis.
Arnold, 4th edition, 2001.

[11] S. Floyd and V. Paxson, Difficulties in simulating the In-
ternet. IEEE/ACM Transactions on Networking, 9(4):392-
403, August 2001.

[12] Sprint Advanced Technology Laboratory. IP monitoring
project: Data management system, 2004. http://ipmon.
sprintlabs.com.

[13] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan, Measurement, modeling, and analy-
sis of a peer-to-peer file-sharing workload. Proc., 19th
ACM Symposium on Operating Systems Principles, 2003.

[14] J. A. Hartigan, Clustering Algorithms. Wiley, 1975.

[15] F. Hernández-Campos, F. D. Smith, K. Jeffay, Tracking the
evolution of web traffic: 1995-2003. 11th IEEE/ACM
Symp. on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, October 2003.

[16] R. Ihaka and R. Gentleman, R: A language for data analy-
sis and graphics. Journal of Computational and Graphical
Statistics, 5(3):299-314, 1996.

[17] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data:
An Introduction to Cluster Analysis. Wiley, 1990.

[18] B. Krishnamurthy and J. Wang, Traffic classification for
application specific peering. Proc. of the ACM Internet
Measurement Workshop, 2002.

[19] P. Macnaughton-Smith, W. T. Williams, M. B. Dale, and L.
G. Mockett, Dissimilarity analysis: A new technique of hi-
erarchical sub-division. Nature, 202:1034-1035, 1965.

[20] B. A. Mah, An empirical model of HTTP network traffic.
Proc. of IEEE INFOCOM, pages 592-600, 1997.

[21] NLANR Measurement and Network Analysis Group. Trace
IPLS-CLEV-20020814-090000-0 (Abilene-I data set).
http://pma.nlanr.net/Traces/long/ipls1.html.

[22] V. Paxson, Empirically derived analytic models of wide-
area TCP connections. IEEE/ACM Transactions on Net-
working, 2(4):316-336, 1994.

[23] D. Qiu and R. Srikant, Modeling and performance analysis
of bittorrent-like peer-to-peer networks. Proc. of the ACM
SIGCOMM, 2004.

[24] F. D. Smith, F. Hernández-Campos, and K. Jeffay, What TCP/IP
Protocol Headers Can Tell Us About the Web, Proc. ACM
SIGMETRICS ’01, June 2001.

[25] R. R. Sokal and C. D. Michener, A statistical method for
evaluating systematic relationships. Univ. Kansas Science
Bulletin 38:1409-1438, 1958.

