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Abstract — We describe a new methodology for under-
standing how applications use TCP to exchange data. The 
method is useful for characterizing TCP workloads and 
synthetic traffic generation. Given a packet header trace, 
the method automatically constructs a source-level model 
of the applications using TCP in a network without any a 
priori knowledge of which applications are actually pre-
sent in a network. From this source-level model, statisti-
cal feature vectors can be defined for each TCP connec-
tion in the trace. Hierarchical cluster analysis can then be 
performed to identify connections that are statistically 
homogeneous and that are likely exert similar demands 
on a network. We apply the methods to packet header 
traces taken from the UNC and Abilene networks and 
show how classes of similar connections can be automati-
cally detected and modeled. 

1.  Introduction 
TCP is the standard transport protocol for most Internet 
applications and services. File-sharing, web browsing, 
email, instant messaging, and many other applications 
make use of the reliable, in-order transport service offered 
by TCP to communicate their data across the Internet.  

Our goal is to understand how applications use TCP in the 
Internet today. There are three primary motivations for 
studying this question. First, and most pragmatically, to 
build a synthetic workload generator that can generate 
realistic application-level inputs for a network simulator 
or testbed that are provably representative of how a given 
link, such as a link in the Abilene backbone, is used. Net-
working research has long relied on simulation as the 
primary vehicle for demonstrating the effectiveness of 
proposed algorithms and mechanisms. We are advocates 
of the simulation philosophy described by Floyd and Pax-
son [6] of using application-level descriptions of network 
usage as opposed to packet-level descriptions to populate 
simulations. We observe that the networking community 
suffers at present from a dearth of valid, contemporary 
models of Internet applications. By understanding how 
applications use TCP in the Internet today, and more im-
portantly, by developing automated methods to character-
ize how TCP is used, we will enable researchers to con-
struct application-level models that are representative of 

the workloads found on any network on which they can 
obtain simple packer header traces.1  

A second, related motivation is to develop a method that 
will allow one to measure and characterize, in generic 
application-level terms, how traffic differs from one net-
work to another. That is, we seek an abstract characteriza-
tion of how one network is used differently than another 
network and to frame this characterization in terms of the 
data objects carried on TCP connections. An additional 
and more refined motivation is that we seek to discover 
and characterize different patterns of use within a given 
application protocol such as HTTP. Given the large vari-
ety of uses of the web and the large fraction of network 
resources consumed by web traffic, rather than simply 
characterize web traffic as a single entity, we conjecture 
that it is useful to identify and classify specific uses of the 
web and develop source-level models of each dominant 
sub-class of HTTP traffic. That is, we claim that since 
different uses of HTTP place different demands on a net-
work, rather than construct a source-level model of 
“HTTP traffic,” it is better to develop source-level models 
of, for example, HTTP single-object file transfer traffic, 
HTTP interactive traffic, and HTTP streaming media traf-
fic.  

This motivates the final goal: to move from studying the 
impact of specific application-level protocols on the net-
work to studying the impact of common uses of protocols. 
For example, instances of HTTP, FTP, and many peer-to-
peer protocols are essentially used for unidirectional, sin-
gle-object file transfer. Instead of characterizing these 
protocols individually, we would like to identify and 
characterize the “data transfer traffic” that exists in a net-
work independent of the application-level protocol used 
to carry the traffic. That is, we would like to characterize 
the use of TCP for “streaming media traffic” across all 
application-level protocols and to do so similarly for “in-
teractive traffic,” “file transfer traffic” etc. Our thesis is 
                                                             
1 Because applications are the ultimate sources of all data carried by the 
network, we use the terms source-level and application-level inter-
changeably when referring to models of how TCP is used.  



2 

that the workload placed on a network by a given TCP 
connection is more a function of the structure (pattern) of 
how an application uses TCP than it is of the application-
level protocol used. Thus we seek to characterize com-
mon patterns of TCP usage rather than common proto-
cols.  

This approach of characterizing uses rather than protocols 
is motivated in part by the fact that both a large and grow-
ing percentage of the traffic seen on networks is “un-
known” in the sense that the traffic is carried on a connec-
tion using an unregistered port number, and that applica-
tions misuse the reserved port numbers of other applica-
tions to avoid detection or policing.  

When constructing source-level traffic models, the only 
means of identifying applications is to classify connec-
tions by port numbers. This is because user privacy con-
cerns dictate that it is inappropriate to record packet data 
beyond the TCP/IP header without the prior approval of 
users. For connections that use common reserved ports 
(e.g., port 80), we can attempt to infer the application-
level protocol in use (HTTP) and construct a source-level 
model of traffic generated by the application [6, 20, 22, 
24]. However, this analysis technique does not scale be-
cause of the diverse and continually evolving set of appli-
cations. A recent measurement study we completed on the 
UNC campus indicated that while approximately 90% of 
the bytes on the UNC campus (91% of the packets) were 
carried by TCP, the four largest TCP-based applications 
that could be easily identified by “well-known” port num-
bers (HTTP port 80, FTP-DATA port 20), NNTP port 
119, and SMTP port 25), accounted for less than half of 
the total TCP bytes. (Whereas just 5 years ago, HTTP 
traffic alone accounted for as much as 80% of the bytes 
on Internet backbones.) The vast majority of the remain-
ing TCP bytes were carried on TCP connections using a 
very large number (tens of thousands) of unassigned TCP 
port pairs. Thus close to half of all the traffic observed on 
our network is unidentified. (Similar data has been re-
ported for Internet2 [4].)  

This paper presents an automatic method for understand-
ing how TCP is used by applications. The key to our ap-
proach is to study patterns of TCP usage within individ-
ual connections. The thesis is that (1) fundamental usage 
patterns exist, (2) one can use knowledge of these patterns 
to measure and characterize uses of the network by users 
and applications without explicit knowledge of the appli-
cation-level protocol(s) in play, and (3) that the identifica-
tion and characterization process can be performed auto-
matically.  

Our approach to discovering and characterizing patterns is 
based on an abstract representation of a TCP connection 
that captures the dynamics of both end-user interactions 
and application-level protocols. The representation, called 
an a-b-t connection vector, models a connection as a se-

ries of request/response exchanges separated by inter-
exchange think times (a bi-directional ON/OFF model). 
Network packet traces of TCP/IP headers are “reverse 
compiled” into a collection of a-b-t connection vectors 
that can serve as inputs to a statistical cluster analysis 
program that will classify connections into a set of ab-
stract connection types based on a set of feature vectors 
defined over the space of a-b-t connection vectors. The 
resulting connection types, or traffic classes, correspond 
to application connections that are generating statistically 
homogeneous network usage.  

The premise of the cluster analysis work is that while 
literally tens of thousands of port pairs are in use at any 
one time, the number of distinct patterns of application 
behavior that are in use is far smaller, most likely dozens. 
By representing connections as a-b-t vectors we can use 
statistical cluster analysis to identify connections that are 
generating “similar” patterns of source-level traffic. This 
eliminates the need for knowledge of the (sometimes pro-
prietary) application-level protocol to deconstruct a con-
nection and understand its behavior. By being able to 
identify clusters of statistically homogeneous connections, 
a researcher or practitioner will be able to characterize 
uses of their network and thus better understand the fun-
damental make-up and structure of traffic seen on their 
networks. For example, instead of seeing 20,000 active 
connections on seemingly random port pairs they can 
identify the 5-10 fundamental traffic classes present. 
Moreover, using knowledge of well-known applications 
that do use reserved port numbers, these traffic classes 
can be speculatively labeled (e.g., ftp-like bulk transfer, 
small-object web-like request-response traffic, streaming 
media class 1 traffic, streaming media class 2 traffic, 
peer-to-peer class 1 traffic, peer-to-peer class 2 traffic, 
etc). In addition, the characterization of dominant traffic 
classes will enable one to simulate their networks and to 
vary the mix of traffic according to actual user-driven 
usage patterns in a controlled manner.  

In the following we present some results from a compre-
hensive measurement study of TCP connections using a-
b-t characterizations of TCP connections. We have ap-
plied our characterization method to a large collection of 
packet header traces taken from a variety of Internet loca-
tions. We illustrate how features of a-b-t traces can be 
used to identify clusters of similar traffic classes using a 
set of statistical clustering tools developed originally for 
the analysis of gene expression arrays.  

We claim the a-b-t model is a natural step forward: it is 
simple to describe, interpret, and implement, but flexible 
enough to accurately capture a wide variety of existing 
applications without knowing what those applications are. 
More precisely, a-b-t models have the important feature 
that they capture the source-level (e.g., above the socket-
layer) behavior of applications and can be constructed 
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directly from packet level traces without making any a 
priori assumptions based on port numbers about the type 
of applications present. The generality of this model 
makes it possible to compute a set of meaningful statistics 
(features) for connections and to apply statistical cluster-
ing to group connections into a small number of traffic 
clusters. These traffic clusters group together connections 
with similar application-level behavior and usage pat-
terns, and their study helps to understand the most impor-
tant communication strategies that are used by Internet 
applications.  

2. A Source-Level Characterization of TCP 
 Connections  
The foundation of our approach to modeling applications 
as network-independent entities is the observation that, 
from the perspective of the network, the vast majority of 
application-level protocols are based on a few simple pat-
terns of data exchanges within a logical connection be-
tween the endpoint processes. Endpoint processes ex-
change data in units defined by their specific application-
level protocol. The sizes of these application-data units 
(ADUs) depend only on the application protocol and the 
data objects used in the application and, therefore, are 
(largely) independent of the sizes of the network-
dependent data units employed at the transport level and 
below. For example, HTTP requests and responses de-
pend on the sizes of headers defined by the HTTP proto-
col and the sizes of files referenced but not on the sizes of 
TCP segments used at the transport layer.   

The simplest and most common pattern used by TCP ap-
plications arises from the client-server model of applica-
tion structure and consists of a single ADU exchange. For 
example, given two endpoints, say a web server and 
browser, we can visualize their behavior over time as 
shown in Figure 1a. A browser first opens an HTTP/1.0 
connection to the server and sends a request for a specific 
object (e.g., an HTML page or an image). This request is 

the first ADU in the data exchange. After the server re-
ceives the entire request, it replies with the requested ob-
ject and closes the connection. This object (the response) 
is the second ADU in this connection.  

We model the pattern of ADU exchanges within a TCP 
connection using a simple notion we call an a-b-t connec-
tion vector. Each TCP connection is represented as an n-
dimensional vector (c1, …, cn) where n represents the 
number of discrete ADU exchanges, called epochs, in the 
connection. An epoch ci is a triplet of the form ci = (ai, bi, 
ti) that describes the sizes of data units exchanged and the 
duration of any idle time in the connection’s ith ADU ex-
change. An ai represents the amount of data sent from the 
initiator of the connection (e.g., a web browser) to the 
acceptor of the connection (e.g., a web server) during the 
ith exchange, while a bi represents the amount of data sent 
in the reverse direction “in response to” the receipt of ai. 
The time parameter ti is used to model quiet times be-
tween data exchanges (epochs), which, if sufficiently 
long, represent application-level behavior, such as human 
think times and long application processing delays. Note 
that we do not record the time interval between the re-
quest and its corresponding response as this time depends 
on network or end-system properties that are not directly 
related to (or controlled by) the application or the user.  

Thus a TCP application can be characterized as a process 
that generates a number of time-separated epochs where 
each epoch is characterized by ADU sizes and an inter-
epoch time interval. For example, the HTTP/1.1 connec-
tion in Figure 1b represents a persistent HTTP connection 
over which a browser and server engage in a series of 
sequential request-response exchanges to download a pair 
of documents. A browser sends three requests of 329, 
403, and 365 bytes, respectively, and a server responds to 
each of them with HTTP responses (including object con-
tent) of 403, 25821, and 1198 bytes, respectively. The 
second request was sent by the browser 120 milliseconds 
after the last segment of the first response was received 

a) The pattern of ADU exchange in 
an HTTP 1.0 connection.  
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exchanges in a BitTorrent con-
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Figure 1: Examples of three patterns of application-level data unit exchanges taken from measurements on the UNC campus.  
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and the third request was sent 3,120 milliseconds after the 
second response was received. This connection would be 
represented as the a-b-t connection vector 

(329, 403, 0.12), (403, 25821, 3.12), (356, 1198, 0). 

Abstractly we say that the connection vector consists of 
three epochs corresponding to the three HTTP request-
response exchanges. Note that the a-b-t characterization 
admits the possibility of an application protocol omitting 
one of the ADUs during an exchange (e.g., epochs of the 
form (ai, 0, ti) or (0, bi, ti), are allowed). Single ADU ep-
ochs are commonly found in ftp-data and streaming media 
connections.  

a-b-t connection vectors are capable of representing the 
request-response-like patterns of interaction common to a 
wide variety of application-layer protocols including 
SMTP and FTP-CONTROL, and most uses of HTTP/1.1, 
and NNTP. The essential invariant of request-response 
patterns is that endpoints of a connection do not transmit 
data concurrently. Connections satisfying this invariant 
are called sequential connections. A second class of con-
nections allows for ADU transmissions by endpoints to 
overlap in time as shown in Figure 1c. This pattern of 
concurrent ADU exchange is not commonly found in TCP 
connections on the Internet today, but can occur in appli-
cation-level protocols such as HTTP/1.1, NNTP, and Bit-
Torrent. However, while uncommon, it is important to be 
able to model such concurrent connections as they often 
carry a significant fraction of the total bytes seen in a 
network trace (e.g., 15%-35% of the total bytes in traces 
we have processed).  

To represent concurrent ADU exchanges, the actions of 
each endpoint are considered to occur independently of 
each other so each endpoint is a separate source generat-
ing ADUs that appear as a sequence of epochs following a 
unidirectional flow pattern with one or more epochs of the 
form (ai, 0, ti) or (0, bi, ti). 

3.1 Computing a-b-t connection vectors from 
 measurement data  
Modeling TCP connections as a pattern of ADU transmis-
sions provides a unified view of connections that does not 
depend on the specific applications driving each TCP 
connection. The first step in the process is to acquire a 
trace of TCP/IP headers from a network link of interest. 
(We use tcpdump for this purpose.) The trace is then 
processed to produce a set of a-b-t connection vectors; 
one vector for each TCP connection in the trace. a-b-t 
vectors can be computed using either unidirectional or 
bidirectional traces. Here we primarily describe the (more 
complex) method for processing unidirectional traces.  

a-b-t connection vectors for sequential connections can be 
computed from unidirectional traces. The basic method 
for determining ADU boundaries and sizes, as well as 

user think times, is described in detail in [24]. While this 
method was originally specific to the analysis of HTTP 
connections, we have generalized it to “reverse compile” 
arbitrary TCP connections into an abstract source-level 
model (an a-b-t connection vector).  

The analysis proceeds by examining sequence numbers 
and acknowledgement numbers in TCP segments. 
Changes in sequence numbers are used to compute ADU 
sizes flowing in the direction traced and changes in ACK 
values are used to infer ADU sizes flowing in the opposite 
(not traced) direction. There will be an alternating pattern 
of advances in the ACK values followed by advances in 
the data sequence values (or vice versa). This observation 
is used to construct a rule for inferring the beginning and 
ending TCP segments of an ADU and the boundary be-
tween exchanges. Put another way, an advance in the data 
sequence numbers marks the end of an ADU flowing in 
the direction opposite to the traced direction and an ad-
vance in the ACK sequence number marks the end of an 
ADU flowing in the direction of the trace. Of course, 
other events can mark ADU boundaries as well. These 
include events such as the receipt of a FIN or RST seg-
ment, or the occurrence of idle times greater than a 
threshold.  

Figure 2 shows a TCP time-sequence number diagram for 
the HTTP/1.0 connection shown in Figure 1a and illus-
trates the process of computing a’s and b’s. Timestamps 
on the tcpdump of segments marking the beginning or end 
of an ADU are used to compute the inter-epoch times and 
timestamps on the SYN segments are used to compute 
connection inter-arrival times. The complexity of this 
analysis (per connection) is O(sW) where s is the number 
of segments in the connection and W is the receiver’s 
maximum advertised window size. (The window size 
impacts the a-b-t connection vector computation process 
when reconstructing connections that experience lost, 
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Figure 2: An illustration of the process of computing ADU 

boundaries and sizes from TCP sequence numbers and acknow-
ledgement numbers in a unidirectional trace.  
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duplicate, and out-of-order segments. See [24] for de-
tails.) 

As a more complex example, consider again the pattern of 
ADU exchanges illustrated in Figure 1b. This example, 
taken from real measurement data, manifested itself in a 
packet header trace as 29 TCP segments (including SYNs 
and FINs). Applying the a-b-t connection vector computa-
tion method to this sequence of packet headers generated 
the 3-epoch connection vector listed above. Note that 
while the actual sizes and timing of the TCP segments 
represented in the original packet header trace are operat-
ing system and network-dependent, the analysis has pro-
duced a summary representation that models the source-
level (browser and server) behaviors.  

Application protocols that overlap rather than alternate 
ADU exchanges between endpoints (the pattern in Figure 
1c) are not handled correctly by the above method. To 
fully detect and process a concurrent TCP connection, a 
bidirectional packet header trace is required. To detect 
instances of concurrent ADU exchanges in a TCP connec-
tion we look for instances in which both end points have 
unacknowledged data in flight. Specifically, we look for 
situations within a connection between end points A and B 
in which there exists at least one pair of non-empty TCP 
segments p and q such that p is sent from A to B, q is sent 
from B to A, and the following two inequalities are satis-
fied: p.seqno > q.ackno and q.seqno > p.ackno. If the 
conversation between A and B is sequential, then for 
every pair of segments p and q, either p was sent after q 
reached A, in which case q.seqno  p.ackno, or q was sent 
after p reached B, in which case p.seqno  q.ackno. Thus, 
every non-concurrent connection will be classified as 
such by our algorithm. Situations in which all the seg-
ments in potentially concurrent data exchanges are sent 
sequentially (purely by chance) are not detected by our 
algorithm and the connection is treated as sequential.  

3.  Clustering Communication Patterns 
The a-b-t model provides a framework for the systematic 
identification and study of application-level communica-
tion patterns in Internet traffic. Internet measurement, 
modeling, and other research areas can benefit from the 
analysis and classification of such patterns. For example, 
the performance of transport protocols depends heavily on 
the patterns of data exchange within transport connec-
tions, hence an understanding of these patterns and their 
impact is needed for balancing among the tradeoffs that 
exist in protocol design. For instance, TCP can be tuned 
to provide better performance for transferring small 
ADUs at the price of higher instability and less fair allo-
cation of bandwidth. One can analyze the benefits of this 
tuning by using simulations, however, only those simula-
tions that make use of a broad and representative set of 
data exchange patterns in their inputs can help to draw 

general conclusions about the effectiveness of new net-
work mechanisms.  

Statistical clustering techniques (e.g., [14, 17, 10]) pro-
vide a useful and flexible tool for grouping connections 
into traffic classes that represent similar communication 
patterns. Formally, a clustering scheme is a procedure that 
divides a given set of d-dimensional feature vectors v1, v2, 
…, vm   Rd into k disjoint groups S1, S2, …, Sk, known as 
clusters. The goal of clustering is to find a small number k 
of clusters such that feature vectors within the same clus-
ters (a set of points in a d-dimensional space) are close 
together, while vectors in different clusters are far apart.  

In our approach, each a-b-t connection vector, i.e., each 
TCP connection, is first summarized using a vector of 
statistical features. Each feature captures some relevant 
characteristic of the connection, such as the number of 
exchanges, the total number of bytes sent by the initiator, 
the homogeneity in the sizes of the data units, and so on. 
Each feature is appropriately normalized so that its values 
lie between 0 and 1. We then measure the similarity be-
tween two a-b-t connection vectors by the similarity be-
tween their associated feature vectors. We consider two 
alternative distance measures, the standard Euclidean dis-
tance between vectors x = (x1, …, xd) and y = (y1, …, yd),  

d(x,y) = xi – yi( )
2

i=1

d 

 
 

 

 
 

1 2

 

and the Pearson correlation coefficient [10],  

rp (x,y) =
Sxy

Sx
2Sy
2

 

where Sxy = (xi – x )i=1
d (yi – y ) , Sx

2
= (xi – x )i=1

d 2 ,  

Sy
2

= (yi – y )i=1
d 2 , and x  and y  are the mean values of x 

and y respectively.  

Once the distance between each pair of a-b-t connection 
vectors has been defined, these vectors can be grouped 
using any number of standard clustering algorithms. We 
have applied a number of different clustering schemes to 
our data, but have focused on agglomerative and divisive 
hierarchical methods [10]. These methods have proven to 
be effective in other applications such as clustering gene 
expression arrays, and their graphical representation as 
trees (dendrograms) provides a useful way of identifying 
and analyzing groups of related communication patterns.  

Figure 3 provides an overview of the basic steps in our 
methodology. As a first step in clustering source level 
communication patterns, we extract from each a-b-t con-
nection vector a number of numerical features that are 
designed to capture important aspects of the two-way data 
transfer described by this vector. Let v = (c1, …, cn) be an 
a-b-t connection vector whose jth epoch is given by the 
triple cj = (aj, bj, tj), as described above. The most critical 
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features of v are the number of epochs e, and the total 
number of bytes sent by each of the connection endpoints, 
atot and btot. Let A = a1, …, an be the collection of a-type 
ADUs found in a connection. Other useful features in-
clude the size of the largest and smallest a-type ADU, amax 
and amin respectively, the mean aµ and standard deviation 
a  of A, and the first, second, and third quartiles of A, de-
noted by a1q, a2q, and a3q respectively. In order to better 
capture the structure of the sequence A, we measure the 
total variation avs, maximum first difference afd, lag-1 
autocorrelation a , and homogeneity ah of a-type ADUs 
for cases where n  2 (i.e., for connections with more than 
1 epoch). Analogous features can be extracted from the 
collection B = {b1, …, bn} of b-type ADUs. Given that 
inter-epoch times are influenced to a degree by network 
and end-system properties (as opposed to the a’s and b’s 
which depend only on application-level behavior), we 
restrict our attention to a few time features: tmax, t2q, and 
ttot. These features are defined more formally in Tables 1 
and 2.  

Another important feature is whether more total bytes are 
transmitted from connection initiator to connection accep-
tor or vice versa. We capture the “directionality” of a 
connection by the ratio atot/btot and define a feature dir to 
represent the magnitude of directionality, dir = 
log(atot/btot). To further asses the structure of a- and b-type 
ADUs, we also compute the lag 0 and 1 cross-correlations 
between B and A, denoted 1 and 2 respectively. In our 
preliminary analysis we found that rank correlations ex-
hibited a more diverse and meaningful spectrum of values 
across different connections. Thus all correlation meas-
urements are based on Spearman’s rank correlation coef-
ficient, 

rs (x,y) = ranki (xi )ranki (yi )i=1
d – ud( )vd–1 

where ud = d(d + 1)2/4 and vd = d(d2 – 1)/12, and ranki is 
the rank of the ith feature of vector x among the ith feature 
of vectors v1, …, vm. This is the non-parametric equivalent 
of Pearson’s correlation coefficient.  

The features we have selected to investigate are simply 
our first cut on this problem. However, whichever fea-
tures one ultimately chooses, there are a number of practi-
cal issues that need to be addressed before they can prof-
itably be used to cluster connections. The first issue in-
volves numerical scale. While correlations will range be-
tween -1 and +1, features such as the number of epochs in 
a connection (e) and the total number of bytes transmitted 
in given direction (atot, btot), can range anywhere from one 
to several million. To address this disparity, we first nor-
malize features by taking logarithms of those features that 
vary over several orders of magnitude. Each feature is 
then translated and scaled so that, for the vast majority 
(more than 96%) of measured connections, its value is 
between 0 and 1. In exceptional cases, e.g., a connection 
with 107 epochs, we allow features greater than 1 or less 
than 0. Allowing features to take values outside the unit 
interval avoids the possible compression of their true dy-
namic range by a small fraction of outliers.  

Once normalized, each feature plays a role in determining 
the Euclidean distance between two feature vectors. One 
may weight the contributions of different features differ-
ently, but we have not done this in our experiments. A 
second practical issue is that some features (e.g., correla-
tions and total variation) are either not well-defined or not 
meaningful for a-b-t connection vectors with fewer than 
three epochs. When comparing a connection with ten ep-
ochs to one with two epochs, we look only at the Euclid-
ean distance (or correlation) between those features that 
are defined in both associated vectors, and then normalize 
by the number of such “active’’ features, so that the re-
sulting distance can be compared to distances between 
longer connections.  

We initially tested our approach by clustering training 
data sets with a small number of connections. Figure 4 
shows the result of clustering 20 connections collected at 
UNC. We analyzed this data set using divisive hierarchi-
cal clustering as implemented in R [16], after converting 
each a-b-t connection vector into a feature vector that 
included all of the statistical features described above. 
Ten of the connections in the data set carried Telnet traf-
fic (i.e., interactive remote shell), while the other ten car-
ried persistent web traffic (HTTP 1.1). The communica-
tion patterns used by these two protocols are quite differ-
ent, so appropriate clustering should be able to split the 
data set into two subpopulations. As shown in Figure 4, 
two distinct clusters, emanating from the root of the den-
drogram, are readily apparent. This visualization is a bi-
nary tree in which internal nodes represents a split of the 
set of connections (with a y-axis height that correspond to 
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Feature Normalization

Hierarchical Clustering

Packet Header TracePacket Header Trace

Set of Connection VectorsSet of Connection Vectors

Set of Feature VectorsSet of Feature Vectors
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Set of Traffic ClustersSet of Traffic Clusters
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Figure 3: Overview of our approach for clustering patterns  

of TCP connection usage.  
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the dissimilarity between its children). Leaves represent 
individual connections. The first split in the example 
cleanly separates Telnet connections from web connec-
tions.  

4.  Clustering Examples  

4.1 Divisive Hierarchical Clustering Example 
In our first example of clustering traffic, we study a 
packet header trace collected during April 2002 at the 
main (1 Gbps) network link that connects UNC to the 
Internet. We first converted this trace into a set of several 
million a-b-t connection vectors, from which we drew a 
random sample of 5,000 connection vectors with 2 epochs 
or more. We then computed the feature vectors of the 
connections in this sample, using the features reported in 
Table 1. After normalizing the feature vectors, we ana-
lyzed them using the diana procedure with Euclidean dis-
tance as implemented R [16]. This algorithm is described 
in [19], and its basic idea is to sequentially split the clus-
ter with the largest diameter by finding its most dissimilar 
observation. This observation is used as the seed of a new 
cluster, which will be populated with some number of 
similar observations from the original cluster.  

The results of clustering the set of 5,000 are shown in 
Figure 5, using a new visualization function that we im-
plemented in the R language. The dendrogram shown is 
the result of pruning the full dendrogram at depth 4. The 
plot depicts pruned internal nodes as green triangles with 
a cluster number, and leaves as red squares with a connec-
tion vector number below them. Each internal node is 
annotated with the number of a-b-t connection vectors 
grouped under its branches. For example, the root of the 
tree is annotated with 5,000, since all of the connection 
vectors fall under this internal node. The first triangle on 
the left, marked as cluster number 1, groups 954 connec-
tion vectors.  

The dendrogram reveals some useful structure in the set 
of connection. Connections in cluster 1 mostly correspond 
to HTTP, HTTPS (encrypted web traffic) and AOL traf-
fic, while those in cluster 3 correspond to mail transfer 
protocols, such as SMTP and the Post Office Protocol 
(POP). The composition of clusters 2 and 4 was not so 
clear. The clustering algorithm accurately separated two 
clearly different communication patterns. Clusters 5 and 6 
include connections in which all the b-type ADUs are 
zero, and whose port numbers did not map to known ap-
plications. Finally, cluster 7 grouped together HTTP, 
HTTPS, Microsoft Directory Service and RTSP connec-
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Figure 4: Result of clustering a training set of 20 connections 

using agglomerative hierarchical clustering. Leaves labeled from 
1 to 10 correspond to Telnet connections, while those labeled 

from 11 to 20 correspond to HTTP connections.  

Table 1: The 26 statistical features used in the divisive hierarchi-
cal clustering example shown in Figure 5.  

Feature Description 

n Number of epochs 

atot, btot Total bytes (xtot = x jj=1
n ) 

amax, bmax, tmax Maximum bytes, seconds (xmax = max{xj  X}) 

amin, bmin Minimum bytes (xmin = min{xj  X}) 

aµ, bµ Mean bytes 

a , b  Standard deviation 

a1q, b1q First quartile 

a2q, b2q Second quartile 

a3q, b3q Third quartile 

avs, bvs Total variation (xvs = x j – x j–1j= 2
n ) 

ah, bh Homogeneity ((xmax+1)/(xmin+1)) 

a , b  Lag-1 autocorrelation 

1(a1..n, b1..n) Spearman’s rank correlation 

2(b1..n–1, a2..n) Spearman’s rank correlation with lag 1 
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Figure 5: Dendrogram obtained from the divisive hierarchical 
clustering of data set of 5,000 connections, pruned at depth 4.  
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tions. The only leaf shown in the dendrogram (connection 
vector 864) was an FTP-DATA connection with n = 2, atot 
= 50K and btot = 0.  

While the revealed structure is suggestive, it is difficult to 
explain the observed hierarchy. This motivated the use of 
a different tool as described next. Furthermore, computa-
tion of the full dendrogram was slow; this 5,000-
connection example required several hours of processing 
time. Another difficulty experienced was the O(n2) mem-
ory requirement, present in most statistical clustering al-
gorithms, which comes from the need to compute the 
distance between each pair of a-b-t connection vectors as 
the first step.  

4.2 Agglomerative Hierarchical Clustering  
We applied our methodology to the clustering of a sample 
of connections from the Abilene-I data set [21]. The sam-
ple consisted of 717 TCP connections.2 As before, each 
connection was first transformed into an a-b-t connection 
vector, and then summarized into a feature vector. Half of 
these connections were a random sample of port 80 con-
nections, while the other half were a random sample of 
connections on other ports. The result was a matrix of 717 
rows and 14 columns. Table 2 describes the 14 statistical 
features that were part of each vector.  

Feature vectors were clustered using the average-linkage 
agglomerative method proposed by Sokal and Michener 
[25], with Pearson correlation coefficient as the similarity 
measure. For this clustering, we employed the implemen-
tation of the algorithm and the visualization tool devel-
oped by Eisen et al. in the context of gene expression 
arrays (microarrays) [7]. The result of the clustering is 
shown in Figure 6. Similar results were obtained using 
Euclidean distance.  

The shared region in the center of Figure 6 is a heat map 
that represents the matrix of feature vectors. Each row in 
the matrix corresponds to one TCP connection, and each 
column corresponds to one statistical feature. The four-
teen colored cells within a row represent the values of the 
statistical features of a single connection. Values are dis-
played using a scale of increasingly lighter shades of blue 
(in other words, the larger the value, the lighter the color). 
On the left side of the array, a rotated dendrogram dis-
plays the hierarchical clustering of connections. On the 
right side of the array, seven rectangles (labeled from A to 
G) are used to highlight seven clusters that exhibit a high 
degree of internal cohesion (correlation is 0.6 or more) 
and substantial separation from other clusters (dissimilar-
ity sharply increases when any of these clusters is joined 
to another cluster).  

                                                             
2 While this number is relatively small, we believe it is representative of 
the coarse-grained structure in the data set, and it makes it possible to 
include graphical output in this paper. We have applied our method to 
larger sets with up to 25,000 connections. 

The interpretation of the resulting clusters confirms the 
effectiveness of our approach for grouping connections 
into homogeneous communication patterns. Note that this 
interpretation is based on port numbers (that we know are 
not very accurate), and it is only meant to illustrate the 
power of the method. Clusters A and B group together 
connections with small a-type ADUs. By looking at the 
destination port numbers of these connections, we found 
that most correspond to file sharing applications, mainly 
Kazaa (port number 1,214), eDonkey (4,662), and 
Gnutella (6,346). Connections in cluster A show substan-
tially smaller b-type ADUs than those in cluster B, and 
they also exhibit much longer inter-exchange times. We 
believe that connections in the former cluster mainly cor-
respond to file-sharing sessions in which only searches 
and no file downloads took place, while file downloads 
did occur in the connections grouped in the latter cluster. 
Some number of connections in these two clusters used 
other destination ports, such as 80, but their intra-
connection dynamics did match those of file-sharing ap-
plications. These connections provide a good example of 
port number hijacking, a technique frequently employed 
to overcome firewalls and bandwidth caps.  

Cluster C includes connections that have small a-type 
ADUs, and a number of exchanges that is significantly 
larger than that in the connections contained in clusters A 
and B. The destination port numbers correspond to a vari-
ety of applications, including Gnutella, HTTPS and 
Telnet.  

Connections in cluster D are almost exclusively destined 
to port 119 (NNTP), and they show a clearly different 
pattern of data exchanges (large a-type ADUs and moder-
ate b-type ADUs). Cluster E groups together connections 
destined to ports 80 (HTTP), 443 (HTTPS) and other 
ports that are also used for the web traffic, such as 8080 
and 8443. Cluster F is mostly composed of SMTP con-
nections (port 25) and some number of POP (110) and 
Oracle (1521) connections. Finally, cluster G contains 
FTP-Data connections. Some of these connections used 
source port 20, but the vast majority used other dynami-

Table 2: The 14 statistical features used in the agglomerative 
hierarchical clustering example shown in Figure 6.  

Feature Description 

n Number of epochs 

atot, btot, ttot Total bytes, seconds 

a2q, b2q, t2q Second quartile (median) 

afd, bfd Maximum first difference (xfd = maxj x j – x j–1 ) 

ah, bh Homogeneity ((xmax+1)/(xmin+1)) 

dir Directionality (log(atot/btot)) 

1(a1..n, b1..n) Spearman’s rank correlation 

2(b1..n–1, a2..n) Spearman’s rank correlation with lag 1 
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cally negotiated port numbers. We have confirmed that 
these connections carried FTP-Data traffic by verifying 
that parallel FTP-Control connections existed.  

It is important to remember that even though we have 
used knowledge of assigned port numbers to describe 
each of the above clusters, the uses of the clustering ap-
proach for workload modeling described in Section 1 do 
not depend on cluster labeling from port usage or any 
other means. The fundamental advantage of the a-b-t 
characterization and the clustering of TCP connections 
based on a-b-t features is that we can model and generate 
realistic Internet workloads without identifying specific 
applications.  

The seven clusters described above can be further ex-
plored and decomposed into sub-clusters, an operation 
naturally supported by the hierarchical structure of the 
binary tree. For instance, we found other smaller clusters 
that group together other types of communication dynam-
ics, such as those exhibited by streaming media and FTP-
Control connections.  

5.  Related Work  
Measuring and modeling traffic at the source-level has 
been an active area of research over the last ten years. 
Two important measurement efforts that focused on ap-
plication-specific traffic models, but which preceded the 
growth of the web, were conducted by Danzig et al. [6, 2] 
and by Paxson [22]. Web traffic has been studied in nu-
merous papers (e.g., [20, 5, 15]), and file-sharing applica-
tions are the focus of much current work (e.g., [13, 23]).  

Traffic classification is known to be a difficult problem 
that has not received much attention in the past. There are 
a number of papers (e.g., [18, 9]) that study how to iden-
tify groups of traffic that are “remarkable,” e.g., consume 
a large fraction of the traffic, but their focus is not on un-
derstanding the source-level structure of traffic. Other 
relevant papers evaluate existing monitoring techniques 
and propose more powerful alternatives (e.g., [8]).  

A compelling case for identifying traffic generation as 
one of the key challenges in Internet modeling and simu-
lation is made by Floyd and Paxson in [11]. Prominent 
examples of research in traffic generation are Danzing et 
al. tcplib [6], the work by Barford and Crovella on web 
workload generation [1], and the SAMAN project by Lan 
and Heidemann [3].  

6.  Conclusions  
We presented an abstract model of Internet communica-
tion and developed a methodology for clustering TCP 
connections into a small set of groups based on their pat-
terns of network usage. Recently developed visualization 
techniques make it possible to easily interpret clustering 
results. Our results demonstrate that an important short-
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Figure 6: Result of clustering a sample of connections from the 

Abilene-I data set. From left to right, the columns of the heat map 
correspond to features: n, atot, a2q, afd, ah, btot, b2q, bfd, bh, ttot, t2q, 
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coming of traditional clustering approaches is the diffi-
culty of interpreting the results in a way that is meaning-
ful for a network researcher. We overcame this problem 
by adapting to traffic analysis visualization techniques 
developed for the study of genetic data (in particular, gene 
expression arrays, or microarrays). The key contribution 
was the combination of traditional hierarchical visualiza-
tion (known as a dendrogram) and a heat map of connec-
tion features, making it possible to easily interpret the 
clustering result in terms of application types.  

We believe this provides a good starting point for under-
standing the types of application behaviors, and study 
how they change over time and across different vantage 
points. We are currently working on refining our meas-
urement techniques and systematically examining the 
clustering structure of the application mixes at a large 
number of sites. We are also developing a new traffic 
generation tool that makes use of this structure to enable 
flexible traffic generation that is more representative of 
the wide variety of applications found on the Internet to-
day.  
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