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Abstract

Over the past 8 years there have been numerous at-

tempts to develop add-ons to the X Window System

that enable basic sharing of arbitrary X applications.

These systems have never been much more than in-

teresting and marginally useful incremental improve-

ments to the capabilities of X. It is our thesis that

there are as-yet-unexplored opportunities for the devel-

opment of new window systems that provide integral,

full-featured support for collaborative work and retain

substantial backward-compatibility with X. In this pa-

per we present our design for such a window system.

1 Introduction

Suppose you are collaborating with a colleague to
write a paper, and you and your colleague both have
access to a full-featured distributed �le system. Fur-
ther assume that this is a paper that you don't want to
allow others to see until it is published. You can pro-
vide drafts of the paper to each other by placing them
in the �le system and setting the appropriate access
controls to allow read permission only to yourself and
your colleague. If your editor supports �le locking,
both authors can have write access to the �le, so that
you can take turns editing it, or you can break down
your paper into component �les, where each author
has write access to the parts of the paper over which
he has ownership. If you are temporarily seated at a
di�erent work station, you can still access the �les as
you could from your o�ce.

Now suppose you prefer to collaborate more inter-
actively by sharing the editor window on your display
rather than going through the �le system. Current,
widely-deployed window systems do not support this
type of sharing. Even if you are fortunate enough to

have an X-based shared-window system available for
your use, it is not likely to provide you with much more
than simple window sharing, a 
oor passing mecha-
nism to enable you to take turns driving the editor,
and primitive forms of access control and window nam-
ing. If you move from one work station to another, you
are likely to either have to run back and forth between
your two work stations to set up window sharing to
yourself, or to be out of luck altogether.

Ideally, we would like windows in our window sys-
tems to be much like �les in our �le systems. That
is, they should be �rst-class sharable objects, residing
in a hierarchical name space, to which access controls
and concurrency controls can be applied. In addition,
there are other capabilities speci�c to sharing windows
that we would like our window systems to support.

This paper describes Concur, a new window system
speci�cally designed to support the sharing of windows
among users in di�erent locations and the migration of
windows from one location to another. Current popu-
lar window systems were designed under the assump-
tion that a given window would only be displayed on
a single workstation throughout its lifetime. Many at-
tempts have been made to design window sharing and
migration systems on top of existing window systems.
The X Window System[9] is most often the underly-
ing window system of choice, because it uses a network
protocol that is easy to intercept and route to multi-
ple workstations. Unfortunately, there are aspects of
the X protocol that make it unsuitable as a basis for
implementing natural window sharing and migration
paradigms.

In Concur, we have taken a di�erent approach.
Concur is a new window system, designed with win-
dow sharing and migration in mind from the outset.
As an academic exercise this is interesting in itself,
and the ideas presented here can contribute to the
design of future window systems. But we also demon-



strate that existing window system protocols can be
e�ciently mapped to a subset of the Concur proto-
col, making most of Concur's capabilities available to
existing window-based applications.

Concur was developed as a research vehicle as we
sought to de�ne the boundary line between the capa-
bilities of collaboration aware (i.e., multi-user) and un-
aware (single-user) applications. We believe that there
is a large class of applications that do not need to be
collaboration aware, even if it makes sense to use them
collaboratively. With Concur we are attempting to
expand the usefulness of such collaboration-unaware
applications in a collaborative setting. Concur also
provides a good foundation for the development of col-
laboration aware applications.

Concur's architecture is largely based on that of
distributed �le systems, which have many of the char-
acteristics we desire in a distributed window system.
Thus, windows are sharable, �rst-class objects resid-
ing in a hierarchical name space, to which access and
concurrency controls can be applied.

2 Systems Support for Synchronous

Collaboration

There are two major types of systems support
for distributed synchronous collaborative use of ap-
plications: collaboration toolkits[3][5], which sup-
port the development of collaboration aware applica-
tions, and shared window systems[2][1][4], which en-
able collaboration-unaware applications to be shared.

Collaboration toolkits seek to facilitate the de-
velopment of collaboration-aware applications by ab-
stracting out the common low-level functions required
by most such applications and providing them to
programmers in the form of a toolkit for building
collaboration-aware software. These toolkits provide
communication, coordination, synchronization, and
consistency maintenance capabilities to the program-
mer. They usually implement some notion of shared
data objects and provide mechanisms for maintaining
multiple distributed concurrent views of these objects.
The development of these toolkits has been and con-
tinues to be an active area of research. While the
toolkit approach is a good one for the development of
applications that are necessarily collaboration-aware,
it requires such applications to be written in the con-
text of the toolkit. Thus, it does not enable us to use
existing collaboration-unaware applications collabora-
tively, nor does it help us to write new collaboration-
unaware applications intended for collaborative use.

These latter concerns are addressed by shared win-
dow systems. Traditional window systems assume
single-user access to windows. If we implement a
new window system that directly supports concurrent
multi-user access to windows, applications using this
window system can be used collaboratively without
being collaboration-aware. This new window system
can be viewed as a collaboration toolkit where the
shared data objects are windows. Unfortunately our
window system has the same drawback as other col-
laboration toolkits { applications still must be writ-
ten to conform to the new model. If, however, our
new window system is also capable of providing ex-
actly the same interface as an existing window system,
we will have met our remaining goal { to make exist-
ing collaboration-unaware applications available in a
collaborative setting. Furthermore, a shared window
system can provide basic window-sharing functional-
ity to collaboration toolkits, making them easier to
write and encouraging uniformity among toolkits for
window sharing operations.

3 Functional Requirements for Shared

Window Systems

Ideally, a shared window system must do more than
just make windows accessible to multiple users at dif-
ferent terminals. It must also address some or all of
the following issues:

� Sharing Granularity. What is the atomic unit
of sharing? For example, if the application is the
atomic unit, then all of an application's top-level
and sub-windows and all of their attributes must
be shared as a unit. If, on the other hand, the
top-level window is the atomic unit, individual
top-level windows can be shared. Possible atomic
sharing units include: the application, the top-
level window, the window, and the window at-
tribute (e.g., width, height, color, or content).

� Grouping. Is it possible to group entities (peo-
ple and objects) so that operations may be per-
formed on the group as a whole? For exam-
ple, even if the atomic sharing unit is the sub-
window, one will normally wish to share one or
more subtrees of windows, each rooted at a top-
level widow. A set of applications or top-level
windows shared as a unit with a particular set of
users is often called a conference, and users be-
longing to a conference are called participants in
that conference.



� Naming. How are shared windows, users, termi-
nals, and sets of these entities named so that they
can be referred to as parameters of operations?

� Access Control. Who is allowed to perform
which operations on which windows? For ex-
ample, who can become member of a particu-
lar conference (i.e., who can view its windows),
and which members are permitted to give input
through a particular window?

� Floor Control. Which terminals are allowed to
interact with a particular window at a given point
in time? This is particularly important for appli-
cations that assume a single pointing device (that
is, most current applications). What is the gran-
ularity of 
oor control { is there one 
oor per
conference, per application, or per top-level win-
dow?

� Group Membership Dynamicity. Is the
membership of groups of users, terminals, or
shared windows dynamic? For example, can we
bring a new or unshared application or a new ter-
minal into an existing conference? Can applica-
tions be removed from the conference without be-
ing terminated, and can users leave a conference
or move to another terminal? Can 
oor control
be passed among conference participants?

� Workspace Layout. Are all the windows in a
given conference grouped physically or otherwise
distinguished as being part of this particular con-
ference? Are they arranged the same way on ev-
ery display so that relative window positions are
shared?

� Customization. Is it possible for various partic-
ipants in a conference to customize their views of
shared windows and their ways of interacting with
them? For example, can a participant change the
colors of his view of a window or choose between
emacs and vi key bindings for an editor window?
The ability to customize views is largely deter-
mined by the sharing granularity and workspace
layout. Customizing interaction (e.g. key bind-
ings) is a di�cult issue because key bindings are
normally mapped to operations by the applica-
tion itself rather than the window system.

� Temporal Coupling. Must the various copies
of shared windows always be kept as up-to-date as
possible, or will an occasional update su�ce? Can
passive participants' displays lag in order to give
the user with the 
oor better performance? Is

the degree of coupling adjustable either manually
by participants or automatically in response to
system or network load?

� Gesturing. Is it possible for conference partic-
ipants to gesture with a pointer that other par-
ticipants can see? Is there one shared pointer, or
one per participant, or are there an unbounded
number of shared pointers?

� Annotation. Is it possible to annotate an active
window by typing or drawing over it? If not, can
static snapshots of windows be created and so an-
notated? Can such annotations be erased, stored,
and printed?

� Cut, copy, and paste. Do cut, copy, and paste
operations work when the source or destination
window is shared? Are these operations private to
a particular terminal (or user), or are they shared
so that one person can copy and another paste?

� Voice and Video. Are voice and video linked
to a conference or are separate mechanisms (like
the telephone) used if these are needed?

� User Interface. How are sharing operations
invoked? Possibilities include line-oriented com-
mands, control panel operations, and direct ma-
nipulation.

Shared window systems must also address the re-
lated issues of performance and scalability. Interaction
with unshared windows should not be noticeably de-
graded by the shared window system. When windows
are shared, any degradation relative to unshared win-
dows must be acceptable for common participant set
sizes and should increase slowly as the number of par-
ticipants increases.

Nearly all of the previous X-based shared window
systems support the basic sharing of an application's
windows among a set of users at di�erent terminals,
with each user capable of both viewing and interacting
with the windows. Most also provide some sort of 
oor
control. Some provide support for latecomers, termi-
nals or applications dynamically added to the confer-
ence after it is already in progress. Some provide a
virtual screen grouping mechanism for windows that
keeps the spatial relationships between shared win-
dows consistent for participants. Some provide at least
limited support for heterogeneous terminal types, font
mapping, X extensions, and snapshot overlays. Most
do not support meaningful cut-and-paste operations
involving shared windows or a smaller atomic sharing
unit than the application. To our knowledge, none



supports a global window name space, user-based ac-
cess controls on windows, sharing of individual sub-
windows, customization of views or interactions, di-
rect manipulation techniques for performing common
window sharing operations, or active window overlays.
Many are too slow to be used for all of a user's win-
dows, making sharing of arbitrary windows impracti-
cal. Finally, many such systems scale poorly as more
participants are added.

4 The Concur Window System

Concur is being designed with the goal of support-
ing all of the following capabilities:

� Viewing of and interaction with any window from
zero or more terminals simultaneously, subject
only to access and concurrency controls (below).
The set of viewing terminals is dynamic.

� Sharing at all levels of granularity from the appli-
cation to the individual window attribute. Fine-
grained sharing enables the customization of the
views of windows.

� A hierarchical, string-based name space for win-
dows, like that of traditional �le systems.

� User-based access controls on windows or window
sub-trees, by class of window operation. Win-
dows have owners and access control lists similar
to those available in distributed �le systems.

� Locks on windows and window sub-trees for con-
currency control. These can be used to implement
various 
oor-control policies.

� Customization of user interaction with windows.
Concur makes it possible for each user to individ-
ualize key and mouse bindings for their interac-
tions with shared applications.

� Sharable pointers that can be made to track a
user's cursor, for gesturing purposes.

� Window overlays for annotating active or static
windows.

� Cut, copy, and paste operations involving shared
windows. These operations can apply to either
private or shared clipboards, as speci�ed by the
user.

� Intelligent change noti�cation mechanisms that
use protocol analysis, load measurements, op-
tional user hints, and heuristics to improve the
overall performance and scalability of the window
system.

� Conference, workspace, window, and customiza-
tion management via ConMan, a Concur win-
dow system application with special duties but
no special privileges. Direct manipulation tech-
niques are used wherever possible to provide an
intuitive user interface. For example, one can
share and unshare arbitrary windows by drag-
ging them into and out of shared virtual screen
workspaces.

� A mapping between the X and Concur Window
System protocols that enables existing X applica-
tions to make use of most of the above capabil-
ities. Optional per-application and per-user ini-
tialization �les can be used to provide information
missing in the X protocol. In the absence of these
aids, Concur uses heuristics to �ll in the blanks.

5 The Concur Architecture

Figure 1 shows the high-level architecture of the X
Window System. The window server maintains the
window database, and X clients (applications) com-
municate with the server over a network connection
to create windows, draw in them, and receive input
through them. X is a distributed window system in
the sense that applications need not be running on the
host that displays the application's windows. In a dis-
tributed �le system, on the other hand (Figure 2), the
term distributed takes on a di�erent meaning. Here it
means that the user(s) of the �les managed by the �le
system can be in separate locations; i.e., that the �les
can be shared by users in di�erent locations. We de-
sire our window systems to be distributed in the sense
that the word is used when applied to distributed �le
systems. In an earlier paper[8], we analyzed this prob-
lem in detail. The conclusion was that the X Window
System's architecture made window sharing di�cult
because its client/server architecture is inverted with
respect to that of distributed �le systems. The X
server, where windows reside, is co-located with the
user, while the �le system server, where �les reside, is
potentially remote (see Figures 1 and 2).

In Concur, the window database still resides in the
window server, but the window server does not di-
rectly drive the display (Figure 3). The display is
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driven by a special client of the window system, called
a display client to distinguish it from a normal applica-
tion client. The display client connects to the window
server and expresses an interest in a particular set of
windows. The window server then sends the state of
these windows to the display client and updates the
client when changes are made to the windows. (In or-
der to avoid writing display drivers for all the various
kinds of displays, we use X Servers to perform this
task. The windows residing in the X servers are only
cached copies of those in the Concur server.)

Note that application clients are not aware of how
many (if any) displays are rendering their windows,
or where these displays reside. Window sharing oc-
curs when more than one display client expresses an
interest in the same window. Window migration is ac-
complished by dropping interest in the window from
one display client and picking it up from another.

The application client is also unaware of the par-
ticular characteristics of the displays on which their
windows are rendered. The Concur window server
presents a view of an abstract generic display to the
application clients, which they use to build their user
interface. Each display client maps this user interface
to the particular type of display it is driving.
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Figure 4: Concur Window Hierarchy

In a practical implementation of the Concur Win-
dow System, the window database would be dis-
tributed among multiple servers, just as the �le
database is distributed among multiple �le servers in a



distributed �le system. This makes it possible to have
separate administrative domains for implementing ac-
cess controls, facilitates good performance by allowing
windows to be located near the displays where they
are most likely to be rendered, and improves scala-
bility by increasing parallelism. However, the Concur
prototype currently only supports a single server.

Concur's window database is similar to the �le
database in distributed �le systems. Windows are
arranged hierarchically, such that sub-windows of an
enclosing window are represented as children of the
enclosing window (Figure 4). Windows have string-
based names, de�ned by the path taken from the root
of the hierarchy to the target window. Each window
has an owner and an access control list that deter-
mines what operations can be performed on the win-
dow by which users. The operation types include view-
ing, modifying the subwindow structure, drawing into
the window, sending input through the window, etc.
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Figure 5: Sharing via Linking

Basic WYSIWIS (what you see is what I see) shar-
ing of a subtree in the window hierarchy can be ac-
complished in Concur via window links similar to �le
system links or mounts (Figure 5). Here, window
A/D/F shown on one display is the same as window
L/N/Q shown on another.

Finer-grained, customized sharing can be accom-
plished using an attribute inheritance mechanism as
shown in Figure 6. Here, window Q is the same as
window F, except that some of F's attributes have
been overridden. On the right, the background color
of F (as Q) has been overridden to make it gray, sub-
window J has been deleted, and sub-window I (as R)
has been relocated.
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Figure 6: Attribute Inheritance

6 Input Binding in Concur

X Window System applications generally de�ne
their own bindings between input events (e.g., key-
board or mouse inputs) and the actions to be taken
in response to these events. This is troublesome when
applications are shared using a shared window system,
because the users interacting with the application are
not able to customize the bindings to suit their own
preferences. (For example, one might prefer emacs

key bindings, and another vi bindings.) Little can be
done to solve this problem for existing X applications
shared using Concur.

New applications written for the Concur Window
System will, however, be able to take advantage of
an improved input event binding mechanism. Concur
will support input event binding within the server it-
self, and will be able to maintain di�erent bindings for
di�erent users. The Concur application will export all
the operations that can be directly invoked via user
interactions to the Concur server, along with default
bindings to user events. In the Concur server, these
default bindings can be overridden on a per-user basis,
as speci�ed by the users. When an input event triggers
a particular binding to an operation, a speci�cation of
that operation will be sent to the Concur application,



where the actual operation will be invoked. Thus, not
only the appearance of windows but also the user's
protocol for interacting with the application can be
customized.

7 Implementation Framework

The Concur prototype is being implemented using
a protocol engine development framework of our own
design. A protocol engine is a machine whose pur-
pose it is to monitor and/or manipulate conversations
among computer system components. A simple pro-
tocol engine might monitor and log such conversations
for debugging or auditing purposes. A more complex
one might serve as a translator among components
that use di�erent but equivalent protocols, enabling
them to communicate despite the direct incompatibil-
ity of their protocols. Protocol engines can also serve
as protocol recorder/replayers, component simulators,
and protocol multiplexors and demultiplexers.

Concur components (servers and display clients)
are protocol engines that intercept and manipulate
conversations between graphical applications and the
display drivers on which they present their user in-
terfaces. Because of our previous experience build-
ing protocol engines[1][6], we were prepared and mo-
tivated to begin the work on Concur by creating a
general protocol engine development framework which
could then be used as a foundation for Concur and
other projects. We have called the resulting frame-
work the Protocol Engine Architecture Library, or
PEAL. (An early version of this framework is de-
scribed in [7]). PEAL itself is protocol independent,
and particular protocols (such as the X or Concur pro-
tocols) are plugged in as required to perform a given
task.

The PEAL framework supports the implementation
of protocol engines as sets of linearly-interconnected
�lters, where each �lter performs some small portion
of the engine's responsibilities (Figure 7). Conversa-
tions are implemented as streams of message objects
that are passed from one �lter to the next. The mes-
sages and message streams are monitored and/or mod-
i�ed by the �lters through which they pass. Each �lter
can be viewed as a miniature protocol engine placed
between the two communicating �lters on either side.
At the ends of the linear streams of �lters are special
�lters that perform the conversion from external rep-
resentations of a conversation (e.g., procedure calls or
messages on a byte stream) to the internal message
object representation and vice-versa.
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Figure 7: PEAL Protocol Engine Overview

Using the PEAL framework to implement Concur
has a number of signi�cant advantages. First, PEAL
enables the implementation to be done at a high level
of abstraction. For example, polymorphism is utilized
with message objects, enabling �lters in Concur to
perform generic operations on messages without hav-
ing to be concerned with the particular dynamic type
of the message and how the operation would be imple-
mented for each type. Second, PEAL enables solutions
to separate problems to be implemented as separate
�lters, which in turn facilitates parallel code develop-
ment by di�erent programmers and minimizes code in-
terdependencies that can become maintenance night-
mares. Third, PEAL encourages code reuse of various
forms (e.g., subclassing, templates, and component li-
braries), and many coding details are handled by the
framework itself. Finally, PEAL has proved to be ef-
�cient enough for the implementation of a production
window system.

8 Current Status

The Concur Window System prototype currently
supports basic window sharing of X applications from
zero to any number of viewers. Window migration is
supported. Users may drag and drop windows into
and out of shared virtual screens using ConMan, the
Concur windowmanager. Access controls are partially
implemented. During the next few months we intend



to focus on window view customization, window nam-
ing, and window locks supporting 
oor control mecha-
nisms. We have also begun to do a performance anal-
ysis of Concur to prove the feasibility of the archi-
tecture and to identify areas for further research in
mechanisms for improving perfomance.
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