Lightweight Active Router-Queue Management for
Multimedia Networking

Mark Parris Kevin Jeffay F. Donelson Smith
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA
{parris,jeffay,smithfd}@cs.unc.edu
http://www.cs.unc.edu/Research/dirt

ABSTRACT

The Internetesearctcommunity is promotingactive queuemanagement in routers as a proactive meanaddfessing
congestion in the Internet. Activpieuemanagement mechanisms such as Random Early Detection (RED) work well for
TCP flows but can fail in theresence ofinresponsive UDP flows. Recent proposattendRED to stronglyfavor TCP
and TCP-like flows and to actively penalize “misbehaving” flows. This is problematic for multimediatAatysalthough
potentially well-behaved, dmot, orcannot, satisfy thedefinition of a TCP-like flow. Inthis paper weinvestigate an
extension to RED active queue management called Class-Based Thresholds (CBT). The goal of GBducedongestion

in routers and to protect TCP from all UDP flows while also enswatugptabléhroughputandlatency forwell-behaved
UDP flows. CBT attempts to realize a “better than best effort” service for well-behaved multimedia flowsctirap@sable

to thatachieved by aacket orlink scheduling discipline, however, CBIbesthis by queuemanagement rathéghan by
scheduling. We present results of experiments comparing our mechanisms to plaandRE[FFRED, avariant of RED
designed to ensure fair allocation of bandwidthongst flows. We alsoompareCBT to a packet scheduling scheme. The
experiments show that CBT (tgalizesprotection forTCP, and(2) providesthroughputand end-to-enthtency fortagged
UDP flows, that is better than that under FRED and REDcamtparable tdhat achieved bypacket schedulingVioreover
CBT is a lighter-weight mechanism than FRED in terms of its state requirements and implementation complexity.

Keywords: active queue management, multimedia networking, RED, congestion control.

1 INTRODUCTION

As the volume of trafficand number of simultaneously active flows dnternet backbones increases, the problem of
recognizing and addressing congestion within the network becomes increasipgiyant. There arewo majorapproaches
to managing congestion. One is to manage bandwidth through explicit resource resangsitotation mechanismsuch
packet orlink scheduling. Thisapproach offershe potential ofperformance guarantedsr classes of trafficobut the
algorithmic complexity and state requirements of scheduling makes its deployment difficult. Thapptioach idased on
management of the queue of outbound packets for a particular link. Thisafgiteachhas recentijbecomethe subject of
much interest within thdnternetresearchcommunity. For examplethere is an increasing focus dhe problem of
recognizing and accommodating “well-behaved” flowsflews thatrespond tocongestion byreducingthe load they place
on the network Both Bradenet al, and Floyd et al, recognize TCP flows with correct congestion avoidance
implementations as being wdlehaved andrguethat these flows, a%jood network citizens,” should berotected and
isolated from theeffects of“misbehaving” flows [1, 2, 8, 11]. Examples of misbehaving flowslude non-standard
implementations of TCP, UDP connections that do not respond to indications of conge®tidDP connections that are
responsive to congestion brgspond inways other than thosspecifiedfor TCP. A recent Internetraft considers the

DSupported by grants from the National Scier@indation(grants CDA-9624662CCR-9510156, & IRIS-9508514), thiedvancedResearch
Projects Agency (grant number 96-06580), the IBM Corporation, and a graduate fellowship from the Intel Corporation.

1 \we use the terrflow simply as a convenient way to designate a sequence of packets having a common addressing Syt afid des-
tination IP addressesourceand destination port numberandIP protocol type

In: Multimedia Computing and Networking 1999
Proceedings, SPIE Proceedings Series, Volume 3654, San Jose, CA, January 1999, pages|162-174.

problem of congestion in the current Internet and makes two recommendatioRsS2]the authorsecommend deploying

active queue management schemes, specifialhdom Early DetectiofRED) to moreeffectively notify responsive flows

of congestion [5]. Activejueuemanagementefers toextendingthe packet queueing discipline ithe routerbeyond the
commonly employed FIFO enqueue and dequeue policies. For example, under RED a router doesintit thaijueue is

full to drop packets. Instead, it probabilistically drops incoming packets when the queue’s average length eRkoestudda

and automatically drops a random packet fromaiheuewhen theaverage exceedshagher threshold. Thiprovidesearlier
feedback, before the queue overflows, and probabilistically causes higher bandwidth flows to see a greater number of drops.

Second, Bradeat al recommend continued development of mechanisms to deal with flows that decognize packet
loss as an indicator of congestiandrespond toloss according toTCP’s back-off algorithm. Such flowsare problematic
becausehey can, in the worst casérce TCP connections to transmit at their minimal possibbéges while the
unresponsive flows monopolize network resourcesdatethe problem ofdealingwith unresponsive/misbehaving flows
has centered on how to constrain or penalize thieas [8, 13]. Werecognizethe need toprotectwell-behavediows but
also recognizethat many applications choose unresponsive transport protocols, su@Pabecauseahey are concerned
with throughputand (especially) latency rathéhan reliabledelivery. Since reliabledelivery in TCP depends on feedback,
timeouts,andretransmissions, itan beincompatible with performancegoals. Interactive multimedia applicationsare a
prime example of applications that avoid TCP ferformanceeasons. These applications often Ud2P instead of TCP
because they are willing to trade low latency for unreliable delivery. Simply penalizing these UDRe#luas application
developerswvith someunattractiveoptions. With thedeployment ofRED and its variants in many routergpplication
developeranust realizethat UDP flows will be subject to moaggressivalrop policies than in the past. Thdeveloper
could use TCPandincur overheador featuresshe may not want. Or, shmuld use another protoca@nd besubject to
aggressivalrop policies. Anotheralternative would be taise a protocol that implements TCP-like congestion control
without the other undesired features such as reliable delivery [3].

We are investigating a different approach: the development of active queue management policies that ditdsmpe to
the performance requirements a@bntinuous media applications that use UDP with theeed toboth provide early
notification of congestion to TCP connections and to protect TCP connections from unresponsive UDP flows. Specifically,
we areexperimenting with extensions to the REDeuemanagement scheme for providing beperformancefor UDP
flows without sacrificing performance for TCP flows. The key to our approach is to dynamessdtye asmall fraction of
a router’s storage capacity for packets from well-behaved UDP conneaignscOnnections that empla@pplication-level
congestion controand avoidancenechanisms). Thumdependent ofthe level of TCPtraffic, a configurable number of
tagged UDP connections are guaranteed to be able to transmit packets at a minimum rate. The goals of outeamedach,
Class-Basedrhresholds(CBT), are similar to other schemes for realizirigetter-than-best-effort” servicvithin I[P,
including packet schedulingnd prioritization schemes such &3lass-BasedQueuing [7]. While we recognize packet
scheduling techniques such as CBQ as the standard by which to measure resource allocation appreaeheterested in
determining how close we can come to gegformance otheseapproachesising thresholds on &IFO queuerather than
scheduling. Moreover, we believe our desigsing aqueuemanagement approach to sienplerandmore efficient than
these other schemes.

The following sections firstlescribeother ActiveQueue Management schemBED, Flow RandomEarly Detection
(FRED), and apacket scheduling schem&BQ. Section 3 briefly outlines théesign ofour CBT extension tdRED.
Section 4 then empirically compares CBT, FRED, RED, and CBQ and demonstrates that:

e CBT provides protection for TCP from unresponsive UDP flows that is comparable to that provided under FRED,
e CBT provides better throughput for tagged UDP flows than under RED and FRED,

e CBT results in tagged UDP packets transiting a router with lower latency than under FRED or RED, and

e CBT offers performance approaching that of CBQ.

Section 5 presents CBQ and argues that CBT is a simpler mechanism than either FRED or CBQ to implement in terms
of its state requirements and algorithmic complexity.

2 ACTIVE QUEUE MANAGEMENT AND PACKET SCHEDULING

The default “best-effort” packet-forwarding service of IPtygically implemented in routers by single, fixed-size,FIFO

queue shared by all packets to be transmitted over an outbound link. The queue simply provides some capacity for tolerating
variability in the loadi(e., burstytraffic) on the outboundink. A short burst ofpacket arrivalsnay exceedthe available
bandwidth ofthe link even wherthe average load isvell below the linkbandwidth. However, whethe load exceeds the
available capacity of the link for sustained periods of timegtleaiecapacity isexceededRouter implementations using a

simple fixed-size FIFO queue typically judtop any packethat arrives to beenqueued to aalready-fulloutboundqueue.

This behavior is oftercalled drop-tail packet discardingBradenet al. describetwo important problems with thdrop-tail

behavior [2]. First, in some situations, many of the flmas be “locked-out,” a condition iwhich a small subset of the

flows sharing the outbound link can monopolize the queue during periods of congestion. Flows generating packets at a high
rate canfill up the queuesuch thatpackets from flows generating packetssabstantially lowerates have a higher
probability of arriving at the queue when it is full and being discarded.

The secondproblem alsooccurs wherthe queueremains full ornearlyfull for sustained periods dime. When the
queue is constantly fullatency isincreasedor all flows. Simply making thequeueshorterwill decreasghe latency but
negates theossibility of accommodating briebursts of traffic without dropping packets unnecessarily. Twoeue
managemenpolicies, random drop orfull [10] anddrop front on full [12], addresghe lock-out phenomenon bgausing
packet drops to bepreadover moreflows, especially those thaend to dominateéhe queuecontent. These policies,
however, still allow queues to remain full for sustained periods of time.

The latency problems associated with full queues can be addressed for responsive flows by dropping sorbefp@ckets
the queue fills. We use the term responsive flow to indicate any flow in which some end-to-end mechasgshiadetect
packetloss and toadjust(reduce)the rate atwhich packetsresent in response to thess. Theclassic exampleas, of
course, the TCP congestion control mechar{hj that is the essential mechanism thkdwedthe Internet toscale to
today’s reach while avoiding collapse from unconstrained congestion. Since responsive flows dectead¢hthegenerate
in response to drops, tlgeieueshould eventuallyease togrow (depending on &ariety of factorssuch as theound-trip
latency for the individual flows). These types of pro-active approaches (random drop on full, drop frontamm tisthpping
prior to queue overflow) are referred toaative queue management

2.1 Random Early Detection (RED)

RED is an active queue management policy thantended toaddresssome of the shortcomings efandarddrop-tail
FIFO queue management [5]. It addresses both the “lock-out” problem (by using a faottmnm selecting whichpackets
to drop) and the “full queue” problem (by dropping packets early, before the queue fills) for responsive flows.

The RED algorithm usesaeighted average dhe totalqueuelength to determinewhen to drop packets. When a
packet arrives at the queue, if the weighted average queue length is less than a minimum threshold value, no dridlp action
be taken and the packet will simply be enqueued. lfatlegage is greatehan a minimumthreshold valuéut less than a
maximum threshold, agarly droptest will be performed as described below.auerage queukength in therange between
the thresholds indicates some congestion has bagdiflows should be notified vigpacket drops. Ithe average is greater
than the maximumhreshold value, rced dropoperation will occur. Anaverage queu&ength in thisrange indicates
persistent congestion and packets must be dropped to avoid a persistently full queue. Note that byaigirtigdaaverage,

Queue Length Drop Probability
Max queue - -
length | Forced
random drop
Mau threshold -1 Probabilistic
Min threshold || f A _J-drop
LNo drop
0 LIy

Time

Figure 1: RED thresholds. Gray line indicates instantaneous queue length,
black line indicates the wghited averge queue legth.

RED avoids over-reaction tburstsandinstead reacts to longer-term trenBsrthermore, note thdiecausehe thresholds
are compared tthe weighted averagéwith a typical weighting of 1/512 for theost recentqueuelength), it is possible
that no forced dropswill take place even whethe instantaneougqueuelength is quite large.For example, Figure 1
illustrates the queue length dynamics in a RED roused inour experiments. For the experiment illustrated in Figure 1,
forced drops would occur only in the one short interval near the beginning when the waigdtteg reachdhe maximum
threshold. Théorced dropis also used in the special case where the queue is full baxdrege queukength is still below

the maximum threshold.

The early dropaction in the RED algorithm probabilisticaldropsthe incomingpacket whenthe weighted average
queue length is between the minimum and maximum thresholds. The probability thatkieewill be dropped isrelative
to the current average queue length. In contrastoptbed dropaction in the RED algorithm iguaranteed to drop packet.
However, thedroppedpacket is randomiselectedfrom among all of thepackets in thequeue(including the one that
arrived). During the drop phases of the RED algorithm, high bandwidth flows will have a higher number of (ragiets
since their packets arrive at a higher rate than lower bandwidth flows (and thus are more likely to either be dropped during an
early drop or have packets in the queue selected during the forced random drop phases). These mechanisaik ftesidt in
experiencing the samess rateunderRED. By using probabilistidrops, RED maintains a short@verage queukength,
avoiding lockout and repeatedly penalizing the same flow when a burst of packets arrives.

2.2 Misbehaving flows can dominate TCP traffic

An implicit assumption behind the design of RED is that all flows respond to loss as an indicator of congéwtion.
unresponsive flows consume a significant fraction of the capacity of the outbound link from the router, thean®#D
RED fails in the sense th@iCP flowscan be lockeaut from thequeue anaxperiencehigh latency. In the worstase,
unresponsivehigh-bandwidthflows will continue to transmipackets at the same (ewen at a higher) rate despite the
increased dropate due toRED. Thesehigh bandwidth, unresponsivilows will suffer more dropsthan lowerbandwidth
flows (including responsive flows thaavereducedtheir load).However ifthese flows, either alone or in combination,
consume a significant fraction of tlvapacity ofthe outboundink from the router, they wilforce TCP connections to
transmit at minimal rates. Responsive flowgperiencing aigh packetdrop rate because dhe high queue occupancy
maintained bythe unresponsive flows, wifurther reducetheir traffic load. Figure 2 shows the result of @axperiment
designed to illustrate this effect on a 10 Mbip&. Figure 2 shows TCP’s utilization of thmutboundlink from a router
employing RED. The aggregate throughput of all T&nections collapses when a singigh-bandwidthUDP flow is
introducedbetweentime 60 and 110 (the experimental environment in which thelséa were measured is described in
Section 3.2).

1,200

1,000

800

600

400

200

0 25 50 75 100 125 150 175 400

Figure 2: Aggregate TCP throughput with RED in the presence of an unresponsive, high-bandwidth UDP flow.
(TCP throughput in kilobytes/second versus elapsed time in seconds.)

2.3 FRED - a proposal for fairness in buffer allocation

RED is vulnerable to unresponsive flows dominating a routgrsie.Lin andMorris recognizethis shortcoming of
RED and proposed a scheme, calitmlv Random Early DetectiofFRED), to promote fair buffer allocatidmetween flows
[13]. To motivate FREDreconsidelRED’s response to congestiddnder RED, althoughhigher-bandwidtilows incur a
largernumberof packet drops, on averagsl| flows experiencghe same lossate. Flows experiencethe same lossate
because for given average queukength, packets fromall flows havethe samedrop probability. Therefore two constant
bit-rate flows that were generating loads of 10 Mbps and 1 Kbps on a 10 Mbps link during a period of congestion, may, for
example, both see (caverage)l0% of their packetdropped,eaving the flows with 9Mbpsind0.9Kbps of throughput,
respectively. However, ongould arguehat the highebandwidthflow is more responsible for the congestiand the 1
Mbps flow should be left untouched while the 10 Mbps flow is penalized.

FRED attempts to provide fair buffer allocation between flows, isolating each flow froefféwts of misbehaving or
non-responsive flows. FRED’s approach is to impose uniforghityng times of congestion by constraining all flows to
occupying looselyequalshares of theueue’'scapacity(andhence receivingoosely equal shares of the outbounihk’s
capacity). Moreover, flows thaepeatedlyexceed araveragefair share ofthe queue’scapacity are tightly constrained to
consume no more than their fair share. This uniformity comes at ahcogtyer.Statistics must benaintained forevery
flow that currently has packets in the outbouneeue ofthe router. Thesso-called “activeflows” are allocated arqual
share of the queue, which determined bydividing the currentqueuesize by the number of actiflows. The number of
packets a flow has enqueued is compared to the product of the floavs valueand aconstant multiplier. This multiplier
allows for non-uniform (bursty) arrival patterns among flows. A flow #sateedshe threshold including theultiplier is
considered unresponsive and is constrained to its share (without the multiplier) until it has no more packets in the queue.

The results of this approach can be seen in the TCP Throughput graph in Figurer&ffitHead isthe same as that
in the earlier experimental evaluation of RED. In particular, UDP blast is activetiiteen50 to time 100. Whil¢here is
some decrease in TCP throughput, the overall performance is much better thegethathersimply using RED(Figure
1). In particular there is no congestigellapse. Thalifference inthe results illustrated in Figuresahd 2 isthat in the
FRED case, the unresponsive UDP flow denstrained toconsume a faishare ofthe router's outboundueue.With
hundreds offCP connections (as part dhis experimental set-up), weanestimate thathereare alarge numberactive
flows (relative to the queue size of 60) at any given time, resultimgeneshare orthe order of 1-3 packetsBecause the
UDP flow is unresponsive (and high-bandwidth), it exceeds this simarés constrained to neveyccupying more than 1-3
slots in the queue. This results is a significantly higher level of packet loss for the unresponsive UDP fiowleh&ED
(and hence higher throughput for all other well-behaved flows). UREE, the unresponsive UDP floeould monopolize
the queue and achieve significantly higher throughput. Under FRED, eachBC#vdlow gets the same number lafffer
slots in the router queue as the unresponsive UDP flow does.

1,200

- | V‘A 1)
|y |

400

200

0 25 50 75 100 125 150 175 200

Figure 3: Aggregate TCP throughput under FRED in the presence of an unresponsive, high-bandwidth UDP flow.
(TCP throughput in kilobytes/second versus elapsed time in seconds.)

FRED is the active queue management approach CBT most obviously resembles. Thi¥fferejure is inthe goals
andthe complexity of the two algorithms. FRED attemptsetsure fair allocatiommong all flows. CBT attempts to
provide protection for tagged (multimediad TCP flows. Althoughfairness provides #orm of protection, if the goal is
strictly protection, aschemdike CBT is superior to FRED in terms of thperformance ofnultimedia flows. FRED's
major weakness, however, is tbeerheadassociatedvith trackingactive flowsandkeeping statistic§packetcounts) for
each active flow.

2.4 The consequences for multimedia applications

Most multimedia applicationshoose UDP as theimderlying transport mechanisbecausehey are concernedvith
throughput and latency rather than reliable delivery. Reliable delivery is the primary motiestecknowledgements from
receiver to sendelVithout theseacknowledgements (@ome form of explicitfeedback)packetloss cannotserve as an
indication of congestion. As a result, a UDP flow (without some application-bleghtation mechanism) is necessarily
“unresponsive” because, without a mechanism to detect packet drops, it has no indications to aghichspond. Ware,
therefore, interested in finding a queue management solution that works for TCP as well as for UDP flows that may or may
not have application-level adaptationechanisms. In this paper, we focus on one subset of UDP fliotesactive
multimedia. We begin by noting that these flows, while typically lmmdwidththemselvesare also vulnerable to the
impact of high-bandwidth unresponsive flows (as demonstrated below). These flows are particularly sensitigasts in
the drop rate. Therefore, there is a requirement to not only isolate TCP streams from UDP, but also to isolate some types of
UDP streams from one another. We are seeking an active queue management scheme that will maintain tfeapoegive
of RED, limit the impact ounresponsive flows, butill allow UDP flows access to a configurable sharetbé link
bandwidth. Moreover, we seek to do this without having to maintain per flow state in the router. Our schen@a&BT (
BasedThreshold} builds upon thedrop thresholds of REDand the buffer allocations of FRED toprovide aqueue
management policy that efficiently meets these goals.

3 CLASS-BASED THRESHOLDS

Our approach is to isolate TCP flows from #féects ofall other flows by constraining tha@veragenumber of non-TCP
packets that may reside simultaneously in the queue. We also wanted to isolate classes of non-TCP traffic from one another,
specifically isolating continuous media traffic from all other traffic. To do this we tag continuous media stefamghey
reachthe router so that thegan be classifiecdppropriately. These floware either self-identified atthe end-system or
identified by network administrators. (Nichols suggests one such taggihgmeusing thetype-of-servicdield in the IP
header as part of an architecture for differentiated services. [14]) Statistics are maintained for these classes dftheiffic an
throughput isconstrained duringimes of congestion by limiting thaveragenumber of packets thegan haveenqueued
(thus limiting thefraction of router resourceand link bandwidththey can consume).Untagged packetsre likewise
constrained by a (different) threshold on the average number of untagged pagketsedThese thresholdsnly determine

the ratios between the classes when all claassgperating at capacitiand maintaining a fullqueue). Whermne class is
operating below capacity other classes can borrow that classes unused bandwidth.

Whenever a packet arrives, it is classified as being éitiBrtagged(continuous media), amtaggedall others). (For
simplicity we assume only non-TCP packets are tagged.) TCP traffic is always subject to the RED algatéberibad
above. For the other classes, the average number of packets enqueued for that class is updated and comparedasgainst the
threshold. If the average exceeds the threshold, the incoming packepj®d. Ifthe average doerot exceedthe threshold
then the packet is subjected to the Ré@frardalgorithm. Thus a non-TCPpacket can beroppedeitherbecause there are
too manypackets fromits classalready inthe queue orbecausehe RED algorithmindicatesthat this packet should be
dropped.TCP packetsare only dropped as aesult of performing a RERliscardtest. In all cases, althougtackets are
classified, there is still only one queue per outbound link in the ranttall packetsare enqueued andequeued in &IFO
manner.

We refer to the main CBT algorithm described above as “CBT with RED for all flows.” Weaisalerthe effect of
not subjecting the non-TCP flows to a REi3cardtest. The motivatiorherecomes from the observation that since the
non-TCP flows are assumed (in the worst case) to be unresponsive, performing a RED discard test after policing the flow to
occupy no more than its maximum allocationgokueslots provides no benefit tohe flow andcan penalize #low even
when that class is conformant. While taéditionalRED test may benefitCP flows, theyare already protectegince the
non-TCP flows are policed. Thus in this variant, called “CBT with RED only for TCP,” only TCP #Hosvsubjected to a

RED discard test. In addition, the weighted average queue length usedR&DRhalgorithm iscomputed bycounting only
the number of TCP packets currently in the queue. This prevents an increase in TCP traffic from incredsipg éte for
a conformant tagged flow and it prevents the presence of the tagged and untagged packets from driviRgD@avbeage,
resulting inadditional drops offCP packets. For example, withresholds of 10 packets fétaggedand 2 packets for
untagged traffic, these packets alone can mainta@varage queusize of 12. Since these flows do rmespond to drops,
the resulting probabilistic drops only effect TCP traffic, forcing TCP to constaggjyond tocongestion. Removinthese
packets from the average reduces their impact on the TCP traffic. Thus when high-bandwidth UDdPeftmirge our first
variantreduces taeservingTCP flows a minimum number afueueslots and performing the RED algorithm only on
TCP. In this we way, we increase the isolation of the classes.

4 EXPERIMENTAL COMPARISON

We have implemented CBand FRED within theFreeBSD kernelvith ALTQ extensions [4]. ALTQ is a set of
extensions to theefault IP-layer packet queueipglicies in aFreeBSD router tessupportdevelopment of experimental
protocols, packet schedulersand active queue management schemes. buddition to our active queue management
implementations, we also used the ALTQ implementation of RED.

To test the implementation weave constructed aimple network consisting of twewitched 100 Mbps Ethernet
LANSs that are interconnected by a 10 Mbps Ethernet. FreeBSD routers route traffic bibievdé®0® Mbps Ethernetzross
a full-duplex 10Mbps Ethernet as shown in Figure 4. Tmeedmismatchbetweenthe “edge” and‘backbone” networks
exists to ensure the backbone network is congested. A series of machines at the edges of the network establish a number o
connections to machines on the oppositle ofthe network. Connectionisclude amix of TCP connectionsand UDP
connections. In particular, several of the UDP connections are unresponsive multimedigefievedsed by aeries of Intel
ProShare videoconferencing systems. Each ProShare connection geaypatesnately 210 kbps of traffic. For the TCP
flows, thekernel oneachmachine introduces delay intransmitting packets fromeachconnection to simulate &rger
round-trip time. This is done to avoid synchronization effects between the TCP flows emedteodifferent bandwidth-delay
products, encouraging connections to operate with different congestion window sizes.

Traffic is generated irall of the following experiments using scripted sequence oflow initiations. This ensures
comparable traffic patterns are generated in each experiment and hence the results of experimentsmuaydoBnitially
6 ProShare flows begin. Twenty seconds later, 240 TCP bulk transfers begin (all in the same directeEngnddater, a
single high bandwidth, unresponsive, UDP flow starts (in the same direction as the TCP flows). The UDP flay08énds
byte packets at the maximum available rate (10Mbps) for approximately forty-five secondsilK transfersfinish forty-
five seconds later. The ProShare applications terminate twenty seconds after the bulk transfers.

In separateexperiments we rathis traffic patternthrough a routers usinRED, FRED, and CBT. In all of the
experiments, the outbourglieues inthe routershave storage capacity for 60 packets (the FreeB8&fult). The RED
implementation was run with a minimuthreshold of 15queueelements (25% of thqueue’scapacity),and amaximum
threshold of 30 elements (50% of theeue’scapacity). (Thus when theeighted averaggueuelength is less than 15
packets, arriving packetare queuedWhen the averagelength is between 15and 30 packets, arriving packets are
probabilistically dropped. When the average length is greater than 30 packets, a reselectdypacket isdroppedwhen a
new packet arrives.) These threshold values were selected based on recommendations of the developers of RED [5].

n 100 Mbps 100 Mbps
ftp, n ftp,

UDP blast, =l E| 10 Mbps =] E| UDP blast,
& ProShare H & ProShare
generators generators

H FreeBSD FreeBSD H
Router Router

Figure 4: Experimental Network Setup

We also conducted the same set of experimasitsy apacket schedulingiscipline, clasdasedqueueing (CBQ). Our
CBQ parameters allocate 79% of the bandwidth to TCP and 21% to UDP. The UDP @lmdwiglivided into tagged and
untagged subclasses receiving 16°615%, respectively, of the totdandwidth.All classescan borrowfrom their parent
class. The 16% value for tagged traffic is based on the load of 1.6Mbps generated by the multimedia applications relative to
the 10Mbps capacity of the bottleneck link. Untagged UDP is allocated a fsagdibn of thebandwidth (5%)and TCP is
allocated the remainder.

The CBT implementatiomised athreshold for thauntagged packetlass of 2 packetsnd athreshold for thetagged
(multimedia) packet class of 10 packets. The threshold for the tagged class was detsas@deanithe expectedarrival rate
of tagged packets relative to the expected drain rate of the queue. Given a drain rate, the threshaétyfedttessshould
ensure minimal packet loss (assuming applications generating tagged packets do not misbehave). GivethoeshRED
we expecthe REDfeedbackmechanism to maintain @ueue average of 28ackets. With a 10Mb link thdrain rate is
800ns/packet. So a packet would take 22ms to transit a queue of length. Frenowledge ofthe multimedia traffic, we
can expect an arrival rate of 210 pkts/second. From thisawedeterminghat 10packets shoul@rrive duringthe 22ms it
takes to transit thgqueue. As aesult our threshold falagged traffic is10. By setting theéaggedthreshold to 10 we are
“reserving” sufficient bandwidth for the ProShare flows.

The choice of a threshold fdine untagged (“all others”tlass is arbitraryjpbut should betied to the fraction of the
router’s capacity one is willing to let this class consume. Our selection of 2hasshold for untagged traffiessentially
constrainsuntagged traffic to~2/26 of thebandwidth during periods ofongestion. Note that ithere is no tagged or
untagged traffic, TCP can still use 100% of the link capacity. Althoughrevéreserving’capacity fornon-TCP flows, if

1,200 1,200

1,000 \ 1,000

800 'A‘ ﬂl\ 800

600

600

400 400
200 200
oLl N 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
a) CBT with RED for all. b) RED.

1,200

iL,000

g

600 !

400

200

0 25 50 75 100 125 150 175 200

¢) FRED.

Figure 5. Aggregate TCP throughput under “CBT with RED for all,” plain RED, and FRED.
(TCP throughput in kilobytes/second versus elapsed time in seconds.)

the flows are not present, TCP flows may fill tipgeue(moduloonly RED’s policing). Theeverse istrue fortagged or
untagged traffic. If all of the traffic is of one class that class can fully utilize the link because all of the packeiguaudhe
(though shortened to 10 and 2 for tagged and untagged, respectively in this example) belong to that class.

In each experiment we collected throughput, loss, and latency data for all six of the ProShare streamscdléetatso
throughput data for all flows usinngpdumpon the 10 Mbps bottleneck network.

4.1 CBT with RED for all

Our first approach issimply to addCBT to RED. All packets, includintpggedand untagged, count in thaverages
usedfor RED andall packetsare subject to the RERIrop policies. Figure & shows the throughput of TCP witihis
scheme. As highbandwidth UDP traffic was introduced, TCP throughput isdegradedThe degradation is fafrom the
collapse under RED (Figurd)} and comparable than that under FRED (FigajeEhe loss rate for multimedia under CBT
is 23.8% (Table 1). This is an improvement of 7 percentile over RED and 12 percentile better than FREBisHaosst
is still unsatisfactory. However, the primary factor for the high drop rate in tagged traffic is the RED drop test, not the CBT
thresholds. We illustrate this below wi@BT and RED for TCP only. But, CBT with REDfor All does abetter job of
isolating TCP and continuousmedia (taggegackets) fromhigh-bandwidthunresponsive flows than RED. Further its
performance is also comparable to FRED’s and CBT provides a lower drop rate.

4.2 CBT with RED only for TCP

In CBT with RED when the threshold sizeaetoo large,particularly for theuntaggedclass, those classespresent a
large share of the average queue size. As a result, non-TCP traffic can domigatéwéhile TCP isforced to reduce its
load to essentially zerdVhile these parameters cantoeed to avoidhis situation, theange islimited. Also, thetagged
anduntagged classewe indouble jeopardysubject to the thresholds for their class as well as the B&p policies.
Tagged (or untagged) traffic that is well within its threshold magrbppedbecause ofhe REDdrops instigated by CP.
As a result, we need to isolate the tagged and untagged classes from TCP. To do this, we apply RED only to TCP flows. In
the next experiment onlyCP packetsare subject to the REDRhresholdtestsandonly TCP packets count in the RED
queue length averagé&he taggedand untagged classeme constrainednly by their thresholds. Ieffect, this results in a
true allocation of bandwidth for the tagged and untagged clagsme therevas only a probabilistic allocatidmefore. The
RED test is no longer applied to the tagged traffic, only the threshold test for this class. The expectation isihdiethe
of drops fornon-TCP packetswill decreasevhile TCP performanceimproves. While the TCP throughpuémained
essentially the same (Figura)6the drop ratefor multimedia improvedsubstantially, from 23.8% to 1.3%ee Table 1).
The RED test is no longer applied to tlaggedtraffic, only thethresholdtest forthis class. Since thtagged trafficdoes
not exceed its threshold it is rarely dropped.

One issue with removing non-TCP traffic from the RE@rage ishow to adjust thejueuesizeandRED thresholds.
One alternative is to leawbe queuesize unchangedut reducethe REDqueuelimit to the queuesize minus theslots
allocated to taggednduntagged trafficFor example, with ajueue of60, a markedthreshold of 10and an unmarked
threshold of 2, theeffective RED queuelimit reduces to 48with minimum and maximum thresholds of 12and 24
respectively. Thisapproachshould result in roughly the sanamerage queuéength but possibly at the cost of some

Table 1: Average per flow packet loss rate for tagged (ProShare) packets.

Drop Rate for

ueue Managgement Schemg ; .
Q 9 Continuous Media

RED 30.0%
FRED 35.7%
CBT with RED for all 23.8%

CBT with RED for TCP only 1.3%

CBQ

0.0%

10

200 1,200
800] 800
600 \ 600

| 1
400 400
200 200
0 e ol Wl
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 2D0
a) CBT with RED for TCP only. b) CBQ.

Figure 6: Aggregate TCP throughput under “CBT with RED for TCP only” and CBQ
(TCP throughput in kilobytes/second versus elapsed time in seconds.)

capacity to accommodatrirsty TCPtraffic. The other alternative would be iacreasethe queuesize by the number of
slots allocated to tagged and untagged traffic. For the example above, that results in a queu& paisifRED thresholds

unchanged. Theesulthere is dongeraverage queugesulting inincreasedatency. Weconductedexperiments with both
alternatives. The results shown are for experiments where we adjusted the RED thresholds. Trenthtiropyate in the

other case (not shown) are marginally higher, as expected, with the TCP throughput unchanged.

CBQ, with its schedulingmechanisms, has a 0.08top ratesince the multimedi#raffic is staying within its 16%
traffic allocation duringtimes of congestion. Additionally, the throughgat TCP (Figure 6b) is highefapproximately
79% of the linkcapacity during periods afongestion.) It is important to note that CBT is able to approxiriase
performance.

4.3 Other performance metrics — Latency

While throughput/loss is a keperformancemetric, latency for interactive multimedia applications is ofteare
important. As noted earlier, minimizing latency is one of the primary motivations for avoidimguiulesFigure 7 shows
the end-to-end latency observed on a representative ProShare stré2BQfoFRED,and CBT using REDfor all packets.
The other CBT resultarecomparable. The CBQ latency is less than 5hesause packets ithe taggedclassare being
serviced essentially as fast as they arrive since dhellocated..6Mbpsandarriving at the same rate. The ordglay is
the packet transmission time. FRED, on the other hand, has an average latency of approximately 30ms vehideaGT
around 25ms of latency. The primary reason for this is the shorter average queue length under CBT.

5 COMPARISON TO OTHER SCHEMES

5.1 Class Based Queueing

A more general approach that achieves many of the objectives considered here is fodelsforlink sharingsuch
as Class-BasedQueuing(CBQ) [7]. CBQ achievessolation for classes of flows byimiting eachclass to aconfigurable
share of link bandwidth. Implementations of CBQ define a sepqtesigefor each ofthe traffic classesharing a link. The
general framework proposed fink sharing in[7] also includes provisions for different types of packet scheduling
mechanisms (notably priority scheduling for real-time multimedia classes) and for usingoR&Bimilar mechanism) for
regulating the effects of congestion in a best-effort traffic-class queue. CBT is a less general mechaabipvest ayood
approximation to isolation and protection for a limited number of flow classes while preserving most of the simplicity of a
single FIFO queue.

5.2 Other buffer management schemes

Guerin proposes a flow isolaticand bandwidthsharing mechanisrased orassigning aqueueoccupancy threshold in a
single FIFOqueue toindividual flows (or flow aggregations)[9]. The amourgserved issufficient to provide throughput

11

B0 BO
70 70
60 60
50 50
ho ho | A] n I n \
B0 BO |
PO PO
10 1o |
N WL .
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
a) CBQ. b) FRED.
80
70
60
50
40 l |
30 -
20
10 |
0 fpaimead : : : ‘ ‘ .
0 25 50 75 100 125 150 175 200

¢) CBT with RED for all.

Figure 7. ProShare latency under CBQ, FRED, and CBT.
(ProShare latency in milliseconds versus elapsed time in seconds.)

rate guarantees along with losslessvice forflows thatare conformantwith their peak-rateflowspec. Their results show
this can beachieved at considerabd®st in addedqueuecapacity(up to 6 timesmore) necessary to achiethee samdink
utilization obtainedwith an unpartitionedFIFO queue.CBT makes no attempmchievethroughputrate guarantees or
lossless service and, as shown above, operates effectively without requiring increased queue capacity.

5.3 Complexity Comparison

Complexity, both computation@ndstate, is a key issue in routers. Given the hpglaket-ratethat routersmust
maintain, per-packet overhead must be minimized. Furtheraddiyionalstaterequiresmemory thatcould have beensed
to accommodate larger traffiiursts. Overheador each packet is significantfactor in performanceThe experiments we
have shown did not highlight point becausethe routers, 200MHz Pentium Pro machinbaye morethan enough
processing power to manage the traffic for the 10 Mbps Ethernet bottleneck. In this seatmmpaesthe complexity of
FRED, CBQ, and CBT.

To compare the relative complexity of the three algorithms, we will briefly walk througbviireeadassociatedvith
each. Both algorithmsequireexamining theheader otthe packet inorder todeterminehow to classify the packet. In the
case ofCBT andCBQ this classification, into one diiree classest CP, tagged or untagged is an operation thatkes
constant time. In the case of FRED the packet must be classified by which flowsgosiatedvith. This classification is
conceptually Q) whereN is the number of activBows. Optimizations such as hashing indexing canimprove the
computational complexityand run-time executiortime. However, such improvements come at tmst of additional
memory. Both FRED and CBT require updating statistics on exgqyeue andequeueperation. However, in thease of
CBT the number of statistics involved is constant, one set for each tirtleelasses. For FREREhereare packetcounts,
strike counts, and a 5-tuple to identify the associated flow for every active flow (Bifm)ly, the test tanake thechoice

12

whether or not to drop a packet is simpler in CBT. pheketaveragefor that class issimply compared tahe threshold,

and then only if the packet is not in the TCP cla$swever, inFRED’s casethereare a fewmathematical operations to
determine the current acceptable thresholds based on current average queue size and the current numifiendf. adiare

are also several tests to determine the current state of the associated flow (relaxed ootigindiyned) inFRED. This test

is applied to all packets. The dequeue operation for CBQ is the most expensive because of the overhead of selecting the next
packet from one ofeveral queues to keansmittedbased onthe weights of each, the state of the other clafees
borrowing), and the current service levelchclass is maintaining. The CBT algorithm is less compgled requiresess

state than FRED or CBQ.

6 CONCLUSIONS

Ultimately, traffic with strong quality of service requirements will be tsested bypacket scheduling techniques such
as CBQ. However, packet scheduling has yet to be widely embraced or deployed within the Internet. In contrastusctive
management is the widely accepted mechanism for managing queues in routers servi@ffgrogstfic. Implementations
such as RED and FRED have demonstrated better performance than tradiitipiall mechanisms. In thipaper wehave
introduced anew activequeuemanagement scheme, CBT that seekprtvidethe congestioravoidancebenefits of RED
while providing protection folf CP and abetter-than-best-effort service faell-behavedUDP flows. Wehave explained
how we aggressively constrain non-TCP traffic to limit its impact on TCP traffic and other classes of hon-TCRuchffic,
as continuous media. We have empirically compared CBT to RED and FRED. These experiments demonstrated that:

* TCP receives a better sharebaindwidthwhen facing misbehaving or unresponsive multimedia flesite CBT than
with RED. Performance with CBT is comparable with FRED.

e Using CBT, the number of drops on low bandwittiggedflows is substantially lower than when RED BRED are
used.

Further, weconductedhe same experiments usingpacket schedulingnechanism, CBQ, tgrovide astandard to
measure these schemes against. We Bagen that using a combination tiresholds orqueueoccupancyand RED we
can approach the class isolation and multimedia drop rate of CBQ.

Moreover, these results are achieved with less complexity than FRED or CBQ. FRED maintaifts statsyflow.
CBQ mustschedule ever packdequeueCBT alsooffers flexibility in assigning router resources talifferent classes of
traffic instead of the uniform distributiooffered by FRED. CBT shows promise as an extensiomdoventional RED to
constrain unresponsive traffic and to support self-identified multimedia flows in today’s Internet.

7 ACKNOWLEDGEMENTS
The authors wish to thank the anonymous referees for their suggestions that enhanced the quality of this paper.

8 REFERENCES

R. Braden, Ed., Requirements for Internet Hosts-Communication Layers, RFC-1122, October 1989.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. MinsHzdirtricige,
L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, & L. Zisapmmendations on Queue Management and
Congestion Avoidance in the Internktternet draft, work in progress, 1998.

3. S. Cen, C. Pu, J. Walpol&Jow and Congestion Controfor Internet Streaming ApplicationsProc. SPIE/ACM
Multimedia Computing and Networking '98, San Jose, CA, January 1998, pages 250-264.

4. K. Cho,A Framework for Alternate Queueing: Towards Traffic Management by PC-WBdtédRouters Accepted to
USENIX ‘98, Annual Technical Conference, New Orleans, LA, June 1998.

5. S. Floyd, & V. JacobsonRandomEarly Detection gateways fo€ongestion AvoidancdEEE/ACM Trans. on
Networking V.1 N.4, August 1993, p. 397-413.

6. S. Floyd, TCP and Explicit Congestion NotificatignACM Computer Communications Review, 24(5):10-23, Oct.
1994.

7.

8.

10.

11.
12.

13.
14.

13

S. Floyd & V. Jacobsonlink-Sharing and Resource Management Models fBiacket Networks IEEE/ACM
Transactions on Networking, V.1, N.4, August 1995, pp. 365-386.

S. Floyd, S., & K. FallPromoting the Use of End-to-End Congestion Control inltiernet February1998. (Under
submission tdEEE/ACM Trans. on Networking

R. Guerin, S. Kamat, V. Periand R.Rajan ScalableQoS Provision ThrougBuffer ManagementProceedings of
SIGCOMM’'98, (to appear).

E. HashemAnalysis of Randonbrop for GatewayCongestion Control,Report LCS TR-465| aboratory for
Computer Science, MIT, Cambridge, MA, 1989, p. 103.

V. JacobsonCongestion Avoidance and ContréiCM SIGCOMM '88, August 1988.

T.V. Lakshman, ANeidhardt, T.Ott, The Drop From Front Strategy inTCP Over ATM and Its Interworkingwith
Other Control FeaturesRroc. Infocom 96, pp. 1242-1250.

D. Lin & R. Morris, Dynamics of Random Early DetectjdProc. SIGCOMM ‘97.

K. Nichols, V. Jacobson , & L. Zhang, Two-bit DifferentiatedServicesArchitecture forthe Internet Internetdratft,
work in progress, 1997.

