
In: Proceedings of the IEEE Real-Time Technology and Applications Symposium, Chicago, IL, May 1995, pp. 4-14.

SUPPORT FOR REAL-TIME COMPUTING WITHIN GENERAL
PURPOSE OPERATING SYSTEMS

Supporting Co-Resident Operating Systems*

Gregory Bollella Kevin Jeffay

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC 27599-3175
{bollella,jeffay}@cs.unc.edu

Abstract: Distributed multimedia applications are typical
of a new class of workstation applications that require real-
time communication and computation services to be effec-
tive. Unfortunately, there remains a wide gap between the
development of real-time computing technology in the
research community and the deployment of real-time solu-
tions in commercial systems. In this work we explore
technology for allowing two operating systems, a general
purpose operating system and a predictable real-time ker-
nel, to co-exist on the same hardware. We discuss the
problems of multiplexing shared devices and partitioning
shared data structures to accommodate two operating sys-
tems, and present a CPU executive that allows the IBM
Microkernel (a derivative of the Mach microkernel) with
an OSF/1 server to co-exist with a simple real-time kernel
we have built. We also extend the traditional theory of
scheduling periodic tasks on a uniprocessor to accommo-
date the case where a real-time kernel is allocated only a
fraction of the total CPU capacity.

1 . Introduction
Recent advances in high-speed networks, workstation pro-
cessors, and digital audio and video acquisition/compres-
sion/display hardware have led to tremendous interest in
the problems of supporting the real-time computation and
communication requirements of distributed multimedia ap-
plications [1-7]. However, although much research has
been performed on the design of real-time operating sys-
tems, and much is on-going in the distributed multimedia
domain, the vast majority of computers in use today use
operating systems that provide no support for real-time
computing beyond allowing tasks to manipulate their exe-
cution priority. Operating systems that (1) allow pro-
grams to specify their real-time performance requirements
and (2) guarantee these requirements are met, have been,
and are still, largely confined to academic and industrial re-
search laboratories.

* Supported in part by grants from the IBM and Intel Corporations.

To date there have been two identifiable approaches to
marrying real-time and non-real-time technologies. First,
there have been several attempts to add real-time features
such as periodic tasks and priority-inversion-free inter-
process communication mechanisms into existing general
purpose operating systems such as Unix and Mach [1, 3,
4]. The second approach is to design a general purpose
but dynamically configurable operating system kernel that
is capable of accommodating user or application specific
process, scheduling, and memory management modules
[11]. Here we investigate a third approach: supporting co-
resident operating systems. Our interest lies in developing
a methodology for allowing existing, well-understood real-
time systems technology to co-exist with commercial,
general purpose operating systems to support applications
such as desktop multimedia conferencing. Thus our em-
phasis is not so much on the development of new real-
time systems technology per se, but rather on developing
a vehicle for the incorporation and use of existing technol-
ogy in conventional desktop operating systems.

Our approach is to partition the central processor and other
system resources into two virtual machines — a machine
running a largely unmodified general purpose operating
system and a machine running a real-time kernel — and
multiplex accesses to the physical hardware by the virtual
machines. By allowing the co-existence of two operating
systems, this approach allows a clean separation of
concerns between the requirements and desired solutions
for non-real-time, general purpose computing services and
those for real-time services. If we are successful, one
should be able to “mix-and-match” general purpose
operating systems and real-time kernels to suit the needs
of the system user.

Our approach is based on a set of simple, small,
executives that execute on the bare machine and allow a
general purpose operating system and a real-time kernel to

2

share the hardware in such a fashion that (1) the real-time
kernel executes in a predictable manner so that it is
possible to analyze the conditions under which real-time
tasks will be guaranteed to be feasible, and (2) the general
purpose operating system can function correctly with few
modifications. We have identified two generic technologies
that are required to achieve these goals. The first is a
facility for multiplexing the co-resident operating systems’
execution on all shared devices. The second is a scheme for
partitioning all shared, serially reusable resources such as
disk sectors, network buffers, screen pixels, etc., between
the operating systems.

Presently we have prototype executives for the CPU and a
few other devices. The executives multiplex accesses to
each shared device and partition device resources so that the
above two goals are met. The most complex executive is
that for the CPU. It operates by executing the general
purpose system and preempting its execution at precise,
constant intervals to execute the real-time system. Thus at
a high-level, our overall system is similar to a cyclic
executive [8] that alternates between the execution of two
programs that happen to be other operating systems.
Alternatively, this work could be viewed as an imple-
mentation of a coarse grained pure-processor-sharing
scheduling algorithm [9] in which two programs (two op-
erating systems in our case) make forward progress at pre-
cise rates. Other related works include the design of IBM’s
VM operating system [10] and the general time-division
multiplexing techniques used in bus and communication
protocols. Other attempts to directly embed real-time
systems technology into general purpose operating
systems include the HeiTS network communications
system [12]. In HeiTS, a real-time kernel is embedded into
a network device driver and used to maintain real-time
communication of multimedia data across a network.

While our overall approach bears a strong resemblance to
those followed in the design of several other systems, we
believe this work contributes a useful, general methodol-
ogy for solving the pragmatic problem of allowing
existing (and thus future) real-time and non-real-time
systems technology to co-exist on the same machine.
This approach provides a clean separation of real-time and
non-real-time concerns and makes possible an analysis of
the feasibility problem for periodic tasks that are allocated
a fraction of the processor’s capacity. This analysis
contributes to our knowledge of real-time resource
allocation problems for architectures such as cyclic
executives and the others mentioned above.

In the remainder of the paper we describe the design and
implementation of our executive in more detail. Our
executive is capable of executing the IBM Microkernel (a

derivative of the Mach microkernel) with an OSF/1 server
in parallel with a simple real-time kernel we have
developed. Section 2 describes our overall framework for
supporting co-resident operating systems and discusses the
multiplexing and partitioning problems in detail. Section
3 describes the implementation of our executive and
assesses both its performance and the impact of the
executive and real-time kernel on the performance of the
microkernel. We also demonstrate the degree to which the
executive can ensure a precise execution rate for the real-
time kernel. Section 4 describes our real-time kernel and
Section 5 shows how the existing theory of scheduling
periodic tasks on a single processor can be extended to
incorporate the fact that the real-time kernel only executes
periodically. Section 6 discusses some of the fundamental
design issues and limitations of our approach. We
conclude in Section 7 with some plans for extending this
work to other general purpose operating systems such as
Windows and OS/2.

2 . Supporting Co-Resident Operating
Systems
Two basic low-level operations required to support co-
resident operating systems are multiplexing and partition-
ing . Multiplexing is the allocation of consumable
resources (e.g., CPU processing time, network bandwidth,
etc.) to the co-resident operating systems. Every shared
device in the system that represents a consumable resource
requires multiplexing. Partitioning is the allocation of
serially reusable resources (e.g., buffers, address spaces,
screen pixels, etc.) to the co-resident operating systems.
Every shared device in the system that contains serially
reusable resources requires partitioning. These operations
are described in greater detail below. In the following we
use the abbreviations RTK and GPOS to refer a real-time
kernel and general purpose operating system respectively.

2 . 1 . Multiplexing

The multiplexer is a small executive that controls when
and for how long each operating system may use a shared
device. There are two fundamental problems in the design
of a multiplexer. First, the multiplexer must precisely
allocate (schedule) execution time on a shared device to
each operating system. This implies that the multiplexer
must be able to gain control of the device at well-defined,
precise times, and maintain control of the device for well-
defined, precise durations. The acquisition and allocation
process must occur at precise times if the RTK is to
guarantee real-time services on the device.

In general, the solution to the device acquisition and
control problem is to either provide a mechanism such as
an interval timer to insure that the multiplexer is executed

3

Device
Driver

General
Purpose

Operating
System

Device

Interrupts
Shared
Memory

General
Purpose

Operating
System

Device

Interrupts Shared
Memory

Real-Time
Kernel

GPOS Control
Component

RTKControl
Component

Multiplexor

a) Traditional organization. b) Proposed organization.

Figure 1: Logical device driver organization for co-resident operating systems.

at (precise) periodic intervals, or provide a mechanism
such as an interrupt to ensure that the multiplexer is
executed whenever the RTK requests the service of the
device. In either case, once a multiplexer commences
execution, it must logically execute with all interrupts
disabled until it has allocated the desired units of the
consumable device resource to the appropriate operating
system. For example, for the CPU multiplexer described
below, we use an interval timer to invoke the multiplexer
at regular intervals and trap all operating system calls that
manipulate the current interrupt mask to ensure the
multiplexer’s timer interrupt is never disabled. Moreover,
to ensure that the RTK executes without interference from
the GPOS, all interrupt sources currently in use by the
GPOS are disallowed from interrupting the RTK. (In
general, the converse is not required to be true.) As
illustrated in Section 3, our experience to date indicates
that the device acquisition and control problem is solvable
without requiring detailed knowledge (e.g., source code) of
either operating system.

The second problem, and one that complicates solutions to
the first, is that of maintaining the consistency of data
structures that are used to control the operation of, and
describe the current state of a device. Unless all device
operations are atomic, critical sections will exist between
the co-resident operating systems with respect to their
individual use of the device. These critical sections must
be discovered and locked so that one operating system
cannot preempt the second’s use of the device while the
second is executing inside a critical section.

The critical section problem is not as easily solved as the
acquisition and control problem. The ideal solution is to
examine the source code for each operating system to
discover precisely how it interacts with the device,
however, this is clearly not always feasible. For peripheral
devices this problem is manageable as often the both the

abstract paradigm of a GPOS’s interaction with a device,
as well as the device manufacturer’s paradigm of device
interaction, are well documented in developers’ guides. In
general, the critical sections of interest often involve static
memory locations or special instruction opcodes for
manipulating special registers and thus critical sections
can be located by searching the object code and the binary
can often be modified without access to the source. In
designing our current CPU multiplexer, however, we
relied on the source code for the IBM Microkernel to verify
we had locked all inter-operating system critical sections.

2 . 2 . Partitioning & Device Management

Most peripheral devices such as the screen, keyboard,
mouse, disks, audio/video devices, and network adapters,
typically contain serially reusable resources that must be
shared between the co-resident kernels. These resources
must be partitioned, either statically or dynamically
between the two systems.

Our general framework for device management is illus-
trated in Figure 1. Each shared device has a multiplexer, a
GPOS control component, and an RTK control compo-
nent. The multiplexer is as described above. The GPOS
and RTK control components implement the GPOS’s and
RTK’s desired view of the device and are responsible for
partitioning whatever shared resources exist on the device.
The control components are, in essence, device drivers
modified to operate in concert with each other.

The details of resource partitioning are necessarily device
specific. For simple devices such as a memory mapped
display (console), the GPOS control component can be the
unmodified driver for the display and the RTK control
component can be a simple user program executing on the
GPOS. In this scenario, the RTK control component re-
quests screen real-estate and instructs the GPOS’s display
manager to ignore the pixels allocated to the RTK compo-

4

nent. Processes within the real-time kernel are then free to
write directly to the screen memory corresponding to these
pixels. (Indeed, this scenario is precisely how many video
display systems work since they cannot rely on the win-
dow system to display video data at the desired frame rate.)
Moreover, in this case, since screen output is performed
by writing to physical memory locations, and these opera-
tions are atomic, the multiplexer is trivial to construct
since there are no inter-operating system critical sections.

Note that generic devices that are used only by the GPOS
require no special effort to support. Their interrupts will
only be serviced, and their device drivers will only execute
when the GPOS executes. Thus the RTK and the CPU
multiplexer need not have any knowledge of their
existence. Devices that are used only by the RTK do not
require a multiplexer but do require an RTK control
component (i.e., a device driver) and may require a GPOS
control component. The GPOS control component may
be required to handle interrupts from the device that occur
during the execution of GPOS.

3 . A CPU Executive and Its Performance

Here we describe the design, implementation, and perfor-
mance of a CPU executive for an IBM PS/2 workstation.
The executive multiplexes the CPU between the IBM
Microkernel with an OSF/1 Unix server, and a simple
generic real-time kernel we have developed. It also parti-
tions two low-level system data structures between the
two operating systems. The data structures are used by the
hardware to realize tasks and address spaces. The IBM/
OSF/1 system executes normally on top of the executive
while the real-time kernel executes in a highly predictable
manner. The following subsections describe the multi-
plexer and the partitioning of data structures, and demon-
strate that the real-time kernel executes in a predictable
manner.

In building the CPU executive we had access to the source
code for the IBM Microkernel (but not for OSF/1) and
used the code to verify our understanding of how to
partition data structures. The design of the CPU executive
required the combined addition and modification of less
than 100 lines of assembler in the microkernel.

3 . 1 . Hardware Description

The hardware used was an IBM PS/2 Model 95 worksta-
tion (66 MHz Intel 80486 processor). A number of inte-
grated circuits on the motherboard are of particular interest
to our implementation. There are two programmable inter-
rupt controllers (PICs) (Intel 8259A peripheral support
chips [13]), one programmable interval timer [13], and one
real-time clock (RTC) (a Motorola MC146818A Real-

Time Clock Plus Ram [14]). The PICs multiplex
interrupts from peripheral devices and other circuits on the
motherboard onto the single interrupt line of the CPU. In
addition, the PICs provide a means to assign priorities to
interrupt generators and a bit mask which can enable and
disable each device. Each PIC has eight input lines and
there are two cascaded PICs on the motherboard. Inside
the CPU, interrupts from the PICs are enabled and disabled
by setting or clearing the interrupt (IF) bit in the i486
flags register. Setting and clearing the IF bit is performed
by an i486 machine instruction.

In addition to being able to keep real-time, the RTC also
provides a programmable interval timer. The interval may
be set to one of 16 values from 30.5 microseconds to 500
milliseconds. At the end of each interval the RTC will
generate an interrupt. As described below, we use the RTC
to provide periodic interrupts to the CPU executive at the
(arbitrarily chosen) rate of one interrupt every 488.281 µs.
We will refer to intervals of this duration as slots.

3 . 2 . Multiplexer

The paradigm of CPU multiplexing we adopt is to
alternate between executing the GPOS for m c n r t

contiguous time units, and executing the RTK to for mcrt

contiguous time units. Borrowing terminology from the
cyclic executive literature [8], we call an execution of a
GPOS followed by an execution of the RTK a major
cycle. The execution of each operating system is referred
to as either a real-time or a non-real-time minor cycle. The
duration of a real-time and non-real-time minor cycle is
given by parameters mcrt and mcnrt respectively. The
length of a major cycle MC is thus mcnrt + mcrt. The
logical behavior of a CPU multiplexer is then completely
described by the pair (mcnrt, mcrt).

The multiplexer is driven by interrupts from the RTC.
The multiplexer allocates the CPU to the co-resident
operating systems in units of slots. Presently mcnrt = 24
slots = 11.72 ms, mcrt = 2 slots = .976 ms, and MC = 26
slots = 12.7 ms. Thus the GPOS receives approximately
92% of all processor cycles (minus overhead) and the RTK
receives the remaining 8% (minus overhead). Both the
size of a slot and the size of minor cycles are tunable
parameters. The small slot and minor cycle sizes used
here were chosen to stress the implementation and to
ensure good response time for jobs of the GPOS.

In order to guarantee precise execution of the RTK, the
multiplexer must ensure that its RTK clock interrupts are
never disabled and that the time between the occurrence of
a clock interrupt and the start of the execution of its han-
dler is bounded. We can recognize all locations in the
microkernel that manipulate the IF bit in the flags register

5

and modify the kernel so that interrupts remain enabled but
configure the PICs so that only the RTC can generate an
interrupt. Since the RTC interrupt is handled by the CPU
executive, the microkernel is unaffected by this
modification.

The implementation of the CPU executive itself requires
that interrupts be disabled to enforce mutual exclusion
inside critical sections within the executive. The maxi-
mum length of these critical sections is approximately
200 CPU cycles. On the hardware used here, each cycle is
15 nanoseconds, hence the maximum time by which the
RTC interrupt can be delayed because of actions of the
executive is approximately 3 µs.

The RTC interrupt handler is designed as an i486 hardware
task with an i486 task descriptor in the interrupt vector
table. When the hardware detects this type of descriptor on
an interrupt, the complete state of the currently executing
process is saved in a i486 Task State Segment (TSS) by
the hardware. This type of interrupt handling mechanism
is more costly than a typical interrupt, however, the RTC
handler is implemented this way to minimize changes to
the GPOS and to provide complete separation between the
GPOS and the CPU executive. The RTC interrupt handler
calls the CPU executive to determine which of three cases
the executive may be in. The cases are: the start of a real-
time minor cycle, the start of a non-real-time minor cycle,
or the start of a slot in the middle of a minor cycle. If the
system is in the middle of a minor cycle, the RTC inter-
rupt handler resets the RTC and PICs, and calls the CPU
executive dispatcher to resume the preempted task. If it is
time to start a real-time or non-real-time minor cycle, the
executive saves the state of the previously executing task
and resumes the appropriate operating system.

This implementation of the multiplexer required only two
basic modifications to the IBM microkernel. First, as
described above, all operations on the i486 flags register
involving the IF bit had to be trapped and emulated to
ensure the RTC interrupt is never disabled. These
operations occurred in only a few places such as the first
level interrupt handler of the microkernel and were easy to
locate. Second, the microkernel code that performs a task
switch had to be treated as a critical section as it
manipulated data structures used by the hardware task
switching mechanism. Although the IBM Microkernel
does not use the hardware task switch mechanism, the
CPU executive does. Hence these data structures must
always be in a consistent state in order for the CPU
executive to use the hardware mechanisms for saving and
restoring GPOS state. This was accomplished by
disabling all interrupts during execution of the microkernel
task switching routines. The microkernel was, of course,
already disabling interrupts for this routine; we simply had

to ensure our interrupt disabling emulation code did not
execute in this one case.

3 . 3 . Partitioning of System Data Structures

There are three i486 data structures that are used by
virtually all i486 operating systems and thus must be
partitioned between the GPOS and the RTK. These are
the interrupt vector table, the global descriptor table and
the TSS. Since we are using an existing GPOS, the
GPOS currently has these data structures mapped in its
kernel’s address space. The problem here is to discern the
mapping and partition the structures.

The interrupt vector table is an array of i486 memory de-
scriptors in the GPOS kernel. After the i486 acknowledges
an interrupt from the PICs, the master PIC places an 8-bit
value on the bus. This value is both the interrupt number
and an offset into the interrupt vector table. The PICs are
initialized with the value to use as the interrupt number
for each of the 16 devices that may be attached. The mem-
ory descriptors in the interrupt vector table contain infor-
mation about a segment of memory, including its virtual
address in either kernel or user space, permission values,
and type information for the object residing at that mem-
ory location. The partitioning of this table must allow the
CPU executive to install an entry in the table for the RTC
interrupt handler. The IBM Microkernel did not use the
RTC and thus that entry in the interrupt vector table was
free. In general, for devices that are not shared between
operating systems or the CPU executive, the partitioning
of the interrupt vector table is straightforward. For devices
that are shared, such as a disk, the partitioning must occur
at a higher-level such as in the device driver (see Figure 1).

The global descriptor table (GDT) also holds a number of
i486 memory descriptors, however, unlike the interrupt
vector table, it can hold descriptors for data segments as
well as code segments. The i486 descriptor table contains
several thousand entries, however, less than 10 are used by
the IBM Microkernel. We used descriptors in the GDT to
identify RTK data and code segments. This was necessary
because the IBM Microkernel used the values of the code
and data segment offsets in the GDT to identify the type of
code (user or system) currently executing and made various
internal decisions based on that determination. Thus, the
GDT itself was partitioned and that partitioning resulted in
the partitioning of the microkernel’s address space. Al-
though the partitioning of the GDT and the microkernel
address space was needed for this particular implementa-
tion, it is not necessary in general.

The TSS is required by the i486 for two reasons. It holds
the address of the stack an interrupt handler must use when
it is interrupting a user process and it contains a per-

6

Number of
occurrences
(logarithmic

scale)

1

10

100

1000

10000

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

Observed deviation in µs.
a) Quiet system.

Number of
occurrences
(logarithmic

scale)

1

10

100

1000

10000

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

Observed deviation in µs.
b) Busy system.

Figure 2: Histogram of deviation in the duration of slots over a 2:08 minute interval.

mission mask that is checked when a user process access
an IO port. The IBM Microkernel used only those two
fields in the TSS. The other fields of the TSS hold
enough information to completely restore a process to
running state after it has been swapped out. The CPU ex-
ecutive used the unused fields in the TSS for just this pur-
pose.

3 . 4 . Performance

There are two primary performance issues of interest. The
first concerns the CPU executive’s ability to reliably
invoke the RTK at periodic intervals. The second is a
measurement of the overhead of the CPU executive and the
performance degradation suffered by the GPOS.

The CPU executive is designed to gain control of the ma-
chine at the start of every slot (once every 7.8 ms in these
experiments). The RTK can predictably execute tasks in
real-time if and only if it is guaranteed to execute at well-
defined times and for precise durations. Thus, an important
measure of the predictability of the executive and therefore
of the RTK, is the observed deviation in slot duration.
Figure 2 shows a histogram of the observed deviations in
slot times from 7.8 ms. This data was generated for a
“quiet” system in which no user processes were running
on either the GPOS or RTK, and for a “busy” system in
which a copy of the IBM Microkernel was being compiled
from a local disk, telnet and ftp sessions were active, and
the RTK was executing real-time tasks. As expected, the
distribution of deviations is approximately symmetrical

since if slot i is lengthened by t µs, slot i + 1 is typically
shortened by t µs.

The worst empirically measured deviation in a slot
duration was 34 µs or .04%. In general, deviation is due
to a number of factors which are generic and thus transcend
our particular system architecture. Deviation is caused by

• inter-operating system critical sections which require
all interrupts be disabled (the dominant cause),

• critical sections in the CPU executive (resulting in
deviations of ±3 µs),

• the CPU executive timer interrupt handler, and

• the measurement code itself (without the histogram
data collection code, the largest observed deviation
was 27 µs).

DMA memory cycle stealing also contributes to the varia-
tion as it inflates the execution times of the aforemen-
tioned critical sections.

Although the control of slot durations is imperfect, it is
paramount to realize that the phenomena that causes
variable slot durations are generic and thus applies to all
real-time kernels. Indeed, for the Real-Time Mach kernel,
recent measurements indicate that some of its timing and
scheduling mechanisms exhibit considerably more
variation than our CPU executive and RTK [25].

To assess the overhead of supporting co-resident kernels,
we executed a computationally and I/O intensive task —

7

the compilation of the IBM Microkernel — and measured
how its execution time was affected by device executives
and the RTK. Table 1 assesses the overhead of the CPU
executive. Shown are the times required to compile the
microkernel under a variety of environments. Experiment
1 consists of building the kernel on an unmodified version
of the microkernel. The second experiment repeated the
kernel build but on a version of the microkernel that had
been modified to emulate interrupt enabling and disabling.

The second experiment had no CPU executive present
hence it shows the increase in elapsed time due to the
overhead of the interrupt enable/disable emulation. This
overhead increased the build time approximately 2%.

The third experiment extended the second by adding in the
CPU executive and generating RTC timer interrupts (every
488 µs) that are handled by the executive. In this experi-
ment there is no RTK hence this illustrates the total
overhead of the CPU executive. When the CPU executive
runs it simply returns control to the GPOS. This overhead
added an additional 9% to the kernel build time.

It is important to note that this increase is only due in part
to the actual interruption of the GPOS and the execution
of the CPU executive. When the GPOS is interrupted as
frequently as it is, its main memory cache performance
starts to suffer due to context switching. We believe disk
throughput is also similarly effected. Additional experi-
ments are on-going, however, we conjecture that as much
as 4-5% of the increase in kernel build time from experi-
ment 1 to 3 is due to memory cache degradation. The total
observed increase in elapsed time for the kernel build im-
posed by the CPU executive alone is approximately 12%.

The final experiment executes real-time tasks inside the
RTK to consume all cycles allocated to the RTK. This
slows down the kernel build by 20%.

Table 1: Execution times in seconds for an IBM
Microkernel build.

Experiment Elapsed
Time

1. Unmodified IBM Microkernel 180

2. CPU executive present but not running 184

3. CPU executive running, RTK idle 201

4. CPU executive running, 2 RTK tasks 216

Table 2 shows the fraction of the processor consumed by
each component of the CPU executive and by the real-time
tasks. Given the size of the multiplexer time slot, the
RTK should have had 7.7% of the processor, however, the
real-time tasks were able to consume approximately 6.9%

of the total processor cycles. This difference is explained
by the fact that the RTK is subject to the same overhead
as the GPOS for processing RTC timer interrupts. As
RTC interrupt processing consumes 8.4% of the
processor, the available processing time in each real-time
(and non-real-time) slot is decreased by 8.5%. This
reduces the expected maximum real-time task utilization to
approximately 7.1%. The difference between the observed
utilization and this bound is due to scheduling overhead
within the RTK.

In summary, we are able to multiplex and partition CPU
resources such that the RTK executes in a highly-
predictable manner and the GPOS both functions correctly
and is slowed down by only 12% above the degradation
expected by the presence of the real-time tasks. All this is
accomplished with a minimal number of modifications to
the GPOS.

Table 2: Measured overhead in % of all processor cycles
consumed.

System Component %

Interrupt disabling emulation 2.17

RTC Interrupt processing 8.46

Real-time task execution 6.94

Total of all non-GPOS code 16.67

4 . A Simple Real-Time Kernel
Here we briefly describe our real-time kernel. As the
kernel itself is rather mundane, the emphasis is on our
paradigm of interaction and communication between
GPOS tasks and RTK tasks. This paradigm is specific to
the IBM Microkernel and the RTK was written with the
knowledge that it would co-exist with the IBM
Microkernel and thus takes advantage of its features.

The RTK consists of a bare machine kernel and a
microkernel server that is used for communication between
the IBM Microkernel and the RTK. The physical
mechanism for the communication is memory that is
shared between the microkernel and the RTK. Real-time
tasks are written and compiled within the OSF/1 server
that executes on top of the microkernel. A task is written
as a C function. Upon request from a Unix process, the
RTK microkernel server copies the code that will become
an RTK task, from user space to microkernel space (using
existing IBM Microkernel system calls) and communicates
a number of parameters to the RTK via shared memory.
The parameters include the logical starting address of the
task, the period of the task, and the cost in CPU time re-
quired by the task during one period. These parameters are

8

used by the RTK’s scheduler to determine when to execute
the task. The RTK also constructs a TSS for this task by
setting the instruction pointer field of the TSS to the ad-
dress passed in from the RTK microkernel server and a set
of initial values common to all RTK tasks. The task is
invoked in the next real-time minor cycle and once during
every one of the task’s periods thereafter.

5 . Theoretical Underpinnings
In order for our technology to be useful, programmers
must be able to determine the conditions under which their
real-time tasks will be feasible. For the particular design
of a CPU executive that allows the real-time kernel to
execute periodically, we develop necessary and sufficient
conditions for executing a set of periodic tasks in real-time
inside a real-time kernel.

5 . 1 . Related Work

Our starting point for this analysis is the hybrid
static/dynamic priority scheduling model presented in [22]
and solved exactly in [23]. The model considered in these
works partitions all computations performed in the system
into those scheduled according to a static priority assign-
ment and those scheduled according to a dynamic priority
assignment. In essence, the system executes in two
modes: whenever work with a static priority assignment
arrives in the system it is scheduled for execution by a
static priority scheduler, whenever there is no static prior-
ity work remaining, work with dynamically assigned pri-
ority is scheduled for execution by a dynamic priority
scheduler. In this model static priority work takes prece-
dence over dynamic priority work. For example, in [23] a
real-time system consisted of a set of interrupt handlers
that executed in response to periodic interrupts, and a set
of periodic application tasks. Interrupt handlers were as-
signed a static priority equal to the interarrival time of
their corresponding interrupt (e.g., a rate-monotonic prior-
ity assignment) and application tasks used their current
deadline as their execution priority. Interrupt handlers al-
ways had priority over application tasks.

The results of the analysis of hybrid static/dynamic prior-
ity scheduling models from [23] can be applied here by,
for example, modeling the system as a set of real-time
periodic tasks and a single static priority periodic task with
execution cost mcnrt and period MC that “executes” the
non-real-time processing workload. However, since in
this vision of the system there is only one “static priority
task,” our system is a special case of the more general
model studied in [23]. In [23] the feasibility conditions
were expressed in terms of a recurrence relation. For the
special case considered here, we can actually generate a
more appealing closed form solution.

5 . 2 . Formal Model and Analysis

We consider time to be a sequence of (discrete) clock ticks.
Ticks are indexed by the natural numbers and the interval
between successive clock ticks is referred to as a time unit.
We further consider a dichotomy of time units: real-time
units and non-real-time units. A major cycle is a sequence
of MC = mcnrt + mcrt time units; mcnrt contiguous non-
real-time time units and mcrt contiguous real-time time
units. Time is organized as an endless sequence of major
cycles. Real-time tasks execute only during real-time time
units and non-real-time tasks execute only during non-real-
time time units.

For simplicity, we consider a real-time task to be a
periodic task [22]. Specifically, task T is a pair (c, p)
where c is the maximum amount of processor time
required to execute task T to completion on a dedicated
uniprocessor, and p is the interval between successive
invocations of T. That is, a task initially invoked at some
time t with successive invocations occurring every p time
units thereafter. The ith invocation of T occurs at time t +
(i–1)p and must complete execution no later than the
deadline of t + ip. This will require that c units of
processor time be allocated to the execution of T in the
(closed) interval [t + (i–1)p, t + ip]. If this does not occur
then task T is said to have missed a deadline at time t +
ip. We assume task invocations occur at clock ticks and
that parameters c and p are expressed as integer multiples
of time units.

We define a task set τ as a set of n tasks, (c1, p1) … (cn,
pn). With respect to a task set, the primary measure of
interest is feasibility. A task set is feasible if it is
possible to schedule the tasks such that each invocation of
each task completes execution at or before its deadline.

Lemma 1: For all l, l ≥ 0,

l

MC

mcrt + MAX(0, l mod MC − mcnrt) (1)

is the greatest lower bound on the number of real-time
processor units in the interval [t, t+l].

Proof: For all t, t ≥ 0, the interval [t, t+l] contains at
least l MC mcrt real-time processor units and at least

l MC mcnrt non-real-time processor units. Of the remain-

ing

l −
l

MC

mcrt +

l

MC

mcnrt

 = l −

l

MC

MC

= l mod MC

processor units in the interval, at most mcnrt of these can
be non-real-time units. Thus, if mcnrt > l mod MC, then

9

at least l mod MC – mcnrt additional processor units must
be real-time units. Therefore the greatest lower bound on
the number of real-time processor units in the interval [t,
t+l] is

l

MC

mcrt + MAX(0, l mod MC − mcnrt) .

Theorem 2: A set of periodic tasks τ = {(c1, p1), (c2,
p2), ..., (cn, pn)} can be executed on a CPU multiplexer
with parameters (mcnrt, mcrt) if and only if for all L ≥ 0

L

MC

mcrt + MAX(0, L mod MC − mcnrt) ≥

L

pi

ci

i=1

n

∑ (2)

where MC = mcnrt + mcrt.

Proof: (⇒) A set of tasks can be scheduled only if for all
l ≥ 0, the amount of processor time available to real-time
tasks in the interval [0, l], is at least as big as the work
requested by invocations of tasks with deadlines in [0, l].

In [0, l], each real-time task will require l pi ci units of

processor time to ensure no invocation of the task misses
a deadline in the interval [0, l]. Thus the work requested
by jobs of all tasks in [0, l] is l pi cii=1

n∑ .

By Lemma 1, the amount of processor time available to
real-time tasks in the interval [0, l] is at least (1). Thus,
since (1) is a greatest lower bound, τ can be scheduled only
if

l

MC

mcrt + MAX(0, l mod MC − mcnrt) ≥

l

pi

ci

i=1

n

∑

Note that no assumptions are made (or needed) about
whether or not time 0 corresponds to the start of a major
cycle.

(⇐) To show the sufficiency of (2) we show that a if task
system τ satisfies (2) for all L, L > 0, then a deadline
driven scheduler will succeed in scheduling τ. This is
shown by contradiction.

Assume for all L, L > 0, τ satisfies (2) but yet a real-time
task in τ misses a deadline when scheduled according to a
deadline driven algorithm. Let td be the earliest time at
which a deadline is missed and let t be the greater of:

• the end of the last contiguous sequence of real-time
processor units occurring prior to td in which no
real-time task executed (or 0 if all processor units up
to time td have been consumed), or,

• the latest time prior to td at which an invocation of a
real-time task with deadline after time td executes (or
0 if such an invocation does not execute prior to td).

By choice of t, no invocation of a real-time task with
deadline after td executes in the interval [t, td]. If deadline
driven scheduling is performed then the processor demand
in the interval [t, td], is (td − t) pi cii=1

n∑ . Moreover, at

least

td − t

MC

mcrt + MAX(0, (td − t) mod MC − mcnrt)

real-time processor units are available for real-time tasks
in [t, td]. Since a deadline is missed at time td it follows
that

td − t

pi

ci

i=1

n

∑ >
td − t

MC

mcrt +

MAX(0, (td − t) mod MC − mcnrt) .

However this contradicts our assumption that τ satisfies
(2) for all L. Hence if τ satisfies (2) then a deadline driven
scheduler will succeed in scheduling τ. It follows that
satisfying (2) for all L, L > 0, is a sufficient condition for
feasibility.

The proof of Theorem 2 also establishes the optimality of
the deadline driven scheduling algorithm for scheduling
real-time task sets on a co-resident real-time kernel as the
condition that is necessary for feasibility is sufficient for
ensuring the correctness of the EDF algorithm.

Note also that as was the case with the task model in [23],
feasibility here is not a function of processor utilization.
In particular it is not the case that the relation

ci

pii=1

n

∑ ≤
mcrt

MC
= 1−

mcnrt

MC

is a sufficient condition for feasibility (consider the case of
an infeasible single task (c, p) = (3, 12), c/p = .25, when
mcrt = 2, mcnrt = 5, MC = mcrt + mcnrt = 7, mcrt/MC =
.286). In general it is possible to construct both feasible
task sets with processor utilization equal to mcrt/MC and
infeasible task sets with processor utilization arbitrarily
close to 0. An interesting special case in which feasibility
is a function of processor utilization occurs when for all
tasks, each ci is a multiple of mc rt and each pi is a
multiple of MC [24].

5 . 3 . Complexity of Deciding Feasibility

In general, deciding if a task set satisfies (2) requires
exponential time as (2) must be evaluated for all L up to,
for example, the least common multiple of the periods of

10

the tasks. However, if ci pii=1
n∑ < mcrt MC , (i.e., the

real-time tasks do not use all the processor time available
to them) then we can apply a result (Theorem 3.6) from
[23] which states that a set of tasks will be feasible if and
only if (2) holds only for values of L that are multiples of
one of the pi up to the value

B =
ci

pi
i=1

n∑ 1−
mcrt

MC
 .

In this case feasibility can be decided in time O(n2 + P),
where P is the period of the smallest task [23].

6 . Discussion

The utility of our approach to integrating real-time and
non-real-time technology depends largely on our implicit
premise that executives can be constructed with modest
effort for all shared devices and that GPOSs and RTKs (if
not developed from scratch) can be modified to
accommodate these executives. Our work to date is an
existence proof that for certain devices and operating
systems the premise is true. Here we comment on two of
the fundamental requirements for our approach to be
successful.

The first requirement is a source of accurate timing
interrupts. On the PC motherboard there are two potential
sources and most PC operating systems including the IBM
Microkernel, Mach, Windows, and OS/2 use either one or
the other [15, 16, 18, 21]. Thus, at least for the PC, there
is likely to always be a good source of timer interrupts.
Should a source of interrupts not be available then one can
always add a separate timing board. This is, in fact,
standard practice for configuring machines to run the Real-
Time Mach operating system on a PC [26]. Thus it is
reasonable to assume all systems will have a reliable
source of timer interrupts.

The second is the requirement that inter-operating critical
sections can be discovered and locked without access to
source code. We are confident that this will be the case for
peripheral devices as device driver interfaces are typically
well documented. Thus, in the worst case one can simply
develop a new device driver for devices that are to be used
by the RTK. While writing device drivers is not an
enjoyable task, they typically must be written from
scratch for most devices that are to be attached to a real-
time system. Thus in the worst case our framework does
not incur more work than is typically required of others.

The ability to deal with critical sections affecting the CPU
will largely be a function of the design and structure of the

GPOS. The most difficult critical section for the i486
architecture involves the TSS. However, since operating
systems such as the IBM Microkernel, OS/2, and
Windows do not use the hardware task switch feature,
much of the complexity of managing the TSS is
mitigated. Only additional study will determine if this is
serendipity or not.

7 . Summary and Conclusions

Distributed multimedia applications are typical of new and
emerging applications that require real-time
communication and computation services to realize their
full potential. Commercial desktop operating systems,
while providing limited or no real-time support, remain
the primary platform of choice for these applications. In
this work we have investigated a method for allowing real-
time kernels to co-exist with general purpose operating
systems on a single computer. This provides a means of
presenting users and applications with the best of both
worlds at a modest cost.

Our basic approach is to develop executives for each shared
device that allocate the consumable resources of the device
to the co-resident operating systems, and partition the
serially reusable resources between the two systems. We
have demonstrated the feasibility of our approach by
constructing a set of executives to allow the IBM
Microkernel and OSF/1 to co-exist with a simple real-time
kernel we developed. These executives should also work
with the Mach kernel.

The initial prototypes of the executives impose an
overhead of 12% on the general purpose and real-time
operating systems. More importantly, the real-time kernel
is as predictable as a kernel executing on a bare machine.
In addition, for the resource allocation model used by the
CPU executive we have developed necessary and sufficient
conditions for determining when a set of periodic tasks
will be feasible when executed on a co-resident real-time
kernel that only receives a fraction of the overall
processing time.

Many open questions remain. Our present system has
three main parameters whose absolute and relative settings
are not well understood. The parameters are: the duration
of a time slot — the lowest level unit of CPU allocation
— the duration of a real-time minor cycle and the duration
of a non-real-time minor cycle. Studies to understand the
performance implications of parameter choices and the
trade-off between choices are on-going. We are also
applying our executives to other operating systems, most
notably OS/2 and Windows.

11

8 . References

[1] Processor Capacity Reserves: Operating System
Support for Multimedia Applications, Mercer, C.W.,
Savage, S., Tokuda, H., IEEE Intl. Conf. on
Multimedia Computing and Systems, Boston, MA,
May 1994, pp. 90-99.

[2] Adaptive Real-Time Resource Management Sup-
porting Modular Composition of Digital Multimedia
Services, M.B. Jones, in Network and Operating
System Support for Digital Audio and Video, Proc.,
Fourth Intl. Workshop, Lancaster, UK, November
1993, D. Shepherd, et al. (Eds.). Lecture Notes in
Comp. Sci., Vol. 846, pp. 21-28, Springer-Verlag,
Heidelberg, 1994.

[3] Dynamic QOS Control Based on Real-Time Threads,
H. Tokuda, T. Kitayama, in Network and Operating
System Support for Digital Audio and Video, Proc.,
Fourth Intl. Workshop, Lancaster, UK, November
1993, D. Shepherd, et al. (Eds.). Lecture Notes in
Comp. Sci., Vol. 846, pp. 124-137, Springer-
Verlag, Heidelberg, 1994.

[4] Workstation Support for Time-Critical Applications,
J.G. Hanko, E.M. Kuerner, J.D. Northcutt, in
Network and Operating System Support for Digital
Audio and Video, Proc., Second Intl. Workshop,
Heidelberg, Germany, November 1992, R.G.
Herrtwich (Ed.). Lecture Notes in Comp. Sci., Vol.
614, pp. 4-9, Springer-Verlag, Heidelberg, 1992.

[5] Scheduling and IPC Mechanisms for Continuous
Media, Govindan, R., Anderson, D.P., Proc. ACM
Symp. on Operating Systems Principles, ACM Op.
Sys. Review, Vol. 25, No. 5, October 1991, pp. 68-
80.

[6] Kernel Support for Live Digital Audio and Video, K.
Jeffay, D.L. Stone, F.D. Smith, Computer Commu-
nications, Vol. 15, No. 6, (July/August 1992) pp.
388-395.

[7] Support for Continuous Media in the DASH
System, Anderson, D.P., Tzou, S.-Y., Wahbe, R.,
Govindan, R., Andrews, M., Proc. Tenth Intl. Conf.
on Distributed Computing Systems, Paris, France,
May 1990, pp. 54-61.

[8] The Cyclic Executive Model and Ada, Baker, T.P.,
Shaw, A.C., Real-Time Systems, Vol. 1, No. 1,
(June 1989), pp. 7-26.

[9] A Scheduling Philosophy for Multiprocessing Sys-
tems, Lampson, B.W., Comm. of the ACM, Vol.
11., No. 5, (May 1968), pp. 347-360.

[10] VM/370 Asymmetric Multiprocessing, Holley,
L.H., Parmelee, R.P., Salisbury, C.A., Saul, D.N.,
IBM Systems Journal, Vol. 18, No. 1, (1979), pp.
47-70.

[11] SPIN — An Extensible Microkernel for Application-
Specific Operating System Services, Bershad, B.N.,
Chambers, C., Eggers, S., Maeda, C., McNamee,
D., Pardyak, P., Savage, S., Sirer, E.G., Op. Sys.
Review, Vol 29, No. 1, (January 1995), pp. 74-77.

[12] Implementing HeiTS: Architecture and Imple-
mentation Strategy of the Heidelberg High-Speed
Transport System, Hehmann, D., Herrtwich, R.G.,
Schulz, W., Schütt, T., Steinmetz, R., Proc. Second
Intl. Workshop on Network and Operating System
Support for Digital Audio and Video, Springer-
Verlag, LNCS, Vol. 614, 1992.

[13] Peripheral Components, Intel Corporation, Mt.
Prospect, IL, 1993.

[14] Motorola Semiconductor Technical Data, Motorola
Microprocessor Data, Motorola Design-NET, 602-
244-6591.

[15] An OS/2 High Resolution Software Timer, D.
Williams, IBM Personal Systems Developer, 1991.

[16] The Design of OS/2, H.M. Deitel and M.S. Kogan,
Addison-Wesley, Reading, MA, 1991.

[17] The IBM Personal System/2 Hardware Interface
Technical Reference, IBM, 1st Edition, 1988.

[18] The IBM Personal System/2 and Personal Computer
BIOS Interface Technical Reference, IBM, 2nd
Edition, 1988.

[19] The IBM Personal System/2 Model 95 XP 486
Technical Reference, IBM, 4th Edition, 1992.

[20] Microprocessors: Volume II, Intel Corporation, Mt.
Prospect, IL, 1993.

[21] Undocumented Windows — A Programmer's Guide
to Reserved Microsoft Windows API Functions,
Schulman, A., Maxey, D., Pietrek, M., Addison-
Wesley, Reading, MA, 1992.

[22] Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment, Liu, C.L., Layland,
J.W., Journal of the ACM, Vol. 20, No. 1, (January
1973), pp. 46-61.

[23] Accounting for Interrupt Handling Costs in Dynamic
Priority Task Systems, K. Jeffay, D.L. Stone, Proc.
14th IEEE Real-Time Systems Symp., Raleigh-
Durham, NC, December 1993, pp. 212-221.

[24] A Slotted Architecture For Real-Time Processing, G.
Bollella, Technical Report, Department of Computer
Science, University of North Carolina, July 1992.

[25] A Flexible Real-Time Scheduling Abstraction:
Design and Implementation, Lo, S.L.A., Hutchin-
son, N.C., Chanson, S.T., Technical Report,
University of British Columbia, 1994.

[26] C. Mercer, personal communication, 1994.

