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Abstract

In the past, environmental restrictions on size, weight,
and power consumption have severely limited both the pro-
cessing and storage capacity of embedded signal processing
systems. Today, however, as increases in processor speed
and capabilities continually out-pace increases in memory
densities and performance, processor capacity is no longer
a major concern for many signal processing applications —
memory usage is now the primary concern.

We present techniques for managing the memory require-
ments of signal processing applications in the synthesis of a
real-time uniprocessor system from processing graphs. To
demonstrate the effectiveness of our memory management
techniques, we compare the memory requirements of a stat-
ically scheduled implementation of an INMARSAT (Interna-
tional Maritime Satellite) mobile receiver, with our dynamic
scheduling techniques. The case study demonstrates that
state-of-the-art, static schedulers use over 300% more mem-
ory than our simple, preemptive, EDF scheduler for a large
class of signal processing applications.

1. Introduction

Directed graphs consisting of nodes that represent pro-
cessing functions, and graph edges that depict the flow of
data from one node to the next, are a standard design aid in
the development of complex digital signal processing sys-
tems. When sufficient data arrives, a node executes its func-
tion from start to finish in isolation (i.e., without synchro-
nization with other nodes). Such directed graphs are called
Processing Graphs.
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Processing graphs provide a natural means of describ-
ing signal processing applications, each node represents a
mathematical function to be performed on a stream of data
that flows on the edges of the graph from source nodes (sen-
sors) to sink nodes (output devices). The processing graph
methodology allows one to easily understand the signal pro-
cessing performed by graphically depicting the structure of
the algorithm. An important advantage of the graphical rep-
resentation is that portions of the signal processing applica-
tion (subgraphs) can be understood in the absence of the rest
of the algorithm.

In the past, environmental restrictions on size, weight,
and power consumption have severely limited both the pro-
cessing and storage capacity of embedded signal processing
systems. Today, however, as increases in processor speed
and capabilities continually out-pace increases in memory
densities and performance, processor capacity is no longer
a major concern for many signal processing applications —
memory usage is now the primary concern. Thus, although
real-time analysis often involves timing analysis to make
sure a CPU has the processing capacity to ensure real-time
execution, we are using timing analysis to manage mem-
ory requirements. There are two aspects to memory anal-
ysis: code and data storage requirements. We only consider
data space here. Optimizing compilers and efficiently writ-
ten code can help to minimize code space, but processing
graphs also require storage space for intermediate process-
ing results temporarily stored on the graph edges. Once a
node completes its execution, it appends data to the edge
connecting it to a “downstream” (consumer) node. When
sufficient data has accumulated on the input edge to the con-
sumer node, it executes and removes the input data. The
space required to hold the intermediate results on all graph
edges simultaneously can be quite substantial.

Once the processing graph has been created, the only
free variable in controlling the amount of data buffered on
an edge is the execution relationship between the producer
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and consumer nodes. The canonical approach to minimiz-
ing memory requirements for the graph edges is to use static
scheduling. Static node execution schedules are created off-
line and then executed on a periodic basis. Numerous static
scheduling algorithms have been created to minimize mem-
ory requirements [13, 17, 22, 18, 2]. The primary trade-off
made by static schedulers is the storage requirement and ex-
ecution complexity of the schedule vs. the storage require-
ment of data in the graph edges. Typically, minimal buffer
space requires increased state space for the scheduler.

In contrast, our approach is to use a simple, dynamic, on-
line scheduler for graph execution. With today’s processors,
it is possible to use dynamic, on-line scheduling to achieve
near optimal memory usage and not be concerned with min-
imizing the on-line scheduling overhead. Moreover, and
somewhat surprisingly, dynamic scheduling often requires
less memory than static schedules created by off-line sched-
ulers designed to minimize memory usage.

The primary problem in using dynamic scheduling tech-
niques with processing graphs is building a predictable run-
time system so that the buffer space required for graph edges
can be bounded and controlled. For this, we appeal to real-
time scheduling theory. Typically a processing graph is
mapped to a set of tasks according to a model of real-time
execution [3, 7, 10, 14, 16, 21, 19, 20]. The schedulability
conditions for the model are used to see if the graph “fits” on
the processor — i.e., to see if enough processing capacity is
available to guarantee real-time execution to all tasks. By
real-time execution, we refer to an execution in which the
latency and memory requirements are met. For signal pro-
cessing graphs, latency is the time between when a sensor
produces a data token and when the graph outputs the pro-
cessed signal.

This paper is part of a larger body of work [9] that cre-
ates a framework for evaluating and managing processor de-
mand, latency, and memory usage in the synthesis of dis-
tributed real-time signal processing systems from the U.S.
Navy’s coarse-grain Processing Graph Method (PGM) [15].
Here, we demonstrate the management of memory require-
ments in the synthesis of a real-time uniprocessor system
from acyclic processing graphs developed with PGM. We
show that dynamic, on-line scheduling can achieve near
minimal memory requirements.

We have selected PGM as our processing graph model
since it is a general and widely used paradigm. Our pre-
vious work on the synthesis of real-time uniprocessor sys-
tems from PGM was based on simple PGM graphs called
chains [1, 8]. In this paper, we extend the analyses devel-
oped for chains to handle directed acyclic graphs. In ad-
dition, we present new methods for deriving the memory
needs of a common class of acyclic PGM graphs executed
using the same simple, preemptive, earliest deadline first
(EDF) scheduler of [8].

To illustrate these concepts and to quantify the memory
savings achievable in a real application, we analyze an ex-
isting processing graph for a mobile receiver in a commer-
cial satellite-based communication and navigational system
known as INMARSAT (International Maritime Satellite).
We compare the memory needs of the mobile satellite re-
ceiver application executed with our on-line scheduler to the
memory needs of the same application executed using state-
of-the-art, off-line, static schedulers presented in [18] and
[2].

From the real-time literature, PGM graphs are most
closely related to the Logical Application Stream Model
(LASM) [3, 4]. Our work improves on the analysis of
LASM graphs by not requiring periodic execution of the
nodes in the graph. Instead, graph execution is modeled
with the Rate-Based Execution (RBE) process model [11]
(a generalization of the sporadic process model) to more ac-
curately predict processor demand. The RBE process model
allows node execution at an average (but deterministic) rate,
which provides a more natural representation of node exe-
cution for PGM graphs. Forcing periodic execution of all
graph nodes adds latency to the processed signal, but sim-
plifies the analysis of memory requirements.

Restricted PGM graphs can also be represented by the
dataflow graph models used in the Software Automation for
Real-Time Operations (SARTOR) project [14] and the Real-
Time Producer/Consumer (RTP/C) paradigm [10]. Unfortu-
nately, neither of these paradigms correctly model the ex-
ecution of general PGM graphs. Our goal, as with the
SARTOR project, is to demonstrate that we can apply real-
time scheduling results to real-life applications. Unfortu-
nately, the techniques developed in [14] cannot be applied
here without introducing additional latency since the exe-
cution of PGM nodes do not follow the periodic execution
model assumed in [14]. Like the RTP/C paradigm, we use
the structure of the graph to help specify execution rates of
the processes that implement nodes in the graph. However,
PGM graphs are capable of supporting much more sophisti-
cated data flow applications than RTP/C.

The rest of the paper is organized as follows. x2 presents
a brief overview of the processing graph model PGM.
The synthesis of real-time uniprocessor systems from PGM
graphs is presented in x3 with a discussion on managing
memory requirements in x4. We evaluate our results in x5
with a case study of an INMARSAT mobile receiver appli-
cation. Our contributions are summarized in x6.

2. Notation and the Processing Graph Method

The notation and terminology of this paper, for the most
part, is an amalgamation of the notation and terminology
used in [6] and [2]. A processing graph is formally described
as a directed graph (or digraph)G = (V;E;  ). The ordered
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triple (V, E, ) consists of a nonempty finite set V of vertices,
a finite set E of edges, and an incidence function that asso-
ciates with each edge of E an ordered pair of (not necessarily
distinct) vertices of V. Consider an edge e 2 E and vertices
u; v 2 V such that  (e) = (u; v). We say e joins u to v, or u
and v are adjacent. The vertex u is called the tail or source
vertex of e and v is the head or sink vertex of edge e. The
edge e is an output edge of u and an input edge of v. The
number of input edges to a vertex v is the indegree ��(v) of
v, and the number of output edges for a vertex v is the out-
degree �+(v) of v. A vertex v with ��(v) = 0 is an input
node. The set I = fv j v 2 V ^ ��(v) = 0g denotes the
set of all input nodes. A vertex v with �+(v) = 0 is an out-
put node. The set O = fv j v 2 V ^ �+(v) = 0g denotes
the set of all output nodes. For u; v 2 V, there is a path be-
tween u and v, written as u; v, if and only if there exists
a sequence of vertices (w1; w2; : : : ; wk) such that w1 = u,
wk = v, and 8i 1 � i < k : 9e 2 E ::  (e) = (wi; wi+1).
In other words, there is path between u = w1 and v = wk

if there exists a sequence of vertices (w1; w2; : : : ; wk) such
that wi is adjacent to wi+1 for i = 1; 2; : : : (k � 1).

There are many processing graph models, but our syn-
thesis method for building real-time systems from process-
ing graphs is based on the U.S. Navy’s Processing Graph
Method (PGM). PGM was developed by the U.S. Navy to
facilitate the design and implementation of signal process-
ing applications.

In PGM, a system is expressed as a directed graph in
which the nodes (or vertices) represent processing functions
and the edges represent buffered communication channels
called queues. The function  is implicitly defined by the
topology of the graph, which defines a software architec-
ture independent of the hardware hosting the application.
The graph edges are First-In-First-Out (FIFO) queues with
three attributes associated with each edge (queue): a pro-
duce amount prd(q), a threshold amount thr(q), and a con-
sume amount cns(q). The produce amount specifies the
number of “tokens” (data structure elements) appended to
the queue when the producing node (the source node for this
queue) completes execution. The threshold amount repre-
sents the minimum number of tokens required to be present
in the queue before the (queue’s sink) node may process data
from the input queue. The consume amount is the num-
ber of tokens dequeued (from the head of the queue) after
the processing function finishes execution. A queue is over
threshold if the number of enqueued tokens meets or ex-
ceeds the threshold amount thr(q). Unlike many processing
graph paradigms, PGM allows non-unity produce, thresh-
old, and consume amounts as well as a consume amount less
than the threshold. The only restrictions on queue attributes
is that they must be non-negative values and the consume
amount must be less than or equal to the threshold. For ex-
ample consider the portion of a chain shown in Figure 1. The
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Figure 1. A two node chain.

queue connecting nodes u andw, labeled q, has prd(q) = 4,
thr(q) = 7, and cns(q) = 3. Node umust execute twice be-
fore node v is first eligible for execution. After node v exe-
cutes, it consumes only 3 of the 8 tokens on its input queue.
A threshold amount that is greater than the consume amount
is often used in signal processing filters. The filter reads
thr(q) tokens from the queue but only consumes cns(q) to-
kens, leaving at least (thr(q) � cns(q)) on the queue to be
used in the next calculation.

If a node has more then one input queue (edge), then the
node is eligible for execution when all of its input queues
are over threshold (i.e., when each input queue q contains at
least thr(q) tokens). After the processing function finishes
executing, prd(q) tokens are appended to each output queue
q. Before the node terminates, but after data is produced,
cns(q) tokens are dequeued from each input queue q. The
execution of a node is valid if and only if the node executes
only when it is eligible for execution, no two executions of
the same node overlap, each input queue has its data atom-
ically consumed after each output queue has its data atomi-
cally produced, and data is produced at most once on an out-
put queue during each node execution.

A graph execution consists of a (possibly infinite) se-
quence of node executions. A graph execution is valid if and
only if all of the nodes in the execution sequence have valid
executions and no data loss occurs.

3. Synthesis Method

Our synthesis method involves 3 steps: i) identifying
node execution rates, ii) mapping each node to a task in
the Rate-Based Execution (RBE) task model [11], and iii)
verifying latency and memory requirements. Managing the
memory needs of an application often requires an iteration
of steps ii) and iii) as trade-offs are made between processor
demand and memory requirements. x3.1 introduces the con-
cept of node execution rates and how to derive the execution
rate for each node in a PGM graph. The RBE task model is
described in x3.2 for completeness. x3.3 shows how to map
the processing graph nodes to tasks in the RBE task set and
presents a sufficient schedulability condition for the result-
ing real-time system. An affirmative result after testing the
scheduling condition means that the processor has enough
capacity to execute the graph such that latency and buffer
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requirements can be guaranteed. (Verifying and managing
memory requirements are addressed in x4.)

3.1. Node Execution Rates

We assume the strong synchrony hypothesis of [5] to
introduce the concept of node execution rates. Under the
strong synchrony hypothesis, we assume the graph executes
on an infinitely fast machine and each node takes “no time”
to execute — the system instantly reacts to external stim-
uli. If node execution takes no time, then the behavior of
processes is unaffected by scheduling and the execution pat-
terns are the same under all scheduling policies.

Most real-time execution models define task execution to
be periodic or sporadic. Each time a task is ready to exe-
cute, it is said to be released. A periodic task is released
exactly once every � time units. At least � time units sep-
arate every release of a sporadic task. Even when the source
node of a PGM chain is periodic, the execution of the other
nodes in the graph cannot be easily described as either pe-
riodic or sporadic. For example, consider the chain of Fig-
ure 1. If node u executes at times 0, y, 2y, 3y, : : : , node v
is eligible for one execution at times y and 2y, and 2 execu-
tions at time 3y. The execution pattern of node v is repeti-
tive, but neither periodic nor sporadic. Even though one can
force the graph execution to fit either a periodic or sporadic
task model with one task representing each node, it is un-
natural and introduces additional latency. Moreover, while
multiple periodic or sporadic tasks may be used to model a
node’s execution, a paradigm that supports expected rates of
the form x executions of a node in y time units is a more nat-
ural and simpler task model for the analysis of schedulabil-
ity, latency, and buffer requirements for a processing graph
application.

Node execution rates are thus defined as follows. The
time of the jth execution of node v is represented as Tj(v).
An execution rate is an integer pair (x; y). An execution
rate specification for node v, Rv = (x; y), is valid if v exe-
cutes exactly x times in all time intervals of [t; t+y) where
t > T1(v).

We start with chains and work up to general acyclic
graphs in the derivation of node execution rates. Proofs for
the theorems presented in this paper a can be found in [9].

Theorem 3.1. Let i ; w be a PGM chain such that i 2
I (the set of input nodes), u; v 2 fi ; wg with  (q) =
(u; v), and Ri = (xi; yi). Assuming the strong synchrony
hypothesis and no tokens on queue q prior to the beginning
of graph execution, the execution rate of node v is Rv =
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Figure 2. Node w has two input queues.

(xv ; yv) where

xv =
prd(q)

gcd(prd(q)xu; cns(q))
� xu

and yv =
cns(q)

gcd(prd(q)xu; cns(q))
� yu.

(3.1)

Equation (3.1) can be used to derive the execution rate of
any consumer in terms of its producers in a chain of nodes.
For example, given  (q) = (u;w) for queue q and an exe-
cution rate of Ru = (3; 16) for node u in Figure 1 on page
3 (i.e., node u executes 3 times in any interval of length 16),
the execution rate of the consumer node w is derived using
(3.1) as follows:

Rw = (xw ; yw)

=

�
prd(q)xu

gcd(prd(q)xu; cns(q))
;

cns(q)yu
gcd(prd(q)xu; cns(q))

�

=

�
4 � 3

gcd(4 � 3; 3)
;

3 � 16

gcd(4 � 3; 3)

�

=

�
12

gcd(12; 3)
;

48

gcd(12; 3)

�
= (4; 16) (3.2)

Now consider the case when node w has another input
queue, such as the graph in Figure 2. Node w is a con-
sumer of data produced by both nodes u and v. The nota-
tion Rw u = (xw u; yw u) denotes the execution rate of
node w with respect to data produced by node u as though
they were a producer/consumer pair in a chain. Thus with
Ru = (3; 16), Rw u = (4; 16), as derived in (3.2).

With Rv = (2; 12), Rw v is derived using (3.1) as fol-
lows:

Rw v = (xw v ; yw v)

=

�
prd(�)xv

gcd(prd(�)xv ; cns(�))
;

cns(�)yv
gcd(prd(�)xv ; cns(�))

�

=

�
3 � 2

gcd(3 � 2; 2)
;

2 � 12

gcd(3 � 2; 2)

�
=

�
6

2
;
24

2

�
= (3; 12)
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Since w can only execute when both � and � are over
threshold, neither Rw u nor Rw v satisfies the definition
of a valid execution rate for node w because node w will
not execute exactly 4 times in any interval of length 16
or exactly 3 times in any interval of length 12. It can be
shown from Theorem 3.1, that although in generalRw u 6=
Rw v, it must be the case that xw u

yw u
= xw v

yw v
if a

valid graph execution is possible. Intuitively, the expres-
sion xw u

yw u
= xw v

yw v
means that the steady state execu-

tion rate of node w with respect to node u is equal to the
steady state execution rate of node w with respect to node
v. Lemma 3.2 states that without the equality of steady state
execution rates, it would be impossible to schedule a valid
execution of the graph using finite memory.

Lemma 3.2. Let G = (V;E;  ) be a PGM digraph and
u; v; w 2 V for which there exists queues � and � such that
 (�) = (u;w) and  (�) = (v; w). If a valid graph exe-
cution is possible using finite memory for buffering tokens,
then xw u

yw u
= xw v

yw v
.

When a consumer node has a constant steady state exe-
cution rate with respect to its producers, (3.1) can be gen-
eralized to derive the execution rate of a node with multiple
input queues.

Theorem 3.3. Let G = (V;E;  ) be a PGM digraph for
which a valid execution is possible using finite memory and
node v 2 V with ��(v) � 1. Assuming the strong synchrony
hypothesis and no tokens on the input queues to node v prior
to the beginning of graph execution, the execution rate of
node v is Rv = (xv ; yv) where

yv = lcmf
cns(q)yu

gcd(prd(q)xu; cns(q))
j  (q) = (u; v)g;

xv = yv �

�
prd(q)xu
cns(q)yu

�
; 8q; u :  (q) = (u; v):

(3.3)

For example, given nodesu and v in Figure 2 withRu =
(3; 16) and Rv = (2; 12), since xw u

yw u
= xw v

yw v
, the execu-

tion rate of w is:

yw = lcmf
cns(�)yu

gcd(prd(�)xu; cns(�))
;

cns(�)yv
gcd(prd(�)xv; cns(�))

g

= lcmf
3 � 16

gcd(4 � 3; 3)
;

2 � 12

gcd(3 � 2; 2)
g

= lcmf
3 � 16

3
;
2 � 12

2
g = lcmf16; 12g = 48

=) xw = yw �

�
prd(�) � xu
cns(�) � yu

�
= 48 �

�
4 � 3

3 � 16

�
= 12

Thus Rw = (xw; yw) = (12; 48) and, after its first exe-
cution, node w in Figure 2 will execute 12 times in every
interval of length 48.

3.2. RBE Task Model

Once node execution rates have been established, the
nodes of a graph can be mapped to real-time tasks. Un-
fortunately since nodes are neither periodic nor sporadic,
even when the source is periodic, most task models from
the literature are inapplicable. The Rate-Based Execution
(RBE) paradigm [11], however, does provide a natural de-
scription of node executions in an implementation of pro-
cessing graphs. This section provides a brief overview of
the RBE task model.

RBE is a general task model consisting of a collec-
tion of independent processes specified by four parameters:
(x; y; d; e). The pair (x; y) represents the execution rate of
a RBE task where x is the number of executions expected to
be requested in an interval of length y. Parameter d is a re-
sponse time parameter that specifies the maximum desired
time between the release of a task instance and the comple-
tion of its execution (i.e., d is the relative deadline). The
parameter e is the maximum amount of processor time re-
quired for one execution of the task.

A RBE task set is feasible if there exists a preemptive
schedule such that the jth release of task Ti at time ti;j is
guaranteed to complete execution by time Di(j), where

Di(j) =

(
ti;j + di if 1 � j � xi

max(ti;j + di; Di(j � xi) + yi) if j > xi

(3.4)

The RBE task model makes no assumptions regarding when
a task will be released, however (3.4) ensures that no more
than xi deadlines come due in an interval of length yi, even
when more than xi releases of Ti occur in an interval of
length yi. Hence, the deadline assignment function prevents
jitter from creating more process demand in an interval by a
task than that which is specified by the rate parameters.

3.3. Mapping Nodes to Real-Time Tasks

To map a PGM graph to a set of RBE tasks, we associate
a task with each node. Thus for each node u in the graph,
nodeu is associated with the four tuple (xu; yu; du; eu). The
parameters xu and yu are derived using (3.3). The parame-
ter eu is the worst case execution time for node u, which we
assume is supplied. The only free parameter is the relative
deadline parameter du, which influences processor capacity
requirements, latency, and buffer requirements. In general,
a smaller value chosen for du will result in less latency and
memory requirements than a larger du value, but at a cost of
increased processor capacity requirements. Execution time,
produce, threshold, consume, and deadline values all affect
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schedulability, latency and buffer requirements, and one can
trade-off one metric for any other. The synthesis method
outlined here provides a framework for evaluating schedu-
lability and memory requirements, but leaves open the prob-
lem of partitioning a processing graph in a distributed sys-
tem when the graph is not schedulable on a uniprocessor.

In mapping the graph to a set of RBE tasks, relative dead-
line parameters need to be selected that result in modest
buffering on the graph edges without overloading the pro-
cessor with too much processing demand. Since du affects
processor capacity requirements, latency and buffer require-
ments, a good starting point for the selection of du is one
such that du is greater than or equal to the deadline of node
u’s predecessor node and less than or equal to yu. As shown
in [8], when the deadline for each node is greater than or
equal to its predecessor’s deadline, a scheduling technique
called release time inheritance can be used to minimize la-
tency. Under release time inheritance, node u is assigned a
logical release time (at the time of its actual release) that is
equal to the logical release time of the node that enabled u
during graph execution. The deadline assignment function,
(3.4), then uses the logical release times rather than the ac-
tual release times.

After we have associated each node u in the graph with
a four tuple (xu; yu; du; eu), we have an RBE task system
T = fT1; T2; : : : ; Tng. A task is released when all of
the node’s input queues are over threshold, ensuring prece-
dence constraints are met for correct graph execution. Re-
leased tasks are scheduled with the RBE-EDF scheduling
algorithm — a simple, preemptive, EDF scheduler using
deadline assignment function (3.4) with release time inher-
itance.

The feasibility of an RBE task set can be determined with
(3.5) [8]. Notice that (3.5) reduces to the simple Liu & Lay-
land [12] EDF feasibility condition of U � 1 when xi = 1
and di = yi.

Lemma 3.4. Let T = f(x1; y1; d1; e1); : : :
(xn; yn; dn; en)g be a set of tasks. T will be feasible
if and only if

8L > 0; L �

nX
i=1

f

�
L� di + yi

yi

�
� xi � ei (3.5)

where f(a) =

(
bac if a � 0

0 if a < 0

Sufficiency of (3.5) was established in [8] by showing
that the preemptive EDF scheduling algorithm can schedule
releases of the tasks in T without a task missing a deadline
if the task set satisfies (3.5). For scheduling RBE tasks de-
rived from a PGM graph as described above, (3.5) becomes
a sufficient but not necessary condition for preemptive EDF
scheduling. (3.5) is not a necessary condition since it as-
sumes that all xu releases of node u may occur at the be-

ginning of an interval of length yu. For some nodes, such
as node v in Figure 1 on page 3, this is not possible — if
Ru = (1; y), then any execution of node u releases at most
2 executions of node v even thoughRv = (4; 3y), and node
v will not have 4 releases at one time.

From Lemma 3.4 and the preceding discussion, we ob-
tain:

Theorem 3.5. Let T = f(x1; y1; d1; e1); : : :
(xn; yn; dn; en)g be a set of tasks such that for the
mapping u 2 V ! i: (xi; yi; di; ei ) = (xu; yu; du; eu).
The processing graph G = (V;E;  ) is schedulable with
the RBE-EDF scheduler if (3.5) holds for T .

An affirmative result after testing (3.5) means that the
RBE-EDF scheduler can be used to execute the graph with-
out missing a deadline, and, as explained next, we can bound
the buffer requirements of each queue and the entire graph.

4. Managing Memory Requirements

The three primary uses of memory in an embedded sig-
nal processing system are (1) scheduler state space, (2) code
space for each node, and (3) buffer space for intermediate re-
sults stored on graph edges. In [9], we argue that the mem-
ory requirements for (1) and (2) are similar for either stati-
cally or dynamically scheduled implementations. Here, we
only address buffer space requirements.

The canonical approach to managing the memory re-
quirements of the graph edges is to use static scheduling.
Static node execution schedules are created off-line and then
executed on a periodic basis. The primary trade-off made
by static schedulers is the storage requirement and execu-
tion complexity of the schedule vs. the storage requirement
of data in the graph edges. Typically, efficient buffer us-
age requires increased state space for the scheduler. Some
scheduling algorithms produce a simple flat schedule with
each entry in the schedule representing the execution of a
single node. Other algorithms save scheduler state space by
associating a number of executions with each scheduler en-
try to reduce state space for multiple executions of the same
node. Still other scheduling algorithms produce slightly
more complicated schedules by creating scheduling loops
encompassing many scheduling entries [2]. For example,
three different possible schedules for the chain in Figure 1
are: uwuwuww — a multiple appearance flat schedule,
(3u)(4w) — a single appearance flat schedule, and (3uw)w
— a multiple appearance looped schedule.1 A single ap-
pearance looped schedule is not possible for this graph. The
schedulesuwuwuww and (3uw)w produce identical execu-
tion results.

1The notation in the looped schedule is such that the 3 applies to all sub-
sequent nodes until the right parenthesis is reached [2].
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The buffer space required by static schedulers is depen-
dent on the particular scheduling algorithm. For example,
assume the input queue to node u in Figure 1 is labeled q0

and that it is attached to a periodic external device i. Let
Ri = (1; 8), prd(q0) = 6, and thr(q0) = cns(q0) = 4. The
multiple appearance flat scheduleuwuwuww and the multi-
ple appearance looped schedule (3uw)w require storage for
10 tokens on queue q, while the single appearance flat sched-
ule 3u4w requires storage for 16 tokens on queue q. To de-
rive the storage requirement of the input queue q0, we need
to consider the input data rate and the duration of the sched-
ule. Static schedules are usually executed on a periodic ba-
sis with a timer indicating when to start executing the sched-
ule. Since the schedule executes without inserting idle time
(once it starts), execution cannot begin until enough data has
accumulated on the input queues to the graph to ensure a
valid graph execution.

The period of a static schedule is equal to the maximum
y value of the execution rates of the set of nodes connected
to output devices — i.e., maxfywg where w 2 O. Let yw
be the period of a static schedule, and let sw be the the log-
ical release time of the first execution of node w. The first
execution of the static schedule cannot begin before time S
where S is bounded such that sw � S � sw + yw.2 For
example with Ri = (1; 8), the execution rates for nodes u
and w in Figure 1 are Ru = (3; 16) and Rw = (4; 16). Let
nodew be the only node connected to an output device, and
S = sw = 8. Since yw = 16, the scheduling period is 16
time units. To ensure data availability for each execution of
node u, the schedule cannot begin until time 8 (the first log-
ical release time of node w, which will also be the logical
release time of the execution of node u that releases node w
at sw). Hence, with prd(q0) = 6, 12 tokens accumulate on
the input queue q0 before the schedule even begins — source
node i first produces at time 0. Depending on the schedule,
the node execution times, and the execution characteristics
of the source node, more data may accumulate during the
execution of the schedule. Therefore, buffering for at least
12+ 16 = 28 tokens are required for queues q and q0 when
a single appearance flat schedule is used to execute the two
nodes. When deriving buffer requirements for queues con-
nected to external sink devices, we assume that the external
device consumes data as soon as it is available. Since node
w produces 1 token every time it executes, a statically sched-
uled implementation of the graph requires storage for at least
29 tokens (and possibly more). It is important to recognize
that depending on the length of the scheduling period and
when the static schedule first starts, the amount of data that
accumulates on the input queues of an actual application can
be quite substantial.

In contrast to using off-line scheduling algorithms to

2Due to space limitations, we are unable to present the functions that
derive S and sw — see [9].

manage memory requirements, our approach is to use a sim-
ple, dynamic, on-line scheduler for graph execution. One
of the advantages of the RBE model over other dynamic
scheduling algorithms is that it provides great flexibility in
describing when nodes will execute. We can say 5 execu-
tions will occur in 10 time units without being required to
say that 2 executions occur at time 5 and 3 more executions
occur at time 10. This flexibility in scheduling comes at
a price; it makes it difficult to derive tight bounds for the
buffer requirements of a queue. In [8], we presented func-
tions to bound the buffer requirements of queues in chains
scheduled with variations of the RBE-EDF algorithm. Ap-
plying those functions to the 2 node chain of Figure 1 with
the assumption that du = dw = 16, queue q would require
storage space for either 10 or 16 tokens — depending on
how deadline ties between executions of nodesu andwwere
broken. Unfortunately, the execution rules for PGM nodes
with multiple input queues are such that one input queue
may be over threshold long before another input queue, and
the equations derived in [8] to bound queue buffers do not
apply to general PGM graphs. In the general case, the buffer
bounds that we can derive are much too loose to be useful
(though they are valid upper bounds). However, many sig-
nal processing applications possess dataflow characteristics
that we can exploit to get relatively tight buffer bounds.

Many signal processing functions use the concept of a
“sliding window.” The last portion of data used in one ex-
ecution of the node is used as the first portion in the next
execution. Imagine laying a window over an array of data
so that only 1024 data points are visible, performing a cal-
culation with these 1024 points, and then moving the win-
dow 768 positions to the right so that 256 old values and 768
new values are visible for the next calculation. This effect is
achieved by setting the threshold on a queue to 1024 and the
consume amount to 768. It is common practice to initialize
such queues with (thr(q)�cns(q)) tokens so that the amount
of initialized data is equal to the overlap. When the queues
are initialized this way (or equivalently when the threshold
equals the consume amount) we are able to provide a fairly
tight bound on the buffer requirements of the queue.

To realize these tighter bounds, however, we need to
identify the release time of the first execution of a producer
node u. As in the static scheduling example, let su denote
the time associated with the first release of node u.

For the common cases in signal processing applications
where all of the queues in the graph are initialized with
(thr(q) � cns(q)) tokens and gcd(cns(q); prd(q)xu) =
min(cns(q); prd(q)xu) for each queue, Theorem 4.1 gives
a tight bound on the buffer space required by queue q when
the graph is executed using the RBE-EDF scheduler.

Theorem 4.1. Let G = (V;E;  ) be valid PGM di-
graph such that each queue, q, in the path(s) from a
periodic source to node v is initialized with (thr(q) �
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cns(q)) tokens prior to the beginning of graph execution and
gcd(cns(q); prd(q)xu) = min(cns(q); prd(q)xu). Under
the RBE-EDF scheduling algorithm, the buffer requirements
for queue q with  (q) = (u; v) is Buf(q) where

Buf(q) �

�
max(yv ; sv + dv � su)

yu

�
xuprd(q)

+ (thr(q)� cns(q)). (4.1)

In practice, we have found (4.1) to be applicable to the
majority of signal processing applications we have ana-
lyzed. More importantly Theorem 4.1 provides guidance to
signal processing engineers developing processing graphs
by quantifying the impact of their choice for thresholds, pro-
duce, and consume values on the memory requirements of
the graph.

Theorem 4.1 also demonstrates the impact of the deadline
parameters chosen for each task in the synthesis of a real-
time system from the processing graph. A general heuris-
tic to follow in selecting the deadline parameter for node v
is to set it less than or equal to node v’s execution interval
yv and greater than or equal to the predecessor’s deadline.
This often results in modest buffering requirements while al-
lowing deadline inheritance to be used to minimize latency.
A second heuristic to follow, when processor capacity al-
lows, is to set a consumer node’s deadline parameter equal
to the producer’s deadline parameter if the consumer exe-
cutes once for every k executions of the producer, which
minimizes the data that accumulates on the consumer’s in-
put queue between the time when it is released and when it
completes execution.

5. Case Study

This section provides an evaluation of the synthesis
method by applying our techniques to an International Mar-
itime Satellite (INMARSAT) mobile receiver application.
To fully appreciate the efficiency of on-line scheduling, we
compare the buffer requirements of our dynamic schedul-
ing approach with statically scheduled implementations of
the application. We begin with a brief introduction to IN-
MARSAT and the mobile satellite receiver application.

The INMARSAT system has been offering mobile satel-
lite communication service to ocean-going vessels since
1982. It is a global satellite constellation of 7 geostation-
ary satellites providing communications in the L-band fre-
quencies. The INMARSAT-B mobile terminal provides dig-
ital telecommunications supporting facsimile and data trans-
missions at the standard rate of 9.6 kbps and an optional
high speed data rate of 64 kbps. The 64 kbps channel can
be multiplexed to offer several simultaneous voice and data
lines. The high speed data option of the INMARSAT-B mo-
bile terminal is also used to provide video teleconferencing

and compressed or delayed video transmission services to
remote locations on land or at sea.

Figure 3 is a block diagram of the digital signal process-
ing performed by the satellite receiver portion of an IN-
MARSAT mobile terminal [22]. The corresponding pro-
cessing graph for this application is shown in Figure 4 [18].
The two unlabeled circles with single output queues rep-
resent the input devices receiving the satellite signal. The
other unlabeled circle represents the terminal accepting the
processed signal. To reduce clutter in the figure, we have
only labeled the non-unity dataflow attributes: produce val-
ues are located at the tail of the queue and consume values
are at the head of the queue.

5.1. Node Execution Rates

Most signal processing applications do not have rela-
tively prime produce and consume dataflow attributes as the
earlier examples do (unless one of the values is 1). They
do, however, typically have node execution rate changes
throughout the graph — both execution rate decreases and
execution rate increases. For example, let the period of each
of the two input nodes to the INMARSAT graph of Figure 4
be y. Then the execution rate of nodeA is (1; y) and the ex-
ecution rate of nodeB is

RB =

(
yB = lcm( 4

gcd(1�1;4) � y) = 4y

xB = 4y �
�
1�1
4�y

�
= 1

=) (1; 4y)

Another rate change occurs at nodeP in Figure 4, which has
four input queues. De-multiplexing nodesF and C execute
at the rate (1; 44y), and decimator nodesN and J each have
an execution rate of (10; 44y). Therefore the execution rate
of P is

RP =

(
yP = lcmf 1�44y

gcd(10�1;1) ; : : :
1�44y

gcd(1�10;1)g = 44y

xP = 44y �
�

10�1
1�44y

�
= 10

= (10; 44y)

The execution rates for rest of the nodes in the applica-
tion are listed in Table 1 with the relative deadline parame-
ters selected for the Rate Based Execution (RBE) tasks used
to implement the graph.

For this case study, we assume the application is schedu-
lable with our selected parameters. The best way to evalu-
ate the synthesis method is to compare the memory require-
ments of an RBE implementation of the mobile satellite re-
ceiver with an implementation scheduled by a state-of-the-
art, static scheduler, which is designed to minimize memory
requirements.
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Node ( xu, yu, du) su
A (1; y; y) 0
B (1; 4y; y) 3y
C (1; 44y; 4y) 43y
D (1; y; y) 0
E (1; 4y; y) 3y
F (1; 44y; 4y) 43y
G (1; 44y; 44y) 43y
H (1; 44y; 44y) 43y
I (1; 44y; 44y) 43y
J (10; 44y; 44y) 43y
K (1; 44y; 44y) 43y
L (1; 44y; 44y) 43y
M (1; 44y; 44y) 43y
N (10; 44y; 44y) 43y
P (10; 44y; 44y) 43y
Q (1; 24 � 44y; 44y) (24 � 44y)� y

R (1; 24 � 44y; 44y) (24 � 44y)� y

S (10; 44y; 44y) 43y
T (10; 44y; 44y) 43y
U (10; 44y; 44y) 43y
V (1; 24 � 44y; 44y) (24 � 44y)� y

W (240; 24 � 44y; 24 � 44y) (24 � 44y)� y

Table 1. The second column shows the RBE
parameters for each node, excluding the exe-
cution time. The third column shows the start
time (i.e., the first release time) for each node
assuming release time inheritance.

5.2. Buffer Requirements

In this section we present the buffer requirements of each
queue in the mobile satellite receiver application and com-
pare the total memory requirements of our synthesis of the
application with the bounds reported in [18, 2]. We derive
the bounds for one queue as an example and refer the reader
to Table 2 (and [9]) for the buffer bounds on the remaining
queues. The analysis is abstract in that all tokens are as-
sumed to be the same size.

Let a be the label for the queue joining nodesA andB in
the application graph of Figure 4 on page 9. Applying (4.1)
of x4 to queue a (using the RBE and start time parameters of
Table 1), we get an upper bound on the buffer requirement
for a of

Buf(a) �

�
max(yB ; sB + dB � sA)

yA

�
xAprd(a)

+ (thr(a)� cns(a))

=

�
max(4y; 3y + y � 0)

y

�
� 1 � 1 + (4� 4) = 4.

If we had chosen a deadline value of 4y for node B rather

than y, the buffer requirement would have been 7 (instead
of 4). In this case, we applied the second heuristic from the
end of x4 and used the producer’s deadline value since B
only executes once every 4y time units.

The values of Buf(q) for the rest of the queues in the mo-
bile satellite receiver graph (calculated with the RBE pa-
rameters of Table 1) are shown in Table 2. The queues at-
tached to input or output devices are omitted from the table
since these queues were ignored in the buffer calculations of
[18, 2]. The buffer space required for each of these queues
in our model is 1 token.

 (q) Maximum Buffer Space
(A;B) 4
(B;C) 11
(C;G) 1
(C;P ) 10
(D;E) 4
(E;F ) 11
(F;K) 1
(F; P ) 10
(G;H) 1
(H; I) 11
(I; J) 10
(K;L) 1
(L;M) 11
(M;N) 10
(J; P ) 10
(N;P ) 10
(J; T ) 10
(N; S) 10
(P;Q) 240
(P;R) 240
(Q;W ) 240
(R;W ) 240
(S; U) 10
(T; U) 10
(U; V ) 240
(V;W ) 240

Table 2. Maximum buffer space required per
queue evaluated using Theorem 4.1.

The minimum buffer requirement possible for the
INMARSAT graph is 1,545 tokens (including the
graph input and output queues) — derived by sum-
ming prd(q)�cns(q)

gcd(prd(q);cns(q)) = max(prd(q); cns(q)) over all
queues in the graph [2]. If each queue is implemented
with a unique buffer in an RBE task set, the total buffer
requirement for the application is less than or equal to 1,599
tokens, which is the sum of the values listed in Table 2 plus
3 tokens for the queues attached to external devices. This
value is 3.5% greater than the minimum buffer requirement
of 1,545 tokens.
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If a shared buffer implementation is used for the RBE
task set, we can reduce the upper bound of 1,599 to 1,101.
Observe that, since the RBE-EDF scheduler uses release
time inheritance, nodesQ,R, andV have a combined buffer
requirement of at most 960 tokens for their input and output
queues rather than the 1,440 tokens we derived by we sum-
ming individual queue requirements. This is because each
of the nodesQ, R, and V will have the same logical release
time (relative to each other) whenever they are released and
they each have the same deadline parameter. Hence, in the
worst case, all three nodes will be eligible for execution at
the same time, requiring buffer space for 3 � 240 = 720 to-
kens. When the first of these executes, say node Q, it will
produce 240 tokens on its output queue and then consume
240 from its input queue. Before the data is consumed, the
input and output queues of these three nodes requires space
for 240 + 720 = 960 tokens but after node Q executes the
combined buffer space for these queues is back to 720 to-
kens. This pattern repeats while the remaining two nodes
execute except that, when the third node completes, the to-
tal buffer space is left at 720 tokens on the output queues and
0 on the input queues for these three nodes. This reduces
the upper bound to 1,119 tokens. We can reduce this upper
bound even further by observing that the input and output
queues to node J need space for at most 21 tokens and not
30. All 10 executions of node J complete before the next ex-
ecution of node I and the input queue to node J will never
contain more than 10 tokens. Each time node J executes it
produces one token on each of its output queues and con-
sumes one token from the input queue. This results in a max-
imum of 21 tokens existing simultaneously on the input and
output queues to node J . The same is true for the input and
output queues to nodeN . Combining these savings with the
previous observation, the upper bound for a shared buffer
space is reduced to 1,101 tokens.

Since node W is the only node attached to an output
device and S = sw = (24 � 44y) � y for the INMARSAT
graph, a statically scheduled execution cannot commence
until time (24 � 44 � 1)y = 1055y — we assume the
source devices begin producing one token every y time
units starting at time 0. Thus, the buffer space required
for each of the queues attached to input devices is at
least 1,056 tokens when an off-line scheduler is em-
ployed for this graph. The total memory space required
to buffer tokens on each input queue may be even higher.
For example, once the single appearance looped schedule
(24(11(4A)B)CGHI(11(4D)E)FKLM(10NSJTUP ))
QRV (240W ) produced by the off-line Acyclic Pairwise
Grouping of Adjacent Nodes (APGAN) scheduling algo-
rithm of [2] begins, additional tokens will accumulate on
the input queues, which may increase the total buffer space
required. Thus, the total buffer space required for the two
queues attached to input devices is at least 2,112 tokens for

the APGAN schedule. The single appearance flat schedule
(1056A)(264B)(24C)(24G)(24H)(24I)(240J)(1056D)
(264E)(24F )(24K)(24L)(24M)(240N)(240P )(240S)
(240U)V QR(240W ) of [18] also requires a delay of 1054
periods of the input devices. For this schedule, however, no
more than 1056 tokens will accumulate on an input queue
since the execution time of A must be less than the period
of the external source for the schedule to be feasible. Thus,
the total buffer space required for the queues attached to
input devices is 2,112 tokens for the single appearance flat
schedule.

The off-line APGAN scheduling algorithm uses unique
buffers for each queue and achieves the optimal buffer re-
quirement of 1,542 for the queues listed in Table 2. When
we add the buffer space required for the queues attached
to external devices, however, the buffer requirement of a
statically scheduled implementation is at least 3,655 tokens
— 128.6% higher than the dynamically scheduled, unique
buffer implementation and 331.97% higher than the dynam-
ically scheduled, shared buffer implementation.

An advantage of the single appearance flat schedule is
that a single shared buffer can be used, which often results in
less memory requirements for the graph edges. For this ap-
plications, however, even with a shared buffer the flat sched-
ule requires space for 2040 tokens for the queues listed in Ta-
ble 2. Adding storage space for the 2,113 tokens buffered on
the queues attached to external devices raises the total mem-
ory requirement to 4,153 tokens, which is 159.7% higher
than the 1599 tokens buffered in the dynamically scheduled,
unique buffer implementation and 377.2% higher than the
dynamically scheduled, shared buffer implementation.

When a unique buffer is used for each graph edge, static
schedules require 128.6% more total buffer space than our
dynamic scheduling approach. When a shared buffer ap-
proach is combined with dynamic scheduling, static sched-
ulers require between 331.97% and 377.2% more buffer
memory than the RBE-EDF scheduler. Of course the use
of a shared buffer requires additional code and overhead to
manage the shared buffer, but we can quantify the trade-off
and make reasonable choices.

6. Summary

In most “real-time” processing graph methodologies,
system engineers are unable to analyze the properties of
schedulability, latency, and memory requirements. We have
shown that this is not an intrinsic property of the method-
ologies, and that by applying scheduling theory to a PGM
graph, we can synthesis a predictable real-time application
from a general processing graph. When the graph satis-
fies our schedulability condition for a simple preemptive
EDF scheduler, the buffer requirements of each queue can be
bound. For many signal processing applications, our bound
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on the memory requirements for each queue leads to nearly
optimal buffer bounds for the entire graph.

Of course, execution time, produce, threshold, consume,
and deadline values all affect schedulability, latency and
buffer requirements, and one can trade-off one metric for
any other. The synthesis method outlined here provides a
framework for evaluating schedulability and memory re-
quirements, but leaves open the problem partitioning of a
processing graph in a distributed system when the graph is
not schedulable on a uniprocessor.

We have also shown that by judiciously selecting dead-
line parameters for the nodes of an INMARSAT mobile re-
ceiver application, a dynamically scheduled execution of
the graph actually uses less buffer space than implementa-
tions scheduled by state-of-the-art, off-line schedulers. In
the past, off-line scheduling has been favored since it re-
quires little overhead (on-line), and as much processor ca-
pacity as possible needed to be applied to the signal process-
ing application. Today, as processor speed continues to in-
crease faster than memory densities, memory management
has become more critical in many signal processing appli-
cations. By using some of the processor capacity for on-line
scheduling decisions, we can achieve better latency and may
execute with less memory than off-line scheduling.
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[22] Živojnović, V., Ritz, S., Meyer, H., “High Performance DSP
Software Using Data-Flow Graph Transformations,” Proc.
of ASILOMAR 94, Nov. 1994.

12


