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Abstract:  Scheduling architectures that support a rate abstrac-
tion are becoming increasingly popular for realizing real-time
services in general-purpose operating systems. While many
rate-based schemes have been proposed, there has been little
discussion of the relative merits of each approach. We study the
performance of a set of multimedia applications under three dif-
ferent rate-based scheduling schemes implemented in the
FreeBSD operating system: a proportional share scheme (Earli-
est Eligible Virtual Deadline First scheduling), a polling,
server-based scheme (the Constant Bandwidth Server), and a
rate-based extension to the original Liu and Layland task model
(Rate-Based Execution). Furthermore, we consider three specific
scheduling problems: scheduling application level tasks,
scheduling system calls, and scheduling the kernel-level proc-
essing of data input from devices such as network interfaces.
Based on empirical evidence, we conclude that “one size does
not fit all” — that no one rate-based resource allocation scheme
suffices for all scheduling problems along the data path from the
device to an application. Rather, we achieve the best perform-
ance for our multimedia workload when we apply different rate-
based scheduling policies at different layers of the operating
system such as proportional share scheduling of system calls
and application tasks, and rate-based Liu and Layland scheduling
of device processing. *

1. Introduction
Rate-based models of real-time execution have recently be-
come popular for scheduling real-time workloads on general
purpose operating systems. This is because the processing
requirements of soft real-time applications such as multime-
dia conferencing are typically better expressed in terms of an
average processing rate such as “display 30 frames per sec-
ond,” than as a set of event response time requirements such
as “process every video frame within 33 ms of its arrival.”
That is, in the world of real-time computing on the desktop,
real-time processing requirements are frequently expressed as
higher-level, more abstract, and softer application-level re-
quirements. Moreover, these requirements often are not di-
rectly supported by the traditional Liu and Layland style
periodic task models [14] that have been the cornerstone of
real-time systems research.

To support this new class of rate-based communication and
computation services, numerous algorithms and scheduling
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frameworks have been developed. These include:

•  The resource reservation abstraction in Real-Time Mach
[16, 21, 26] and the Rialto operating system [11],

•  The vertically integrated nature of the Nemesis [12], and
RED-Linux operating systems [29],

•  The “constant-bandwidth” abstraction for a server algo-
rithm for executing aperiodic workloads [1, 22, 23],

•  The Lottery [27, 28], SMART [19], SFQ [7], and
EEVDF [24] variants of proportional share real-time re-
source allocation in UNIX, and

•  The rate-based extension to the Liu and Layland theory of
real-time scheduling [8, 9].

All of these works have demonstrated the utility of a particu-
lar paradigm of rate-based resource allocation for meeting the
requirements of soft and hard real-time applications under a
given set of conditions. While these absolute demonstrations
of success have been compelling, we are interested in under-
standing the relative merits of using one rate-based scheme
over another for the various resource allocation problems
that arise in a general purpose operating system such as
FreeBSD UNIX. That is, while rate-based resource allocation
schemes have been shown to be superior to traditional Liu
and Layland schemes, to the best of our knowledge, rate-
based schemes have never been compared to one another.

Towards this end, we have conducted an implementation
study to compare the relative merits of existing rate-based
resource allocation schemes such as those listed above. We
have two goals in this effort. First, we seek to understand
the implementation costs and application/operating system
performance under the various scheduling schemes. Second,
we believe that it is not likely to be the case that one re-
source allocation scheme will suffice for all scheduling prob-
lems that arise in a general purpose operating system. We
therefore also seek to understand the appropriateness of ap-
plying various classes of rate-based scheduling schemes
within the various layers of a traditional monolithic UNIX
operating system kernel.

In this paper we present the results of an empirical investi-
gation of these problems. We provide a comparison of the
relative costs and performance improvements under various
rate-based scheduling schemes. There are three dimensions to
our study:
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•  The type of resource allocation problem. We consider both
application-level and operating system-level resource allo-
cation. Specifically, we consider the performance of rate-
based resource allocation schemes for three resource allo-
cation problems: scheduling user programs (application-
level scheduling), scheduling the execution of system
calls made by applications (“top-half” operating system-
level scheduling), and scheduling asynchronous events
generated by devices (“bottom-half” operating system-
level scheduling).

•  The type or class of rate-based resource allocation method.
We consider three broad classes of rate-based resource allo-
cation paradigms: allocation based on a fluid-flow para-
digm, allocation based on a polling or periodic server
paradigm, and allocation based on a generalized Liu and
Layland paradigm. For each class we implemented a repre-
sentative instance from the literature. For an instance of
the fluid-flow paradigm we implemented the proportional
share scheduling algorithm earliest eligible virtual dead-
line first (EEVDF) [24]. For an instance of the polling
server paradigm we implemented a scheduler based on the
constant bandwidth server (CBS) server concept [1]. For
the generalized Liu and Layland paradigm we implemented
a rate-based extension to the original Liu and Layland task
model called rate-based execution (RBE) [10].

•  The characteristics of the workload generated. For each
rate-based allocation scheme above, we compare the real-
time performance of a set of distributed multimedia appli-
cations under a set of execution environments where the
applications execute at various rates. Specifically, we
consider cases wherein the applications execute at “well-
behaved,” constant rates, at bursty rates, and at uncon-
trolled “misbehaved” rates.

Our results show that for well-behaved workloads, each rate-
based allocation scheme we consider executes the workload
in real-time. There are differences in the overheads associated
with each scheme, however, these differences are likely
strongly influenced by our implementation and may or may
not be fundamental. The rate-based schemes perform quite
differently, however, when applications need to be scheduled
at bursty or uncontrolled rates. The Liu and Layland RBE
extension does not isolate well-behaved tasks from the ef-
fects of misbehaving tasks and leads to lower throughput for
the multimedia applications. Moreover, applications miss
numerous deadlines when scheduled by a CBS server. The
proportional share scheme performs slightly better but re-
sults in significantly poorer response times for those tasks
that do miss a deadline. That is, although fewer deadlines are
missed under the proportional share scheme than under the
CBS scheme, those tasks that miss a deadline in the propor-
tional share scheme complete later than tasks missing a
deadline under CBS.

Our results also confirm our expectations that “one size does
not fit all.” One resource allocation scheme does not suffice
for all scheduling problems that arise within the layers of a
general purpose UNIX operating system. While one can
construct an execution environment wherein all of the rate-
based schemes we consider perform well, for more realistic
environments that are likely to be encountered in practice,
the best results are achieved by employing different rate-

based allocation schemes at different levels in the operating
system. Specifically, we find that for scheduling device driv-
ers and low-level kernel processing such as network packet
and protocol processing, the rate-based extensions to the
original Liu and Layland model provide lower latency and
fewer deadline misses than other schemes. For scheduling
user applications as well as the system calls made by these
applications, the proportional share schemes give the best
results.

In total, our results show that while rate-based scheduling
schemes remain a good solution for soft real-time comput-
ing, the straightforward reduction to practice of the theory
and the universal application of a single scheduling policy
does not provide the optimum results. In this manner this
work contributes to our understanding of how rate-based
services can be realized in a general purpose operating sys-
tem.

The following section describes the problem we are address-
ing and our approach in more detail. Section 2 also reviews
the rate-based resource allocation literature in more detail.
Section 3 describes our experimental evaluation environment
and the experiments we perform. Section 4 presents results
for the three classes of rate-based resource allocation we are
considering. Section 5 proposes and evaluates a hybrid
scheme that combines different forms of rate-based resource
allocation within different levels of the operating system.
The results are summarized in Section 6.

2. Background and Related Work
Traditional models of real-time resource allocation are based
on the concept of a discrete but recurring event, such as a
periodic timer interrupt, that causes the release of task. The
task must be scheduled such that it completes execution
before a well-defined deadline. For example, most real-time
models of execution are based on the Liu and Layland peri-
odic task model [14] or Mok’s sporadic task model [18].

With the advent of multimedia computing and other soft-
real-time problems, it was observed that while one could
support the needs of these applications with traditional real-
time scheduling models, these models were not the most
natural ones to apply [6, 7, 9, 11, 27]. Whereas Liu and
Layland models typically dealt with response time guaran-
tees for the processing of periodic/sporadic events, the re-
quirements of multimedia applications were better modeled
as aggregate, but bounded, processing rates.

From our perspective three classes of rate-based resource
allocation models have evolved: fluid-flow allocation, server-
based allocation, and generalized Liu and Layland style allo-
cation. Fluid-flow allocation derives largely from the work
on fair-share bandwidth allocation in the networking com-
munity. Algorithms such as generalized processor sharing
(GPS) [20], packet-by-packet generalized processor sharing
(PGPS) [20] (better known as weighted fair queuing (WFQ)
[3]), were concerned with allocating network bandwidth to
connections (“flows”) such that for a particular definition of
fair, all connections continuously receive their fair share of
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the bandwidth. Since connections were assumed to be con-
tinually generating packets, fairness was expressed in terms
of a guaranteed transmission rate (i.e., some number of bits
per second). These allocation policies were labeled as “fluid
flow” allocation because since transmission capacity was
continuously available to be allocated, analogies were drawn
between conceptually allowing multiple connections to
transmit packets on a link and allowing multiple “streams of
fluid” to flow through a “pipe.”

These algorithms stimulated tremendous activity in both
real-time CPU and network link scheduling. In the CPU
scheduling realm numerous algorithms were developed, dif-
fering largely in the definition and realization of “fair alloca-
tion” [19, 24, 27]. Although fair/fluid allocation is in prin-
ciple a distinct concept from real-time allocation, it is a
powerful building block for realizing real-time services [25].

Server-based allocation derives from the problem of schedul-
ing aperiodic processes in a real-time system. The salient
abstraction is that a “server process” is invoked periodically
to service any requests for work that have arrived since the
previous invocation of the server. The server typically has a
“capacity” for servicing requests (usually expressed in units
of CPU execution time) in any given invocation. Once this
capacity is exhausted, any in-progress work is suspended
until at least the next server invocation time. Numerous
server algorithms have appeared in the literature; differing
largely in the manner in which the server is invoked and
how its capacity is allocated [1, 22, 23]. Server algorithms
are considered to be rate-based forms of allocation as the
execution of a server is not (in general) directly coupled with
the arrival of a task. Moreover, server-based allocation has
the effect of ensuring aperiodic processing progresses at a
well defined, uniform rate.

Finally, rate-based generalizations of the original Liu and
Layland periodic task model have been developed to allow
more flexibility in how a scheduler responds to events that
arrive at a uniform average rate but unconstrained instanta-
neous rate. Representative examples here include the (m, k)
allocation models that requires only m out of every k events
be processed in real-time [5], the window-based allocation
(DWYQ) method that ensures a minimum number of events
are processed in real-time within sliding time windows, [30],
and the rate-based execution (RBE) algorithm that “reshapes”
the deadlines of events that arrive at a higher than expected
rate to be those that the events would have had had they ar-
rived at a uniform rate [10].

For our study we will chose one algorithm from the litera-
ture from each class of rate-based allocation methods. The
choice is motivated by the prior work of the authors, spe-
cifically our ability to gain access to high-quality implemen-
tations of each algorithm. As we comment in Section 6, we
do not believe the results we ultimately show are a function
of our choice of individual algorithms but are a function of
the class of algorithms we use. For an instance of the fluid-
flow paradigm we implemented the proportional share
scheduling algorithm earliest eligible virtual deadline first
(EEVDF) [24]. For an instance of the polling server para-

digm we implemented a scheduler based on the constant
bandwidth server (CBS) server concept [1]. For the general-
ized Liu and Layland paradigm we implemented the rate-
based execution (RBE) model [10]. The following describes
each algorithm in more detail.1

2.1  Earliest Eligible Virtual Deadline First
EEVDF is a proportional share resource allocation policy
that allocates the CPU in fixed size quanta. The fundamental
concept in proportional share allocation is that at all times,
each task receives a precise share of the CPU. The share of
the CPU a task is to receive is a function of the task’s
weight; a system defined parameter. If A(t) represents the set
of tasks active in the system at time t, and wi is the weight
of task i , then the share of the CPU that task i  should re-
ceive at time t is
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A share represents a fraction of the resource’s capacity that is
“reserved” for a process. That is, if the process’s share re-
mains constant during any time interval [t1, t2], then the
process is entitled to use the resource for (t2 – t1)fi(t) time
units in the interval. Since the set of active tasks, compet-
ing for the resource at a given instant is a function of the
number of tasks in the system, the denominator in (1) will
change over time. Consequently, the actual service time that
task i can expect to receive in any interval [t1, t2] is
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Equations (1) and (2) correspond to an ideal “fluid-flow” sys-
tem in which the resource can be allocated in arbitrarily
small units of time. In practice one can implement only a
discrete approximation to the fluid system. However, when
the resource is allocated in discrete time quanta it is not pos-
sible for a process to always receive exactly the service time
it is entitled to in all time intervals. The difference between
the service time that a process should receive at a time t, and
the time it actually receives is called the service time lag (or
simply lag). Let t0  be the time at which process i  becomes
active, and let s( t0 , t) be the service time process i  receives
in the interval [t0 , t]. Then if process i  is active in the in-
terval [t0 , t], its lag at time t is defined as lagi(t) = Si( t0 , t)
– si( t i

0 , t).

It has been shown that if one can schedule a set of processes
in a proportional share system such that the lag is bounded
by a constant over all time intervals, then proportional share
execution implies real-time execution [25]. Proportional
share allocation is realized through a form of weighted
round-robin scheduling. In [24] it has been shown that the
EEVDF algorithm, a proportional share variant of deadline
scheduling, provides optimal (i.e., minimum possible) lag
bounds and can hence be used for real-time computing. The
                                                
1 Because of space considerations, these descriptions are simply meant to
give the basic flavor of each algorithm. We assume the reader has some
familiarity with these algorithms.
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key result is that the lag bounds are a function of the quan-
tum of allocation used, hence real-time guarantees in an
EEVDF (and all proportional share) systems will have a ±q
error term, where q is the quantum size.

2.2  Constant Bandwidth Server ( CBS )
The CBS server algorithm is also a method of achieving
rate-based allocation by a form of deadline scheduling. In
CBS, and its related cousin the total bandwidth server (TBS)
[22, 23], a portion of the processor’s capacity, denoted US, is
reserved for processing aperiodic requests of a task. When an
aperiodic request arrives it is assigned a deadline and sched-
uled according to the earliest deadline first algorithm. How-
ever, while the server executes, its capacity linearly de-
creases. If the server’s capacity for executing a single request
is exhausted before the request finishes, the request is sus-
pended until the next time the server is invoked.

A server is parameterized by two additional parameters CS

and TS, where CS is the execution time available for process-
ing requests in any single server invocation and TS is the
inter-invocation period of the server (US = CS/TS). Effec-
tively, if the kth aperiodic request arrives at time tk, it will
execute as a task with a deadline dk = max(tk, dk–1) + ck/US

where ck is the worst case execution time of the kth aperiodic
request, dk–1 is the deadline of the previous request from this
task, and US is the processor capacity allocated to the server
for this task.

CBS resource allocation is considered a rate-based scheme
because deadlines are assigned to aperiodic requests based on
the rate at which the server can serve them and not (for ex-
ample) on the rate at which they are expected to arrive.

2.3  Rate-Based Execution ( RBE )
The RBE paradigm is conceptually similar to the server-
based algorithms and also uses a deadline-driven policy in
the underlying scheduler. In RBE, each task is associated
with three parameters (x, y, D) which define a rate specifica-
tion. In an RBE system, each task is guaranteed to process
at least x events every y time units, and each event j  will
complete execution before a relative deadline D. The actual
deadline for processing of the j th event of task i  is given by
the recurrence:
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Under this deadline assignment function, requests for tasks
that arrive at a faster rate than x arrivals every y time units
have their deadlines postponed until the time they would
have been assigned had they actually arrived at the rate of
exactly x arrivals every y time units [10].

3.  Experimental Method and Design
We compare the performance of a distributed multimedia
workload on FreeBSD UNIX under various combinations of
rate-based resource allocation policies described above. Here
we describe the experimental setup and our performance met-
rics. We begin with a description of our workload.

3.1  Real-Time Workload
To compare the rate-based schedulers, we use three simple
multimedia applications that we believe are indicative of the
types of real-time and non-real-time processing that is likely
to be performed on a general purpose workstation. The ap-
plications are:

• An Internet telephone application that handles incoming
100 byte audio messages at a rate of 50/second and com-
putes for 1 millisecond on each message (requiring 5% of
the CPU on average),

• A motion-JPEG video player that handles incoming 1,470
byte messages at a rate of 90/second and computes for 5
milliseconds on each message (requiring 45% of the CPU
on average), and

• A file transfer program that handles incoming 1,470 byte
messages at a rate of 200/second and computes for 1 mil-
lisecond on each message (requiring 20% of the CPU on
average).

Each of these programs consists of a simple main loop con-
sisting of a read() operation on a UDP socket bound to a
specific port followed by a computation phase with a known
execution time. In addition to these three receiving processes
we also ran another process that executed the Dhrystone
benchmark program to simulate a (background) compute
intensive program. Each of these programs was run as a
separate process on the modified FreeBSD system described
below.

In addition, we configured three separate machines to act as
message generators and send messages with the desired size
and rate to the corresponding receiving process on the ex-
perimental machine.  Each machine was responsible for gen-
erating a stream of messages of one type (e.g., audio mes-
sages), destined for a single process (e.g., the audio phone
process) on the machine running the rate-extensions to
FreeBSD. The four machines (one for each multimedia data
type plus the receiving machine) were all connected to an
unloaded 10Mbps Ethernet. The experimental setup is illus-
trated in Figure 1.

Modified FreeBSD Kernel

FreeBSD

Audio
Sender

10 Mbps Ethernet

FreeBSD

M-JPEG
Sender

FreeBSD

ftp
Sender

Audio
Receiver

Dhrystone

M-JPEG
Receiver ftp

Receiver

300 Mhz Pentium Pro, 128 MB RAM

Figure 1: Experimental setup.
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With this experimental setup we conducted a number of ex-
periments where we investigated the performance of different
rate-based resource allocation schemes under different work-
loads. The goal was to evaluate how each rate-based alloca-
tion scheme performs when the rates of processes to be
scheduled varies from constant (uniform), to “bursty” (erratic
instantaneous rate but constant average rate), to “mis-
behaved” (long-term deviation from average expected proc-
essing rate).

For each experiment, three variations of the traffic generated
by the sending processes were used: (1) all three senders’
message transmission rates were constant and uniform, (2)
all three senders’ message rates were made bursty by select-
ing a random inter-message delay from a Pareto distribution
with a mean equal to the previous uniform constant rate, and
(3) the audio and video senders message rates were constant
as in (1), but the file sender “misbehaved” and sent messages
at a rate of 1,000/second instead of 200/second.

3.2  Rate-Based Scheduling of Operating
System Layers
Our experiments focus on the problem of processing in-
bound network packets and scheduling user applications to
consume these packets. Figure 2 illustrates the high-level
architecture of the FreeBSD kernel. Briefly, in FreeBSD,
packet processing occurs as follows. (For a more complete
description of these functions see [31].) When packets arrive
from the network, interrupts from the network interface card
are serviced by a device-specific interrupt handler. The device
driver copies data from buffers on the adapter card into a
chain of fixed-size kernel memory buffers (called mbufs)
sufficient to hold the entire packet. This chain of mbufs is
passed on a procedure call to a general interface input routine
for a class of input devices (e.g., Ethernet). This procedure
determines which network protocol (e.g., IP) should receive
the packet and enqueues the packet on that protocol’s input
queue. It then posts a software interrupt that will cause the

protocol layer to be executed when no higher priority hard-
ware or software activities are pending.

Processing by the protocol layer occurs asynchronously with
respect to the device driver processing. When the software
interrupt posted by the device driver is serviced, a processing
loop commences wherein on each iteration the mbuf chain at
the head of the input queue is removed and processed by the
appropriate routines for the transport protocol (e.g., UDP).
This results in the mbuf chain enqueued on the receive queue
for the destination socket. If any process is blocked in a ker-
nel system call awaiting input on the socket, it is unblocked
and rescheduled. Normally, software interrupt processing
returns when no more mbufs remain on the protocol input
queue.

The kernel socket layer code executes when a process in-
vokes some form of receive system call on a socket descrip-
tor. When data exists on the appropriate socket queue, the
data is copied into the receiving process’s local buffers from
the mbuf chain(s) at the head of that socket’s receive queue.
When there is sufficient data on the socket receive queue to
satisfy the current request, the kernel completes the system
call and returns to the user process.

We chose the problem of processing inbound network pack-
ets because it involves a range of resource allocation prob-
lems at different layers in the operating system. Specifically,
we identify three scheduling problems: scheduling of device
drivers and network protocol processing within the operating
system kernel, scheduling system calls made by applications
to read and write data to and from the network, and finally
the scheduling of user applications. These are distinct prob-
lems because the schedulable work is invoked in different
ways in different layers. Asynchronous events cause device
drivers and user applications to be scheduled but synchro-
nous events cause system calls to be scheduled. Systems
calls are, in essence, extensions of the application threads of
control into the operating system. Moreover, these problems
are of interest because of the varying amount of information
that is available to make real-time scheduling decisions at
each level of the operating system. At the application and
system call-level it is known exactly which real-time entity
should be “charged” for use of system resources while at the
device driver-level one cannot know which entity to charge.
For example, in the case of inbound packet processing, one
cannot determine which application to charge for the proc-
essing of a packet until the packet is actually processed and
the destination application is discovered. On the other hand,
one can know the cost of device processing exactly as device
drivers typically perform constant functions (such as placing
a string of buffers representing a packet on a queue) while at
the application-level one can only at best estimate the time
required for an application to complete.

The challenge is to allocate resources throughout the operat-
ing system so that end-to-end performance measures (i.e.,
network interface to application performance) can be ensured,
and that the performance metrics described next are opti-
mized.

User Process

Socket Layer

Interface/Device Driver Layer

Protocol Layer (UDP/IP)

Network Device

System   Calls

Protocol
input
queue

Socket
receive
queues

Application-Level
Process Scheduling

User Process User Process

Top-Half Kernel
(System call) Scheduling

Bottom-Half Kernel
(Device driver) Scheduling

Figure 2: Architectural diagram of UDP protocol
processing in FreeBSD.
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3.3  Performance Metrics
Following the experimental design used in [8], we compare
the EEVDF, CBS, and RBE resource allocation schemes by
examining the performance of network protocol processing
under the network conditions described in Section 3.1. In
each experiment we report performance measures at the de-
vice-driver level (“bottom-half” kernel performance), at the
system-call/socket interface level (“top-half” kernel perform-
ance), and at the application level. Performance measures of
interest are: the number of packets dropped at each level, the
number of deadlines missed for the processing of individual
packets, and the range on actual response times observed for
packet processing. We collect data over one minute inter-
vals. Ideally we would like to observe that:

•  When data arrives for each application at a constant rate,
all applications process data in real-time (i.e., no data is
lost and all application deadlines are respected). The In-
ternet phone would receive 3,000 packets (50×60) in a
measurement interval, the video player would receive
5,400 packets, and the file transfer would receive 12,000
packets. The deadlines for the processing of packets will
be 20 ms for the phone application, 11.1 ms for the
video application, and 5 ms for the ftp application.

•  When data arrives for an application at a faster rate than
the application can process it, the data is discarded at the
lowest level of the operating system (the receive livelock
effect does not occur [4, 17]) and the processing of data
for other applications that is arriving at a uniform rate is
minimally effected.

To assess the overhead of the various implementations, we
measure the number of Dhrystone iterations completed in a
measurement interval. This is at best an indirect measure of
overhead, however we feel it is nonetheless an insightful
measure.

4.  Performance Results I: Universal applica-
tion of each rate-based schemes
We modified the FreeBSD system (2.2.2-RELEASE) to
support the EEVDF, CBS, and RBE scheduling algorithms,
and ran a suite of experiments to assess the impact of rate-
based scheduling on packet and network protocol processing.
Our experiments were conducted on a 300Mhz Pentium Pro
with 128 MB of memory. The network interface was a
3Com 3C595 (vx0) 10/100 Ethernet adapter running at
10Mbps. To begin, we compare the performance of our ap-
plication workload when all resource allocation in the kernel
and at the application level is performed using the same rate-
based allocation scheme. In the next section we look at the
performance when different rate-based allocation schemes are
employed at different levels in the kernel.

As an aside, we note that from an engineering perspective,
there are numerous interesting issues concerning the evolu-
tion of an operating system with a monolithic structure that
uses static priority scheduling, to one that performs inte-
grated rate-based resource allocation (where integration here
refers to integration between application layer scheduling and

the scheduling of all other layers of the operating system).
Some of these issues were discussed in [8]; in this work, we
defer a broader discussion of these issues to a future paper.

4.1  Performance Under Proportional Share
Allocation
Our first implementation uses EEVDF proportional share
scheduling at the device, protocol processing, and the appli-
cation layers. Each real-time task is assigned a share of the
CPU equal to its expected utilization of the processor. For
example, the Internet phone application requires 5% of the
CPU (see Section 3.1) and hence is assigned a weight of
0.05. Non-real-time tasks (the Dhrystone) are assigned a
weight equal to the unreserved capacity of the CPU. Net-
work protocol processing is treated as a real-time (kernel-
level) task that processes a fixed number of packets when it
is scheduled for execution. Each incoming packet stream is
serviced according to its expected rate of arrival, using a
WFQ-like scheme [3, 8]. The network device driver enqueues
packets for different flows in different queue (i.e., it includes
a packet classifier). This is done to enable us to bound the
ill-effects of “misbehaved” arrival processes. In our imple-
mentation of EEVDF, based on the results reported in [8],
we use a scheduling quantum of 1 ms.

Table 1 gives the packet processing performance for the uni-
versal application of EEVDF scheduling. In the well-
behaved senders case all packets are moved from the network
interface to the socket layer to the application and processed
in real-time. When the file transfer sender misbehaves and
sends more packets than the ftp receiver can process given
its CPU reservation, EEVDF does a good job of isolating
the other well-behaved processes from the ill-effects of ftp.
This can be seen by noting that the excess ftp packets are
dropped at the lowest level of the kernel (at the IP layer)
before any significant processing is performed on these
packets. In this manner the receive livelock problem is also
avoided. The overhead of packet processing in this case goes
up (e.g., the time spent demultiplexing packets at the device
layer to determine if they should be dropped) and this can be
seen in the decrease in Dhrystone iterations. Performance is
poorer when data arrives for all applications in a bursty
manner. This is an artifact of the quantum-based allocation
nature of EEVDF. Over short intervals, data arrives faster
than it can be serviced at the IP layer and the IP interface
queue overflows. With a 1 ms quantum, it is possible that
IP processing can be delayed for upwards of 8-10 ms and this
is sufficient time for the queue to overflow in a bursty envi-
ronment. This problem could be ameliorated to some extent
by increasing the length of the IP queue, however, this
would also have the effect of increasing the response time
for packet processing.

Table 2 gives the corresponding response time and deadline
miss statistics. Real-time performance is achieved (no dead-
lines are missed) when traffic is generated at a constant rate.
When the file transfer sender misbehaves the overhead of
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processing these
packets results in an
increase in the aver-
age response time of
all applications and a
modest number of
deadline misses.
Performance is poor
under the bursty
sender case because
of the number of
dropped packets and
the longer queue
lengths at the IP and
socket layers.

4.2 Perform-
ance Under
Server Based Allocation
The second implementation uses a CBS server task for proc-
essing at the device, protocol processing, and the application
layers. Each task has a capacity equal to its CPU utilization
and period equal to the expected interarrival time of packets.
The Dhrystone task is again assigned to a server with capac-
ity equal to the unreserved capacity of the CPU. This im-
plementation also uses a packet classifier in the device driver
for early demultiplexing of packets into separate IP queues.

Table 3 gives the packet processing performance for the uni-
versal application of CBS scheduling. Performance is again
excellent in the well-behaved senders case. In the case of the
misbehaved file transfer, CBS also does a good job of isolat-
ing the other well-behaved processes. The excess ftp packets
are dropped at the IP layer and thus receive livelock does not
occur. In the case of bursty senders CBS scheduling outper-
forms proportional share scheduling. Under CBS, through-
put results for the bursty case are nearly identical to the con-
stant rate senders case. This is because CBS tasks are event
driven and hence can respond quicker to the arrival of pack-
ets. That is, under EEVDF the rate at which the IP queue
can be serviced is a
function of the quan-
tum size and the
number of processes
currently active
(which determines
the length of a
scheduling “round”
[3]). In general these
parameters are not
directly related to the
real-time require-
ments of applica-
tions. Under CBS
the service rate is a
function of the
server’s period which
is a function of the
expected arrival rate;

parameters that are
directly related to
application require-
ments. For the
choices we made for
quantum size for
EEVDF, and server
period for CBS, we
get good perform-
ance under CBS and
poor performance
under EEVDF. We
conjecture that is
likely the case that
these parameters
could be tuned to
reverse this result.

Although CBS out-
performs EEVDF in terms of throughput, the results are
mixed for response times. Table 4 shows that considerably
more deadlines are missed under CBS. Even when senders are
well behaved, a significant number of packets are processed
late. This is problematic since in this case the theory pre-
dicts that no deadlines should be missed. The cause of the
problem here relates to the problem of accounting for the
CPU time consumed when a CBS task executes. In our im-
plementation the capacity of a CBS task is updated only
when the task sleeps or is awaken by the kernel, hence many
other kernel related functions that interrupt servers (e.g.,
Ethernet driver execution) are inappropriately charged to
tasks and hence bias scheduling decisions. This accounting
problem is fundamental to the server-based approach and
cannot be completely solved without significant additional
mechanism (and overhead).

4.3  Performance Under Generalized Liu and
Layland Allocation
The third implementation uses RBE scheduling for process-
ing at the device, protocol, and application layers. Each task

has a simple rate
specification of (1,
p, p) (i.e., one event
will be processed
every p time units
with a deadline of p)
where p is the period
of the corresponding
application. This has
the effect of ensuring
that the RBE tasks
will have the same
main scheduling
parameters (period
and relative deadline
parameters) as they
did in the CBS ex-
periments.

Table 1: EEVDF performance — throughput and loss rates.

Constant Rate Senders Misbehaved ftp Bursty (Pareto) Senders

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Phone 0 0 2,993 5 0 2,997 1,585 0 1,342

ftp 0 0 11,961 17,999 0 11,902 5,315 0 5,408

M-JPEG 0 0 5,346 56 0 5,390 2,705 0 2,498

Dhrystone N/A N/A 5.1E+6 N/A N/A 3.7E+6 N/A N/A 14.2E+6

Table 2: Response time results (ms) and deadline miss ratios.

Constant Rate Senders Misbehaved ftp Bursty Senders

Min Avg. Max %Miss Min Avg. Max %Miss Min Avg. Max %Miss

Phone 1.9 7.6 12.1 0% 1.9 9.8 31.4 2% 2.6 17.3 56.2 47.8%

ftp 1.9 2.4 4.2 0% 1.9 73.4 172.3 99% 1.9 17.9 100.8 49.6%

M-JPEG 5.2 6.1 9.9 0% 5.2 9.5 21.0 10% 5.8 14.1 41.1 97.2%

Table 3: CBS performance — throughput and loss rates.

Constant Rate Senders Misbehaved ftp Bursty (Pareto) Senders
Drops at

IP
Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Phone 0 0 2,977 0 0 2,978 0 0 2,938

ftp 2 0 11,914 17,880 0 12,120 5 0 10,760

M-JPEG 0 0 5,388 0 0 5,391 0 0 3,192

Dhrystone N/A N/A 3.4E+6 N/A N/A 2.4E+6 N/A N/A 4.12E+6

Table 4: Response time results (ms) and deadline miss ratios.

Constant Rate Senders Misbehaved ftp Bursty Senders

Min Avg. Max %Miss Min Avg. Max %Miss Min Avg. Max %Miss

Phone 1.1 3.1 6.6 0% 1.2 3.9 30.01.9% 1.09 42.2 170.3 68.4%

ftp 1.1 4.1 18.8 34.3% 142 242.0 391.5100% 1.07 21.3 95.8 82.5%

M-JPEG 5.8 10.0 17.8 35.8% 5.9 21.4 197.1 26.3% 5.8 10.9 36.1 32.2%
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Table 5 gives the
packet processing
performance for the
universal application
of RBE scheduling.
Performance is excel-
lent in the well-
behaved and bursty
senders case but
poorer in the case of
the misbehaved file
transfer application.
On the one hand,
RBE appears to pro-
vide good isolation
between the file
transfer and the other
real-time applica-
tions, however, this
isolation comes at the expense of the non-real-time Dhry-
stone application. All of the excess ftp packets are dropped
higher-up in the kernel at the socket layer and the extra time
required to process these packets up through the socket layer
means there is less time available for the Dhrystone applica-
tion. In fact, unlike CBS or EEVDF, RBE as an algorithm
has no mechanism for directly ensuring isolation between
tasks as there is no mechanism for limiting the amount of
CPU time an RBE task consumes. All events in an RBE
system (packet arrivals in our case) are assigned deadlines for
processing. When the work arrives at a faster rate than is
expected, the deadlines for the work are simply pushed fur-
ther and further out in time. In our case, this means that
packets are enqueued at the socket layer but with deadlines
that are so large that processing is so delayed processed that
the socket queue quickly fills and overflows. Because time is
spent processing packets up to the socket layer that are never
consumed by the application, receive livelock could be pos-
sible under RBE scheduling. Worse yet, had the real-time
workload consumed a larger cumulative fraction of the CPU
we would not have seen isolation between the well-behaved
and misbehaved real-time applications. (That is, the fact that
we observe isolation in this experiment is an artifact of our
specific real-time workload.)

Because the RBE scheduler assigns deadline to all packets,
and because our system is not overloaded, we observe the
smallest response times under RBE. However, given the
number of packets that are dropped at the socket layer, these
response time figures are less meaningful. Dhrystone per-
formance is the worst under RBE as this task pays the pen-
alty for all of the unnecessary packet processing.

5. Performance Results II: Hybrid rate-based
scheduling
The results of applying a single rate-based resource alloca-
tion policy to the problems of device, protocol, and applica-
tion processing are mixed. When processing occurs at rates
that match the underlying scheduling model (e.g., the con-
stant rate senders case), all the policies we have considered

achieve real-time
performance. When
work arrives for an
application that ex-
ceeds the applica-
tion’s rate specifica-
tion or resource res-
ervation, then only
the CBS server-based
scheme and the
EEVDF proportional
share scheme provide
good isolation be-
tween well-behaved
and misbehaved ap-
plications. When
work arrives in a
bursty manner, the
quantum-based na-

ture of EEVDF leads to less responsive protocol processing
and hence more (unnecessary) packet loss. CBS performs
better but suffers from the complexity of the CPU-time ac-
counting problem that must be solved. RBE provides the
best response times but only at the expense of (unnecessary)
decreased throughput for the non-real-time activities. In to-
tal, we conclude that there is utility in applying different
rate-based resource allocation schemes in different layers of
the kernel. We conjecture that the best performing system
will result from mixing rate-based schemes.

To test this conjecture we constructed two hybrid rate-based
FreeBSD systems. For application and system call level
processing we use EEVDF scheduling. We make this choice
because the quantum nature of EEVDF, while bad for intra-
kernel resource allocation, is a good fit given the existing
round-robin scheduling architecture in FreeBSD. It is easy to
implement and to control precisely and gives good real-time
response when schedulable entities execute for long periods
relative to the size of a quantum. For device and protocol
processing inside the kernel we consider both CBS and RBE
scheduling. Since the lower kernel layers operate more as an
event driven system, a paradigm which takes into account
the notion of event arrivals is appropriate. Both of these
policies are also well-suited for resource allocation within
the kernel because, in the case of CBS, it is easier to control
the levels and degrees of preemption within the kernel and
hence it is easier to account for CPU usage within the kernel
(and hence easier to realize the results predicted by the CBS
theory). In the case of RBE, processing within the kernel is
more deterministic and hence RBE’s inherent inability to
provide isolation between tasks that require more computa-
tion than they reserved is less of a factor.

Tables 7-10 give the throughput, loss, and deadline miss
statistics for these CBS+EEVDF and RBE+EEVDF sys-
tems. In the case of constant rate senders, both perform flaw-
lessly. The overhead of the schemes, as measured by the
Dhrystone performance, is comparable and only slightly
worse than the best performing constant-rate senders system
in Section 4 (the EEVDF system). In the misbehaved ftp

Table 5: RBE performance — throughput and loss rates.

Constant Rate Senders Misbehaved ftp Bursty (Pareto) Senders
Drops at

IP
Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Phone 0 0 3,000 0 0 2,998 0 0 3,027

ftp 0 0 11,944 0 9,052 20,794 0 0 10,778

M-JPEG 0 0 5,443 0 0 5,444 0 0 5,287

Dhrystone N/A N/A 1.2E+6 N/A N/A 0.4E+3 N/A N/A 1.47E+6

Table 6: Response time results (ms) and deadline miss ratios.

Constant Rate Senders Misbehaved ftp Bursty Senders

Min Avg. Max %Miss Min Avg. Max %Miss Min Avg. Max %Miss

Phone 2.1 2.4 17.8 0% 1.24 1.3 1.4 0% 1.0 8.6 63.0 10.7%

ftp 1.1 1.3 1.7 0% 73.7 78.0 84.4100% 1.0 1.1 8.3 0.1%

M-JPEG 6.5 8.3 10.5 0% 5.75 5.9 22.9 0.06% 5.7 6.9 10.4 0%
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application case,
both implementa-
tions provide good
isolation, compara-
ble to the best sys-
tems in Section 4.
However, in both
the hybrid ap-
proaches, response
times and deadline
miss ratios are now
much improved. In
the case of bursty
senders, all packets
are eventually proc-
essed and although
many deadlines are
missed, both hybrid
schemes miss fewer
deadlines than the systems in Section 4. Overall the
RBE+EEVDF system produces the lowest overall deadline
miss ratios. While we do not necessarily believe this is a
fundamental result (i.e., there are numerous implementation
details to consider), it is the case that the polling nature of
the CBS server tasks increases response times over the direct
event scheduling method of RBE.

6.  Summary, Conclusions, and Future Work
Rate-based resource allocation schemes are a good fit for
providing real-time services in a general purpose operating
system. Allocation schemes exist that are a good fit for the
scheduling architectures used in the various layers of a tradi-
tional monolithic UNIX kernel such as FreeBSD. We have
considered three such rate-based schemes: the earliest eligible
virtual deadline first (EEVDF) fluid-flow paradigm, the con-
stant bandwidth server (CBS) polling server paradigm, and
the generalization of Liu and Layland scheduling known as
rate-based execution (RBE). We compared their performance
for three scheduling problems found in FreeBSD: applica-
tion-level scheduling of user programs, scheduling the exe-
cution of system
calls made by appli-
cations in the “top-
half” of the operat-
ing system, and
scheduling asyn-
chronous events
generated by devices
in the “bottom-half”
of the operating sys-
tem. For each sched-
uling problem we
considered the prob-
lem of network
packet and protocol
processing for a
suite of canonical
multimedia applica-

tions. We tested
each implementa-
tion under three
workloads: a uni-
form rate packet
arrival process, a
bursty arrival proc-
ess, and a misbe-
haved arrival process
that generates work
faster than the corre-
sponding applica-
tion process can
consume it.

The results were
mixed. When work
arrives at rates that
match the underly-

ing scheduling model (the constant rate senders case), all the
policies we considered achieve real-time performance. When
work arrives that exceeds the application’s rate specification,
only the CBS server-based scheme and the EEVDF propor-
tional share scheme provide isolation between well-behaved
and misbehaved applications. When work arrives in a bursty
manner, the quantum-based nature of EEVDF gives less
responsive protocol processing and more packet loss. CBS
performs better but suffers from CPU-time accounting prob-
lems that result in numerous missed deadlines. RBE pro-
vides the best response times but only at the expense of
decreased throughput for the non-real-time activities.

We next investigated the application of different rate-based
resource allocation schemes in different layers of the kernel
and considered EEVDF proportional share scheduling of ap-
plications and system calls combined with either CBS serv-
ers or RBE tasks in the bottom half of the kernel. The quan-
tum nature of EEVDF scheduling proves to be well suited to
the FreeBSD application scheduling architecture and the
coarser-grained nature of resource allocation in the higher-
layers of the kernel. The event driven nature of RBE schedul-

ing gives the best
response times for
packet and protocol
processing. Moreo-
ver, the deterministic
nature of lower-level
kernel processing
avoids the shortcom-
ings observed when
RBE scheduling is
employed at the
user-level.

In summary, we
conclude that more
research is needed on
the design of rate-
based resource allo-
cation schemes that

Table 7 CBS+EEVDF performance — throughput and loss rates.

Constant Rate Senders Misbehaved ftp Bursty (Pareto) Senders
Drops at

IP
Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Phone 0 0 2,869 0 0 2,797 0 0 2,988

ftp 0 0 11,722 17,898 0 11,545 0 0 10,340

M-JPEG 0 0 5,343 0 0 5,398 0 0 4,951

Dhrystone N/A N/A 3.1E+6 N/A N/A 2.9E+6 N/A N/A 4.6E+6

Table 8: Response time results (ms) and deadline miss ratios.

Constant Rate Senders Misbehaved ftp Bursty Senders

Min Avg. Max %Miss Min Avg. Max %Miss Min Avg. Max %Miss

Phone 1.2 7.6 14.7 0% 2.5 9.8 24.2 0.03% 1.2 14.2 184.4 19.8%

ftp 1.2 1.3 2.8 0% 239 249.6 258.5100% 1.2 5.4 89.1 30.4%

M-JPEG 5.7 7.9 23.7 0.2% 6.5 8.5 12.3 0.3% 5.7 8.9 43.3 14.6%

Table 9: RBE+EEVDF performance — throughput and loss rates.

Constant Rate Senders Misbehaved ftp Bursty (Pareto) Senders
Drops at

IP
Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Drops at
IP

Drops at
socket

Packets
Processed

Phone 0 0 2,873 0 0 2,789 0 0 2,954

ftp 0 0 11,802 17,872 0 11,647 0 0 10,437

M-JPEG 0 0 5,324 0 0 5,393 0 0 4,956

Dhrystone N/A N/A 3.1E+6 N/A N/A 2.9E+6 N/A N/A 4.5E+6

Table 10: Response time (ms) and deadline miss ratios.

Constant Rate Senders Misbehaved ftp Bursty Senders

Min Avg. Max %Miss Min Avg. Max %Miss Min Avg. Max %Miss

Phone 1.2 7.3 15.8 0% 2.2 10.1 26.20.1% 1.2 13.6 78.3 12.3%

ftp 1.2 1.3 2.9 0% 189 237.6 289.5100% 1.2 5.3 59.1 24.1%

M-JPEG 5.7 7.8 25.7 0.32% 6.3 8.2 12.80.3% 5.7 9.6 43.4 13.1%
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are tailored to the requirements and constraints of individual
layers of an operating system kernel. All of the schemes we
tested worked well for application-level scheduling (the prob-
lem primarily considered by the developers of each algo-
rithm). However, for intra-kernel resource allocation, these
schemes give significantly different results. By combining
resource allocation schemes we are able to alleviate specific
shortcomings, however, this is likely more accidental than
fundamental as none of these policies were specifically de-
signed for scheduling activities within the kernel. By study-
ing these problems in their own right, significant improve-
ments should be possible.
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