
In: Proc. 11th IEEE Workshop on Real-Time Operating Systems and Software, May 1994, Seattle, WA, to pp. 86-90.

On Latency Management in Time-Shared
Operating Systems*

Kevin Jeffay

University of North Carolina at Chapel Hill
Department of Computer Science

Chapel Hill, NC 27599-3175
jeffay@cs.unc.edu

Abstract: The design of general purpose operating
systems impose constraints on the way one can structure
real-time applications. This paper addresses the problem
of minimizing the end-to-end latency of applications that
are structured as a set of cooperating (real-time) tasks.
When applications are structured as a set of cooperating
tasks the time required for data to progress from an input
task to an output task is a function of the number of the
tasks that handle the data and the deadlines of individual
tasks. We present an integrated inter-process com-
munication and scheduling scheme that can be used to
minimize the end-to-end latency of multi-threaded
applications. Our approach is to provide the scheduler
with information on the inter-process communication
interconnections between tasks and to use this information
to guarantee an end-to-latency to applications that is
simply a function of the timing properties of the
application and not its task structure. This scheme has
been implemented within the YARTOS kernel and is
presently being ported to the Real-Time Mach kernel.

1 . Introduction

Multimedia applications that process streams of live and

stored audio and video are stimulating research on the

integration of real-time computation and communication

services into general purpose, time-shared operating

systems. While much is known about the scheduling and

resource allocation problems that comprise the formal un-

derpinnings of such services, techniques for implementing

and using existing algorithms, in particular within the

context of general purpose operating systems, have

received relatively little attention.

* Supported in part by grants from the IBM Corporation, the Intel
Corporation, and the National Science Foundation (numbers CCR-
9110938 and ICI-9015443).

In this note, we describe a problem that arose during the

implementation of an experimental desktop video-

conferencing system [4, 5]. Abstractly, the problem is

that of minimizing end-to-end latency in real-time

applications that consist of a set of cooperating tasks or

threads. Here latency is defined as the difference between

the times at which input data is first made available to an

application thread and the time at which an application

thread performs an output operation based on the input

data. The thesis of this work is that by providing the

kernel with information on the task structure of real-time

applications, one can both dramatically reduce the worst

case end-to-end application latency and employ relatively

simple scheduling algorithms to provide real-time

response to individual tasks.

The following section motivates the end-to-end latency

problem using an idealized version of our video-

conferencing system as an example. Section 3 outlines a

real-time message passing service that we constructed

within the YARTOS (Yet Another Real-Time Operating

System) kernel [7]. We show how this service reduces

worst case end-to-end latency and how it can be efficiently

implemented. The YARTOS message passing service is

currently being ported to the Real-Time Mach kernel [11]

and will form the basis for a comparative study of the real-

time performance of the YARTOS and RT-Mach thread

models.

2 . The End-to-End Latency Problem

Real-time computations require bounded response times.

In general, by employing results from the real-time

scheduling literature (e.g., [10]), for relatively simple

2

Time
(in ms.)

FG

t t + 33 t + 66 t + 100 t + 133

UP

CP
FF
NI

t + 166

Video frame f is generated.

Video frame f delivered to
network interface.

Worst case end-to-end latency for a single frame of video.

Figure 1

models of computation, it is possible to (1) determine

conditions under which it is theoretically possible to

guarantee that an invocation of a task will complete

execution by a certain point in time, and (2) allocate

resources within an operating system to ensure that an

invocation of a task actually achieves its response time

bound.

Often, it is desirable to guarantee a response time to a

collection of cooperating tasks that execute in concert to

realize some application. For example, consider the video

processing portion of a desktop videoconferencing

application. The goal of this application is to acquire,

compress, and transmit a logically infinite sequence of

digitized video frames across a network. The application

is composed of the following (idealized) tasks:

• FG –– a task to control a frame-grabber that digitizes
video frames generated by a camera,

• UP –– a task to invoke user programs on the digitized
frames for any user-level image processing that is
desired (e.g., for feature extraction and notification),

• CP –– a task to compress the digitized frame,

• FF –– a task to format and fragment the compressed
frame(s) into network packets for delivery across a
network, and

• NI –– a task to control the network interface hardware.

These tasks cooperate to form a simple pipeline. Every

video frame generated by the camera is digitized, processed

by the user, compressed, formatted, and delivered to the

network interface for transmission across the network.

In order for this conferencing application to be effective,

two real-time constraints must be met. First, every video

frame that is generated by the camera must make it

through all stages of the pipeline and be delivered to the

network interface. Second, the end-to-end latency of each

frame –– defined as the difference between the time the

frame arrives at the network interface and the time the

frame was generated –– must be kept to a minimum.

Since current video cameras and frame-grabbers generate

data at regular, periodic intervals, the first constraint is

easily satisfied by implementing each stage of the pipeline

as a periodic task and using any number of real-time

scheduling algorithms from the literature to schedule the

tasks. The second constraint is not so easily satisfied.

An (NTSC) video frame is generated, and enters the

pipeline, every 33.3 ms. In our implementation of the

above video pipeline, every task has a period of 33.3 ms.

Since there are 5 stages in the pipeline, the worst case end-

to-latency of a video frame is 166.6 ms. The worst case

occurs when each invocation of each task completes as late

as possible within its period and stage i + 1 of the

pipeline is not invoked until stage i has completed as

shown in Figure 1. Whether or not the worst case

actually occurs will depend on factors that are beyond the

application writer’s control such as the magnitude of the

total system workload (e.g., the number of other real-time

and non-real-time tasks sharing the processor).

Note that the latency bound of 166.6 ms is really an

artifact of the pipeline implementation of the video

application and is not fundamental to the conferencing

3

problem itself. For example, consider an implementation

of the conferencing application that combines functions

FG, UP, CP, FF, and NI into a single task. If the task

had a period of 33.3 ms, then all video frames that are

generated will be delivered to the network interface

(assuming the system is still schedulable) and the worst

case end-to-end latency of each frame will be no more than

33.3 ms.

The problem is that it is not always possible (or desirable)

to collapse all application and system functions into a

single task. In particular, when executed on top of a

general purpose operating system, many of the real-time

application’s functions (such as input and output), are

implemented by operating system system calls or servers

(and associated device drivers) and are shared with other

applications.

The challenge therefore is to support the pipeline model of

application design and execution while not incurring the

penalty inherent in the straightforward realization of the

pipeline. Specifically, we would like to structure the

conferencing application as a series of cooperating tasks

and maintain a worst case end-to-end latency bound of 33.3

ms –– the period of a single stage of the pipeline.

Note that in principle this should be possible since the

total amount of computation (ignoring operating system

overhead) performed by the single and multi-task

implementations of the application are the same. The

only difference is that in the multi-task implementation of

the application, several video frames may be processed

simultaneously (i.e., several video frames may be in the

pipeline at any one time).

3 . A Real-Time Message Passing Service

Our solution to the problem of minimizing end-to-end

latency is to make the pipeline structure of the

conferencing application known to the kernel and to use

this information to schedule the stages of the pipeline as if

they were part of a larger sequential program. This

technique has been implemented as part of the message

passing system in the YARTOS kernel [7]. We begin

with an overview of the YARTOS programming model.

The YARTOS kernel supports a simple data-flow model

of real-time computation. Briefly, applications are

composed of tasks, resources, and ports. Tasks are threads

of control, resources are shared abstract data types, and

ports are queues for messages. Tasks communicate with

other tasks by sending messages to ports. Each port is

bound to a unique task. When a message is sent to a port,

the kernel schedules the task bound to the port so that the

message will be consumed before a deadline defined by the

rate at which the message sender emits messages. The

deadline is chosen so as to ensure that all messages from

this sender can be processed in real-time (i.e., without any

buffering). (The YARTOS programming model is

explained in greater detail in [9]. The scheduling

algorithm used in the kernel is described in [6].)

When tasks and ports are created, the kernel constructs a

directed graph of all possible communication paths. When
a message is sent from task Ti to task Tj, the deadline for

task Tj is computed using the time of Ti’s most recent

invocation as invocation time for Tj. That is, tasks Ti and

Tj are scheduled as if they were invoked simultaneously ––

as if they were a single task.

For example, assume task Ti is invoked at time t and has a

deadline at time t + p. Ti executes sometime during the

interval [t, t+p] and sends a message to task Tj. No matter

when the message is actually sent to T j, task T j is

considered to have been invoked at time t. It is a property

of the YARTOS programming model that the invocation
of task Tj “occurring” at time t cannot have a deadline

before time t + p. Therefore, during the interval [t, t+p],
Tj will not preempt Ti and when Tj is dispatched, there

will be a message from task Ti for it to process.

The one exception to these invocation rules is when

messages arrive from the outside world (e.g., from

interrupt handlers). When a task receives a message from

an external process, the task’s deadline is computed from

the arrival time of the message (using application specified

parameters that are sufficient for providing the desired real-

time response to the external process).

With this message passing scheme, the time required in
the worst case for a message to pass through tasks Ti and

Tj in YARTOS is the same as the time required in the

worst case for a message to be processed by a single task

4

that combined the functions of Ti and Tj. Thus the worst

case end-to-end latency of a multi-threaded YARTOS

application is not a function of the task structure. Rather,

it is a function of the deadlines associated with application

messages.

For example, in our videoconferencing application, all

messages have a deadline for processing of 33 ms. If the

FG task receives a message (an interrupt in this case) at

time t, then if this message results in messages being sent

to tasks UP , CP , FF , and NI , all messages will be

processed at or before time t + 33. Therefore, each video

frame is delivered to the network interface no more than 33

ms after it was generated.

The alternate approach to minimizing end-to-end latency is

to combine all video processing tasks into a single task.

However, in our system tasks FF and NI are actually

general purpose operating system services that are shared

with other user applications and hence can not be

embedded directly into the conferencing application. (In

fact, it is largely for this reason that a common approach

to achieving real-time performance in general purpose

operating systems has been to move application code into

the operating system where finer-grain control over

resource allocation is also usually possible.)

4 . Related Work

Our message passing system is related to the paradigm of

communication and scheduling integration reported by

Draves et al. [2]. In this work a scheduling and context-

switching mechanism based on the programming language

concept of continuations is introduced to allow an

applications that consists of multiple threads to execute

more like a single threaded application. The emphasis is

[2], however, was on reducing system overhead. Our work

seeks to minimize worst case end-to-end latency.

Other related work includes the general priority model of

Harbour et al. [3], wherein periodic tasks can be

decomposed into subtasks that may have varying

execution priority. In such a model it is possible to more

directly express and reason about what we have called end-

to-end latency constraints. In our work we have argued

that a simple scheduling algorithm (described in [6]) is

sufficient for managing latency.

Lastly, the flow shop scheduling results of Bettati and Liu

[1] are relevant. They consider the problem of minimizing

end-to-end latency in a system of multiple processing

elements (e.g., a distributed system). We have only

considered the latency problem on a single shared

processor.

5 . Conclusions and Future Work

The design of general purpose operating systems impose

constraints on the way one can structure real-time

applications. Common operating system services such as

network transport protocols, and device management need

to be used by real-time applications. Because such

services are shared with other applications they cannot by

tightly bound to the real-time applications. We have

shown that making application inter-task communication

paths known to the kernel, one can provide a worst case

end-to-end application latency bound that is the equivalent

to the bound for an implementation of the application as a

single task.

While we described the real-time message passing service

within the context of an application whose tasks form a

pipeline, the service can be applied to any graph structure

to minimize latency of message communication along any

path in the graph.

Currently we are porting the YARTOS message passing

service to RT Mach (MK83) kernel and hope to compare

the end-to-end latency of applications using the RT Mach

and YARTOS communication primitives.

6 . References

[1] Bettati, R., Liu, J.W.-S., End-to-End Scheduling to
Meet Deadlines in Distributed Systems, Proc. IJDCS
‘92, Yokohama, Japan, pp. 452-459.

[2] Draves, R.P., Bershad, B.N., Rashid, R.F., Dean,
R.W., Using Continuations to Implement Thread
Management and Communication in Operating
Systems, Proc. 13th ACM Symp. on Operating
System Principles, Pacific Grove, CA, October
1991, pp. 122-136.

[3] Harbour, M.G., Klein, M.H., Lehoczky, J., Fixed
Priority Scheduling of Periodic Tasks with Varying
Execution Priority, Proc. 12th IEEE Real-Time

5

Systems Symp., San Antonio, TX, December 1991,
pp. 116-128.

[4] Jeffay, K., Stone, D.L., and Smith, F.D., Transport
and Display Mechanisms for Multimedia
Conferencing Across Packet-Switched Networks,
Computer Networks and ISDN Systems, to appear.

[5] Jeffay, K., Stone, D.L., and Smith, F.D., 1992.
Kernel Support for Live Digital Audio and Video.
Computer Communications, Vol. 16, No. 6 (July),
pp. 388-395.

[6] Jeffay, K., 1992. Scheduling Sporadic Tasks with
Shared Resources in Hard-Real-Time Systems, Proc.
13th IEEE Real-Time Systems Symp., Phoenix,
AZ, December 1992, pp. 89-99.

[7] Jeffay, K., Stone, D.L., Poirier, D., YARTOS:
Kernel support for efficient, predictable real-time
systems, in “Real-Time Programming,” W. Halang
and K. Ramamritham, eds., Pergamon Press, Oxford,
UK, 1992, pp. 7-12.

[8] Jeffay, K., Scheduling Sporadic Tasks with Shared
Resources in Hard-Real-Time Systems, Proc. 13th

IEEE Real-Time Systems Symp., Phoenix, AZ,
December 1992, pp. 89-99.

[9] Jeffay, K., The Real-Time Producer/ Consumer
Paradigm: A paradigm for the construction of
efficient, predictable real-time systems, Proc. 1993
ACM/SIGAPP Symposium on Applied Computing,
Indianapolis, IN, ACM Press, February 1993, pp.
796-804.

[10] Liu, C.L., Layland, J.W., Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment, Journal of the ACM, Vol. 20, No. 1,
(January 1973), pp. 46-61.

[11] Tokuda, H., Nakajima, T., Rao, P., Real-Time
Mach: Towards a Predictable Real-Time System,
Proc.USENIX Mach Workshop, Burlington, VT,
October 1990, pp. 73-82.

