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Abstract

Corset and Lace are runtime environment interfaces. Corset is an
interface specification for a compact runtime support environment for
tasking, for Ada. Lace is a specification for a low-level adaptable com-
mon executive that implements a model of real-time, lightweight tasks.
These interfaces are designed to promote a wide range of implementa-
tions and extensions, tailored to the needs of diverse applications and
hardware configurations, especially real-time embedded systems.

1 Introduction

The minimal language required by the Ada Standard [1] presents prob-
lems for use in building real-time systems. In particular, early Ada
implementations are characterized by large size, high execution over-
head, a lack of timing predictability, and a lack of control over the
detailed resource management decisions on which correct timing and
system reliability depend. Corset and Lace are two products of a pro-
gram to produce implementations of Ada that are more suitable for
programming real-time embedded systems.

Corset is an interface specification for a compact runtime support
environment, for tasking, for Ada. Lace is an interface specification
for a low-level adaptable common executive, designed to support a
Corset implementation of Ada tasking as well as light-weight real-time
processes compiled as separate programs. The way in which Corset and
Lace are intended to operate together to help Ada fit into constrained
applications is illustrated in Figures 1 and 2.

Compiled Ada tasks and programs request Corset and Lace services
via normal Ada procedure calls. This is intended to promote a wide
range of implementations, tailored to the needs of diverse applications

and hardware configurations.

Corset hides details of the runtime support environment (RSE)
from the compiler, a necessary first step toward experimentation with
specialized runtime support environments (RSEs). Lace, in turn, hides
the details of processor allocation from the Ada RSE. This permits
tailoring the dispatching policy to fit the application. In particular,
the Lace interface is adaptable to implementation via a table-driven
cyclic executive.

In addition to information hiding, Lace also plays another impor-
tant role by supporting multiprogramming of simple Ada procedures
without involvement of the Ada RSE, eliminating whatever inefficiency
or unpredictability this may impose. Such multiprogrammed proce-
dures can be executed alongside other tasks that make use of the full
Ada RSE, so that hybrid systems can be constructed. Execution tim-
ing remains under control of the Lace dispatcher. By providing this
means of cutting out what is perceived by many as being the most
problematic part of Ada, Lace is intended to reduce the risk of using
Ada for real-time applications.

Corset/I and Lace/1, described in [2] and [3] are designs for a proto-
type implementation designed to be compatible with a multiprocessor
shared-memory configuration of the MIL-STD-1750A instruction set
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architecture. The 1750A is typical of most 16-bit microprocessors in
not providing any special support for operating systems, beyond a
simple test-and-set-bit instruction.

The Corset interface has evolved from the runtime system inter-
face of the FSU/AFATL Ada compiler, a cross-compiler to the Z8002
microprocessor validated in 1985. The present versions of Corset and
Lace are the outgrowth of a project whose objective is to improve
the quality of Ada implementations for resource-constrained real-time
applications.

Specific objectives of Corset and Lace include:

1. Defining a clear interface between the Ada runtime support envi-
ronment (RSE) and compiler-generated code, such that:

o efficient implementation is possible;

o language features fall cleanly on one side or the other of the
interface;

normal Ada procedure calls can be used to access RSE services
from compiler-generated code;

e no data structures are shared between RSE and compiler-
generated code, so that all communication is by explicit pa-
rameters;

alternate RSE versions and extensions [4], suitable for real-
time systems, can be implemented without special compiler
support.

2. Decomposing the RSE and its data into subcomponents with well-
defined interfaces between the subcomponents, in such a way that:
e components can be omitted from the RSE for programs that

do not use the features implemented by those components;

o the RSE can be tailored to the needs of different applications
and hardware configurations without modifying the interfaces
between RSE components.

o the interface is implementable for various processor configu-

rations, as well as modifications to the tasking paradigm.
3. Experimenting with alternative data structures and algorithms
for the implementation of Ada tasking, with a view to:

e the limitations of existing microprocessor architectures;

e decentralized algorithms, which can be executed by multiple
processors concurrently, with little or no waiting;

o multiprogramming of Ada procedures which have no internal
tasks without the overhead of supporting tasking;

e keeping overhead down, and in particular to avoid unneces-
sary saving and restoring of task state both during context
switches and in interrupt handlers;

predictable performance, through the use of simple, deter-
ministic algorithms where possible (e.g. design the dispatcher
with a minimum number of locks and so that interrupts never
have to be disabled);

localized cost, so that performance of simpler functions (e.g.
rendezvous) is not be degraded because of side effects of imple-
menting more complex functions, even if this means making
other operations (e.g. task abortion) more costly.



¢ limiting capacities (¢.g . number of tasks, range of priorities)
to obtain greater efficiency or predictable timing.
The rest of this report describes the Corset and Lace interfaces,
and the major internal component interfaces of the Corset/I imple-
mentation.

2 Corset Interface

The interface between Corset and compiler-generated code is divided
into several views, comprising;

1. Corset as seen by compiled code;
2. the compiled code, as seen by Corset;
3. Corset, as seen by an interrupt handler;

4. Corset, as seen by the implementation of package CALENDAR.
‘We will consider each of these, in turn.

2.1 The Compiler’s View

The interface presented by Corset to compiled code is described by the
following virtual package.

with SYSTEM;
package RTE_PROVIDES is
type TASK_ID is private;
NULL_TASK: constant TASK_ID;
type TASK_LIST is array (POSITIVE range <>) of TASK_ID;
type COLLECTION_ID is private;
function NEW_COLLECTION(COLLECTION_SIZE: NATURAL:=0;
MAX_BLOCK_SIZE: NATURAL:=0)
return COLLECTION_ID;
function NEW_BLOCK(SIZE: NATURAL;
C: COLLECTION_ID) return SYSTEM.ADDRESS;
procedure RELEASE_BLOCK(LOC: SYSTEM.ADDRESS);

procedure RELEASE_COLLECTION(C: COLLECTION_ID);
procedure DELAY_SELF(D: DURATION);

type ENTRY_INDEX is private;

NULL_ENTRY: constant ENTRY_INDEX;

type ENTRY_BINDING is

record INDEX: ENTRY_INDEX;

PROC: SYSTEM.ADDRESS;

end record;

type ENTRY_BINDING_LIST is array (POSITIVE range <>)
of ENTRY_BINDIXG;

NULL_RENDEZVOUS: constant INTEGER:= O;
RENDEZVOUS_COMPLETED: constant INTEGER:= 1;
SIMPLE_MODE: constant INTEGER:= O;
DELAY_MODE: constant INTEGER:= 1;
ELSE_MODE: constant INTEGER:= 2;
TERMINATE_MODE: constant INTEGER:= 3;

subtype MODES is INTEGER range SIMPLE_MODE..TERMINATE_MODE;
procedure ACCEPT_CALL(E: ENTRY_INDEX;
PROC: out SYSTEM.ADDRESS);
procedure CALL_SIMPLE(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL);
procedure CALL_CONDITIONAL(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL;
RESULT: out INTEGER);
procedure CALL_TIMED(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL;
D: DURATION;
RESULT: out INTEGER);

function COUNT(T: TASK_ID; E: ENTRY_INDEX) return NATURAL;
function CALLABLE(T: TASK_ID) return BOOLEAN;
procedure SELECTIVE_WAIT(OPEN_ENTRIES: ENTRY_BINDING_LIST;
D: DURATION;
SELECT_MODE: MODES;
RESULT: out INTEGER);
procedure ABORT_TASKS(TASKS: TASK_LIST);
function MIN_PRIORITY return INTEGER;
function MAX_PRIORITY return INTEGER;
subtype PRIORITY is INTEGER range
MIN_PRIORITY..MAX_PRIORITY;
type MASTER_ID is private;
NULL_MASTER: constant MASTER_ID;
procedure ACTIVATE_TASKS(TASKS: TASK_LIST);
procedure COMPLETE_ACTIVATION;
procedure COMPLETE_TASK;
procedure CREATE_TASK(SIZE: NATURAL;
PRIO: PRICRITY;
INIT_STATE: MACHINE,STATE;
M: MASTER_ID;
NUM_ENTRIES: NATURAL;
CREATED_TASK: out TASK_ID);

function CURRENT_MASTER return MASTER_ID;
procedure ENTER_MASTER;

procedure EXIT_MASTER;

function IS_LOCAL_TASK(T: TASK_ID;

M: MASTER_ID) return BOOLEAN;
function TERMINATED(T: TASK_ID) return BOOLEAN;
private ...

end RTE_PROVIDES;

In Corset/I the declarations above are implemented by several
packages rather than one. These packages also export other decla-
rations, not part of the Corset interface, to the Corset implementation
components.

The rationale for this interface is explained at some length in a
separate report [5]. The semantics are explained in later sections of
this report.

In addition to the operations above, which are needed to support
the standard Ada semantics, a Corset implementation may provide
extended features. One such example is offline entry calls, a feature
which appears needed for communication between time-constrained
tasks and other tasks. The difference between on offline call and a
normal entry call is that the calling task does not wait. This capability
can be described ideally by the procedure OFFLINE_CALLS, below:

procedure CALL_OFFLINE(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL);

Procedure CALL..OFFLINE makes a non-waiting call on entry E
of task A. The parameters LOC and SIZE are the address and size
of a buffer containing the parameters to the entry call. Ownership of
this buffer is relinquished by the caller. That is, it should not attempt
to access this record again, unless arrangements are made for it to be
explicitly returned (later) by the caller.

2.2 Corset’s View

In order to implement Corset, some things must be known about the
compiler:
1. the exception-raising protocol (i.e. how the raise statement is
implemented by the compiler);
2. the procedure-calling protocol;
3. how the address of the workspace allocated to the task is passed
to the task initialization code.
The package COMPILER_PROVIDES (below) provides some of this
information.
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with SYSTEM;

package COMPILER_PROVIDES is
type EXCEPTION_ID is private;
ABORTION: constant EXCEPTION_ID;
NULL_EXCEPTION: constant EXCEPTION_ID;
CONSTRAINT_ERROR: constant EXCEPTION_ID;

NUMERIC_ERROR: EXCEPTION_ID;
PROGRAM_ERROR: EXCEPTION_ID;
STORAGE_ERROR: constant EXCEPTION_ID;
TASKING_ERROR: constant EXCEPTION_ID;
procedure RAISE_EXCEPTION(E: EXCEPTION_ID);
function CURRENT_EXCEPTION return EXCEPTION_ID;
procedure CALL(PROC, PARAM: SYSTEM.ADDRESS);
procedure FAKE_CALL(PROC,RET: SYSTEM.ADDRESS);
procedure RETURN_AND_CALL{PROC: SYSTEM.ADDRESS);

private ...

end COMPILER_PROVIDES;

constant
constant

Corset is not concerned with the implementation of exception prop-
agation and handling within tasks. This is assumed to be a respon-
sibility of the compiler. Most of what Corset needs to know about
exception handling is contained in the package above.

However, any Corset implementation does need to make some
assumptions about how exception handling is implemented. For
Corset /I, the chief dependency on the compiler’s treatment of excep-
tions can be found in procedure FORCE_CALL of Lace (described
further below). We assume that a forced call can be imposed on a
task at any point where it is preemptible. This is more or less equiv-
alent to assuming that an exception can be raised asynchronously at
any point during the execution of compiled code. Thus the compiler
should not assume that any section of code (e.g. changing of exception
handling context) is safe from having an exception raised during its
execution, as it might be in response to a hardware interrupt.

In order to provide more freedom to the Corset implementation we
would also like the compiler to support a predefined pseudoexception,
“ABORTION”. This should be treated like an ordinary exception ex-
cept in two respects: (1) it cannot be handled by an “others” clause;
(2) it is not be visible to an ordinary application program, so that it
is only handleable by the RSE implementation. Though the Corset/I
implementation does not make use of this feature, it appears that hav-
ing this pseudoexception would simplify the implementation of task
abortion.

A Corset implementation needs to know how procedures are called
in order to implement entry calls. The compiler is assumed to gen-
erate the code for each accept statement as a procedure. The actual
parameters of an entry call are assumed to be laid out in a contiguous
block and the code of the entry procedure body must access this block
indirectly, through a single parameter of type ADDRESS. (Of course
if a parameter is passed by reference the block will contain the address
of the actual parameter, rather than its value.)

The package above includes three procedures that provide
procedure-calling capabilities used by the Corset (and Lace) imple-
mentations. Procedure CALL does a procedure call to address PROC
with parameter block at address PARAM. Procedure FAKE_CALL
calls a parameterless procedure at address PROC but arranges for the
return to be to address RET, rather than the location from which
the call actually originates. This should result in both normal return
and exception propagation being to this substitute return address.
Procedure RETURN_AND_CALL calls a parameterless procedure at
address PROC after first returning from the procedure where it is
called, so that the new call effectively replaces the current procedure
activation.

In addition to the information above, it is helpful if the RSE im-
plementation can predict that certain registers need not be saved in
the event of a voluntary task switch.
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2.3 An Interrupt Handler’s View

Corset assumes that exception handlers do not call any of the proce-
dures in package RTE_PROVIDES (above), directly or indirectly. Fa-
cilities for interrupt handlers to communicate with tasks are provided
by Lace. In particular, the following Lace operations are intended for
use in interrupt handlers.

function PRIORITY(T: TASK_ID) return INTEGER;
function SELF return TASK_ID;

function PREEMPTION_OK return BOOLEAN;
procedure PREEMPT;

procedure RELEASE(T: TASK_ID);

An example of how these operations might be used in an interrupt
handler is given below. The task T that is released by the handler is
presumably one that consumes data brought in by this handler. Note
that the handler need not be necessarily compiled as an Ada task; it
could also be written in assembly language.

task HANDLER is
begin loop accept INTERRUPT do
—~—- Put some data in a buffer for task T.
RELEASE(T) ;
if PREEMPTION_OK then PREEMPT;
-~ Will not return
end if;
end INTERRUPT;
end loop;
end HANDLER;

Implicit in the example are the saving of whatever registers are used
in the accept statement, the disabling of the interrupt, the restoring of
registers on normal completion, and the resumption of the interrupted
task.

2.4 Calendar’s View

The Corset implementation requires an internal clock to implement
delays. The predefined package CALENDAR is not suitable for this
because:

1. the type TIME is required to have too great a range to be repre-
sentable in 32 bits at the accuracy required for a real-time appli-
cation;

2. the type DURATION is in seconds, which may require costly con-
versions if the hardware clock does not count in binary fractions
of a second (e.g. the MIL-STD-1750A timers are calibrated in
decimal fractions of a second).

The Corset/I implementation is therefore based on a cyclic clock that
counts in TICKs. For convenience in implementing package CALEN-
DAR (which is not part of Corset) consistently with Corset’s internal
clock, Corset exports the following types and operation.

type DAYS is range O..(2%#31)-1;
type DURATION is delta 2.0%*(-13)
range —2.0%%18..(2.0%%18)~-1.0;
subtype DAY_DURATION is DURATION range 0.0 ..
type TIME is record DAY: DAYS;
SECOND: DAY_DURATION;
end record;
TICK: constant:= 0.0001;
function CLOCK return TIME;

86.400.0;

The constraints of type DURATION are chosen to permit imple-
mentation of delays using a 32-bit integer clock, counting time in units
of TICK, without loss of information when the clock rolls over to zero.
In particular, we require that DURATION’LAST be no more than half
of the clock period.

The requirements that Corset imposes on the compiler are that
the representation and constraints of STANDARD.DURATION and
the value of SYSTEM.TICK must agree with those used by Corset.



As with the package RTE_PROVIDES the actual declarations above
are implemented in Corset/I’s internal package CLOCK, but would
be made available to an application via renamings in a higher-level
package specification.

3 The Lace Interface

Lace is intended not only to support Corset, but to also serve directly
as an executive for multiprogrammed applications without tasks. It is
based on a simpler (and cheaper) model of tasks than Ada. To Lace, a
task is simply an entry point into a executable code, a workspace, and
a priority. Thus Ada tasks may be intermixed with Ada procedures
invoked as independent programs, on the same processor(s).

Lace only provides for allocation of processors. In particular, it
does not provide directly for intertask communication or memory man-
agement. Such services are provided separately, possibly using the
Lace operations in their implementation.

The interface to Lace is a set of procedures that are invoked by
user programs that wish to either execute as Lace tasks or manipulate
other Lace tasks. Although not necessarily implemented as procedures,
Lace operations have the property that, barring exceptional conditions
such as abortion, they will eventually return to the user program at
the point following the location of the call. The interfaces between
Lace and user code can be categorized into three views analogous to
those for Corset:

1. Lace as seen by the compiled user code;
2. the compiled code, as seen by Lace;

3. Lace, as seen by an interrupt handler.

Since Lace and Corset are designed to be used together, Views 2-3
are the same as for Corset, and have been discussed above. We will
consider the view of Lace by user code in more detail. The interface
presented by Lace to a compiled user program is described by the
packages TASK_IDS and LACE.

3.1 Task Identification and Attributes

To the compiler-generated code, a Lace task is a value of type TASK_-
ID, representing a thread of control.

package TASK_IDS is

type TASK_ID is range 0..127;

NULL_TASK: constant TASK_ID:= TASK_ID’first;

type TASK_LIST is array (POSITIVE range <>) of TASK_ID;
end TASK_IDS;

The type TASK_ID is used by Lace and Corset, both internally
and as part of their external interfaces. Because this package is also
part of the Lace and Corset internal interfaces, the full type declaration
is given. However, for external interface purposes, all that should be
assumed about this type is that it has a certain size; that is, the range
is not part of the interface, nor is the value of NULL_TASK.

The state of a Lace task is characterized by and four Boolean at-
tributes:

o allocated - the task is a valid Lace task;

e held - the task is not eligible for execution on a processor;

e executing - the task is executing on a processor;

o preemptible - task may be preempted on its processor by a higher

priority Lace task.

A task also has a priority, within a range determined by the Lace
implementation.
with SYSTEN;
with TASK_IDS; use TASK_IDS;

package LACE is
MAX_PRIORITY, MIN_PRIORITY: INTEGER;

161

3.2 Preemptible Procedures

The following operations are required to be implemented so that they
do not require waiting for any locks, and so may be called from inter-
rupt handlers, as well as from tasks. Also, since they do not hold locks
they may be safely executed in preemptible mode.

The first group of operations are functions that return attributes
of a task. Care must taken in using these functions since the atiribute
of the task queried may be change concurrently with the query. These
attributes can still be useful, however, especially when called by a task
to determine an attribute of itself.

function SELF return TASK_ID;

function PREEMPTION_OK return BOOLEAN;

function HELD(T: TASK_ID) return BOOLEAN;

function EXECUTING(T: TASK_ID) return BOOLEAN;

function PRIDRITY(T: TASK_ID) return INTEGER;

function VALID(T: TASK_ID) return BOOLEAN;

Function SELF returns the ID of the task which calls it, except

if called from a hardware interrupt handler, in which case it returns

the ID of the task which was executing when the interrupt occurred.
Function PREEMPTION_OK returns true if and only if the processor
on which it is called is currently preemptible. Function HELD returns
true if and only if task T is held. Function VALID returns true if and
only if T is a currently assigned task ID. Function EXECUTING(T)
returns true if and only if the task T is currently executing on some
processor. Function PRIORITY returns the current Lace priority of
task T.

The second group of preemptible operations modify the state of a
task.

procedure DISABLE_PREEMPTION;
procedure HOLD(T: TASK_ID);
procedure RELEASE(T: TASK_ID);

Procedure DISABLE_PREEMPTION makes the processor from
which it is called not be preemptible from the current task by the dis-
patcher. The effect is undone (only) by procedure DISPATCH (below)
Procedure HOLD disables dispatching of the task T. If T is running it
will continue until it next calls DISPATCH or is preempted by an in-
terrupt. Procedure RELEASE enables dispatching of task T, undoing
the effect of any previous HOLDS. If T is not held there is no change.
How soon T gets to run depends on its priority and the activities of
higher priority tasks.

3.3 Nonpreemptible Procedures

Because the implementation of the following procedures is anticipated
to possibly involve waiting for and holding locks we require that before
they are called the processor be made nonpreemptible. Failure to
follow this rule will lead to system failure. They should never be
called from an interrupt handler.

SET_PRIORITY(T: TASK_ID; P: INTEGER);
DEFER_TO(T: TASK_ID);
UNDEFER(T: TASK_ID);
DISPATCH;
FORCE_CALL(T: TASK_ID; P: SYSTEM.ADDRESS);
NEW_TASK(S: MACHINE.STATE;

P: INTEGER) return TASK_ID;
procedure COLLECT_ID(T: TASK_ID);

Procedure SET_PRIORITY sets the dispatching priority of T to
P, if P is a priority value supported by the Lace implementation. Oth-
erwise, the priority is set to the nearest supported value. A task with a
numerically larger priority number always has preference for dispatch-
ing. The caller of this procedure is responsible for insuring that it is
never called concurrently for a single task T by more than one task.

Procedure DISPATCH is called to choose the next task to execute
on the processor on which it is called, and transfers control to this
task (which may be the calling task, if that is not held). If there is no
task eligible for execution, the dispatcher idles. Though it may switch

procedure
procedure
procedure
procedure
procedure
function



control to another task, from the point of view of the caller this proce-
dure behaves like any other procedure. That is, it eventually returns
to the instruction following the call (barring exceptions). Calling the
dispatcher is the normal means of return from service routines of an
RSE built on Lace.

Note that DISPATCH is the only way to undo the effect of
DISABLE_PREEMPTION. This is because interrupts that arrive dur-
ing a nonpreemptible period may cause the release of tasks which
should be executed as soon as the processor becomes preemptible.

Procedure FORCE_CALL forces task T to call a procedure at
address PROC, with parameter value PARAM. This procedure can be
used to raise exceptions in tasks and to abort them, by forcing them
to execute appropriate procedures. The effect is does not take effect
until T is next dispatched. If FORCE_CALL is called again for the
same task before a pending forced call has taken effect, the later call
will override. The practice of overriding pending forced calls should
be avoided, because how soon a call will take effect cannot in general
be predicted. (Also to be avoided are nested calls, which may cause
space problems as noted below.)

Care must be taken that every task has enough excess work space
to tolerate any forced calls. Of course this is already true of other
RSE calls, but it is especially critical here because of the interaction
with exception recovery. If STORAGE_ERROR is raised and if ex-
ception recovery is through such a forced call, if the exception recovery
procedure uses storage, cycling could result. The obvious solution is
to write all such routines to use only statically allocated global data
and registers, or at Jeast to use a predictable bounded amount of stack
space.

Function NEW_TASK allocates a new TASK_ID and returns it.
It returns NULL_TASK iff it cannot allocate a new task ID. The new
task starts out in the held state, and its register state is initialized to
S. The priority of a new task is MIN_PRIORITY. In order for the
new task to begin execution it must later be released.

Procedure COLLECT_ID deallocates the task ID T. It assumes
that T is not executing or contending for a processor (i.e. it is the
caller’s responsibility to insure this). In particular, it assumes T is not
the caller.

Other than the functions VALID, all operations with arguments of
type TASK_ID require that the ID be valid. That is, it must have
been returned by NEW_TASK and COLLECT_ID must not have
been called for it since then.

3.4 Interrupt Handler Support

The procedure below is provided to support writing of hardware inter-
rupt handlers.

procedure PREEMPT;
end LACE;

This procedure preempts the current task, and calls the dis-
patcher. This should never be called unless PREEMPTION_OK re-
turns TRUE, otherwise chaos will ensue. It should only be called from
an interrupt handler, since it presumes that interrupts are already dis-
abled, and does not return to the point of call. It should only be called
at the conclusion of the handler (at the point of return) and assumes
the handler has saved the state of the task T to be preempted in a
location defined by machine-specific convention. The processor will be
preempted from the current task and the dispatcher will be invoked to
determine which task executes next.

4 Other Corset/I Internal Interfaces

Corset/1 is divided internally into the following major packages:

1. SYSTEM is the standard
predefined package, with implementation-specific extensions as
permitted by the Ada standard [1]. It is imported by Corset.

2. TASK_IDS (described above) exports type TASK_ID, constant
NULL_TASK, and some related types to all other Corset com-
ponents.

162

3. LACE (described above) exports low-level executive functions to
other Corset components, some of which are also exported to
handlers.

4. TASK_DATA exports common per-task types and data struc-
tures that are shared between the Corset components.

5. ABORTION exports operations used in Corset to implement task
abortion, plus some encapsulated versions of basic Lace dispatch-
ing operations with special interlocks to prevent unsafe interac-
tion with abortion.

6. COLLECTIONS exports operations which are called by compiler-
generated code to reserve storage collections and allocate and
deallocate blocks within those collections. The collections re-
served by a task and not released explicitly are implicitly released
when the task is terminated, via a procedure exported to package
STAGES.

7. CLOCK exports types and operations used internally by the
Corset implementation for timing, some of which are also ex-
ported to the application level.

8. DELAYS exports procedure DELAY_TASK, which is called by
compiler-generated code, and other variables and operations used
internally by the Corset implementation to implement delays.
One of these is a procedure that must be called periodically to
check for expired delays, preferably at time DELAYS.TIME.-
OF_NEXT_CHECK. It is used by package RENDEZVOUS to
implement timed entry calls and selective waits with delay alter-
natives.

9. CALLS exports types and operations used to maintain queues of

entry calls.

OFFLINE_CALLS exports operations and types to support of-

fline entry calls.

RENDEZVOUS exports types and operations required to imple-

ment rendezvous.

STORAGE_MANAGEMENT exports operations used to allo-
cate and deallocate workspaces for tasks.

10.
11.
12.

STAGES exports types and operations required to implement
tagk creation, activation, completion, and normal termination.
Note that this modular breakdown assists configuration of a mini-
mal RSE for a particular application program. First, those procedures
within each package that are not called by the program need not be
linked. Second, entire packages whose functionality is not required for
the program may be omitted, provided references from other Corset
components are stubbed off. Finally, alternate (simplified) versions of
the remaining components may be substituted, to take advantage of
the unused features. For example, if the procedure ABORT_TASKS
is not called from a program we can replace the bodies of packages
ABORTION, RENDEZVOUS, and STAGES by grossly simplified ver-

sions.

13.

4.1 Rights

The Corset/I and Lace/I implementations assume the existence of
some low-level interprocessor synchronization operations, which can
be implemented using a test-and-set instruction. These are abstracted
by the package RIGHTS, below. A “right” is a lock variable which a
task may attempt to claim, or for which it may wait.

package RIGHTS is
type RIGHT is private;
AVAILABLE: constant RIGHT;
procedure AWAIT(R: in out RIGHT);
procedure POST(R: in out RIGHT);
procedure CLAIM(R: in out RIGHT; BUSY: out BOOLEAN);
function "not"(R: in RIGHT) return RIGHT;
private
type RIGHT is new BOOLEAN;
AVATLABLE: constant RIGHT:= FALSE;
end RIGHTS;



4.2 Collections

Package COLLECTIONS provides support for the implementation of
Ada allocators. Procedure NEW_COLLECTION reserves SIZE ad-
dressable units of storage for a new collection, and returns an ID for
it. The storage is reserved in the name of the calling task, at the
current level of master nesting. It will be deallocated automatically
no later than when the task is terminated. Procedure NEW_BLOCK
allocates a contiguous block of SIZE storage units within the space
reserved for collection C, and returns the low address of this block.
Procedure RELEASE_BLOCK releases the block at address LOC,
and procedure RELEASE_COLLECTION releases the collection C.

with SYSTEM;
with TASK_IDS;
package COLLECTIONS is
type COLLECTION_ID is private;
NULL_COLLECTION: constant COLLECTICN_ID;
function NEW_COLLECTION(COLLECTION_SIZE: NATURAL:=0;
MAX_BLOCK_SIZE: NATURAL:=0)
return COLLECTION_ID;
function NEW_BLOCK(SIZE: NATURAL;
C: COLLECTION_ID)
return SYSTEM.ADDRESS;
procedure RELEASE_BLOCK(LOC: SYSTEM.ADDRESS);
procedure RELEASE_COLLECTION(C: COLLECTION_ID);
procedure RELEASE_COLLECTIONS(T: TASK_ID);
private

type COLLECTION_ID is range 0..(2**15)-1;
NULL_COLLECTION: constant COLLECTION_ID:= O;

end COLLECTIONS;

4.3 Clock

Package CLOCK provides a primitive form of real-time clock, that
counts time cyclically, in ticks. This can be used for implementing
more complex forms of time-keeping, such as the Ada standard calen-
dar package, or can be used directly, as it is by the Corset implemen-
tation.

package CLOCK is
type DAYS is range 0..(2%*31)-1;
type DURATION is delta 2.0%%(-13)
range —2.0%#18..(2.0%%18)-1.0;
subtype DAY_DURATION is DURATION range 0.0 ..
type TIME is record DAY: DAYS;
SECOND: DAY_DURATION;
end record;
TICK: constant:= 2.0%%(-12);
type TICKS is private;
function CLOCK return TICKS;
function CLOCK return TIME;
function CLOCK_IS_PAST(T: TICKS) return BOOLEAN;
function "+"(L: TICKS; R: INTEGER) return TICKS;
private
type TICKS is range -(2##31)..(2%%31-1);
end CLOCK;

The constraints on the type DURATION declared here and that
in STANDARD must agree. We require that DURATION last*2 <
TICK+TICKSast. This will avoid loss of information when the value
of CLOCK rolls over to zero. We must be able to represent durations
of one full day, which is 86,400 seconds. Since 21¢ < 86,400 < 217, we
want DURATION last > 2!7, which implies TICK+TICKS last > 28,
We want to be able to represent TICKS in 32 bits, so TICKS’last
< 281 If follows that TICK > 2-13. We also want to be able
to request delays down to a granularity of TICK, so we would like
DURATION’small*2 <TICK. If 2-13 & TICK < 2-'?, we want DU-
RATION’small < 2-13. Fortunately all these requirements are consis-
tent with a 32-bit signed integer implementation of DURATION.

Function CLOCK returning TICKS should return the number of
ticks that have elapsed since the clock was last (re)set to zero. It can
be implemented as a global variable. This value should be incremented

86_400.0;
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every TICK seconds. One way in which this might be done is via a
periodic interrupt. It should be reset ONLY when it rolls over; that is,
on the tick after TICKS’LAST. CLOCK should be monotonic. That
is, it should never be set backward. The effect of setting it backward
relative to another time-reference can be obtained by slowing it down
(skipping ticks), if necessary.

Function CLOCK returning TIME should implement a real-time
clock consistent with the function CLOCK returning TICKS.

The type TIME is defined to support the full range of times re-
quired by the Ada standard. Unfortunately, this cannot be represented
in a single word. We therefore represent is as record, with the value
(0, 0.0) representing the time the clock was started. Since fetching
two words 1s not an atomic hardware operation, obtaining the value
of CLOCK that returns TIME needs to be protected by a protocol to
insure that is not read while being updated. On the other hand, en-
forcing such a protocol is costly in time. For this reason we have made
the cyclic clock, which can be copied atomically, directly available.

Function CLOCK _IS_PAST returns TRUE if and only if the clock
is past time T, in the cyclic sense of time implemented by this clock.
It relies that T is not more than one half cycle (TICKS’last/2) away
from the current clock value.

Function ”+” returns the sum of L and R, in the cyclic sense of
time implemented by this clock. It relies that R is not more than one
half the clock cycle, and raises an exception if R is too large.

We have intentionally omitted a mechanism for adjusting the clock,
since any adjustment of the clock is bound affect the duration of any
pending delays. This is a fundamental problem with Ada’s provision
for delays. By not distinguishing relative from absolute delays, Ada
does not provide the information needed to determine whether pending
delays should be adjusted when the clock is adjusted. We presume that
the meaning of delays is relative, and so the clock used to implement
delays should never be adjusted. Any adjustment must be provided
by package CALENDAR.

Note that the value of TICK will need to be adjusted for different
applications, and must be consistent with that in package SYSTEM.

4.4 Delays

Package DELAYS provides support for the implementation of the
compiler interface procedures DELAY_SELF, CALL_TIMED, and
SELECTIVE_WAIT, which all require some form of delay.

with CLOCK;

with TASK_IDS; use TASK_IDS;

package DELAYS is
procedure DELAY_SELF(D: DURATION);
procedure INTERNAL_DELAY_SELF(D: DURATION);
TIME_OF NEXT_CHECK: CLOCK.TICKS;
procedure CHECK;
procedure OPEN_DELAYS(T: TASK_ID);
procedure CLOSE_DELAYS(T: TASK_ID);

end DELAYS;

Procedure DELAY _SELF is callable directly from compiled code.
It delays the current task for the specified duration. When the task
resumes it is preemptible.

Procedure INTERNAL_DELAY_SELF is wused within the
Corset/I implementation to delay a task. The only difference between
it and DELAY_SELF is that it assumes the processor is already non-
preemptible. TIME_OF_NEXT..CHECK is the nearest time proce-
dure CHECK needs to be called. It is advanced by procedure CHECK,
which must be called periodically to check for expired delays. CHECK
can be called by CLOCK, or by any periodic interrupt handler. So long
as CHECK is called periodically, TIME_OF_NEXT_CHECK can be
ignored, at the risk of unnecessary calls to CHECK or less accuracy in
detecting expired delays.

Procedure OPEN_DELAYS is called when a task is created, to
initialize data structures used in implementing delays. Procedure
CLOSE_DELAYS is called when a task completes, to cancel any pend-
ing delays. It is intended specifically for task abortion.



4.5 Calls

with SYSTEM;
with TASK_IDS; use TASK_IDS;
package CALLS is
type KIND_OF_CALL is
(NORMAL, CONDITIONAL, TIMED, OFFLINE, NONE);
type QUEUE is limited private;
function COUNT(Q: QUEUE) return NATURAL;
procedure DELETE(Q: in out QUEUE; T: TASK_ID);
procedure ENQUEUE(Q: in out QUEUE;
KIND: KIND_OF_CALL;
CALLER: TASK_ID;
PARAM: SYSTEM.ADDRESS);
procedure MAKE_EMPTY(Q: out QUEUE);
-= gshould not be called unless Q is uninitialized.
-~ (i.e., Q should not have anything queued on it)
procedure DEQUEUE(Q: in out QUEUE;
KIND: out KIND_OF_CALL;
CALLER: out TASK_ID;
PARAM: out SYSTEM.ADDRESS);
private
type CALL_REQUEST;
type ACCESS_CALL_REQUEST is access CALL_REQUEST;
type QUEUE is
record HEAD, TAIL: ACCESS_CALL_REQUEST;
end record;
end CALLS;

4.6 Rendezvous

The package RENDEZVOUS implements all the Ada rendezvous op-
erations. Its services are needed only if these operations are used.

with SYSTEM;
with TASK_IDS; use TASK_IDS;
package RENDEZVOUS is
type ENTRY_INDEX is range —(2#*15)..(2%*15)-1;
NULL_ENTRY: ENTRY_INDEX:= O;
type ENTRY_BINDING is
record INDEX: ENTRY_INDEX;
PROC: SYSTEM.ADDRESS;
end record;
type ENTRY_BINDING_LIST is
array (POSITIVE ramge <>) of ENTRY_BINDING;
NULL_CHOICE: INTEGER:= 0;
NULL_RENDEZVOUS: constant INTEGER:= O;
RENDEZVOUS_COMPLETED: constant INTEGER:= 1;

The compiler should assign nonegative indices, starting with 1,
to all the entries of a task, counting each member of a family as an
individual entry. The acceptable range of type ENTRY_INDEX, will
depend on the Corset implementation. Passing a Corset procedure
an entry index that is out of range may cause STORAGE_ERROR
to be raised if table sizes do not permit so many entries. The value
NULL_ENTRY is reserved to denote no entry.

An entry binding list is a list of pairs, each of which gives the index
of an entry and the address of the entry procedure which is to executed
during a rendezvous on that entry. Each such pair corresponds to an
open accept alternative of a selective wait statement. There may be
more than one pair with the same entry index. Pairs with entry index
NULL_ENTRY are ignored, but all other pairs must have legitimate
entry procedure addresses. The lower index bound of an entry binding
list is by convention always 1. The value NULL_CHOICE is assumed
to be outside the range of entry-list indices.

For efficiency, separate procedures are provided for each of the
variants of entry calls: CALL_SIMPLE, CALL_CONDITIONAL, and
CALL_TIMED.
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procedure CALL_SIMPLE(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL);
procedure CALL_CONDITIONAL(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: WATURAL;
RESULT: out INTEGER);
procedure CALL_TIMED(A: TASK_ID;
E: ENTRY_INDEX;
LOC: SYSTEM.ADDRESS;
SIZE: NATURAL;
D: DURATION;
RESULT: out INTEGER);

For each of these procedures LOC is the address of the parameter
block, and SIZE is its size in addressable storage units. For the con-
ditional and timed calls, RESULT is set to NULL_RENDEZVOUS if
there was no rendezvous and otherwise it is set to RENDEZVOUS_-
COMPLETED.

The procedure SELECTIVE. WAIT implements all forms of the
accept, including the selective wait statement. For efficiency, a sepa-
rate procedure, ACCEPT_CALL, is also provided for the simple ac-
cept statement. Values of subtype MODES (below) are passed as
parameters to the selective wait procedure to specify which form of
selective wait is desired.

SIMPLE_MUDE: constant INTEGER:= O;
DELAY_MODE: constant INTEGER:= 1;
ELSE_MODE: constant INTEGER:= 2;

3-

#

TERMINATE_MODE: constant INTEGER:

subtype MODES is INTEGER
range SIMPLE_MODE..TERMINATE_MODE;

SIMPLE_MODE indicates there are only select alternatives.
DELAY_MODE indicates there are only accept and delay alterna-
tives. ELSE_MODE indicates there are only accept alternatives and

an else part. TERMINATE_MODE indicates there are only accept
alternatives and a terminate alternative.

procedure ACCEPT_CALL(E: ENTRY_INDEX;
PROC: SYSTEM.ADDRESS);

procedure SELECTIVE_WAIT(OPEN_ENTRIES:
ENTRY_BINDING_LIST;

D: DURATION;
SELECT_MODE: MODES;
RESULT: out INTEGER);

ACCEPT_CALL accepts calls on a single entry E, with the entry
procedure starting at address PROC.

SELECTIVE_WAIT takes as parameters an entry binding list,
OPEN_ENTRIES, and a select mode, as described above. In addition,
if the mode is DELAY_MODE, it takes a delay duration. It returns
the index in the parameter OPEN_ENTRIES of the entry which was
chosen, if any; otherwise it returns NULL_CHOICE.

function COUNT(T: TASK_ID; E: ENTRY_INDEX)
return NATURAL;
function CALLABLE(T: TASK_ID) return BOOLEAN;
Functions COUNT and CALLABLE implement the standard Ada

attributes of the corresponding names If T = NULL_TASK, COUNT
should return zero and CALLABLE should return FALSE.

function CALLING_TASK return TASK_ID;

Function CALLING_ TASK is support for an extension to standard
Ada, returning the ID of the calling task in a rendezvous if called by
the acceptor during the rendezvous. Otherwise, the result is undefined.

In addition to the exported operations this package includes the
following procedures, which is are part of the Corset/I internal inter-
face.

procedure OPEN_ENTRIES(T: TASK_ID; NUM_ENTRIES: INTEGER);

procedure CLOSE_ENTRIES(T: TASK_ID);
end RENDEZVOUS;



The procedure OPEN_ENTRIES at the time of task creation, to
initialize the data structures used by the implementation of rendezvous
The procedure CLOSE_ENTRIES is called when task T completes to
insure correct behaviour with respect to rendezvous. This includes, for
example, raising TASKING_ERROR in any tasks with pending calls

to entries of T.

4.7 Storage Management
Package STORAGE_MANAGEMENT is a Corset internal package

on which more complex forms of storage allocation can be based. It
provides basic global storage allocation and deallocation services for
large heterogeneous-sized blocks. It is used by the body of package
STAGES to allocate and deallocate task workspaces. It might also be
used by the body of package COLLECTIONS to allocate and deallo-
cate collections. A good candidate for an implementation would be a
boundary-tag scheme.

with SYSTEM;
package STORAGE_MANAGEMENT is
UNIT: INTEGER:= INTEGER’size;
procedure RELEASE_BLOCK(A: in out SYSTEM.ADDRESS);

function REQUEST_BLOCK(SIZE: NATURAL) return
SYSTEM.ADDRESS;
end STORAGE_MANAGEMENT;

RELEASE._BLOCK releases the block of storage beginning with
address A. This must be an entire block previously allocated by RE-
QUEST. REQUEST_.BLOCK allocates a block of contiguous storage
of SIZE addressable units, and returns the address of the block. That
is, if B is the address returned, the allocated block occupies addresses
B,...,.B4+SIZE-1. Any overhead storage that may be required by the
storage manager is not included in the block. It returns NULL._-
ADDRESS if the request cannot be honored.

4.8 Stages

Package STAGES implements the normal transitions between stages
in a task’s lifetime: creation, activation, completion, and termination.

with SYSTENM;
with MACHINE;
with TASK_IDS; use TASK_IDS;
package STAGES is
type MASTER_ID is private;
NULL_MASTER: constant MASTER_ID;
procedure ACTIVATE_TASKS(TASKS: TASK_LIST);
procedure COMPLETE_ACTIVATION;

A value of type TASK_LIST is used to describe a set of tasks to be
activated or aborted. The lower index bound of this array type is by
convention always 1. Procedure ACTIVATE_TASKS is called by the
creator of a list, of tasks when it is time for them to begin activation; it
does not return until all the tasks have completed activation. Proce-
dure COMPLETE_ACTIVATION should be called by an activating
task when it completes activation, so that its creator can eventually
return from ACTIVATE_TASKS.

procedure COMPLETE_TASK;

Procedure COMPLETE_TASK is called from a task when it com-
pletes execution.

procedure CREATE_TASK(SIZE: NATURAL;
PRIO: INTEGER;
INIT_STATE: MACHINE.STATE;
M: MASTER_ID;
NUM_ENTRIES: NATURAL;
CREATED_TASK: out TASK_ID);

Procedure CREATE_TASK is called to create a new task, whose
ID is returned via parameter CREATED_TASK. The parameter M
specifies the master of the new task. The parameter SIZE is the re-
quired size of the workspace to be allocated to the task, which is a
contiguous block of memory. PRIO is the priority of the task, and

NUM_ENTRIES is the number of entries. INIT_STATE is a record
specifying the initial values of all (nonpriviledged) registers for the new
task, including the initial value of the program counter and any base
registers. A workspace may be allocated for the task by the creator,
in which case the address of this workspace may be passed to the new

task as part of INIT_STATE. Alternatively, the new task may call the
RTE to allocate its own workspace.

function CURRENT_MASTER return MASTER_ID;
procedure ENTER_MASTER;
procedure EXIT_MASTER;

Function CURRENT_MASTER returns the ID of the master from
which it is called. ENTER_MASTER and EXIT_MASTER are to be
called on entry to and exit from a nontrivial master of tasks other than
a task body.

function TERMINATED(T: TASK_ID) return BOOLEAN;
function IS_LOCAL_TASK(T: TASK_ID;
M: MASTER_ID) return BOOLEAN;

Function TERMINATED implements the standard Ada attribute
of the same name. It should return TRUE if T is a terminated task or T
= NULL_TASK. Function IS_.LOCAL_TASK should return TRUE if
and only if T’s parent is the current task and T is directly dependent on
master M. This function is intended to support special-case treatment
for functions that return local tasks.

The following procedures are not part of the interface to compiled
code, but are part of the internal interface between Corset/I compo-
nents.

procedure MAKE_PASSIVE(T: TASK_ID):

procedure WAKE_UP(T: TASK_ID);

procedure COMPLETE(T: TASK_ID);

procedure TERMINATE_DEPENDENTS{M: MASTER_ID:=

NULL_MASTER) ;

procedure CLOSE_ACTIVATIONS(T: TASK_ID); o
private

type MASTER_ID is new INTEGER;

NULL_MASTER: constant MASTER_ID:= O;
end STAGES;

Procedure MAKE_PASSIVE is called when starting to wait on a
terminate alternative, and procedure WAKE_UP is called when leav-
ing a terminate alternative. Procedure COMPLETE is called to com-
plete the execution of a task, whether through normal completion, an
exception, or abortion. Procedure TERMINATE_DEPENDENTS is
called by a task to terminate and collect all its dependents at relative
master nesting levels greater than or equal to the parameter M. For M
= NULL_MASTER, it terminates and collects all dependents of the
calling task.

Procedure CLOSE_ACTIVATIONS is called when completing a
task, to clean up any references to the task with respect to activation.

4.9 Abortion

Package ABORTION provides support for the task abortion. In ad-
dition to the procedures that directly implement abortion, it provides
a shell around certain services exported by Lace. These are Lace op-
erations that can be implemented fairly efficiently in the absence of
abortion, but are significantly more complex if abortion is supported.
The intention is that the checks which these subprograms perform
can be eliminated, replacing these subprograms by the corresponding
straight Lace operations which they encapsulate, if a program does not
include any abort statements.

with SYSTEM; N
with TASK_IDS; use TASK_IDS;
package ABORTION is
procedure ABORT_TASKS(TASKS: TASK_LIST);
procedure ABORT_TASK(T: TASK_ID);
procedure ABORT_SELF;
procedure FORESTALL_ABORTION(T: TASK_ID;
RESULT: out BOOLEAN);



procedure SAFE_RELEASE(T: TASK_ID);
procedure SAFE_HOLD(T: TASK_ID);
procedure SAFE_FORCE_CALL(T: TASK_ID; P: SYSTEM.ADDRESS);
procedure OPEN_ABORTION(T: TASK_ID);
end ABORTION;

Procedure ABORT_TASKS is the only one that is exported from
Corset. It causes abortion of all the tasks in the list, implementing the
Ada abort statement.

Procedure ABORT._TASK causes the abortion of task T, if T is
not already completed. It assumes that the task T is not already
abnormal. It interlocks with SAFE_HOLD and SAFE_RELEASE so
that they do not hold or release abnormal tasks, and with SAFE_-
FORCE_CALL so that it does not force a call in an aborting task.

A task that is aborted is forced to call procedure ABORT_SELF
to abort itself. The effect is similar to ordinary completion.

Procedure FORESTALL_ABORTION does not correspond to any
Lace operation. It is used to change the effect of a previously exe-
cuted SAFE_HOLD on task T, so that T will not not be released if it
aborted. This is used when a calling task becomes committed to a ren-
dezvous, so that if aborted it will not complete before the rendezvous
is complete.

Procedure SAFE_RELEASE is like LACE.RELEASE, except that
it has no effect unless the task T has suspended itself using SAFE_-
HOLD, and has not subsequently been released via SAFE_RELEASE.

Procedure SAFE_HOLD is like LACE.HOLD, except that it calls
DISPATCH if the task T is abnormal, and is interlocked with SAFE_-
RELEASE as described above.

Procedure SAFE_FORCE_CALL is like LACE.FORCE_CALL,
except that it has no effect if the task T has had the right RIGHT _-
TO_COMPLETE removed. This prevents exceptions from overriding
and nullifying pending calls to ABORT_SELF, and prevents a task
from being aborted or having an exception raised in it on return from
calls it may make to DISPATCH during its normal completion code.

Procedure OPEN_ABORTION is called when a task is created, to
initialize the data structures used in implementing abortion.

Note that if abortion is supported, it must be the “safe” versions
of the Lace operations RELEASE and HOLD that are exported to the
application level. For this reason, the non-waiting property of the Lace
RELEASE must be preserved by SAFE_RELEASE.

5 Conclusions

An important thing we have learned from the design of the Corset/I
and Lace/I implementations is that there are usable subsets of the
full Ada tasking model that can be implemented very simply and ef-
ficiently, and with predictable execution timing. In particular, this is
true of the subset that does not require dynamic creation and termina-
tion of tasks. Even greater efficiency can be obtained if certain other
features are not supported.

Certainly the worst culprit in adding complexity is abortion. Elim-
inating abortion would permit removing almost all the locks (i.e. in-
determinate waiting) in our draft implementation. Abortion therefore
seems to be a strong candidate for banning in applications where run-
time effienciency and deterministic timing are important.

‘We have not been able to fully achieve our goal of designing a RSE
composed of modules from which one could produce a configuration to
support only the actual Ada features used in a particular application
program. Though the design presented here is composed of procedures
that can be omitted if not called, some other ways in which an appli-
cation might use less than the full generality of Ada tasking cannot be
detected and taken advantage of so easily. An example is the issue of
whether nested accept statements need to be supported. Eliminating
this possibility would allow simplification of the code for rendezvous.

A big problem is that some of the more complex features like abor-
tion insinuate themselves into the implementation of more basic fea-
tures like rendezvous. It may be that the only way to get maximum
runtime efficiency for applications that do not require the more com-
plex features is to provide alternate versions of the more basic packages.

Examples of Ada features whose elimination would reduce imple-
mentation overhead and improve timing predictability include:
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dynamic task creation and termination;
abortion;

nested accepts;

task priorities;

the terminate alternative;

o delays used as time-outs on entry calls and selective waits;

e conditional entry calls.

Our own feeling is that a very usable subset of Ada tasking could be
implemented that would reduce by 25 to 75 percent the code size and
reduce by 20 to 50 percent the execution time of simple tasking oper-
ations, as compared with the full model. These figures are tentatively
supported by experiments we have done.

During the design of the Corset/I implementation, we encountered
some points where it seemed we could implement things more simply
and efficiently by violating the interface rules we had laid down. A
salient example is the requirement that Corset calls (and calls forced
by Corset on a task) be compilable as ordinary procedure calls. This
means that Corset calls will probably require stack space, which may
not be available, and serious problems such as looping through the
STORAGE_ERROR exception can ensue. At the machine level, this
problem can be avoided, by using only static storage allocation and

registers within Corset. . . )
Another example is in the separation of the implementation of ex-

ception handling from Corset. This forced us to allow for exceptions
being propagated through Corset calls, which seems hazardous and
possibly inefficient. We would rather have been able to coordinate
the handling of exceptions so that exceptions never propagate through
Corset, but are simply reraised, when necessary, on return from a
Corset call. This would require modification to the Lace dispatcher
in raising the exception, somewhat like it now treats forced calls, and
cooperation of the exception handling implementation in returning
normally to Corset from entry procedure calls.

Of course, some loss of efficiency seems to be unavoidable when-
ever we try to enforce clean interfaces. Such costs are usually repaid in
greater system reliability, simpler maintenance, and reusability of com-
ponents. We intend now to go back and reconsider the Lace and Corset
interfaces, to determine whether runtime efficiency can be improved
without loss of functional separation or serious growth of interface
complexity.

Corset and Lace are still under development. This version already
represents several generations of revisions to our first draft design,
and we continue to look for ways to improve it. In particular, we
will reconsider whether modification to the Lace interface can reduce
the complexity of the Corset implementation. Lace stabilized in the
early stages of the Corset design, before the full complexity of task
termination and abortion were confronted. Now we see some apparent
weaknesses. For example, duplication of “safe” versions of Lace pro-
cedures in package ABORTION might be eliminated if slightly more
general Lace operations were provided. On the other hand, it appears
that the forced call may not require parameters, so an awkward-to-
implement detail could be removed from Lace. It appears these two
changes might be combined by supporting a primitive form of signal
and signal-handler within Lace, in place of the forced call.

Another change we are considering is promoting entries to be in-
dependent of tasks. This would better support some Ada extensions
with which we would like to experiment, including remote entry calls
and multiple-server entries.

Work on an executive for the MIL-STD-1750A derived from Lace
is under way at the Boeing Aerospace Company, in Kent, Washing-
ton. Work on the Corset/I implementation is continuing at the Florida
State University. A simulated multiprocessor implementation, using
standard Ada, is being developed to validate the interfaces and algo-
rithms. Compiled Ada tasks are simulated by sections of non-tasking
Ada code with Corset service calls inserted explicitly. These are then
compiled and executed using an existing Ada compiler, bypassing the
tasking implementation of the compiler. When this is done the next
steps would be: to produce an efficient version, revising algorithms
and recoding low-level operations in assembly language as needed; to
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test it on a multiprocessor hardware configuration; to integrate it with
a compiler. By experimenting with such an implementation we would
hope to discover areas where improvements could be fed back.

Draft code for the Corset/I and Lace/I components are included
in [2] and [3].
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