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Abstract: This paper examines the problem of guaranteeing
response times, on a uniprocessor, to sporadic tasks with
preemption constraints. The preemption constraints arise from
the fact that tasks require exclusive access to shared software
resources during portions of their computations, The primary
objective is to determine conditions under which we can
guarantee a response time to each task which is less than or
equal to the task’s minimum inter-execution request time. We
analyze three different characterizations of a task’s resource
requirements. We show that for restictcd patterns of resource
usage, there exist synchronization and scheduling dkciplines
which are optimal for executing these tasks.

1. Introduction

Real-time systems differ from more traditional
multiprogramming systems in that real-time systems have a dual
notion of correctness. Besides being logically correct, i.e.,
producing the correct outputs, real-time systems must also be
temporally correct, i.e., produce the correct output at the correct
time. To assess the temporal correctness of a real-time system,
we wish to determine upper bounds on the response times of the
tasks in the the system. These bounds will be determined
analytically so that rigorous guarantees of temporal correctness
can be made. For our purposes, a real-time system is a set of
sporadic tasks that share a set of software resources to
accomplish a prwticular objective in real-time. A sporadic task is
a task which makes repeated requests for execution with a lower
bound on the interval between requests. This paper examines
the problem of guaranteeing response times to real-time tasks
that require exclusive access to software resources on a
uniprocessor. We wish to guarantee a response time to each
task that is less than or emral to the task’s minimum inter-request
time. This work is part of a larger design system for hard-real-
time systems [Jeffay 89],

To guaranteeresponsetimesto tasks,one musthaveinformation
concerning the implementationof a real-time system. At a
minimum, we must know how tasks synchronize access to
sharedresources and how tasksare scheduled. We propose a
progfammingdisciplinefor implementingreal-timetaskswhere
access to each sharedresourcesis controlled by a monitorwith
WAIT andBROADCASTsynchronizationprimitives[Hoare 74,
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Lampson & Redell 80]. For task scheduling, we further
propose thattasks be selected for execution according to an
earliest deadliwfirst selection rule [Liu & Laykmd 73]. We will
show that for certain characterizations of a task’s resource
requirements, these disciplines can, in principle, result in an
implementation strategy for constructing real-time systems
which will be able to guarantee response times to tasks
whenever it is possible to do so. In this sense, we will claim
this combination of synchronization and scheduling disciplines
is optimal for guaranteeing response times to sporadic tasks with
preemption constraints.

In the following section we present an abstract description of a
real-time system in terms of a set of sporadic tasks. Section
three presents an implementation strategy for constructing a real-
time system. We present the synchronization primitives we will
use and describe our scheduling policy. The following three
sections consider three characterizations of a task’s resource
requirements. Section four considers a set of sporadic tasks that
share a single resource. We show that our implementation
strategy is optimal for this task characterization. Section five
extends the analysis to include sporadic tasks which share a set
of resources, but where each task requires only a single
resource. We show that under restricted conditions our
implementation strategy is again optimal. Section six extends
the analysis to encompass the most general task system. This is
a set of sporadic tasks which share a set of resources and where
each task may require multiple resources. We show that the
results of Section five are sufficient for analyzing such a task
system. Section seven discusses our results, reviews some
related work, and outlines the contributions of this work.

2. Tasking Model

We first present an abstract description of a sporadic task. This
description will be useful for establishing conditions which,
independent of an implementation strategy, are necessary for
guaranteeing response times to individual tasks.

A real-time system c is a set of sporadic tasks. A sporadic task
T is a 3-tuple (s, c, p) where

s = stint or release time: the time of the first request for
execution of task T,

c = computational cost: the time to execute task T to
completion on a dedicated uniprocessor, and

p = !Iperiodt,.a lower bound on the interval between
requests fo~ execution of task T.
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Throughout this paper we consider a discrete time model. In
this domain we assume that all thes, c, and p are expressed as
integer multiples of some basic indivisible time unit. Sporadic
tasks make repeated requests for execution. Let tk be the time
that task T makes its kfhrequest for execution, The behavior of
a sporadic task T is given by the following rules:

i)

ii)

Task T makes its fiist request for execution at time tl =
s.

If ~ has period p, then T makes its (k+l)’~ request for
executio~ at t~me tk+l 2 fk + p 2 i + ip. II task T
makes its klh execution request at time tk, then the
interval [t~,t~+p]is called the k~hrequest interval (or
simply a request interval).

iii) The kthexecutionrequestof T must be completed no
later than the deadline tk +p.

iv) Each execution request of T requires c units of
execution time.

We say that a task misses a deadline if an execution request of
that task has not completed execution by its deadline. Sporadic
tasks are independent in the sense that the time at which a task
makes a request for execution is dependent only upon the time of
that task’s last execution request and not upon the the request
times of any other task or tasks. A set of sporadic tasks ? is
said to be feasible on a uniprocessor if it is possible to execute z
on a uniprocessor, subject to preemption constraints, such that
every execution request of every task is guaranteed to have
completed execution at or before its deadline. In guaranteeing
response times to real-time tasks, we are only interested in
determining feasibility, that is, determining if it is possible to
guarantee a response time to each task that is less thrm or equal
to its period. These guarantees will ensure that each execution
request of each task will complete before its deadline.

We will assume that our real-time system contains m shared
software resources RI, R2, .... Rrn A software resource could
be, for example, a pool of buffers, a portion of a database, or a
global data structure. Whenever a task uses a shared resource,
the task must be guaranteed exclusive access to the resource.
Each execution request of task Ti consists of a sequence of ni
phases labeled ril, ri2, ri3, .... ri”i. The jth phase of task i is
represented by an integer rg, O S rij S m, indicating the
resource required by Ti during the jfh phase of its computation.
We will assume that each phase of each task will require access
to at most one resource. If rij = O, then the jth phase of Ti’s
computation requires no shared resources. Conceptually, If rij=
O, then the jfh phase of Ti requires the special resource Ro.
Resource R. is the only resource that’can be allocated to multiple
tasks simultaneously. If a task never requires a resource (all
phases use only resource Ro) then that task is called a non-
resource consuming task. If a task ever requires a resource it is
called a resource consuming tak. We will assume that for each
resource Rj, 1SjS m, there are at least two distinct tasks T=
and Tb such that ra = r@ =j. This is simply a requirement that
each resource is in fact shared. The computational cost, ci, of
task Ti,is a given by:

ni

Ci =
z

Cij ,
j= 1

where CGrepresents the computationrd cost of phase j. That is,
Cti is the time to execute phase j of task i to completion on a
dedicated processor. If phase j requires a shared resource (rij#
O) then cij represents only the cost of using the resource and not

the cost of accessingtheresource. In latersectionswe will often
wish to refer to the period of the “smallest” task that uses
resourceRi. For resource Ri, let Pi represent this period. That
is,

Pi= MIN @j I rjk = i for some k, l.SkSnj).
lq”<n

3. Programming Model

The concept of feasibility defined in the previous section is art
absolute measure of temporal correctness. Feasibility is a
property of a set of tasks which is independent of their
implementation. However, it is often the case that in order to
demonstrate that a set of tasks is feasible one must have a model
of an implementation of a rerd-time system. In general, there are
several factors to consider in the implementation of a real-time
system. In a real-time system, as in most multiprogramming
systems, there will be contention (queueing) for both the
processor and for access to shared resources. Disciplines for
controlling access to these resources need to be defined. We
define an implementation strategy to be a scheme for
synchronizing access to shared resources and for scheduling
tasks. For a given implementation strategy, one can derive
conditions under which a real-time system, implemented using
this strategy, can be guaranteed to be viable. An implementation
of a real-time system is viable if every execution request of every
task can be guaranteed to complete execution at or before its
deadline. Viability is a relative measure of temporal correctness,
Viability is a property of tasks that is relative to a particular
implementation strategy. To compare implementation strategies
we need a notion of optimality. An implementation strategy is
said to be optimal for a uniprocessor if every feasible real-time
system implemented using this strategy can be guaranteed to be
viable.

In this section we outline an implementation strategy based on
monitors and deadline scheduling. In the sections that follow
we will show that this implementation strategy is optimal for
various characterizations of a tasks resource requirements. We
first give a template for a task’s structure.

We will assume that the body of a task TX, is implemented
according to the schema below. Conceptually, whenever a task
makes an execution request, the following block of code is
executed.

BEGIN
ResourceRi. Request ( ) ; -– Phase 1
< use resource R,, i = r,l >

ResourceRi .Release ( ) ;

ResourceRj .Request () ; -– Phase 2
< use resource Rj, j = rfl >

ResourceRj .,Release () ;

ResourceRk. Request () ; -- Phase nX
t use resource Rk, k = rm >

ResourceRk. Release () ;
END

At the startof eachphase,a taskrequeststheresourceit requires
for thatphase. At the end of each phase the taskreleases the
resource it held duringthatphase. During a the lifetime of the
system, a taskis always in one of four states. Before a taskis
releasedit is idle. Each execution request of a task begins with
an (implicit) request for the processor. Conceptually, this is the
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execution of the BEGIN statementabove. While a task N
waiting for the processor it is in the ready state. Once the
processoris allocatedto thetask,thenthetaskis in theexecuting’
state. If a task makes a request for a resource which is not
available thenthe taskwill be blocked. At the end of the last
phase the task conceptually executes the END statement. This
returns the task to the idle state. The task will remain idle until
the start of its next request interval. During the course of
execution the task may be preempted. When a task is preempted
it maintains possession of any resources it may have held.
When preempted, a task returns to the ready state. We will
assume that the BEG IN and END statements take no time to
execute. 1

Access to each resource Ri, 1< i <m, is controlled by a monitor
that implements the request and release operations. A
pseudo-code schema for such a monitor is shown below.

t401U1’OR IlesourceRi =
BEGIN

-- Initialization
var available : BOOLEAN : = ~RL7E;

var resource : CONDITION;

ENTRY PROCEDURE Requesto =
BEGIN

WHILE( NOT available) DO
WAIT( resource) ;

END

-- Caller
-- access
available

END

ENTRY PROCEDURE
BEGIN

available

has acquired exclusive
to Resource Ri.

:= FALSE;

Releaseo =

:= TRUE;

-- Wake-up all waiting tasks.
BROADCAST( resource);

END

END

The semanticsof the monitor ensures that only onetask isever
executing code inside the monitor at any time. When a task
wishes to gain access to resource Ri, it calls the Request entry
of the monitor. Whenever a task returns from this call it is
gtrarameedt ohaveexclusivea ccesstot heresource. Ifa task
attempts to request a resource that is not available, then the task
will execute the WAIT statement and be blocked on the
resource’s condition vtiable. When ataskreleases a resource it
executes the BROADCAST statement which will wake-up all
tasks (place them in the ready or executing state) that were
bloclced ontheresource’s condition variable. Forresource Ro,
assume that the request and release operations are null
statements. Wewillassume that fordlresowces, the request

and release operations takenotimeto execute.~

1 necOstOftheEND smtement could be included in the rask’s cost with
little effort

2 In principle, tie ~st of these operations could be included in the cost of a

task’s phase. However, if these operations took time to execute then we
would have to broaden the discussion to include details concerning the
irnp]ementatiOn Of the WAIT and BROADCAST primitives. As such details
are not central to the presentation of our results, we postulate a zero
execution time cost.

1

1

An important feature of this synchronization scheme is that the
broadcast operation does not explicitly allocate the newly freed
resource to any task. Each task which is woken-up by a
broadcast must re-attempt to acquire the resource on its own.
[This style of synchronization is borrowed from the Mesa
language [Lampson & Redell 80].) The decision as to which
[ask acquires the resourcewill be under the control of the
scheduler since it is the scheduler who decides which released
task will execute first.

For our synchronization discipline, the following state transition
iiagram describes a task’s behavior. The underlined operations
ire operations that are performed by other tasks. For example,
:he only way a task can leave the blocked state is for some other
:ask to perform a broadcast. The BEGIN and END operations
-efer to the begin and end statements in the task schema above.
Ilansitions to and from the idle and blocked states are initiated
~y the execution of these statements. A transition from the
:xecuting state to the ready state corresponds to a preemption of
;he executing task. Preemptions in the system occur only as the
result of one of two actions. A task may be preempted by
mother task executing its BEG IN statement, or a task may be
preempted when it performs a BROADCAST.

T=BROADCAST

BROADCAST

For our implementation strategy we propose a scheduling policy
based on the earliest deadlinefirst (EDF) selection rule. When
making scheduling decisions, an EDF scheduler will dispatch
the ready task whose deadline is nearest to the current value of
real-time. Ties among tasks with the same deadline may be
broken arbitrruily. In our implementation strategy, the scheduler
makes scheduling decisions each time a task makes a request for
execution (executes the BEG I N statement), requests an
unavailable resource (performs a WAIT), completes a phase of
its execution (performs a BROAD CAS T), or completes an
execution request (executes the END statement).

Since our implementation strategy allows tasks to preempt one
another, we need a slightly more sophisticated synchronization
mechanism than the simple WAIT and BROADCAST operations
described above. If preemption is allowed, then when a task Ti
performs a request operation for resource Rk, it maybe the
case that R~ is allocated to a (preempted) task Tj whose current
deadline is greater than that of task Ti. Since Rk 1snot available,
Ti will become blocked on Rk’s condition variable. To ensure
that Ti’sdeadline can be respected,~sk Tj will have its deadline
shortened to that of task Ti for the duration of T~s current

‘4phase. This advancing of ~j’s deadline occurs as a sl e effect of
T/s execution of the WAIT statement. In this manner, when Ti
becomes blocked, Tj will have a deadline that is less than or
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equal to the deadlines of all the ready tasks. Therefore, under an
EDF scheduler, Tj is quite likely to resume execution after Ti
becomes blocked. When Tj performs the release operation at
the end of its current phase, Tj will have its deadline restored
(increased) to its original value as a side effect of the execution
of the BROADCAST statement. At this point, all the tasks
blocked on Rk’s condition variable will become ready. The
scheduler will preempt Tj and dispatch ‘Ti(or some other task
with a deadline less than or equal to T~s deadline). This
deadline advancement technique is a limited version of the
scheme proposed in [Lampson & Redell 80] and [Sha et al. 87].
The analysis in the following sections will validate our
implementation strategy.

4. Single Resource, Single Phase Systems

We begin with an analysis of the simpIest real-time system.
This is a system with a single shared resource RI, and one
where every task consists of only a single phase. This latter
simplification means that if a task requires access to resource Rl,
then each execution request of the task will require exclusive
access to RI for the entire duration of its computation. For
single phase systems, we will let ri denote the resource
requirement of the (single) phase of task Ti. In this section we
derive necessary and sufficient conditions for such a real-time
system to be viable on a single processor under our
implementation strategy. We start by establishing necessary
conditions for ensuring the viability of any implementation
strategy whose scheduler does not use inserted idle time.3

Theorem 4.1: Let ?= (TI, T2: ,,,, T.} be a set of single phase
sporadic tasks which share a single resource RI. Assume that
the tasks in r are sorted in non-decreasing order by period. In
the absence of inserted idle time, 7 will be feasible for all
possible release times only ifi

1)

2)

3)

x‘fi<l
i=,Pi - ‘

b’k, l~<tt, rk # (k

Pw)++-[-f +&iHj]]
where ;~=(k<iS;)A(ri=rk)A(ri#O), “

Iz=()<[<pi-pk.

Vk, lSkCn, rk = O:

PO-~i+ -[-[ +~PHj]
where Iz~=(k<~<n)A(ri#o),

112= MAX(O, PI - pk) <1 <pi - pk.

Condition (1) is the requirement that the system not be
overloaded (cumulative processor utilization less than 1 [Liu &
Layland 73]). Conditions (2) and (3) have a less intuitive
explanation. Condition (2) applies to resource consuming tasks
and condition (3) applies to non-resource consuming tasks. If
we think of a task’s period as the maximum tolerable latency of

3 If @~k~me ~hedul~ by a policy that allows itself to idle the PrOc~sOr
when fttere exists a task wifh an outstanding request for execution, then that
poticy is said to use inserted idle time [Conway et al. 67].

each execution request, then informally, conditions (2) and (3)
are requirements that each task’s latency be greater than the
worst delay that can be encountered while waiting to be
scheduled. The intuition behind these conditions will be
developed in the proof below (see also [Jeffay & Anderson 88]).

Note that a set of single phase sporadic tasks t, where ri = O, for
I < is n, corresponds to a set of tasks with no preemption
constraints (independent tasks in the sense of [Liu & Layland
73]). In this case the above conditions reduce to condition (1)
alone. This agrees with the result of [Liu & Layland 73]. A set
of single phase sporadic tasks where ri = 1, for 1 < i < n,
corresponds to a set of tasks which must be scheduled non-
preemptively. In this case, the above conditions reduce to those
reported in [Jeffay & Anderson 88].

Proofi We will actually prove a slightly stronger result,
namely, that conditions (1), (2), and (3) are necessary to
guarantee the feasibility of a set of periodic tasks. A periodc
task is the special case of a sporadic task obtained when a
sporadic task Ti makes execution requests every pi time units.

Lemma 4.2: Let ~ be a set of single phase periodic tasks
which share a single resource R]. Assume that the tasks in tare
sorted in non-decreasing order by period. In the absence of
inserted idle time, ~ will be feasible for all possible release times
only if conditions (l), (2), and (3) hold.

Proofi To show that conditions (l), (2), and (3) are necessary
for all possible release times, we need only show that there exist
one set of release times for which these conditions are
necessary. We fiist show that condition (1) is necessaw.

For all i, 1 S i S n, let ~i = O. Define ua,b as the total processor
time consumed by z in the interval [a,b] when scheduled
without inserted idle time. Let t = PI .P2.. . . .pn. Consider the
interval in time [O,t]. If z is feasible then it must be the case that

uO,fS t. Therefore, since ~
Pi

ci is the total processor time spent

on task Ti in [O,t], r will be feasible only if

‘t
Uo,t =

x
i=l~ci “

x
‘Q <l.

i=,pi -

An alternate explanation of conditions (2) and (3) is that for two
tasks T~ and Ti, k < i, in all blocks of time of length pk + f,
pk < pk+l < pi, there must exist enough unused processor time
to execute Ti. To see that condition (2) is necessary, choose
tasks Tk and Ti,, such that k c i’ S n , rk # O, ri’ = rk, and a
value 1’ such that O <1’ <PC - pk. Let si, = O, and Sj = 1, for
1 s j < n, j # i’. This gives rise the pattern of task execution
requests shown below.4

Tk ! 1

T,, ~X~l

Time I
1 1 i I

1 1 I

01 ,k+lf ’ Pk + 1’ pr

41n the ~~hedulingdiagrams used in this paper, a rwtangle indicates an
interval in which a task is executing. A rectangle open on dre left side
indicates that a task is being resumed. A rectangle open on the right side
indicates that a task is W&rg preempted. Tasks which require resources are
represented with shaded rectangles. Tasks which do not require resounxs are
represented with striped rectangles.
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Because inserted idle time is not allowed, Tr will be dispatched
at time zero. Since Tk and Tr both require the same resource
(Rl), the execution request of Ti, begun at time O must be
completed by time t= @k -Ck)+ 1 if t is’ to be feasible.
Therefore, in the interval [O,l’+pk], the total processor time
consumed, W,r+P~,is bounded by

hence

To see that condition (3) is necessary, we use a construction
similar to the one above. Choose tasks T~ and T~ such that k <
i’~n, rk = O, ri, # O, and a value /’ such that
MAX(O, PI - pk) <1’ <Pi - pk. Let Sr =0, md~j=l, forl
s j s n, j # i’. This gives rise the pattern of task execution
requests shown below. Let T~ be the task with r~ = 1, whose
period is PI. (Tm is the task with the smallest period that
accessesRI.)

Time I [ 1 t 1
I I

01 Pk+l 1’ pl+l pk+i’ pi’

At time t = O, task Tr may be preempted by task Tk (or by some
other non-resourceconsuming task in with a nearer deadline).
However, as in the previous case, T~ must still complete
execution before time t = (pm- cn) + 1, if task T~ is to meet its
deadline. Therefore, in the interval [0, /’+pk], the total
processor time consumed, 4,r.P~, is again bounded by

and hence

Returning to the proof of Theorem 4.1, since periodic behavior
is a Special case of sporadic behavior, any condhions necessary
for the feasibility of a set of periodic tasks must also be
necessary for the feasibility of a set of sporadic tasks.
Therefore, by Lemma 4.2, in the of absence inserted idle time,
conditions (1), (2), and (3) are necessary for the feasibility of
sporadic tasks for all possible release times. This completes the
proof of the theorem. A

Theorem 4.1 has given necessaxy conditions for the feasibility of
a set of tasks for all possible release times. Often we are
interested in determining the feasibility of a set of tasks for a
specific set of release times. The following theorem can be used
to show that in fact conditions (l), (2), and (3) of Theorem 4.1

are necessary feasibility conditions for sporadic tasks with
arbhrary release times.

Theorem 4.3: A set of sporadic tasks z can be feasible for an
arbhmry set of release times only if t is feasible for all possible
release times.

Proofi By the definition of sporadic tasks, a sporadic task will
wait for an arbitrary amount of time between the end of one
request interval and the start of the next. Therefore, after ail
tasks have been released, there can exist a time t such that a task,
or group of tasks in L make requests for execution at time t,and
there are no outstanding requests for execution at time t.In
other words, if these tasks had not made execution requests at t
then the processor would have been idle for some non-zero
interval starting at t.At time t,7 is effectively “starting over”
with a set of “release times” that are independent from the initkd
release times. Therefore, a set of sporadic tasks with arbitraty
release times can be feasible only if they are feasible for all
possible release times. A

The next theorem shows that conditions (l), (2), and (3) from
Theorem 4.1, are sufficient for ensuring the viability of a set of
single phase sporadic tasks that share a single resource under
our implementation strategy. Since these conditions are
necessary conditions for the feasibility of such a set of sporadic
tasks, ~eorem 4.4 also shows that the implementation strategy
of SectIon 3 is an optimal strategy for resource consuming,
single phase tasks which share a single resource. The optimality
is with respect to the class of implementation strategies whose
schedulers do not use inserted idle time. All of the optimality
results in this paper will have this caveat. This optimality result
means that if a set of single phase sporadic tasks which share a
single resource can be viable under any implementation strategy
which does not use inserted idle time in its scheduler, then the
tasks must be viable under our strategy.

Theorem 4.4: Let t be a setof singlephasesporadictasksas
in Theorem4.1. Under theimplementationstrategyof Section
3, 7 will be viable for arbitraryreleasetimes,if conditions (l),
(2), and (3) from Theorem4.1 hold.

Proofi (By contradiction.) The proof proceeds by enumerating
all possible types of blockage that a task can encounter. For
each case we show that if a task misses a deadline then one the
conditions from Theorem 4.1 must have been false. The full
text of the proof appears in the appendix. A

5. Multiple Resource, Single Phase Systems

We next examine the problem of executing single phase sporadic
tasks that share a set of resources. This problem differs from
the previous problem in that it is now possible for resource
consuming tasks to preempt one another provided they do not
use the same resource. The main result of this section is. to
demonstrate that often it is mappropnate for an implementation
strategy to allow these preemptions. Unfonqn?tely, detemlin@g
when it is appropriate to allow this additional preemption
remains an open problem.

The implementation strategy in Section 3 uses a separate monitor
to synchronize access to each resource. For a system with
multiple resources, this does not lead to an optimal
implementation strategy. Often abetter strategy is to use a single
monitor (with a single boolean and condition variable) to
synchronize access to a group of resources. For our
implementation strategy, an equivalent view of the problem is
that it is often better to ignore the distinction between certain
resources and to treat them as a single logical resource. Note
that treating a group of resources as a single logical resource and
using a single monitor to control access to these resources does
not effect the logical correctness of the system. It can, however,
effect the temporal correctness in interesting ways. The
following example illustrates this phenomena.
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Example 5.1: Consider the following set of single phase
tasks that sharetwo resourcesRI and R2.

T, = (4,1,4), r,= R, TJ= (2,1,6), r~= R2 T2= (3,1,5), rz =RO
TJ= (0,3,17), r~= Rl i?i= (1,3,15), rd=R2

Our implementation strategy will use a separate monitor for
controlling access to each resource. This means that our strategy
will allow preemptions between tasks that use different
resources. Under our implementation strategy, the above tasks
will be executed as shown below. Note that task 2’3 misses a
deadline at time f = 8.

T,

T2

,,
13 g=

“4 ~

T3 ~ ,,,,,,,,,,.,:,.>,,,,,,..... I

Time I t m ‘ , , ,

0 2 4 6 8 10 12 14 16

Had we modified our characterization of these tasks so that RI
and R2 were treated as a single resource, then these same tasks
could have been executed correctly by our implementation
strategy. If wetreat this multiple resource system as a single
resource system by requiring all tasks requesting RI orR2
actually request themeta-resource Rl&2, then conditions (l),
(2), and(3) from Theorem 4.1 hold forthe resulting single
resource system.’ By using a single monitor for controlling
access to RI andRz, we aredisallowingpreemptionbetweenthe
resourceconsumingtasksin thisexample. By disallowing this
preemption, taskT~would nothave been scheduled at time 1
and T3 will complete exemtion before its deadline as shown
below.
T, ~
Tz

.,13 m I

.,
14 I I
TJ ~x.., ...... ..fw.....f 1

Time 1 , , m , , , , , , , I , ,

0 2 4 6 8 10 12 14 16

This anomalous behavior can be explained by closely examining
theeffect ofpreemption among resource consuming tasks. In
the previous section, the worst case delay that a task Tkcould
experience while waiting to be scheduled, occurred when a
single resource consuming task Ti with a larger period made an
execution request 1 time units before Tk’s request. Under the
right circumstances, Tk had to wait for the execution request of
this hrger task to complete before Tk was allowed to complete.
By allowing resource consuming tasks to preempt one another,
it is now possible for Tk to have to wait for multiple resource
consuming tasks with further deadlines to complete before being
scheduled. For the specific tasks above, we do better by
prohibiting this behavior from occurring.

Example 5.2: Consider the following set of single phase
tasks that share two resources R 1 and R z. For the
implementation strategy of Section 3 (separate monitors are used
for accessing R1 and R2), the following tasks can be shown to
be viable. (The analysis to show that these tasks will be viable
will be presented below. The figure below is merely intended to
suggest viability.)

T1= (1,1,4), r, =Ro TZ= (1,1,5), rz =Rl T4= (0,5,25), rj = R2

T3 = (1,1,6), r3= RI T5= (0,5,28), rd= R2

Under our implementation strategy, these tasks wi!l be executed
as shown below.

‘J ~
T2

.,
13 L m I

‘4 ~....
T5 ~ ~...

Time I , , , ,

0 2 4 6 8 10 12 14 16

However, had we ignored the distinction between resources R1
and R2 and used a single monitor for accessing these resources,
then these tasks would have been quite unviable under our
implementation strategy.

‘4 ~...

‘5 ~...

Time 1 * , , , t , , , , t , t

O 2 4 6 8 10 12 14 16

An important difference between the tasks in these two examples
is that in the second example, the periods of the tasks that used
R1 were all less than the periods of the tasks that used resource
R2. Because of this, for any request of task Tk, rk # O, it is not
possible for more than one resource consuming task with a
further deadline to execute while Tk has an outstanding request
for execution. In order for multiple resource consuming tasks
with further deadlines to execute while Tk has an outstanding
request for execution, there must exist tasks T~~d Tj with ri =
rk, rj # rk (# O) and pk c pj c pi.

A precise characterization of feasibility and viability conditions
for single phase tasks that share a set of resources, is the object
of an on-going study. One special case that has been solved is
the case where there is no overlap in the periods of the tasks that
consume resources. That is, if tasks Tk and Ti9k c i, require
resource R=, a A O, and there does not exist a task Tj that
requires resource Rb, b # a # O, such that pk < pi ~ pi, then we
can determine the task’s feasibility.

However, always disallowing preemption among resource
consuming tasks does not lead to an optimal implementation
strategy. Under certain circumstances, allowing resource
consuming tasks to preempt one another makes previously
unviable tasks sets viable.

300



Theorem 5.1: Let 7 = {Tl, T2, ,,,, Tn) be a set of single phase
sporadic tasks which share m resources RI - Rw. Assume that
the tasks in ~ can be labeled such that if k < i, then pk S pi, and
if k < j < i, and rk = ri (# 0), then rk = rj = ri. In the absence of
inserted idle time, z will be feasible only if

2) Vk, lSk<n, rk # O:

Pk2T~+TY[-I+~PHCJ]]
where ZJ=(k<i <n) A(ri=r~)A(ri#()),

Iz=()<[<pi-pk.
3) Vk, l~<n:

PL--(C+T[-f +$l%Hcj]
where IZ~=(k< iSn)A(ri #rk)A(ri#O),

112= MAX(O,Pri - pk) <1 <pi - pk.

ProotT The necessity of these conditions follow immediately
from the related constructions in the proof of Theorem 4,1. A

Note that condition (3) now applies to both resource consuming
and non-resource consuming tasks, For multiple resource
systems, it can be shown that the implementation strategy of
Section 3 is an optimal strategy for single phase sporadic tasks
with no overlap in the periods of the tasks that consume
resources. As in the previous section, the optimality is shown
by demonstrating that the conditions necessary for feasibility are
sufficient conditions for ensuring the viability of our
implementation strategy.

Theorem 5.2: Let T be a set of single phase sporadic tasks as
in Theorem 5.1. Under the implementation strategy of Section
3, z will be viable for arbitrary release times, if conditions (l),
(2), and (3) from Theorem 5.1 hold.

Proofi The proof is largely identical to the proof of Theorem
4.4 and will not be repeated here. A

For sets of single phase tasks with arbitrary overlap in the
periods of resource consuming tasks, the above results suggest a
heuristic for ensuring viability. A set of meta-resources is
created by treating groups of resources as a single resource in
such a manner that there no longer is any overlap in the periods
of meta-resource consuming tasks. The conditions from
Theorem 5.1 can then be used to determine viability of the
transformed system.

6. Multiple Phase Systems

We finally consider the problem of determining feasibility
conditions for a set of sporadic tasks when each task consists of
a set of phases. This characterization addresses tasks which
reqmre multiple resources to execute. (Recall, however, that we
are still assuming that each phase of a task requires at most one
resource.) The main result of this section is to show that the
analysis of the previous sections is sufficient to analyze these
systems. We will show how a multiple phase task can be
thought of as a set of sin~le phase tasks and how our
implementation strategy for single phase tasks can be modified
to execute multiple phase tasks.

Let r be a set of multiple phase sporadic tasks. We can create
an equivalent set z’, of single phase sporadic tasks such that 7’
will be feasible if and only if 7 is feasible. The set # is
consuucted as follows. For a task Tk in 7 with nk phases, we
Will Create nk Single phase tasks Tki = (Sk, CB, pk), 1 ~ i < n~.
All tasks derived from Tkwill make requests for execution at the
same points in time at which Tk would have made execution
requests. These tasks can be scheduled as ordinary single phase
tasks except that for each Tk in L a precedence order must be
maintained between tasks Tki, 1 S i S nk, in d. Each execution
request of task Tki, i > 1, made at time t, cannot be scheduled,
or allocated resources, until after the execution request of task
Tki_~made at time’t has completed execution.

To execute the set of single phase sporadic tasks z’,we supplant
the scheduler in our implementation strategy with similar
scheduler based on a refined EDF scheduling policy that we will
call the ED~ policy. An EDF* scheduler behaves exactly as an
EDF scheduler except when choosing among tasks with the
same deadline, Recall that the EDF rule allows for an arbitrary
choice among tasks with the same deadline. We will exploit this
feature to enforce the precedence constraints on the tasks in t’.
When there are multiple ready tasks with the nearest deadline,
the EDF* policy will choose a ready task T~ only if there does
not exist another task ?’kj, ~ < i, in the ready or blocked state.
For our modified implementation strategy, the transformation
from a set of multiple phase sporadic tasks, to a larger set of
single phase sporadic tasks, outlined above is correct in the
sense that for each k, the aggregate behavior of the tasks TE, 1
s i s nk, will be indistinguishable from the behavior of Tk.
Such an implementation strategy can correctly execute r’ if and
only if it can correctly execute z

Unfortunately, the problem of deciding feasibility fort’ is more
complicated than the problem of deciding feasibility for single
phase tasks. Recall that we have assumed that the times at
which tasks made execution requests were independent. The
times at which the single phase tasks derived from a multiple
phase task, make execution requests are not independent. For
all k, tasks Tkl - Tb~ will always make execution requests at
the same time. This fact must be reflected in the feasibility
analysis since these tasks can never interfere with each other.
They will never compete for resources or block one another.

Therefore, the feasibility conditions from the previous sections
are only sufficient conditions for the feasibility of a single phase
system derived from a multiple phase system. They mu St be
generalized slightly in order to become necessary conditions.

The following theorem extends Theorem 4.1 for multiple phase
tasks. It establishes necessary conditions for the feasibility of
multiple phase tasks that share a single resource. This
corresponds to a set of tasks where in each request for
execution, a task alternates between using the resource and not
using the resource.

Theorem 6.1: Let ~= {Tll, T12, .. .. Tin,, T21, T22, ... .

T2n2, . . . . T.l, Tn2, .... Tn., ) be a set of single phase sporadic
tasks derived from a set of multiple phase sporadic tasks {Tl,
Tz, .... T.) that share a single resource RI. Assume ~ is sorted
such that if i <j, then pti < pjy for all x and y, 15 x < ni and 1
s y s n (recall that for all k, l~<ni, p~k = pi). For tasks Til -
Tint, dei-%e the cost function Ci(h) to be
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in the absence of inserted idle time, r will be feasible for
arbitraty release times only ifi

.

wherel~ = (k< i ~n) A (1 <h < n~) A (rib # O) A (ri~ = r~g),

12= O<l<@i-pk)-Ci(h)7

3) Vk, lSk-Ot, Vg, l<g<n~: rkg = (k

where ]Il=(k< iSn)A(l Sh<ni) A(rih #O),
[12= MAX(O, pl ‘p,) < / < (pi ‘p,) – Ci(h) .

Conditions (2) and (3) are semantically equivalent to the
corresponding conditions in Theorem 4.1. These conditions
differ from those of Theorem 4.1 in that for a task Tkg,
conditions (2) and (3) do not include any delay due to waiting
for other tasks Tk. to complete execution. As in Theorem 4.1,
condition (3) onf’y applies to those tasks that never use any
resources.

Conditions (2) and (3) also differ in that the range of the lag time
parameter J is more restricted than in Theorem 4.1. This is a
reflection of the existence of a precedence relation among
subsets of the tasks. For the previous problems, the worst case
blockage of a task T, occurred when a task Ti with a larger
period commenced execution 1 time units before a request
interval of T,. In those cases, the maximum that the lag could
be was Pi – Pk – 1 time units. In the current problem, since
there exists a precedence relation on tasks, task Tih can never be
scheduled until Ci(h) time units after it makes an execution
request. The cost function Ci(h) represents the cost of the
execution of the h – 1 tasks that must precede each execution
request of task Tti. Therefore, when assessing the blockage due
to a task Tih executing just prior to an execution request of a task
Tkg with a smaller period, we need only consider a maximum
lag between these two tasks of

/ < (pi ‘P,) - Ci(k)
time units.

Proofi We will only demonstrate the necessity of conditions
(2) and (3).

For condition (2), choose tasks T,g and Trh, such that k <i’<
n,andl ShSni, lSf Snk, rik#(), Mldrik=r&T; ,AiSa
task that requires the same resource that T,g needs. Choose a
value 1’ such that O <1’< (pi, –pk) – Ci(h). Let si, = O, and
Sj = Ci(h) + 1, for 1 <j S n, j # i’. This gives rise the pattern
of task execution rectuests shown below.5 (Recall that shaded

5 ph~s within a taskare demotedby separatecost rectangles.

cost rectangles denote resource phases.)

Tkg I I
Tkg.I

T I ,X,*. .,,...,
fh I

Time I 1 I 1 I 1 I
o Ci(h) 1’ pk~[’ pi’

Ci(h)+l p,+ci(h)+l

FoIlowing the analysis of Lemma 4.2, we have in the interval
[0,1’+,,], the total processor demand do,r.p,, bounded by

hence

The construction showing the necessity of condition (3) is
similar. A

The next theorem shows that the above conditions are sufficient
for the ensuring the viability of a set of tasks under our
implementation strategy. Therefore, the implementation strategy
in Section 3, modified with an EDF* scheduler, is an optimal
strategy for multiple phase tasks that share a single resource.

Theorem 6.2: Let t be a set of multiplephase sporadic tasks
as in Theorem 6.1. Under the implementation strategy of
Section 3 withanEDF*scheduler,T will be viable for arbitrary
release times, if condhions (l), (2), and (3) from Theorem 6.1
hold.

Proof: Excluding some minor changes in notation, the proof is
identical to the proof of Theorem 4.4 and will not be repeated
here. A

Although we have only considered multiple phase tasks that
share a single resource, we can draw several conclusions that
will be true for all multiple phase systems. Fkst, note that the
feasibility of a set of multiple phase tasks is not a function of the
number of phases of the tasks. What is important is the relative
sizes of only the resource consuming phases. The relative sizes
of the non-resource consuming phases is immaterial. For
example, adjacent non-resource consuming phases may be
coalesced without affecting the feasibility of the system. Of
course resource consuming phases should be as short as
possible, Therefore, there is a potential benefit, in terms of
feasibility, to separating a resource consuming phase into
multiple phases. This may be possible if, for example, a phase
consists of a sequence of disjoint operations. This technique
amounts to defining allowable preemption points within a
resource consuming phase.
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7. Discussion and Related Work

The request and release operations in our implementation
strategy can be thought of as an implementation of the P and V
operations, respectively, on a binary semaphore. The boolean
variable in the monitor functions as the binary semaphore.
There are two important features of our implementation of these
operations which were critical to the optimality of our strategy.
The fiist feature is that resources are never assigned to a task by
another task. Since each task must explicitly acquire a resource
on its own, a task must be executing when it acquires a
resource. Therefore, in our idealized environment, a task is
msaranteed to execute for at least one time unit immediately after
acquiring the resource. Putanotherway, resourcesareallocated
to tasksas lateaspossible.

The second notable feature of our implementation is that
available resources are always acquired by the ready task with
the nearest deadline (of all the ready tasks in the system). The
feature is due to our use of the BROADCAST primitive. Note
that it would be quite awkward to guarantee that an
implementation based on the more common WAIT and SI GNAL
synchronization primitives would have the features above. This
is because the signal operation only releases a single waiting task
[Home 74]. For example, if the resource is allocated to the
signaled task, then problems arise if a task with a nearer
deadline, which desires the same resource, becomes ready
before the si=maled task resumes execution.

Our implementation strategy has the additional interesting
property that a task will execute the wait statement in the request
operation at most once for any resource request. This is due to
the fact that we use deadline scheduling. Once a task Tk has
been blocked and is made ready by a BROADCAST, i“k will
execute when it has the nearest deadline. In the meantime the
resource it requires will be used only by tasks with a nearer
deadline (which will execute before Tk). When Tk is dispatched
the resource it requested must be available. Therefore, the loop
in the r e qu es t monitor entry can be replaced by an if
statement.This observationis importantfor assessingthecost
(overhead) of our synchronization scheme. Although we are
currently ignoring the cost of the request and re 1 e as e
operations, this observation simplifies the determination of their
cost since the loop is executed at most once.

Another issue related to the overhead of our implementation
strategy concerns thecost of preemption. In our strategy,tasks
which require different resources may preempt one another.
While we have been ignoring the cost of this preemption, in
practice thereis a high cost associated with a context switch.
Therefore,it would be usefulto determine,for a given real-time
system, if the preemption in our implementation strategy is
necessmy for viability. The analysisof the previous sections
can be used to determinethe minimumamountof preemption
necessary for ensuring the viability of a set of tasks. For
example, any set of taskscan be logically implementedusinga
single monitorfor accessing all resources(includingI?o). This
results in a non-preemptive implementation. Such an
implementation is desirable to use whenever possible as it is
simple and efficient (in terms of overhead). The conditions of
Theorem 4.1 are necesswy and sufficient for the viability of this
strategy. Task sets which are not viable under this strategy can
be implemented using a monitor for resource consuming tasks
and a monitor for non-resource consuming tasks, or a monitor
for a group of resource consuming tasks with no overlap among
the periods of the tasks, For each of these characterizations of a
rest-time systems resource requirements, the viability conditions
(necessarily) become less restrictive as more preemption is
allowed.

The optimality of our results are quite dependent on our
characterization of a task’s behavior. When tasks make requests
for execution at constant intervals (tasks are periodic), Mok has
shown that the problem of deciding whether or not it is possible
to execute a set of cyclic tasks which use semaphores to enforce
mutual exclusion is NP-hard in the strong sense [Mok 83]. In
[Jeffay and Anderson 88] the more general problem of deciding
whether or not it is possible to execute a set of periodic tasks in a
non-preemptive manner was also shown to be NP-hard in the
strong sense. In addition, it was shown that if an optimal non-
preemptive scheduling algorithm existed for periodic tasks, then
P = NP [Jeffay & Anderson 88]. For periodic tasks, the
intractability arises from our inability to efficiently determine if
the worst case blockage that a task may experience while waiting
to execute, can ever actually occur. The optimality of the results
in this paper is primarily due to the fact that we are allowing a
small amount of non-determinism in the behavior of tasks.
Since sporadic tasks may delay for an arbitrary interval between
making execution requests, we can argue that a sporadic task can
always experience its worst case blockage. Since sporadic tasks
are a generalization of periodic tasks, all of the feasibility
conditions we developed for sporadic tasks will be sufficient
conditions for the viability of periodic tasks under our
implementation strategy.

Given the intractability results for periodic tasks, it is not
surprising that previous work in this area has focused on
heuristic solutions. One approach has been to reduce the
analysis of a set of periodic tasks with preemption or mutual
exclusion constraints to the analysis of a set of independent
periodic tasks [Mok et al. 87, Sha et al. 87]. In this manner, the
results developed for independent periodic tasks can be applied.
For independent periodic tasks, the conditions which are
necessary and sufficient for guaranteeing response times are
stated in terms of the processor utilization of the system,
Independent tasks can be viable if

n
Ci<au=~z. ,

i= 1

where the value of o.varies according to the problem statement
[Liu & Layland 73]. For our purposes we can consider a to be
a constant. (In our analysis we had a = 1,) The reductions
from the constrained task system to the independent task system,
typically impose further restrictions on the utilization of the
system. A common form for the viability condkions for task
sets with preemption constraints is U S a - B, where B is a
function of the durations that tasks in the system can be blocked
[Mok et al. 87, Sha et al. 87]. The reduction process results in
conditions which are sufficient for ensuring the temporal
correctness of a set of tasks but which are not necessary. In
effect, these methods are sacrificing processor utilization to gain
viability.

Our approach is based on an examination of the relative sizes of
the task’s periods and costs and not on utilization. The majority
of our analysis has been directed at determining if a tasks period
is large enough to accommodate the blockage due to other tasks’
executions. The constraints we impose on a task’s period (e.g.,
conditions (2) and (3) in Theorem 4.1) are not a function of
processor utilization. It is also the case that processor utilization
is not directly effected by these constraints. For example, for
the feasibility conditions of Theorem 4.1, it is possible to have
task sets which satisfy condition (1) (a utilization constraint) but
which do not satisfy condition (2) or (3). Similarly, it is
possible to have task sets which satisfy conditions (2) and (3),
but which do not satisfy condition(1). We conclude from these
observations that the viability conditions of task sets with
preemption constraints need not be considered a function of
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processorutilization. One does not have to trade-offutilization
to ensureviability.

Other work in this area has focused on the analysis of specific
implementation strategies [Leinbaugh 80, Stoyenko 87]. These
researchers have also developed conditions which me sufficient
for ensuring the correctness of cyclic tasks which share
resources, Our work extends theirs by considering a more
general characterization of a real-time task, and by deriving
necessary conditions for the feasibility of various resource usage
patterns. A more pragmatic approach to guaranteeing response
times to tasks has appeared in [Zhao et al. 87a, 87b]. They
primarily consider tasks which make a single request for
execution and have resource requirements and deadlines. They
also consider a distributed processing environment. Scheduling
and load balancing heuristics are presented and analyzed.

8. Summary and Conclusions

In this paper we have considered the problem of guaranteeing
response times to sporadic tasks with non-preemptable resource
requirements. We sought to guarantee that each task finish
processing before its deadline. When posing solutions to this
problem, details concerning the implementation of the system
must be considered. We have developed a model of an
implementation that we termed an implementation strategy. An
implementation strategy consists of a scheme for synchronizing
access to shared resources and for scheduling tasks. We have
presented and analyzed an implementation strategy based on
monitors, with wait and broadcast primitives, and deadline
scheduling. We have shown that this strategy is an optimal
strategy for single and multiple phase sporadic tasks that share a
single resource. The optimality is with respect to the class of
implementation strategies whose schedulers do not use inserted
idle time. For tasks that share more than one resource, we have
shown that often aHowing preemption between resource
consuming tasks can lead to sub-optimal strategies. If there is
no overlap in the periods of the resource consuming tasks, then
our implementation strategy is again an optimaJ s~ategy. If there
is an overlap in the periods, then the determination of necessary
conditions for the feasibility of multiple resource single phase
systems remains an open problem. Our viability conditions are
sufficient for these systems.

‘ast? ‘ehave ‘hewn ‘owmultiple phase systems can be modele by a single phase system
with precedence constraints. Our implementation strategy can lx
easily extended to incorporate these precedence constraints.
While we have focused on a model of sporadic tasks, all of our
results are applicable (as sufficient conditions) to periodic tasks.

This work makes two contributions. First, we have shown that
response times can be guaranteed to tasks with preemption
constraints without having to trade-off processor utilization to
achieve viability. The analysis presented is based on an
examination of the relationships of task’s periods and costs. It
shows that in principle, feasibility k not a function of processor
utilization, One can conceive of task sets with arbitrarily high
processor utilization (although less than or equal to 1.0 of
course), which will be viable.

The second contribution of this work is the development of a
family of implementation strategies for sporadic tasks with
preemption constraints. When considering how best to execute
a set of tasks it is useful to know how much preemption must be
implemented in order to guarantee viability. This is an important
measure to quantify because preemption often has a high cost
associated with it. We have analyzed implementations strategies
which allow no preemption, strategies which allow preemption
between tasks that use resources and those that do not, and

strategies which allow preemption between resource consuming
tasks.

Future work in this area is targeted at tasks with nested resource
requirements. It is interesting to note that this paper already
contains two simple but useful solutions to this problem. If we
assume that a task’s resource requests within a phase are ordered
(to avoid deadlock), then we can guarantee feasibility by either
disallowing all preemption or by ignoring the distinction
between resource types. The run-time systems of Sections 4
and 6 are sufficient for handling these cases.
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