Efficient Object Sharing in Quantum-Based Real-Time Systems*

James H. Anderson, Rohit Jain, and Kevin Jeffay
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175
{anderson,jain,jeffay } @cs.unc.edu

Abstract

We consider the problem of implementing shared ob-
jects in uniprocessor and multiprocessor real-time systems
in which tasks are executed using a scheduling quantum.
In most quantum-based systems, the size of the quantumis
quitelarge in comparison to the length of an object call. As
aresult, most object callscan be expected to execute without
preemption. A good object-sharing scheme should optimize
for this expected case, while achieving low overhead when
preemptions do occur. In thispaper, we present several new
shared-object algorithms for uniprocessors and multipro-
cessors that were designed based upon this principle. We
also present scheduling analysis results that can be used in
conjunction with these algorithms.

1. Introduction

In many real-time systems, tasks are scheduled for exe-
cution using a scheduling quantum. Under quantum-based
scheduling, processor time is allocated to tasks in discrete
time units called quanta. When a processor is alocated to
sometask, that task isguaranteed to execute without preemp-
tionfor) time units, where () isthelength of the quantum,
or until it terminates, whichever comesfirst. Many red-time
applications are designed based on scheduling disciplines
such as proportional-share[20] and round-robin scheduling
that areexpressy quantum-based. Under proportional-share
scheduling, each task is assigned a share of the processor,
which represents the fraction of processing time that that
task should receive. Quanta are allocated in a manner that
ensures that the amount of processor time each task receives

*Work supported by NSF grant CCR 9510156. Thefirst author wasalso
supported by a Young Investigator Award from the U.S. Army Research
Office, grant number DAAHO04-95-1-0323, by NSR grant CCR 9732916,
and by an Alfred P Sloan Research Fellowship. The second author was
supported by a UNC Board of Governor’s Fellowship. The third author
was supported by agrant from IBM Corporation.

is commensurate with its share. Round-robin scheduling is
asimpler scheme in which each task has an identical share.

Quantum-based execution also arises when conven-
tional priority-based scheduling disciplines, such as rate-
monotonic (RM) and earliest-deadline-first (EDF) schedul-
ing, are implemented on top of a timer-driven real-time
kerndl [14]. In such an implementation, interrupts are
scheduled to occur at regular intervals, and scheduling de-
cisions are made when these interruptsoccur. The length of
time between interrupts defines the scheduling quantum.
Timer-driven systems can be seen as a compromise be-
tween nonpreemptive and completely preemptive systems.
In fact, nonpreemptive and preemptive systems abstractly
can be viewed as the extreme endpoints in a continuum
of quantum-based systems. a nonpreemptive system re-
sultswhen @ = oo and a fully preemptive system results
when ¢) = 0. Nonpreemptive systems have several advan-
tages over preemptive systems, including lower scheduling
overheads (if preemptions are frequent) and simpler object-
sharing protocols[8, 13]. Also, timinganaysisissimplified
because cache behavior is easier to predict. However, these
advantages come at the potential expense of longer response
timesfor higher-priority tasks. Quantum-based systems can
be seen as a compromi se between these two extremes.

In this paper, we consider the problem of efficiently im-
plementing shared objects in quantum-based real-time sys-
tems. We consider both uniprocessor and multi processor
systems. The basis for our results is the observation that,
in most quantum-based systems, the size of the quantum
is quite large compared to the length of an object call.
Indeed, processors are becoming ever faster, decreasing
obj ect-access times, while quantum sizes are not changing.
Even with the technology of several years ago, one could
make the case that object calls are typically short compared
to a quantum. As evidence of this, we cite results from
experiments conducted by Ramamurthy to compute access
times for several common objects [18]. These experiments
were performed on a 25 MHz 68030 machine and involved
objectsranging from queuesto linked liststo medium-sized

Published in: Proceedings of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998, pages 346-355.

balanced trees. Both lock-based and lock-free (see below)
object implementationswere evaluated. Ramamurthy found
that, even on aslow 25 MHz machine, &l object calls com-
pleted within about 100 microseconds, with most taking
much less. In contrast, a quantum in the range 1-100 mil-
liseconds is used in most quantum-based systems.*

These numbers suggest that, in a quantum-based sys-
tem, most object cals are likely to execute without pre-
emption. A good object-sharing scheme should optimize
for this expected case, while achieving low overhead when
preemptions do occur. Clearly, an optimistic object-sharing
scheme is called for here, because pessimistically defend-
ing against interferences on every object call by acquiring a
lock will lead to wasted overhead most of time. In an op-
timistic scheme, objects are accessed in a manner that does
not preclude interferences due to concurrent accesses. If an
operation on an object is interfered with before it is com-
pleted, thenit has no effect on theobject. Any operation that
isinterfered with must be retried in order to complete. Op-
timistic schemes perform well when retries are rare, which
is precisely the situation in quantum-based systems.

In this paper, we show that it is possible to signifi-
cantly optimize retry-based shared-object algorithms by di-
rectly exploiting the relative infrequency of preemptionsin
guantum-based systems. The specific assumption we make
throughout this paper regarding preemptionsis as follows.?

Preemption Axiom: Thequantumislargeenoughto ensure
that each task can be preempted at most once across two
consecutive object calls. O

Given the Preemption Axiom, each object cal can be
retried at most once, i.e., thereisabound on overall object-
sharing costs. The Preemption Axiom is quite libera: not
only are object calls of short to medium duration allowed
(the casewemost expect and optimizefor), but a so call sthat
are quitelong, approaching the length of an entire quantum.

Our work builds upon recent research by us and others
on using lock-free and wait-free shared-object algorithmsin
rea-time systems [3, 4, 5, 6, 15, 19]. Operations on lock-
free objects are optimistically performed using a user-level
retry loop. Such an operation is atomically validated and
committed by invoking a synchronization primitive such as
compare-and-swap (CAS). Theretry loop isexecuted repeat-
edly until thisvalidation step succeeds. Wait-free shared ob-
jectsare requiredto satisfy an extremeform of lock-freedom
that precludesal waiting dependenciesamong tasks, includ-

1A quantum of 1-100 milliseconds may not be sufficient for all real-time
applications. For systemsthat employ a very small quantum, the results of
this paper may not be applicable.

2This axiom can be weakened to allow preemptions by tasks due to
external interrupts, providedthat each task can be preempted at most once
acrosstwo consecutiveobject callsby other tasksthat accessshared objects,
and the time spent servicing external interrupts is accounted for when
analyzing schedul ability.

ing potentially unbounded operation retries.

Theremainder of thispaper isorganized asfollows. Inthe
first part of the paper (Section 2), we consider the problem
of implementing shared objects in quantum-based unipro-
cessor systems. Our approach is to develop lock-free ago-
rithmsthat are optimized in accordance with the Preemption
Axiom. The Preemption Axiom ensuresthat each lock-free
operationisretried at most once. Thus, if an operationisin-
terfered with due to a preemption, then the retry code can be
purely sequential code inwhich shared dataisread and writ-
ten without using synchronization primitives. In short, the
Preemption Axiom automatically converts a lock-free im-
plementation into await-free one. In addition to discussing
algorithmic techniques, we also show how to account for
object-sharing costs in scheduling analysis.

In the second part of the paper (Section 3), we consider
the problem of implementing shared objects in quantum-
based multiprocessor systems. In a multiprocessor, a retry
mechanism by itsalf clearly is not sufficient, because atask
on one processor may be repestedly interfered with due
to object invocations by tasks on other processors. Our
approach is to use a retry mechanism in conjunction with
a preemptable queue lock [17]. In our approach, a task
performs an operation on an object by first acquiring alock;
if atask is preempted before its operation is completed,
then its operation is retried. In comparison to previous
preemptable queue-lock agorithms [21, 22], ours is quite
simple. Its simplicity is mostly due to the fact that it was
designed for systems satisfying the Preemption Axiom.

2. Uniprocessor Systems

In thissection, we consider the implementation of shared
objects in quantum-based uniprocessor systems. We also
show how to account for object-sharing costs arising from
the proposed implementationsin scheduling analysis.

2.1. Implementing Objects

The Preemption Axiom ensures that each lock-free op-
eration is retried at most once. Thus, if an operation is
interfered with due to a preemption, then the retry code can
be optimized to be purely sequential code in which shared
datais accessed without using synchronization primitives.

Implementing read-modify-writes. Asan example of an
implementation that is optimized in thisway, consider Fig-
ure 1. This figure shows how to implement read-modify-
write (RMW) operations using CAS.2 A RMW operation on
a variable X is characterized by specifying a function f.

3CAS(addr, old, new) is equivalent to the atomic code fragment
(if *addr = old then xaddr := new; return true elsereturn falsefi).

procedure RMW/(Addr: ptr to valtype; f: function) retur nsvaltype
privatevariableold, new: valtype
old = xAddr;
new = f(old);
if CAS(Addr, old, new) = false then
old := xAddr; /= retry operation =/
xAddr := f(old) /= lines4-5 executewithout preemption x/
fi;
return old

arwNE

S

Figure 1. Uniprocessor read-modify-write im-
plementation.

Informally, such an operation has the effect of the follow-
ing atomic code fragment: (x := X; X := f(); return
z). ExampleRMW operationsincludefetch-and-increment,
fetch-and-store, and test-and-set.

The implementation in Figure 1 is quite simple. If the
CAS at line 3 succeeds, then the RMW operation atomically
takes effect when the CAS is performed. If the CAS fails,
then the invoking task must have been preempted between
lines1 and 3. In this case, the Preemption Axiom implies
that lines 4 and 5 execute without preemption. Given this
implementation, we can conclude that, in any quantum-
based uniprocessor system that provides CAS, any object
accessed only by means of reads, writes, and read-modify-
writes can be implemented in constant time. It should be
noted that virtually every modern processor either provides
CAS or instructions that can be used to easily implement
CAS.

Conditional compare-and-swap. Using similar princi-
ples, it is possible to efficiently implement conditional
compare-and-swap (CCAS), which is a very useful prim-
itive when implementing lock-free and wait-free objects.
CCAS has the following semantics.

CCAS(V': ptr to vertype; ver: vertype; X: ptr to wdtype;
old, new : wdtype) returnsboolean
(if xV #£ ver v xX # old then return false fi;
*X = new,
return true)

The angle brackets above indicate that CCAS isatomic. As
itsdefinition shows, CCAS isarestriction of atwo-word CAS
primitiveinwhich oneword isacompare-only value. Lock-
free and wait-free objects can be implemented by using a
“version number” that is incremented by each object cal
[3, 12]. CCAS is useful because the version number can be
used to ensure that a“late” CCAS operation performed by a
task after having been preempted has no effect.

Figure 2 shows how to implement CCAS using CAS on
a quantum-based uniprocessor. The implementation works
by packing atask index into the words being accessed. The

type wdtype = record val: valtype; task: 0..N end
/= al fields of wdtype are stored in one word; task indices. . . =/
/= ...rangeover 1..N; thetask field should be QO initialy =/

procedure CCAS(V': ptr to vertype; ver: vertype;
W ptr to wdtype; old, new: wdtype; p: 1..N') returns boolean
privatevariable w: wdtype
/= p is assumed to be the identify of the invoking task =/

1. w:i=*+W;
2: if w.val # old.val then return falsefi;
3. if xV # ver then return falsefi;
4: if CAS(W, w, (old.val,p)) then
5: if xV # ver then
6: w = *W; /= lines 6-8 executewithout preemption = /
7 «W = (w.val,0);
8: return false
fi;
9: if CAS(W, (old.val, p), (new.val,0)) then return truefi

fi;

/= lines 10-13 execute without preemption =/
10: if W —>wval # old.val then return falsefi;
11: if *V # ver then return falsefi;
12: «W := (new.val,0);
13: returntrue

procedure Read(WW: ptr to wdtype) returns wdtype
privatevariablew: wdtype

14: w = *xW;
15; if w.task = Othenreturn w.val
else
16: CAS(W, w, (w.val,0)); /= lines16-19 are rarely executed x /
17 w= * W,
18: CAS(W, w, (w.val,0));
19: return w.val
fi

Figure 2. CCAS implementation. Code for
reading a word accessed by CCAS is also
shown.

task index field is used to detect preemptions. It isclearly
in accordance with the semantics of CCAS for atask 7; to
return from line 2 or 3. To see that the rest of the algorithm
iscorrect, observe that atask 7; can find V' # ver atline5
only if it was preempted betweenlines3and 5. Similarly, the
CAS operationsat lines4 and 9 can fail only if apreemption
occurs. By the Preemption Axiom, this implies that lines
6-8 and 10-13 execute without preemption. It is thus easy
to see that these lines are correct. The remaining possibility
isthat atask 7; returnsfromline 9. 7; can return here only
if the CAS operations performed by 7; at lines4 and 9 both
succeed. Thefirst of these CAS operations only updates the
task index field of W; the second updates the value field.
We claim that 7;’s CAS at line 9 is successful only if no
task performs a Read operation on word W or assigns W
withinits CCAS procedure between the execution of lines 4
and 9 by T; — notethat thisproperty impliesthat 7;'s CCAS

can be linearized to its execution of line 5. To see that this
property holds, observe that if some other task updates W/
in its CCAS procedure, then W —>task # ¢ is established,
implying that 7;’s CAS at line 9 fails. Also, if some task
T; performsaRead operation on W when W —task = ¢
holds, then it must establish W —>task = 0, causing 7;'s
CASatline9tofail. Toseethis, notethat, by the Preemption
Axiom, T};’s execution of the Read procedure itself can be
preempted a most once. By ingpecting the code of this
procedure, it can be seen that this implies that 7; must
establish W —>task = 0 during the same quantum as when
it reads the value of V.

Itisimportant to stressthat our objectivehereisto design
object implementationsthat performvery well intheabsence
of preemptions and that are till correct when preemptions
do occur. If the code in Figure 2 is never preempted when
executed by any task, then lines 6-8, 10-13, and 16-19 are
never executed. Thus, in the expected case, this object
implementation should perform well.

In the full paper [1], an implementation of a multi-word
CAS (MACAS) object ispresented that i shased on techniques
that are similar to those described above; this implementa-
tionisnot included here duetolack of space. The semantics
of MACAS generalizes that of CAS to allow multiple words
to be accessed simultaneously. MACAS is a useful primi-
tive for two reasons. First, it simplifies the implementation
of many lock-free objects; queues, for instance, are easy
to implement with MACAS, but harder to implement with
single-word primitives. Second, it can be used to imple-
ment multi-object operations. For example, an operation
that dequeues an item off of one queue and enqueuesit onto
another could be implemented by using MACAS to update
both queues. Our MACAS implementation is a bit more
involved than those described above, and thus may be of
interest to readersinterested in techniquesfor implementing
more complicated objects.

2.2. Scheduling Analysis

We now turn our attention to the issue of accounting for
object-sharing costs in scheduling analysis when object im-
plementationslikethoseproposedinthe previoussubsection
are used. We consider scheduling analysis under the rate-
monotonic (RM) and earliest-deadline-first (EDF) schedul-
ing schemes. We also very briefly consider proportional-
share (PS) scheduling.

We begin by considering the RM and EDF schemes. In
both of these schemes, a periodic task model is assumed.
We call each task invocation ajob. For brevity, we limit our
attention to systems in which each task’s relative deadline
equalsitsperiod (extending our resultsto deal with systems
inwhich atask’srelative deadlinemay belessthanitsperiod
is fairly straightforward). In our analysis, we assume that

each job is composed of distinct nonoverlapping computa-
tional fragments or phases. Each phase is either a compu-
tation phase or an object-access phase. Shared objects are
not accessed during a computation phase. An object-access
phase consists of exactly one retry loop. We assume that
tasks are indexed such that, if ajob of task 7; can preempt
ajob of task 7}, then ¢ < j (such an indexing is possible
under both RM and EDF scheduling). The following is a
list of symbolsthat will be used in our analysis.

e N - The number of tasksin the system. We use ¢,
J,» and! astask indices; each isuniversally quantified
over {1,...,N}.

e () - Thelength of the scheduling quantum.
e p; - The period of task 7;.

e w; - The number of phasesin ajob of task 7;. The
phases are numbered from 1 to w;. Weusew and v to
denote phases.

e x; - The number of object-access phases in ajob of
task 7;.

e ¢! - Theworst-casecomputational cost of thev™ phase
of task T;, where1l < v < w;, assuming no contention
for the processor or shared objects. We denote tota
cost over all phasesby ¢ = 327 ¢

e 7Y - The cost of a retry if the v phase of task 7}
isinterfered with. For computation phases, »} = 0.
For object-access phases, we usually have r{ < ¢f,
because retries are performed sequentially. We let
ri = max, (rY).

e m{(j,t) - The worst-case number of interferencesin
T;’sv" phasedueto 7} inan interval of length .

e fV - An upper bound on the number of interferences
of the retry loopin the v™ phase of 7; during asingle
execution of that phase.

A simplebound oninterference costs. Thesimplest way
to account for object interference costs is to simply inflate
each task 7;’s computation time to account for such costs.
This can be done by solving the following recurrence.

/

¢l = ¢ +min[z;, ([%l —1)] -7 (1)

¢ is obtained here by inflating ¢; by r; for each quantum
boundary that is crossed, up to a maximum of x; such
boundaries (since 7; accesses at most ; objects in total).
If task 'T; accesses objects with widely varying retry costs,
then the above recurrence may be too pessmistic. Let ;1
be the maximum retry cost of any of 7;'s object-access

phases, let r; » be the next-highest cost, and so on. Also, let
v; = min[z;, ([¢//Q] — 1)]. Then, we can more accurately
inflate ¢; by solving the following recurrence.

o =ci+ Z ik (2
k=1

Once such ¢ values have been calculated, they can be
used within scheduling conditions that apply to indepen-
dent tasks. A condition for the RM scheme is given in the
following theorem.

Theorem 1: In an RM-scheduled quantum-based unipro-
cessor system, a set of tasks with objectsimplemented using
the proposed retry algorithmsis schedul ableif the following
holdsfor every task 7;, where B; = min(Q, max;(c{)).

(EIt:O<t§pZ.B+Z]1{ —‘c<t) |

In the above expression, B; isablocking term that arises
dueto the use of quantum-based scheduling [14].* The next
theorem gives a scheduling condition for the EDF scheme.

Theorem 2: In an EDF-scheduled quantum-based unipro-

cessor system, a set of tasks with objectsimplemented using

the proposed retry algorithmsis schedul ableif the following
holds.

/

S < 1A

(Vi:l<i<Nu(M:ipi<t<p imn(Q, c)+

1

Siil e <1) 0

The above condition is obtained by adapting the condi-
tion given by Jeffay et a. in [13] for nonpreemptive EDF
scheduling. Note that this condition reduces to that of Jef-
fay et d. when @ = oo and to that for preemptive EDF
scheduling [16] when @ = 0.

Bounding interference costs using linear programming.
Anderson and Ramamurthy showed that when lock-free ob-
jects are used in a uniprocessor system, object interference
costs due to preemptions can be more accurately bounded
using linear programming [4]. Given the Preemption Ax-
iom, we show that it is possible to obtain bounds that are
tighter than those of Anderson and Ramamurthy.

Our linear programming conditions make use of a bit of
additional notation. If ajob of 7} interferes with the v™"

4In[14], itisassumedthat timer interrupts are spaced apart by aconstant
amount of time. If atask completes execution between these interrupts,
then the processor is allocated to the next ready task, if such atask exists.
This newly-selected task will executefor alength of time that is less than
a quantum before possibly being preempted. In our work, we assume that
whenever the processor is alocated to a task, that task executes for an
entire quantum (or until it terminates) before possibly being preempted.
Nonetheless, the blocking calculations due to quantum-based scheduling
are the samein both models.

phase of a job of 7;, then an additional demand is placed
on the processor, because another execution of the retry-
loop iteration in 7;'s »™ phase is required. We denote this
additional demand by s? (j). Formally, s (j) is defined as
follows.

Definition 1: Let 7; and 7; be two distinct tasks, where
T; has at least v phases. Let z; denote the set of objects
modified by 7}, and a; denote the set of objects accessed in
the v phase of 7;. Then,

v oy it j<inalnNz #0
5'(7)_{0 otherwise.

K3

Givethe above definition of s¥ (), we can state an exact
expression for the worst-case mterference cost in tasks 71
through7; in any interval of length ¢.

Definition 2: Thetotal cost of interferencesin jobs of tasks
Ty through 75 inany interva oflengtht denoted £;(t), isde-

finedasfollows: E;(t) = Z] 12 Zl lm(t)s;i(l).
i

The term m{(l,) in the above expression denotes the
worst-case number of interferences caused in 7;’'s v phase
by jobs of 7; in an interval of length . The term s} ({)
represents the amount of additional demand required if 7;
interferes once with 7;'s v phase. The expression within
the leftmost summation denotes the total cost of interfer-
ences in a task 7} over al phases of al jobs of 7} in an
interval of length¢.

Expression F; (t) accurately reflects the worst-case addi-
tional demand placed on the processor in an interval Z of
lengtht duetointerferencesintasks7ithrough7;. Precisely
evaluating this expression is computationally expensive, so
weinstead will try to obtain abound on F; (¢) that isastight
as possible. We do thisby viewing E;(¢) as an expression
to be maximized. The m}(l,t) terms are the “variables’
in this expression. These variables are subject to certain
congtraints. We obtain a bound for E;(t) by using linear
programming to determine a maximum value of ;(¢) sub-
ject to these constraints. We now explain how appropriate
constraints on the mj ({,) variables are obtained. In this
explanation, we focus on the RM scheme. Defining similar
constraintsfor the EDF schemeisfairly straightforward. We
impose six sets of constraintson the my (4, ¢) variables.

Congtraint Set 1. (Vi,j : j < i = Yood,mi(j,t) <
3. -
Congtraint Set 2: (Vi Z] 12 Dy lm Y1) <
i) 0
Constraint Set 3: (Vi,v :: Y\ _1m! (4. 1) < { va) 0

Constraint Set 4: (Vi,v @ ff <1). m]
. . /
Constraint Set 5: (Vi :: 52721 27 mY (4,1) < ([%w -
t+1
1) [4]). 0
Constraint Set 6: (Vi :: Z ZU L ml(Gt) < wi-
t+1
{pi b.]

Therefirst three constraint sets were given previously by
Anderson and Ramamurthy [4]. The first set of constraints
followsbecausethe number of interferencesinjobsof 7; due
to’; inaninterval Z of length¢ isbounded by the maximum
number of jobs of 7; that can be released inZ. The second
set of constraints follows from a result presented in [6],
which statesthat the total number of interferencesin all jobs
of tasks /7 through 7; inaninterval Z of length¢ isbounded
by the maximum number of jobs of tasks 73 through 7;_;
released inZ. Inthethird set of constraints, theterm f isan
upper bound on the number of interferences of theretry loop
inthev™ phase of 7; during asingleexecution of that phase.
The reasoning behind thisset of constraintsis asfollows. If
a most fY interferences can occur in the v phase of ajob
of 7;, and if there are n jobs of 7; released in an interval
7, then at most n f? interferences can occur in the v™ phase
of 7; inZ. In Anderson and Ramamurthy’s paper, the f7
terms are calculated by solving an additional set of linear
programming problems. Inour case, they can be bounded as
shown in the fourth set of constraints.® Thisis because, by
the Preemption Axiom, each object access can be interfered
with a most once. The last two constraint sets arise for
precisely the same reasons as given when recurrence (1)
was explained. The ¢/ termin thefifth constraint set can be
calculated by solving recurrence (1) or (2).

We are now in a position to state scheduling conditions
for theRM and EDF schemes. Recall that ; (¢) istheactua
worst-case cost of interferences in jobs of tasks 73 through
T; inany interval of length¢. Welet £!(¢) denote a bound
on F;(t) tha is determined using linear programming as
described above. For RM scheduling, wehavethefollowing.

Theorem 3: In an RM-scheduled quantum-based unipro-
cessor system, a set of tasks with objectsimplemented using
the proposed retry algorithmsis schedul ableif the following
holdsfor every task 7;, where B; = min(Q, max;(cj)).

(F:0<t<p; B+Z] J 1c,+E(t—1)<t) |

51t is actually possibleto eliminate Constraint Set 4, because the linear
programming solver will always maximize each f? termto be 1. Further-
more, when substituting 1 for f in Constraint Set 3, the resulting set of
constraintsimpliesthose givenin Constraint Set 6, so these constraintscan
be removed as well. We did not minimize the constraint sets in this way
because we felt that this would make them more difficult to understand,
especially when comparing them against those in [4].

Thisconditionisobtained by modifyingoneprovedin[4]
by including a blocking factor for the scheduling quantum.
For EDF scheduling, we have the following.

Theorem 4: In an EDF-scheduled quantum-based unipro-
cessor system, a set of tasks with objectsimplemented using
the proposed retry algorithmsis schedul ableif the following
holds.

(vt h%qu—kEjV(t—l) <) O

Thisconditionwasaso provedin [4]. Sincet ischecked
beginning at time O, a blocking factor is not required. As
stated, the expression in Theorem 4 cannot be verified be-
cause the value of ¢ is unbounded. However, there is an
implicit bound on¢. In particular, we only need to consider
values less than or equal to the least common multiple of
thetask periods. (If an upper bound on the utilization avail-
ablefor the tasks is known, then we can restrict ¢ to amuch
smaller range[9].)

Notethat, in aguantum-based system, no object accessby
atask that isguaranteed to complete within thefirst quantum
allocated to ajob of that task can be interfered with. Thus,
such an access can be performed using a less-costly code
fragment that is purely sequentiad. All of the scheduling
conditions presented in this subsection can be improved by
accounting for thisfact.

In the full paper [1], we show how object-sharing over-
heads arising from algorithms as proposed here affect lag-
bound calculations in proportional-share (PS) scheduled
systems. Inthe PS scheduling literature, theterm “client” is
used to refer to a schedul able entity. Each client is assigned
a share of the processor, which represents the fraction of
processing time that that client should receive. Quanta are
allocated in amanner that ensures that theamount of proces-
sor time each client receives iscommensurate with itsshare.
Thelagof aclient isthe difference between thetimeaclient
should have received in an ideal system with a quantum ap-
proaching zero, and the time it actually receives in a resl
system. Stoica et a. showed that optimal lag bounds can
be achieved by using earliest-eligible-virtual-deadline-first
(EEVDF) scheduling [20]. As we show in the full paper,
the lag bounds of Stoica et a. can be applied in a system
in which our shared-object agorithms are used by simply
inflating the cost of aclient’srequest by the cost of one retry
loop for every quantum boundary it crosses.

Experimental Comparison. In order to compare the
retry-cost estimates produced by the linear programming
methods proposed in this paper and in [4], we conducted
a series of simulation experiments involving randomly-
generated task sets scheduled under the RM scheme. Each
task set in these experiments was defined to consist of ten
tasks that access up to ten shared objects. 120 task sets

O Old Condition ® New Condition

180 -
160~
140~
120~
100~
80+
60
40

20~

O~ Tak Task Task Task Task Task Task Task Task
1 2 3 4 5 6 7 8 9 10

Figure 3. Comparison of linear programming

scheduling conditions. Each task’s average

estimated retry cost is shown.

were generated in total, and for each task set, aretry cost
was computed for each task using the two methods being
compared. Dueto space limitations, the exact methodology
we used in generating task setsisnot described here; see[1]
for details. The results of these experiments are depicted
in Figure 3. This figure shows the average retry cost of
each task over al generated task sets as computed by each
method. Asbefore, tasks are indexed in order of increasing
periods. Thus, 771 has highest priority in al experiments,
and as a result, its retry cost is estimated to be zero under
both methods. It can be seen in Figure 3 that the method
of this paper yields retry-cost estimates for higher-priority
tasks that are about 10% to 20% lower than those produced
by the method of [4]. In addition to determining retry-cost
estimates, we also kept track of how long each schedul abil-
ity check took to complete. On average, the schedulability
check proposed in this paper took 11.7 seconds per task set,
while the one proposed in [4] took 235 seconds. Thisis
because of the complicated procedure invoked to compute
1 vauesin the method of [4].

3. Multiprocessor Systems

In this section, we describe a new approach to imple-
menting shared objects in quantum-based multiprocessor
systems. Using this retry mechanism, scheduling analysis
can be performed on each processor using the uniprocessor
scheduling conditionsconsidered in the previoussection. In

Section 3.1, we describe this retry mechanism in detail. In
Section 3.2, we present results from experiments conducted
to evaluate our approach.

3.1. Implementing Objects

In a multiprocessor system, aretry mechanism by itself
isnot sufficient, because a task on one processor may bere-
peatedly interfered with dueto object invocationsperformed
by tasks on other processors. Our approach isto use aretry
mechanism in conjunction with a preemptable queue lock.
A queue lock is a spin lock in which waiting tasks form a
gueue [17]. Queue locks are useful in rea-time systems
because waiting times can be bounded. With a preempt-
able queue lock, a task waiting for or holding a lock can
be preempted without impeding the progress of other tasks
waiting for the lock. Given such a locking mechanism, any
preempted operation can besafely retried. Asbefore, wecan
appeal to the Preemption Axiom to bound retries, because
retries are caused only by preemptions, not by interferences
across processors. The Preemption Axiomisstill reasonable
to assume if we focus on systems with a small to moderate
number of processors (the cost an operation depends on the
spin queue length, which in turn depends on the number of
processors in the system). We believethat it is unlikely that
a rea-time application would be implemented on a large
multiprocessor, and even if it were, it is unlikely that one
object would be shared across alarge number of processors.

Queue locks come in two flavors: array-based locks,
which use an array of spin locations[7, 11], and list-based
locks, in which spinning tasks form alinked list [17]. List-
based queue locks have the advantage of requiring only
congtant space overhead per task per lock. In addition,
list-based queue locks exist in which all spins are local if
applied on multiprocessors either with coherent caches or
distributed shared memory [17]. In contrast, with existing
array-based locks, spinsarelocd only if appliedinasystem
with coherent caches.

All work known to us on preemptable queue locks in-
volves list-based locks [21, 22]. This is probably due to
the advantages listed in the previous paragraph that (non-
preemptable) list-based locks have over array-based ones.
However, correctly maintaining a linked list of spinning
tasksin the face of preemptionsisvery trick. Wisniewski et
al. handlesuch problemsby exploitingarather non-standard
kernel interface that has the ability to “warn” tasks before
they are preempted so that they can take appropriate action
intime [22]. In the absence of such akerne interface, list
mai ntenance becomes quite hard, |eading to complicated al-
gorithms. For example, alist-based preemptable queue lock
proposed recently by Takada and Sakamura requires atotal
of 63 executable statements [21]. Our preemptable queue
lock is an array-based lock and is quite simple, consisting

of only 17 lines of code. In addition, all that we require the
kernel to do is to set a shared variable whenever atask is
preempted indicating that that task isno longer running. As
with other array-based locks, our algorithm has linear space
overhead per lock and requires coherent caches in order for
spinsto be local. However, most modern workstation-class
multi processors have coherent caches. Also, in many appli-
cations, most objects are shared only by a relatively small
number tasks, so having linear space per lock shouldn’t bea
severe problem. In any event, these disadvantages seem to
befar outweighed by thefact that our algorithmisso simple.

Our agorithm is shown in Figure 4. For clarity, the
lock being implemented has been left implicit. In an actual
implementation, the shared variables Tail, Sate, and Pred
would be associated with a particular lock and a pointer to
that lock would be passed to acquire_lock and rel ease_lock.

The Sate array consists of 2N “dots’, which are used
as spin locations. A task 7; aternates between using dots
iand i+ N. T; appends itself onto the end of the spin
gueue by performing afetch_and_store operation on the Tail
variable (line 5). It then spins until either it is preempted,
its predecessor in the spin queue is preempted, or its prede-
cessor releases the lock (line 9). In a system with coherent
caches, thisspin islocd. If 7; stops spinning because its
predecessor is preempted, then 7; takes its predecessor’'s
predecessor as its new predecessor (lines 12-13). If 7} is
preempted before acquiring the lock, then (when it resumes
execution) it stops spinning and re-executes the agorithm
using its other spin location (line 2). Note that the Preemp-
tion Axiom ensures that 7; will not be preempted when it
re-executes the algorithm. In addition, by the time 7; ac-
quiresthelock and then rel easesit to another task, notask is
waiting on either of itstwo spin locations, i.e., they can be
safely reused when 7; performsfuturelock accesses. With-
out the Preemption Axiom, correctly “pruning” apreempted
task from the spin queue would be much more complicated.
(For multiprocessors, the Preemption Axiom can be relaxed
to state that atask can be preempted at most once acrosstwo
consecutive attemptsto completethe sameobject call. If our
lock algorithmisused by taskson P processors, then atask
that is preempted may haveto wait for P — 1 tasks on other
processors to complete their object calls when it resumes
execution. Thus, the Preemption Axiom is tantamount to
requiring that the quantumis long enough to contain P + 1
consecutive object callsin total on the P processors across
which the object is shared.)

We have depicted the algorithm assuming that each task
performsitsobject access asacritical section withinterrupts
turned off (see lines 14 and 17). Instead, object accesses
could be performed using lock-free code, in which case the
entireimplementation woul d be preemptable. It can be seen
in Figure 4 that the code fragment at lines 5-6 isrequired to
be executed without preemption. This ensures that the

shared variable
Tail: 0..2N — linitially O;
Sate: array[0..2N — 1] of {WAITING, DONE, PREEMPTED }
initially DONE;
Pred: array[0..N — 1] of 0.2N — 1

privatevariable
pred: 0..2N — 1;
dot: {p,p + N}initially p
/= dlot is assumed to retain its value across procedureinvocations = /

/= local to task Ty, =/

procedure acquirelock()

1. whiletruedo

dot := (slot + N) mod 2N;
3 State{dot] := WAITING;

4 disableinterrupts;

5: pred := fetch.and_store(&Tail, slot); / join end of spin queue x/
6: Pred[slot mod N] := pred;
7

8

9

/= can only loop at most twice =/

enableinterrupts;
while Sate[slot] # PREEMPTED do
while Sate[slot] = WAITING A
Statefpred] = WAITING do /* spin =/ od;
/=
+ after the spin, State[slot] = PREEMPTED or
+ Sate[pred] = PREEMPTED or Sate[pred] = DONE

s
/
10: if Sate{slot] # PREEMPTED then
11 if Satefpred] = PREEMPTED then
12: pred := Pred[pred mod N7J; /= predecessor is preempted =/
13: Pred[slot mod N] := pred; /* get new predecessor x/

else /x Satefpred] = DONE */
14: disableinterrupts;
15: if Sate[slot] = WAITING then return /= lock acquired =/

else enableinterrupts
fi
fi
fi
od
od

procedure releaselock()

16: Sate[dlot] := DONE;
17: enableinterrupts

Figure 4. Preemptable spin-lock algorithm for
guantum-based multiprocessors. In this fig-
ure, task indices are assumed to range over
{0,...,N —1}.

predecessor of a preempted task can always be determined.
As an dternative to disabling interrupts, if a preemption
occurs between lines 5 and 6, then the kernd could roll the
preempted task forward one statement when saving itsstate.
This aternative would be necessary in systems in which
tasks do not have the ability to disable interrupts.

When atask 7; is preempted while waiting for the lock,
the kernel must establish Statefslot] = PREEMPTED. It is
not necessary for the kernel to scan state information per
lock to do this. The appropriate variable to update can be
determined by having a single shared pointer Sateptr[:] for

each task 7; that isused across dl locks. Prior to assigning
“Sate[dot] := WAITING” inline 3, 7; would first update
Stateptr[:] to point to Satesot]. By reading Sateptr|7], the
kernel would know which state variable to update upon a
preemption. (If locks can be nested, then multiple Stateptr
variables would be required per task.)

3.2. Experimental Comparison

We have conducted performance experiments to com-
pareour preemptable queuelock agorithmto apreemptable
gueue lock presented last year by Takada and Sakamura
[21]. Their lock is designated as the “SPEPP/MCS algo-
rithm” in their paper, so we will use that term here (SPEPP
stands for “ spinning processor executes for preempted pro-
cessors’; MCS denotes that this lock is derived from one
published previously by Mellor-Crummey and Scott [17]).
The SPEPP/MCSa gorithmwasthefastest inthefaceof pre-
emptions of severa lock agorithms tested by Takada and
Sakamura. Our experiments were conducted using the Pro-
teus parallel architecture smulator [10]. Using asimulator
made it easy to provide the kernel interface needed by each
algorithm. The simulator was configured to simulate a bus-
based shared-memory multiprocessor, with an equal number
of processors and memory modules. The simulated system
followsabus-based snoopy protocol with write-invalidation
for cache coherence. Tasks are assigned to processors and
are not allowed to migrate. On each processor, tasks are
scheduled for execution using a quantum-based round-robin
scheduling policy. The scheduling quantum in our simula-
tion was taken to be 10 milliseconds.

Figure 5 presents the results of our experiments. In this
figure, the average time is shown for a task to acquire the
lock, execute itscritical section, and release thelock. These
curves were obtai ned with amultiprogramming level of five
tasks per processor, with each task performing 50 lock ac-
cesses. The execution cost of the critical section was fixed
at 600 microseconds. Each task was configured to perform a
noncritical section between lock accesses, the cost of which
wasrandomly chosen between 0 and 600 microseconds. The
simulations we conducted indicate that only the number of
processorsin the system affects rel ative performance; simu-
lationsfor different numbers of lock accesses and multipro-
gramming levels resulted in similar graphs. The curvesin
Figure5indicatethat thetimetaken to acquirethelock inour
algorithm is up to 25% less than that for the SPEPP/MCS
algorithm (the time taken to acquire the lock is obtained
by subtracting the critical section execution time from the
valuesin Figure 5). We a so instrumented the code to mea-
sure the time taken to acquire the lock in the best case.
For each agorithm, the time taken by a task to acquire the
lock is minimized when that task is at the head of the spin
gueue. The best-case time for acquiring the lock was 100

5500 T T

"Proposed” <—

5000 - /ZSPEPP/MCS" =+ |

4500
4000 |-
3500 |-
3000 |-

2500 |-

Access Time

2000

1500

1000 -

500 |-

Processors

Figure 5. Experimental comparison of pre-
emptable spin-lock algorithms. Curves show
average access times (in microseconds).

microseconds for our algorithm, and 200 microseconds for
the SPEPP/MCS dgorithm.

4. Concluding Remarks

We have presented a new approach to implementing
shared objectsin quantum-based real -time uniprocessor and
multiprocessor systems. In the proposed object implemen-
tations, object calls are performed using an optimistic retry
mechanism coupled with the assumption that each task can
be preempted a most once across two consecutive object
calls. We have presented experimental evidence that such
implementations should entail low overhead in practice.

In a recent related paper, Anderson, Jain, and Ott pre-
sented anumber of new resultsonthetheoretical foundations
of wait-free synchronization in quantum-based systems[2].
It was shown in that paper that the ability to achieve wait-
free synchronizationin quantum-based systemsisafunction
of both the “power” of available synchronization primitives
and the size of the scheduling quantum. We hopethe results
of [2] and this paper will spark further research on synchro-
nization problems arising in quantum-based systems.

Acknowledgement: We are grateful to Alex Blate for his help
in running simulation experiments. We also acknowledge David
Koppelman for his help with the Proteus simulator.

References

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

J. Anderson, R. Jain, and K. Jeffay Efficient
Object Sharing in Quantum-Based Real-Time Sys-
tems (expanded version of this paper). Available a
http://www.cs.unc.edu/~anderson/papers.html.

J. Anderson, R. Jain, and D. Ott. Wait-free synchro-
ni zati on in quantum-based multiprogrammed systems.
In Proceedings of the 12th International Symp. on
Distributed Computing (to appear). Springer Verlag,
1998.

J. Anderson, R. Jain, and S. Ramamurthy. Wait-
free object-sharing schemes for real-time uniproces-
sors and multiprocessors. In Proceedings of the 18th
| EEE Real-Time Systems Symp., pp. 111-122. 1997.

J. Anderson and S. Ramamurthy. A framework for
implementing objects and scheduling tasks in lock-
free rea-time systems. In Proceedings of the 17th
| EEE Real-Time Systems Symp., pp. 92—105. 1996.

J. Anderson, S. Ramamurthy, and R. Jain. Imple-
menting wait-free objects in priority-based systems.
In Proceedings of the 16th ACM Symp. on Principles
of Distributed Computing, pp. 229-238. 1997.

J. Anderson, S. Ramamurthy, and K. Jeffay. Red-
time computing with lock-free objects. ACM Trans.
on Computer Systems, 15(6):388-395, 1997.

T. Anderson. The performance of spinlock alternatives
for shared-memory multiprocessors. |EEE Trans. on
Parallel and Distributed Systems, 1(1):6-16, 1990.

N. C. Auddey, |. J. Bate, and A. Burns. Putting fixed
priority scheduling into engineering practice for safety
critical applications. In Proceedings of the 1996 | EEE
Real-Time Technology and Applications Symp., pp. 2—
10, 1996.

S. Baruah, R. Howell, and L. Rosier. Feasibility prob-
lems for recurring tasks on one processor. Theoretical
Computer Science, 118:3-20, 1993.

E. Brewer, C. Ddlarocas, A. Colbrook, and W. Weihl.
Proteus. A high-performance parallel-architecture
simulator. Technical Report MIT/LCS/TR-516, MIT,
Cambridge, Massachusetts, 1992.

G. Graunke and S. Thakkar. Synchronization a-
gorithms for shared-memory multiprocessors. |EEE
Computer, 23:60-69, 1990.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Greenwad and D. Cheriton. The synergy between
non-blocking synchronization and operating system
structure. In Proceedings of the USENIX Associa-
tion Second Symp. on Operating Systems Design and
I mplementation, pp. 123-136, 1996.

K. Jeffay, D. Stanat, and C. Martel. On non-preemptive
scheduling of periodic and sporadic tasks. In Proceed-
ingsof the 12th |EEE Symp. on Real - Time Systems, pp.
129-139.1991.

D. Katcher, H. Arakawa, and JK. Strosnider. Engi-
neering and analysis of fixed priority schedulers. IEEE
Trans. on Software Engineering, 19(9):920-934, 1993.

H. Kopetz and J. Reisinger. The non-blocking write
protocol nbw: A solution to a red-time synchroniza-
tion problem. In Proceedings of the 14th IEEE Symp.
on Real-Time Systems, pp. 131-137. 1993.

C.Liuand J. Layland. Scheduling a gorithmsfor mul-
tiprogramming in a hard real—time environment. Jour-
nal of the ACM, 30:46-61, 1973.

J. Mdlor-Crummey and M. Scott. Algorithmsfor scal-
able synchronization on shared-memory multiproces-
sors. ACM Trans. on Computer Systems, 9(1):21-65,
1991.

S. Ramamurthy. A Lock-Free Approachto Object Shar-
ing in Real-Time Systems. PhD thesis, University of
North Carolina, Chapel Hill, North Carolina, 1997.

S. Ramamurthy, M. Moir, and J. Anderson. Resl-time
object sharing with minimal support. In Proceedings
of the 15th ACM Symp. on Principles of Distributed
Computing, pp. 233-242. 1996.

|. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J.
Gehrke, and C. Plaxton. A proportiona share re-
source allocation agorithm for real-time, time-shared
systems. In Proceedings of the 17th IEEE Real-Time
Systems Symp., pp. 288—299. 1996.

H. Takada and K. Sakamura. A novel approach to
multi programmed multiprocessor synchronization for
rea-time kernels. In Proceedings of the 18th IEEE
Real-Time Systems Symp., pp. 134-143. 1997.

R. Wisniewski, L. Kontothanassis, and M. Scott. High
performance synchronization a gorithmsfor multipro-
grammed multiprocessors. In Proceedings of the Fifth
ACM Symp. on Principles and Practices of Paralle
Programming, pp. 199-206. 1995.

