
Parallel switching in connection-oriented networks�

James Anderson Sanjoy Baruah Kevin Je�ay

The University of North Carolina at Chapel Hill

Abstract

Packet switching in connection-oriented networks

that may have multiple parallel links between pairs of

switches is considered. An e�cient packet-scheduling

algorithm that guarantees a deterministic quality of

service to connections with real-time constraints is pro-

posed { this algorithm is a generalization of some recent

multiprocessor scheduling algorithms, and o�ers real-

time performance guarantees similar to those o�ered

by earlier fair-scheduling strategies such as Weighted

Fair Queueing and proportional-share schemes.

1. Introduction

Asynchronous Transfer Mode (ATM) networking

technology is centered around the concept of switching

53-byte cells, where the cell is the basic unit of data

transfer. One of the major reasons behind this design

choice is that it is possible to build parallel switches,

in which several of these small, �xed-size, cells are si-

multaneously processed by di�erent switching elements

and each switching element takes the same amount of

time to complete its job. While much research has

been performed on the issue of providing determinis-

tic quality of service (QoS) guarantees to connections

in packet-switched networks, none of this research, to

our knowledge, exploits the parallelism capabilities of

such networks. In part, this is due to the inherent

intractability of most problems in deterministic multi-

resource (as opposed to uni-resource) scheduling.

Particularly with respect to multimedia applica-

tions, the data-transfer requirements of an application

may often be modelled as a data \stream" that is gen-

erated at a fairly regular rate, subject to occasional

�Supported in part by the National Science Foundation
(Grant Nos. CCR-9510156, CDA-9624662, CCR-9704206, CCR-
9732916, and CCR-9972211). The research of the �rst author
was also supported in part by an Alfred P. Sloan Research
Fellowship.

bursts. This model has been formalized into the con-

cept of a ow [13, 12, 5, 6], which considers the tra�c

of a particular connection to be a sequence of pack-

ets or cells generated by the source of the connection:

each packet belonging to a ow passes through the

same sequence of switches along a path, established

at connection-admission time, from the source to the

destination in the network. A connection request spec-

i�es the rate at which it intends to generate data (i.e.,

it speci�es its ow parameters), and the request is ad-

mitted by the network if and only if this ow would

not overload the network and cause a consequent unac-

ceptable degradation of service to previously admitted

connections.

1.1. Fairness

Consider a link between two switches that is of band-

width B. Suppose that n connections c1; c2; : : : ; cn
share this link, and that each connection ci is character-

ized by a ow rate of f(ci). The ratio w(ci)
def

= f(ci)=B

denotes the fraction of the total bandwidth on the link

that connection ci requires (clearly, it is necessary thatPn

i=1w(ci) � 1).

We would ideally like to be able to make the fol-

lowing guarantee to each connection ci: over any time

interval [tx; ty], ci is able to send (ty � tx) � f(ci) units

of data through this switch (provided, of course, that

there is always some tra�c waiting to be transmit-

ted | i.e., that the connection is always backlogged

during the interval [tx; ty]). However,it can be shown

that achieving this would require that cells be in�nitesi-

mally small: since this is not the case, the \granularity"

of our guarantee can be no smaller than the cell-size.

More speci�cally, let a time slot denote the amount

of time required to transmit one cell over the link |

each time slot is equal to p=B, where p denotes the cell

size. Assuming that time at each switch is measured in

time slots numbered beginning with zero, the \fairest"

bandwidth allocation scheme would be one that allo-

cates at least bt �w(ci)c slots out of any consecutive

t slots to each connection ci (provided, of course, that

jeffay
Published in: Proceedings of the 20th IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1999, pages 200-209.

jeffay
 



the connection is backlogged over this entire duration).

Our attempt here is to achieve a slightly weaker form

of fairness, one that is similar to the fairness guaran-

tees made by previous fair-queueing algorithms such

as WFQ [8, 4]: Suppose that there are no cells of con-

nection ci queued at the switch at the start of time

slot to � 1, and that a cell arrives at the beginning

of time slot to. In our version of fairness, a band-

width allocation scheme is fair if it allocates at least

b(t1 � to) �w(ci)c slots out of the (t1 � to) slots num-

bered to; to + 1; : : : ; t1 � 1 to connection ci (provided,

once again, that the connection is backlogged during

these slots).

1.2. High-bandwidth connectivity

Modern networks, such as ATM-based ones, are typ-

ically constructed using optical �bers. One method

of obtaining a high-bandwidth connection between a

pair of neighbouring switches is to connect them with

a high-bandwidth �ber. Another method is to have

several �bers in parallel connect the two switches | it

costs signi�cantly less to connect two locations with m

�bers (typically, within the same cable) than it does

to connect them with one �ber that has a bandwidth

m times as high; more important, fast serial switch-

ing elements (i.e., switching elements that can handle

a large number of cells per unit time) are very di�cult

to construct, and currently constitute the technological

bottleneck to the implementation of higher-bandwidth

networks. In this second method of achieving a high-

bandwidth connection between two switches S1 and S2,

we therefore have m > 1 lower-bandwidth links (rather

than a single higher-bandwidth link) between them. At

the beginning of each time slot, switch S1 would select

up to m waiting cells in parallel and transmit them out

on the m links to S2. These cells would arrive simul-

taneously at S2, and have to be processed in parallel;

i.e., based upon the Virtual Channel Indicator (VCI)

on each cell, the cell would be routed to the appropriate

output queue in S2.

Assuming that each �ber has bandwidth B we could

now, in principle, have n connections c1; c2; : : : ; cn
share the network edge between switches S1 and S2,

provided that
Pn

i=1 f(ci) � m �B.

One of the major requirements of such an approach

to increasing bandwidth is that, since the network of-

fers a connection-oriented service, the relative ordering

of the cells belonging to any particular connection be

preserved. Speci�cally, if more than one cell of con-

nection ci is transmitted over the edge from S1 to S2

during any time slot, it is desirable that S2 be able

to order these cells correctly before passing them on.

This could be achieved, e.g., by adding a \cell-number"

to each cell; however, such an approach would (i) slow

down the switching process at S1 and S2 by increas-

ing the amount of work that needs to be done at these

switches, and (ii) be incompatible with the ATM stan-

dard as currently de�ned. Even if this were to be nev-

ertheless done, sending several cells of the same connec-

tion during the same slot would require that these cells

be compared and reordered at the receiving switch;

these inherently sequential operations would reduce the

amount of parallelism achieved in switch S2. All told, a

better design decision would be to permit at most one

cell of each connection to traverse the link during any

time slot
1
. The problem of bandwidth allocation on

the network edge S1!S2 thus reduces to the following

problem:

The parallel switching problem: Given n connec-

tions C = fc1; c2; : : : ; cng and m parallel links, with

connection ci needing to switch cells for at most a frac-

tion w(ci) of the time slots, choose, for each time slot,

a subset of C of size at most m of the connections that

will be permitted to transmit cells on the links during

this time slot.

Of course, we would like to be able to do this in

as fair a manner as possible, where the idea of \fair-

ness" should be closely related to the ideas discussed

above. This is a multi-resource version of the prob-

lem of sharing a single resource in a fair manner;

however, as far as we can tell, none of the single-

resource fair queueing schemes suggested in the litera-

ture (such as Weighted Fair Queueing [4, 8], Worst-case

Fair WFQ [3], Start-time Fair Queueing [6], etc.), nor

the proportional-share schemes [11, 10, 9] generalize to

this multi-resource problem | detailing the exact rea-

sons why this is so is beyond the scope of this report.

1.3. Proportionate Progress and Pfairness

The notion of proportionate progress, and the asso-

ciated concept of pfairness [1], deals with the following

scheduling problem:

The multiprocessor periodic scheduling prob-

lem: Given n tasks � = fx1; x2; : : : ; xng and m iden-

tical processors such that each processor must be allo-

cated for each �xed (indivisible) quantum of time to a

single task, and no task may use more than one pro-

cessor during any time quantum, with task xi needing

1This design decision has two signi�cant consequences: First,
no individual connection with a bandwidth requirement greater
than B can be admitted over this link, despite the fact that the
total link capacity ism�B. Second, we are no longer using a work

conserving scheduling descipline | if less than m connections
have cells waiting to use the network edge, then the edge will
not be used at full capacity despite the fact that there are cells
that need to use it.



to execute on a processor for exactly a fraction w(xi)

of the time quanta, choose, for each time quantum, a

subset of � of size at most m of the tasks that will be

permitted to use the m processors during this time slot.

It has been shown [1] that the m processors can be

allocated in a pfair manner | i.e., in such a manner

that, over the quanta numbered 0; 1; : : : ; t � 1, each

task xi will have executed on a processor for exactly

bw(xi) � tc or dw(xi) � te quanta, for all t 2 N; Algo-

rithm PF [1] is a scheduling algorithm that determines

the subset of tasks that obtain the m processors during

each time quantum.

It should be evident that the multiprocessor peri-

odic scheduling problem is closely related to the par-

allel switching problem. However, the two problems

have some major di�erences. The main di�erence |

and the reason why Algorithm PF cannot be directly

used to solve the parallel switching problem | lies in

the fact that, while tasks are always available to use

a processor, there may simply not be any cells of a

connection queued up at the time that Algorithm PF

would want to service that particular connection, but

a cell arrives on this connection immediately after its

\turn" has gone by. This is a consequence of the fact

that, while everything about an instance of the peri-

odic multiprocessor scheduling problem | the number

of tasks, their weights, the number of processors, etc.

| is known beforehand, the parallel switching problem

is inherently on-line, in that the exact times at which

cells of a particular connection will arrive at a switch is

not a priori known. Adapting multiprocessor periodic

fair scheduling algorithms such as Algorithm PF to a

dynamic, on-line environment while continuing to ob-

tain high utilization of the available bandwidth, is the

major algorithmic challenge in being able to design fair

bandwidth allocation strategies for networks that may

have multiple parallel links between pairs of switches.

This report describes our attempts as designing such

strategies.

The remainder of this report is organized as follows.

In Section 2, we briey summarize previous research

in pfair scheduling { this research will form the ba-

sis of the scheduling schemes introduced in this pa-

per. In Section 3, we present (and prove correct) Al-

gorithm NF, an algorithm for scheduling cells on par-

allel links in a fair manner. In Section 4, we address

some concerns regarding the run-time computational

complexity of Algorithm NF, and propose certain tech-

niques for increasing its e�ciency. We conclude in Sec-

tion 5 with a discussion on alternative means of ex-

ploiting parallelism in network links.

2. A brief introduction to pfairness

In this section, we briey describe previous research

on the multiprocessor periodic scheduling problem. We

review the concept of pfairness (�rst introduced in [1]),

and present some notation, terminology, and important

results that will be used in later sections.

We start with some conventions:

� Let � denote a set of n periodic tasks, that are to

be scheduled on m identical processors.

� We adopt the standard notation of having [a; b)

denote the contiguous natural numbers a; a +

1; : : : ; b� 1.

� Scheduling decisions are made at integral values of

time, numbered from 0. The real interval between

time t and time t+1 (including t, excluding t+1)

will be referred to as slot t, t 2N.

� The quantity (
P

x2� w(x)) is referred to as the

density of the set � of periodic tasks.

Now some de�nitions:

� A schedule S for periodic task system � is a func-

tion from ��N to f0; 1g, where
P

x2� S(x; t) � m,

t 2 N. Informally, S(x; t) = 1 if and only if task x

is scheduled in slot t.

� The quantity allocated(S; x; t) of a task x at time

t with respect to schedule S is de�ned as follows:

allocated(S; x; t)
def

=
P

t02[0;t)S(x; t
0
):

� The lag of a task x at time t with respect to sched-

ule S, denoted lag(S; x; t), is de�ned by:

lag(S; x; t) = w(x) � t� allocated(S; x; t):

The quantity w(x)�t represents the amount of time

for which task x should have been allocated the

processor over [0; t), and allocated(S; x; t) is equal

to the number of slots for which task x was actu-

ally scheduled. Therefore, a positive lag indicates

that a task has been scheduled for less than its

\fair" share, while a negative lag indicates that it

has been overscheduled. A lag of exactly zero in-

dicates that the task has received exactly its fair

share thus far.

� A schedule S is pfair if and only if

8x; t : x 2 X; t 2N : �1 < lag(S; x; t) < 1:

That is, a schedule is pfair if and only if it is never

the case that any task x is overallocated or under-

allocated by an entire slot .



With respect to a given task x, let earliest(x; j) (resp.,

latest(x; j)) denote the earliest (resp., latest) slot dur-

ing which x may be scheduled for the jth time in

any pfair schedule, where j = 1; 2; : : :. We can eas-

ily derive closed-form expressions for earliest(x; j) and

latest(x; j):

earliest(x; j)

= min t : t 2N : w(x) � (t+ 1)� j > �1

=

�
j � 1

w(x)

�
(1)

Similarly,

latest(x; j)

= max t : t 2N : w(x) � t� (j � 1) < 1

=

�
j

w(x)

�
� 1 (2)

Let S denote a partial schedule in which schedul-

ing decisions have been made only for the time slots

0; 1; ; : : :; (t � 1). Task x is eligible in schedule S

at time t if it may receive the processor during slot t

without becoming overallocated; i.e., if

allocated(S; x; t) = k ^ (earliest(x; k+ 1) � t) :

Suppose that a task x is eligible in schedule S at

time t. By de�nition, x can be scheduled during slot t

without having its lag fall below �1; i.e.,

w(x) � (t + 1)� [allocated(S; x; t) + 1] > �1 :

The above is logically equivalent to

w(x) � (t+ 1)� allocated(S; x; t) > 0 : (3)

The LHS of Inequality 3 represents lag(S; x; t+1), pro-

vided S does not schedule x during slot t (i.e., provided

that allocated(S; x; t+ 1) = allocated(S; x; t)). But a

lag > 0 indicates underallocation, from which it fol-

lows that

Lemma 1 If a task is eligible during a slot, then not

scheduling it during this slot guarantees that it will be

underallocated at the start of the next slot.

The concept of pfairness was initially introduced in

[1], in the context of constructing periodic schedules for

a system of periodic tasks on several identical proces-

sors | the multiprocessor periodic scheduling problem

(described in Section 1). The following theorem was

proved there:

Theorem 1 A system of periodic tasks can be sched-

uled in a pfair manner on m processors provided the

weights of all the tasks sum to at most m.

In addition, an on-line scheduling algorithm { Algo-

rithm PF { was presented that generates a pfair sched-

ule for any such system of periodic tasks. In order

to describe this algorithm, we need to introduce some

more terminology:

Let S denote a partial schedule in which schedul-

ing decisions have been made only for the time slots

0; 1; ; : : :; (t � 1). For any positive integer i, the i'th

pseudo-deadline of task x at time t in schedule S is

de�ned to be equal to latest(x; allocated(S; x; t)+i). In-

tuitively, the i'th pseudo-deadline of task x denotes the

latest slot by which task x must be scheduled i more

times in S, if it is to not violate its lag bound.

Furthermore, we say that this i'th pseudo-deadline

is a solid pseudo-deadline if

latest(x; allocated(S; x; t)+i) �
allocated(S; x; t) + i

w(x)
�1:

Intuitively, a solid pseudo-deadline occurs when the

d e function used in Equation 2 introduces no rounding

error since the argument to the d e is itself integral.

ALgorithmPF schedules tasks according to their pf-

priorities. A formal de�nition of pf-priorities is pro-

vided in Figure 1; informally, the relative pf-priorities

of two tasks at a particular time in a given schedule are

determined by comparing their i'th pseudo-deadlines,

with i initially set to one:

L1: If the i'th pseudo-deadlines are unequal, then

the task with the earlier i'th pseudo-deadline has

greater priority.

Else if they are equal but one of the pseudo-deadlines

is a solid pseudo-deadline, then the other task has

greater priority (if they are equal and both are

solid pseudo-deadlines, then either task can be ar-

bitrarily assigned the greater priority)

Else the pseudo-deadlines are equal but neither is a

solid pseudo-deadline: in this case, the next pair

of pseudo-deadlines of the tasks must be compared

in the same manner. I.e., set i to (i + 1), and go

to L1.

Algorithm PF is now easily described: at each time

slot, schedule the (at most) m eligible tasks with the

highest pf-priorities.

3. Fairness and the parallel switching

problem

While scheduling periodic tasks on multiple proces-

sors, Algorithm PF can decide to schedule any task at

any time-slot (subject, of course, to the fairness con-

straints we have chosen to impose). The situation is



Task x is de�ned to have greater pf-priority than task y in schedule S at time t

if, in schedule S at time t, there in an integer i � 1 such that

for all j, 1 � j < i,

the j'th pseudo-deadline of x is not a solid pseudo-deadline, and

the j'th pseudo-deadline of y is not a solid pseudo-deadline, and

the j'th pseudo-deadline of x equals the j'th pseudo-deadline of y

and

the i'th pseudo-deadline of x is smaller than the i'th pseudo-deadline of y, or

the i'th pseudo-deadline of y is a solid pseudo-deadline

Figure 1. Definition of pf-priorities

rather di�erent in the case of network tra�c: if there

are no cells of a particular connection queued at the

start of slot t, then this connection cannot be serviced

during this slot, regardless of the scheduling decision

made by Algorithm PF. We illustrate by means of an

example.

Example 1 Consider a situation in which three con-

nections c1, c2, and c3, with w(c1) = w(c2) = w(c3)

= 2=3, share a parallel link composed of two �bers (i.e.,

with m = 2). Assume that all three connections have

their �rst cells arrive at the switch at time 0, and sub-

sequent cells arrive exactly 1:5 time units apart (i.e., at

exactly the rate implied by their weights). At the start

of the time-slot zero, all three connections are eligible;

without loss of generality, assume that Algorithm PF

selects c1 and c2 to send their cells during this slot. Al-

gorithm PF would then let c3 send its �rst cell during

time-slot one, and would also select one of c1 or c2 to

send its second cell during this time slot. However, this

second cell has not yet arrived at the start of the time

slot.

The problem illustrated by Example 1 is, in e�ect,

insoluble | there is simply nothing that any algorithm

could do about the fact that there are only three cells

available for transmission during the �rst two time-

slots. Our approach | formalized below as Algo-

rithm NF (for \Network Fair") | handles this by

weakening the performance guarantee: in Example 1,

we will guarantee that connection ci gets its �rst cell

transmitted during slots 0 or 1; its second cell during

slots 2 or 3; its third cell during slots 3 or 4; and so on.

That is AlgorithmNF may transmit a cell one time-slot

later than is mandated by the pfairness requirement |

this is a consequence (as Example 1 illustrates) of the

fact that cells that arrive during a slot are only avail-

able for transmission during the next slot. However,

Algorithm NF does guarantee that no cell is delayed

by more than one slot from where it should have been

transmitted in accordance with pfairness.

We now describe the operation of Algorithm NF.

This is how we will proceed. First, we will explain how

AlgorithmNF performs admission control |determin-

ing whether a new connection request is accepted by a

switch. Next, we will discuss how incoming cells are

queued at a switch while awaiting transmission. And

�nally, we will describe how Algorithm NF uses the

notion of pf-priorities (described in Section 2) to de-

termine which cells are to be transmitted during each

time slot.

x1. Connection establishment. Suppose that

there are m parallel links, each of capacity B, leading

from switch S1 to switch S2 | we will refer to these

links cumulatively as the network edge (S1; S2). With

each real-time connection xi that has already been es-

tablished passing through network edge (S1; S2), we

associate a weight w(xi), 0 � w(xi) � 1, denoting

that connection xi has reserved a bandwidth equal to

w(xi) �B on this edge.

Suppose that a new real-time connection x now de-

sires to use this edge. Among the information that x

must make available during connection establishment

is its bandwidth requirement, from which its weight

w(x) is computed (by dividing this bandwidth require-

ment by B). Admission control now consists of switch

S1 validating that w(x) plus the weights of all already-

admitted connections on network edge (S1; S2) does

not exceed m. This step is repeated by switch S` on

each network edge (S`; Sk) that the connection wishes

to traverse, and the connection is admitted if and only

if doing so would not cause any network edge to exceed

its capacity.

If a connection x is successfully established, then

certain resources { bu�ers, registers, etc. | are allo-

cated to it on each switch through which it passes
2
.

2Some precomputation is also done, which facilitates the run-
time execution of Algorithm NF during cell-switching time |



Some of the variables that are created and maintained

in each switch are the following (the use to which these

variables are put will be explained during the remain-

der of this section):

baseTime(x) : A positive integer, denoting the time

from which we begin considering connection x for

the purposes of transmitting its cells across the

network edge. This is determined by when cells be-

gin arriving at the switch. (A value of 1 denotes

that the connection is not currently \active".)

count(x) : A non-negative integer, denoting the num-

ber of cells of connection x that have been trans-

mitted since time baseTime(x).

Q(x) : A FIFO queue of the cells of connection x that

have arrived at the switch but have not yet been

transmitted.

x2. Queueing newly-arrived cells. At the start

of each time-slot t, all the cells that had arrived during

the interval (t � 1; t] are processed. Suppose that a

cell of (already admitted) real-time connection x has

arrived; this is processed as follows:

if (baseTime(x) ==1)f

(This indicates that the connection was

previously not active)

baseTime(x) = t

count(x) = 0

g

add the cell to Q(x).

x3. Transmitting cells. Once all cells that arrived

during (t � 1; t] have been queued as described above,

the m cells that are to transmitted during time-slot

t are selected. Only eligible connections may con-

tend to send cells during this slot: connection x is

deemed to be eligible if the following condition, which

checks whether (t�baseTime(x)) | the interval during

which this connection has been \active" | is at least

earliest(x; count(x) + 1) (see Equation 1), holds:

baseTime(x) +

�
count(x)

w(x)

�
� t :

However, if an eligible connection x has no cells queued

for transmission (as would have been the case in Ex-

ample 1 at the start of time-slot one), then it cannot

contend for bandwidth. In this case, Algorithm NF

\deactivates" this particular connection:

if x is deemed eligible and Q(x) is empty

baseTime(x) =1

this is described in more detail in Section 4.

Process cells that arrive at the start of slot t.

A cell of connection x has arrived:

if (baseTime(x) ==1)f

baseTime(x) = t

count(x) = 0

g

add the cell to Q(x).

Choose cells for transmitting during slot t.

if (baseTime(x) +
j
count(x)

w(x)

k
� t) f

//Connection x is eligible

if Q(x) is empty

baseTime(x) =1

else f //Q(x) is not empty

if x is one of the m highest-priority connections

f

transmit a cell from Q(x)

count(x) = count(x) + 1

g

g

g

Figure 2. Pseudocode

(When the next cell of this connection arrives at a later

time t0 {in Example 1, at the start of time-slot two;

i.e., t0 = 2{ the connection is reactivated, when this

next cell is processed, with baseTime(x) set to t0 and

count(x) to zero.)

Of the remaining eligible connections (i.e, those with

non-empty queues), the m connections with the highest

pf-priorities
3
get to each transmit a cell:

if x is one of the m highest-priority connections f

transmit a cell from Q(x)

count(x) = count(x) + 1

g

(If there are fewer than m eligible connections, then all

transmit a cell as above, and any unused bandwidth

can be used to transmit non-real-time cells.)

The pseudocode presented above is collected to-

gether in Figure 2.

3.1 Correctness

For the most part, the correctness of Algo-

rithm NF follows directly from the correctness of Al-

3We postpone discussion on how this determination of pf-
priorities is actually implemented to Section 4.



gorithm PF [1]. The major di�erence between the

behaviours of the two algorithms arises when Algo-

rithm NF \deactivates" an eligible connection whose

queue is empty, and subsequently reactivates it when

its queue becomes populated. To ensure that a connec-

tion cannot obtain more than its reserved share of the

shared bandwidth by strategically timing the arrivals

of its cells, we must ascertain that such deactivation

and subsequent activation does not cause a connec-

tion to ever become overallocated. But this is easily

seen to hold: observe that in order to become deac-

tivated, a connection must �rst be eligible; once de-

activated, it cannot be reactivated until the beginning

of the next slot. But by Lemma 1, not scheduling an

eligible connection will guarantee that this connection

is underallocated at the start of the next slot. Hence

a previously deactivated connection is guaranteed to

have consumed less than its reserved share of band-

width by the time it is next activated (although it could

have been overallocated { i.e., have had a negative lag

{ at the instant it was deactivated).

Performance guarantees:

A connection x is said to be backlogged at a switch

throughout an interval [t1; t2] if Q(x) at this switch is

non-empty at each instant t1; t1+1; : : : ; t2. Notice that

� Whether a connection is backlogged or not over an

interval depends upon both the time at which cells

arrive at the switch, and the scheduling decisions

made over the interval. For instance, connection

c3 is backlogged over the interval [0; 1], while con-

nections c1 and c2 are not, in Example 1.

� If connection x is backlogged over [t1; t2] when

scheduled by Algorithm NF, then Algorithm NF

would not deactivate x at any time instant during

this interval.

The performance guarantee made by Algorithm NF

can now be stated: If the queue Q(x) associated with a

connection x is empty at time-instant t1 � 1 but a cell

arrives at t1 and the connection is backlogged over the

interval [t1; t1+ t), then Algorithm NF will have trans-

mitted at least bt �w(xi)c cells of connection x during

the interval [t1; t1 + t).

To see that this guarantee does in fact hold, no-

tice that, in the absence of deactivating and reactivat-

ing, Algorithm NF behaves exactly like Algorithm PF.

Now, if connection x is backlogged during [t1; t1 + t),

then Algorithm NF never deactivates and reactivates

x. Since (as we have seen above), no other connection

could obtain more that its fair share of the resource by

such deactivating/ reactivating either, Algorithm NF

will transmit at least as many cells of x as would have

been transmitted in a pfair schedule starting at time

t1.

4. E�cient determination of pf-priorities

A major drawback of the pf-priority determination

procedure described in Section 2 is that it does not a

priori limit the number of pairs of pseudo-deadlines

that need to be compared in order to determine the

relative pf-priorities of two tasks. Indeed, so long as

two tasks have corresponding pairs of their pseudo-

deadlines equal {and none of these pseudo-deadlines

are solid{ we must continue comparing further pairs

of pseudo-deadlines. Some research has been done [1]

on estimating the exact worst-case computational com-

plexity of such comparison, and attempts have been

made [2] { and continue to be made { at obtaining

more e�cient comparison routines.

In this section, we describe a transformation on sets

of real-time connections which increases the weight of

each connection by an a priori bounded amount, such

that the pf-priorities of the resulting connections can

be more e�ciently determined. While the schedule ob-

tained by using these pf-priorities will not in general be

pfair with respect to the original weights of the con-

nections (since the weights will have been increased,

the connections will in general be overallocated as com-

pared to a pfair schedule), this need not be a concern to

us here in the context of our network parallel switching

application since our desire is to avoid underallocation

(rather than worry about overallocation).

Our transformation is designed to take advantage of

the following fact:

Lemma 2 A connection x with weight w(x) =
k

`
,

where k and ` are both positive integers, can have at

most (k� 1) consecutive pseudo-deadlines that are not

solid.

Proof Sketch: The k pseudo-deadlines of task x at

time t in schedule S are latest(x; allocated(S; x; t) +

1), latest(x; allocated(S; x; t) + 2), : : :,

latest(x; allocated(S; x; t) + k). By the de�nition of

solid pseudo-deadlines, one of these pseudo-deadlines

is solid if
allocated(S; x; t) + j

w(x)
� 1

is an integer for some j, 1 � j � k. Since w(x) = k

`
,

this is equivalent to requiring that

allocated(S; x; t) + j

k
� ` � 1

be an integer. But at least one of the k consecutive in-

tegers (allocated(S; x; t)+1), (allocated(S; x; t)+2), : : :,



(allocated(S; x; t)+k) is divisible by k; consequently, at

least one of these k pseudo-deadlines is a solid pseudo-

deadline.

We now describe our transformation on connections.

Let k be some pre-speci�ed constant integer, k � 1.

(We will describe later how the value of k is detemined.)

Given a connection x, with weight w(x), assign x a

weight w0
(x) as follows:

w0
(x)

def

=
k

bk=w(x)c

Notice that the transformed connection will have at

most (k�1) consecutive pseudo-deadlines that are not

solid | this follows from Lemma 2. Hence determin-

ing the pf-priorities of a pair of transformed connec-

tions will involve comparing at most k pairs of pseudo-

deadlines: by choosing k to be reasonably small, de-

termining the relative pf-priorities of tasks can thus be

done e�ciently.

But what does this increase in the e�ciency of pri-

ority determination cost us? Lemma 3 addresses this

question:

Lemma 3 The above transformation increases the

weight of a connection by less than a factor of (1+ 1
k
);

i.e.

w0
(x) < w(x) �

�
1 +

1

k

�

Proof Sketch: Let `
def

= bk=w(x)c; i.e., w0
(x) = k=`

for some integer `. Since w(x) � 1, it follows that

k=w(x) � k; i.e., bk=w(x)c � k; i.e., ` � k.

Now since bk=w(x)c = `, it must be the case

that k=w(x) < (` + 1), from which it follows that

w(x) > k

`+1
. Therefore,

w0
(x)

w(x)
<

k=`

k=(`+ 1)
= 1 +

1

`
:

Since (1 +
1
`
) decreases with increasing `, this ratio is

maximized for the smallest value of `, i.e., for ` = k.

Hence
w

0(x)

w(x)
< 1 +

1
k
, from which it follows that

w0
(x) < w(x) �

�
1 +

1

k

�
:

Lemma 3 tells us that transforming a connection x

in the manner described above causes no more than a�
1 +

1
k

�
-fold increase in the connection's weight. Recall

that Algorithm NF's admission control test required

only that the sum of the weights of all admitted con-

nections not exceed m (where m is the number of par-

allel links comprising the network edge). For a set of

connections  to all be admitted after each connection

in  has been so transformed, it is therefore su�cient

that

� Each individual connection's weight, after the

transformation, should not exceed 1; i.e., w(x) �

1=(1 + 1
k
) (which is equivalent to requiring that

w(x) be no larger than
k

k+1
), and

�

X
x2

w0
(x) be no larger than m; i.e.,

P
x2

w(x) �

(1 +
1
k
) � m, which is equivalent to requiring

that  X
x2

w(x) � m �
k

k + 1

!
:

Notice that the bound above |

�
m �

k

k+1

�
| increases

with increasing k (as k !1, this approaches m). On

the other hand, the procedure for determining the rel-

ative pf-priorities of a pair of connections takes time

O(k), and hence the e�ciency of this procedure de-

creases with increasing k. We thus see that (for a given

value of m) there is a tradeo� between the total weight

of sets of connections which are guaranteed admitted

after such transformation, and the e�ciency of actually

determining the schedule. In particular, suppose that

we wish to guarantee that all sets of connections with a

total weight no larger than U �m are always admitted:

algebraic manipulation of the above inequality yields

the result that the desired value of k is

l
U

1�U

m
.

In the context of our network parallel switching

application, this information can be used as follows:

Suppose we know beforehand that the real-time traf-

�c across a network edge will not exceed U times the

capacity of the edge, for some U < 1 | the rest of

the bandwidth is to be used for non-real-time tra�c.

(I.e., the real-time capacity of the link is calibrated at

U times its actual capacity.) This allows us to decide

that we can transform each connection such that deter-

mining pf-priorities will require the comparison of no

more than

l
U

1�U

m
pairs of pseudo-deadlines

4
. For ex-

ample, If we desire that U be 80%, the necessary value

of k is

l
0:8

1�0:8

m
which equals 4: this means that we

can transform all admitted connections with k set to

4Although we will not discuss this further in this manuscript,
if an upper bound on the weights of all possible connections is
known beforehand then we may be able to obtain even lower
values of k for a desired value of U . Speci�cally, suppose that
it is known that no connection will have a weight greater than
some constant W , then

k =

l
W �

l
U

1� U

mm
is su�cient. For example, if a U of 0:90 is desired but it is
a priori known that no connection's weight will exceed 0:20,

then k =
�
0:20 �

�
0:90

1�0:90

��
= 2; i.e., at most two pseudo-

deadlines must be compared to resolve the pf-priorities of any
pair of connections



4, and will then never need to compare more than four

pseudo-deadlines to determine the relative pf-priorities

of a pair of connections.

Some additional observations:

� Notice that such a transformation permits a con-

nection to \cheat" by actually generating enough

cells to consume a fraction w0
(x) of the bandwidth

of a single link (rather than a fraction w(x) as orig-

inally promised: Algorithm NF guarantees timely

delivery of all these extra cells as well). If this

is undesirable { in the sense that it would have

the e�ect of reducing the bandwidth available to

non-real-time data { tra�c policing can be done

to prevent a connection from injecting more than

the permitted amount of cells into the network.

� It has been observed that tra�c ows tend to be-

come more bursty as they traverse a network, con-

sequently requiring greater bu�ering at intermedi-

ate switches and resulting in jittery delivery at the

destination. The ability of Algorithm NF to actu-

ally service a connection x at a rate w0
(x) which

may be greater than the rate w(x) can help reduce

this burstiness | if a buildup of cells of connection

x occurs at a switch, the excess available band-

width (w0
(x)�w(x)) will be used by AlgorithmNF

to get rid of this buildup by transmitting cells of

x at a faster rate.

Implementation. In Section 3, we had postponed

discussion on how pf-priorities of connections are actu-

ally computed by Algorithm NF. We take this discus-

sion up now.

Once a connection x is admitted (during connec-

tion establishment), x's weight at a switch S1 is trans-

formed to w0
(x) =

k

bk=w(x)c
, where k is a constant

whose value is determined {as explained above{ by

how much of the switch's bandwidth is reserved for

real-time tra�c. In addition, an integer variable `(x)

stores the integer ` such that w0
(x) = k=`, and the real

numbers

0:0;
1

w0(x)
;

2

w0(x)
; : : : ;

k � 1

w0(x)

are precomputed and stored in an array

D(x)[[0; � � � ; k � 1] | this array will be used by

Algorithm NF to determine when a connection be-

comes eligible, and its pseudo-deadlines. For example,

determining whether a connection is eligible (the test

in the �rst line of the pseudocode for choosing cells

for transmitting during slot t { Figure 2) can be

performed by one \oor" operation and additional

integer operations, and no oating-point operations:

\if baseTime(x) + bD(x)[count(x) mod k]c

+`(x) � (count(x) div k) � t"

More important, the pseudo-deadlines are easily

computed, with no oating-point operation (other than

a \ceiling" operation): the i'th pseudo-deadline of con-

nection x is at time
5

baseTime(x) + dD(x)[(count(x) + 1) mod k]e

+`(x) � ((count(x) + 1) div k) :

By precomputing the D(x) array at connection-

establishment time, we will have thus considerably re-

duced the time required by Algorithm NF to determine

which connections to service during each time-slot.

5. Conclusions; Other approaches

The networking community has recently been pay-

ing considerably attention to the problem of being

able to provide determinstic quality of service guaran-

tees to connections that can be characterized as ows.

Such connections arise primarily in networked mul-

timedia applications such as videoconferencing, tele-

phony, video-on-demand, etc.

From one perspective, a computer network can be

modelled as a graph, in which nodes correspond to

routers and switches, and edges to physical links be-

tween pairs of routers. Cell-switching algorithms are

concerned with determining the order in which cells

are transmitted across these graph edges.

One method of obtaining a high-bandwidth con-

nection between a pair of neighbouring switches is to

connect them with a high-bandwidth �ber. Another

method is to have several �bers in parallel connect the

two switches | it costs signi�cantly less to connect

two locations with m �bers (typically, within the same

cable) than it does to connect them with one �ber

that has a bandwidth m times as high; furthermore,

fast serial switching elements (i.e., switching elements

that can handle a large number of cells per unit time)

are very di�cult to construct, and currently constitute

the technological bottleneck to the implementation of

higher-bandwidth networks.

We have described here an approach for cell-

scheduling on such parallel-linked networks. Our ap-

proach | formalized as Algorithm NF | o�ers qual-

ity of service guarantees that are comparable to those

5While we will not get into the details here, comparision
of pseudo-deadlines for the purpose of determining relative pf-
priorities can also be conveniently implemented to execute in
constant time per comparison in hardware, provided there are
O(k) special-purpose registers per connection available at the
router.



made by earlier algorithms (such as Weighted Fair

Queueing and proportional-share schemes) that were

designed for networks without parallel links. Under

certain restrictions (in particular, we can guarantee no

more than a fraction U of the bandwidth for real-time

connections, for some U < 1), we have obtained e�-

cient implementations of Algorithm NF.

We conclude with a brief description of other

promising approaches towards parallel switching of

ow-based tra�c that, based upon our preliminary

studies, seem to merit further investigation. Of these,

potentially the most rewarding is to explore the pos-

sibility of extending the single-resource fair-queueing

strategies to the parallel-switching domain. While

these are not likely to be optimal, the enormous

amount of \legacy" research | the algorithms, imple-

mentations, and analyses | that has been performed

with respect to these strategies may o�set a minor loss

of e�ciency (bandwidth) or fairness. Another possi-

ble approach towards using the single-resource fairness

results for parallel switching involves partitioning the

connections among the various �bers at connection es-

tablishment time, and then having each connection's

cells contend for bandwidth only on its associated �ber;

once again, the downside to such an approach is low

utilization of available bandwidth.

Recall that we had claimed that the \fairest" band-

width allocation scheme would be one that allocates at

least bt � w(ci)c slots out of any consecutive t slots to

each connection ci. There seems to be a close relation-

ship between this notion of extreme fairness and the

concept of pinwheel scheduling [7]; further exploring

this relationship may yield interesting results.

References

[1] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel.

Proportionate progress: A notion of fairness in

resource allocation. Algorithmica, 15(6):600{625,

June 1996.

[2] S. Baruah, J. Gehrke, and G. Plaxton. Fast

scheduling of periodic tasks on multiple re-

sources. In Proceedings of the Ninth International

Parallel Processing Symposium, pages 280{288.

IEEE Computer Society Press, April 1995. Ex-

tended version available via anonymous ftp from

ftp.cs.utexas.edu, as Tech Report TR{95{02.

[3] J. Bennett and H. Zhang. WF
2
Q: Worst-case fair

queueing. In Proceedings of IEEE INFOCOM'96,

pages 120{128, March 1996.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis

and simulation of a fair queueing algorithm. Jour-

nal of Internetworking Research and Experience,

pages 3{26, September 1990.

[5] A. El-Nahas, K. Ahmed, and M. Gouda. Leaky

bucket, refreshed bucket, and other ow admis-

sion criteria. In Proceedings of the Fifth Interna-

tional Conference on Computer communications

and Networks, Rockville, MD, October 1996.

[6] P. Goyal, H. Vin, and H. Cheng. Start-time

fair queueing: A scheduling algorithm for inte-

grated services packet switching networks. Tech-

nical Report TR-96-02, Department of Computer

Sciences, University of Texas at Austin, 1996.

[7] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and

D. Varvel. The pinwheel: A real-time scheduling

problem. In Proceedings of the 22nd Hawaii In-

ternational Conference on System Science, pages

693{702, Kailua-Kona, January 1989.

[8] A. K. Parekh and R. G. Gallager. A general-

ized processor sharing approach to ow control

in integrated services networks: the single node

case. IEEE/ACM Transactions on Networking,

1(3):344{357, June 1993.

[9] I. Stoica and H. Abdel-Wahab. Earliest eligi-

ble virtual deadline �rst: A exible and accurate

mechanism for proportional share resource allo-

cation. Technical Report TR{95{22, Department

of Computer Science, Old Dominion University,

1995.

[10] I. Stoica and H. Abdel-Wahab. A new approach to

implement proportional share resource allocation.

Technical Report TR{95{05, Department of Com-

puter Science, Old Dominion University, 1995.

[11] I. Stoica, H. Abdel-Wahab, K. Je�ay, J. Gherke,

G. Plaxton, and S. Baruah. A proportional share

resource allocation algorithm for real-time, time-

shared systems. In Proceedings of the Real-Time

Systems Symposium, pages 288{299, Washington,

DC, December 1996.

[12] H. Zhang and S. Keshav. Comparison of rate-

based service disciplines. In Proceedings of ACM

SIGCOMM'91, pages 113{121, August 1991.
[13] L. Zhang. VirtualClock: A new tra�c control al-

gorithm for packet switching networks. In Proceed-

ings of ACM SIGCOMM'90, pages 19{29, August

1990.




