
Distributed Real-Time Data
ow: An Execution Paradigm for Image

Processing and Anti-Submarine Warfare Applications

S. Goddard K. Je�ay

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599-3175

Abstract

The central thesis of this project is that

real-time scheduling theory can be combined

with data
ow methodologies to bound latency

and memory utilization of distributed signal

processing applications, such as those found in

anti-submarine warfare and image processing.

To this end, we propose a new real-time data
ow
paradigm that is based on the Navy's Processing Graph

Method (PGM) [5], which is similar to the data
ow
methodology employed by Ptolemy [1, 4] of the Univer-
sity of California at Berkeley and the Rapid Prototyp-
ing of Application Speci�c Signal Processors (RASSP)
project, funded by the Advanced Research Projects
Agency (ARPA). While our data
ow methodology it-
self is not novel, our application of real-time scheduling
theory to the model is.

1 Introduction

Signal processing algorithms are often de�ned in the
literature using large grain data
ow graphs [4]: directed
graphs in which a collection of sequential work that ex-
ecutes from start to �nish without synchronization is
called a node or vertex, and the graph edges (arcs) depict
the asynchronous 
ow of data from one node to the next.
Thus, an edge represents a producer/consumer relation-
ship between two nodes. Large grain data
ow provides
a natural description of signal processing applications
with each node representing a mathematical function to
be performed on an in�nite stream of data that 
ows on
the arcs of the graph. The data
ow methodology allows
one to easily understand a signal processing application
by depicting the structure of the algorithm; any portion
of the application can be understood in the absence of
the rest of the algorithm. Each node consumes the data
produced by its predecessor in the graph and the data
exists only between its production and consumption.

Data
ow is used by at least two government spon-
sored programs to develop embedded signal processing
applications. The Rapid Prototyping of Application

Speci�c Signal Processors (RASSP) project, funded by
the Advanced Research Projects Agency (ARPA), uses
data
ow techniques to specify and develop image pro-
cessing benchmark applications. One of the primary
benchmarks they have developed is that of synthetic
aperture radar (SAR). SAR is used to identify man-made
objects on the ground or in the air by producing high-
resolution, all-weather images, which are usually pro-
cessed in real-time. Data
ow methodology is also used
by the Navy's standard signal processor, the AN/UYS-
2A | used in detection of submarines. The Navy has
spent millions of dollars developing the AN/UYS-2A and
applications for it such as the Airborne Low Frequency
Sonar (ALFS) subsystem of the Block II upgrade to
the LAMPS MK III helicopter, and yet it has no way
to guarantee that the hard real-time processing require-
ments of these anti-submarine warfare applications can
be met.

Embedded signal processing applications are natu-
rally de�ned using data
ow techniques, but require the
deterministic performance of real-time applications. The
signal processing graph must process data at the rates
of a set of producers (e.g., sonobuoys, dipping sonars, or
radars) without the loss of data. Hence, these applica-
tions have a dual notion of correctness: logical and tem-
poral. It is not su�cient to produce the correct output,
which may be the signature of a detected target (logical
correctness); embedded signal processing applications
must produce the correct output within the correct time
interval (temporal correctness). Hard-real-time data
ow
systems provide temporal correctness without loss of
data while streams of input data arrive at rates de�ned
by the external world. Soft-real-time systems may use
bu�ering schemes to prevent data loss during transient
over loads. The system then catches up during light load
intervals. There are many products on the market that
aid in the development of real-time data
ow applications
(e.g., DSPView, DataFlow, RIPPEN, PGSE, GEDAE),
but none of these provide support for analysis of the
hard-real-time semantics of the system.

Data
ow models implicitly de�ne a temporal seman-

In: Proceedings of the IEEE Real-Time Systems SymposiumWork in Progress Abstracts, Washington, DC, December 1996, pages 55-58.



tics of a processing graph by specifying lower bounds on
when nodes may execute as a function of the availability
of data on input edges. However, most models do not
specify an upper bound on the time that may elapse be-
tween when a node becomes eligible to execute and the
time the node either commences or completes execution.

The lack of such a speci�cation creates several prob-
lems:

� the lack of a feasibility or admission control test |
Does a set of nodes or a graph \�t" on a processor?

� undetermined latency properties | Does a graph
meet timing requirements?

� no upper bound on queue length | If latency isn't
bounded, memory requirements for a graph cannot
be bounded and hence data loss may occur.

System engineers use these metrics to size hardware and
perform requirements veri�cation. A cost tradeo� may
be made on CPU utilization versus latency, or bu�er
space versus latency. High latency tolerances allow the
use of a slower (and cheaper) CPU but may require more
memory for increased bu�er space. On the other hand,
tighter latency requirements may demand a faster CPU
(or lower utilization) but less memory. In keeping costs
in line, a system architect uses these metrics to make
fundamental design tradeo�s.

None of the data
ow models or real-time execution
paradigms in the research literature correctly model the
execution of both SAR and ALFS applications. A new
real-time data
ow execution paradigm is needed that
supports these distributed applications and the funda-
mental tradeo�s made by system engineers. The central
thesis of this project is that

real-time scheduling theory can be combined

with data
ow methodologies to bound latency

and memory utilization of distributed signal

processing applications, such as those found in

anti-submarine warfare and image processing.

To this end, we propose a new real-time data
ow
paradigm that is based on the Navy's Processing Graph

Method (PGM) [5], which is similar to the data
ow
methodology employed by Ptolemy [1, 4] (of the Univer-
sity of California at Berkeley) and RASSP. While our
data
ow methodology itself is not novel, our application
of real-time scheduling theory to the model is. Using
real-time scheduling theory, we will be able to:

� determine the execution characteristics of every
node in the graph,

� determine whether or not a graph can be scheduled
to meet its hard real-time processing requirements,

� bound the latency between receipt of sensor data
and the presentation of processed data,

� use dynamic scheduling techniques to ensure latency
bounds are met,

� determine the maximum amount of memory re-
quired by the application, and

� add or remove graphs to the system \on the 
y"
while still guaranteeing the hard real-time require-
ments of the executing applications.

2 The Data
ow Model

In our data
ow model, a system is expressed as a di-
rected graph of large grain nodes (processing functions)
and edges (logical communication channels). The topol-
ogy of the graph de�nes the 
ow of data tokens from
an input source to an output sink, de�ning a software
architecture independent of the hardware hosting the ap-
plication.

The edges of a graph are typed First-In-First-Out
(FIFO) queues. The data type of the queue indicates
the size of each token transported from a producer to a
consumer. Tokens are appended to the tail of the queue
(by the producer) and read from the head (by the con-
sumer). The tail of a queue can be attached to at most
one node at any time. Likewise, the head of a queue can
be attached to at most one node at any time.

The nodes of the graph embody processing functions.
Each node must have at least one input port and zero or
more output ports. At least one of the input ports must
be attached to a queue. The rest of the node ports may
be attached to queues, graph variables, or constants.
The port type and the type of the attached data object
(queue, variable, or constant) must match.

There are three attributes associated with a queue:
a produce, threshold, and consume amount. The pro-
duce amount speci�es the number of tokens atomically
appended to the queue when the producing node com-
pletes execution. The threshold amount represents the
minimum number of tokens required before the node
may process data from the input queue. The consume
amount is the number of tokens dequeued (starting at
the head) after the processing function �nishes execu-
tion. A queue is over threshold if the number of en-
queued tokens meets or exceeds the threshold amount.
Unlike most data
ow paradigms, our model (as does
PGM) allows non-unity produce, threshold, and con-
sume amounts as well as a consume amount less than the
threshold. All three attributes must be non-negative val-
ues, and the consume amount must be less than or equal
to the threshold amount.

A node within a graph is eligible for execution when-
ever all of its input queues are over threshold. Although



PGM refers to these nodes as pooled nodes we use the
more common term And nodes. An And node begins
execution by reading the speci�ed amount of data from
all of its input ports. Next the processing function is
executed. After the processing function completes, the
output graph variables are written and the speci�ed
produce amount of tokens is appended to each output
queue. Before the node terminates, but after data is
produced, consume tokens are dequeued from each in-
put queue. The production and consumption of data
are both atomic operations. That is, all produce tokens
are available to the consumer at the same time; all con-
sume tokens are removed from an input queue in one
indivisible operation. We assume that no data can be
lost during graph execution and that no two executions
of the same node overlap.

The graph of Figure 1, labeled Chain1, contains two
types of objects: nodes and queues, and has the topology
of a chain. For simplicity, we employ chains to introduce
our real-time data
ow model. A chain has exactly one
queue connecting any two nodes. The queue connecting
Ni to Ni+1 is labeled Qi. For example, the queue con-
necting the source node N0 to its consumer N1 is Q0.
The produce amount is the number located at the tail
of the queue (connected to the producing node). The
threshold and consume values are placed at the head of
the queue and separated by a comma. For example, the
produce amount for Q1 is 3, the threshold is 3, and the
consume value is 2.

3 Execution Model

We have made substantial progress in de�ning the ex-
ecution model for a single processor. We are currently
working on completing the single processor execution
model and extending it to a distributed paradigm. This
section brie
y covers some of our results. A much more
thorough and rigorous treatise of our real-time data
ow
execution model is provided in [3]. In addition to the
two theorems presented without proof in this section,
we have established (or a working to establish):

� schedulability tests,

� bounds on end-to-end latency, and

� bounds on the memory requirements of a graph.

Example 3.1. Node Execution:

In the two node chain below, Ni produces 7 tokens
every time it executes. Ni+1 has a threshold of 2 and
consumes 2 after it executes.

&%
'$

-

Qi+1
Ni+1&%

'$
- -

Qi�1
Ni

Qi

7 2; 2

Assume Qi contains no data. The �rst execution of Ni

enables 3 executions of Ni+1, which consumes 6 of the
7 tokens produced | leaving 1 token on Qi. Hence,
the second execution of Ni enables 4 executions of Ni+1.
After 2 executions of Ni and the resulting 7 executions of
Ni+1, Qi is left in its original state: containing 0 tokens.
2

We assume the synchrony hypothesis of [2] to intro-
duce the concept of node execution rates. Under the
synchrony hypothesis, we assume the graph executes on
an in�nitely fast machine. Hence, each node takes no
time to execute and data passes from source to sink node
instantaneously. The synchrony hypothesis lets us de�ne
execution rates in the absence of scheduling algorithms
and deadlines.

De�nition 3.1. An execution interval is a period of
time during which a node is guaranteed to have a con-
stant number of executions.

De�nition 3.2. Let t be the beginning of the �rst exe-
cution interval for node N . The execution rate for N is
speci�ed as (x; y); (Assuming the strong synchrony hy-
pothesis of [2]) N will execute exactly x times in all time
intervals of [t+ y � (j � 1); t+ y � j); 8j > 0.

Throughout this section, we assume that each node
produces a constant number of tokens and consumes a
constant number of tokens with consumei � thresholdi,
where the threshold is also constant. If the produce and
consume values are not constant, then maximum pro-
duce and minimum consume values can be used to de-
termine the maximum node execution rates.

De�nition 3.3. The rate speci�cation for Ni is repre-
sented as (xi; yi).

De�nition 3.4. The beginning of the �rst execution in-
terval for Ni is represented as ti.

Theorem 3.1. Given the rate speci�cation of (xi; yi)
for Ni, Ni will execute exactly xi times in every interval

of [ti + (k � y0); ti + (k � y0) + yi), 8k � 0.

Theorem 3.2. 8i � 0; j > 0: Let ti+1 represent the

beginning of �rst execution interval of Ni+1. Given the

attributes for Qi in a Chain and the execution rate for

N0 to be (x0; y0), the execution rate of Ni+1 for all in-

tervals de�ned by [ti+1 + (j � 1) � yi+1; ti+1+ j � yi+1] is
(xi+1; yi+1) where(

xi+1 =
producei�xi

gcd(producei�xi;consumei)

yi+1 =
consumei�yi

gcd(producei�xi;consumei)

(3.1)

Example 3.2. Let's apply Theorem 3.2 to Chain1 of
Figure 1: Let N0 be periodic such that it executes once



&%
'$

"!
# 

"!
# 

"!
# 

&%
'$

- - - - ..........................-........ -

Q0

N0

Source Q3
N3

Sink

Nn+1

N1 N2

Q1 Q2 Qn

3; 3 3; 29 3 2 4; 2 2 1; 1

Figure 1: Chain1

every y time units, which means it has an execution rate
of (1; y). We use Theorem 3.2 to derive the execution
rate of the N1 through N3 as follows:

ExecuteRate1 = (x1; y1)

=

�
9 � 1

gcd(9 � 1; 3)
;

3 � y

gcd(9 � 1; 3)

�
=

�
9

3
;
3y

3

�
= (3; y)

)

(
x1 = 3

y1 = y

ExecuteRate2 = (x2; y2)

=

�
3 � 3

gcd(3 � 3; 2)
;

2 � y

gcd(3 � 3; 2)

�
=

�
9

1
;
2y

1

�
= (9; 2y)

)

(
x2 = 9

y2 = 2y

2

4 Conclusion and Future Work

We are in the process of completing the proofs for our
latency and bu�er bounds. We are also attempting to
verify a feasibility test that can be used as schedulability
test for preemptive EDF scheduling and variants of the
canonical EDF algorithm. The single processor model
will be useful for evaluating simple signal processing ap-
plications, but the real bene�t of the real-time data
ow
methodology is the ability to support a variable number
of processors in a distributed system.

After completing the single processor model, which
has already yielded a surprising number of new results,
we will extend the model to distributed systems. The
distributed model can then be integrated into existing
programs such as the RASSP project, or the An/UYS-
2A COTS Variant (ACV) being developed by Lucent
Technologies for the Navy.

References

[1] Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.,
\Ptolemy: A Framework For Simulating and Proto-
typing Heterogeneous Systems", International Jour-
nal of computer Simulation, special issue on Simula-

tion Software Development , Vol. 4, 1994.

[2] Berry, G., Cosserat, L., \The ESTEREL Syn-
chronous Programming Language and its Mathemat-
ical Semantics", Lecture Notes in Computer Science,
Vol. 197 Seminar on Concurrency, Springer Verlag,
Berlin, 1985.

[3] Goddard, S., Je�ay, K., \A Temporal Semantics for
Real-Time Data
ow" , University of North Carolina,
Department of Computer Science, Technical Report,
in progress.

[4] Lee, E.A., Messerschmitt, D.G., \Static Scheduling
of Synchronous Data Flow Programs for Digital Signal
Processing", IEEE Transactions on Computers, Vol.
C-36, No. 1, January 1987, pp. 24-35.

[5] Processing Graph Method Speci�cation: Version 1.0 ,
prepared by the NRL for use by the Navy Standard
Signal Processing Program O�ce (PMS-428), Decem-
ber 1987.


