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Abstract:  We have created an efficient prototype implementation of the Real-
Time Producer/Consumer Paradigm, allowing us to build multiprograms within
a Unix1 process.  We present a brief introduction to the RTP/C paradigm and
the design of a kernel that supports a concurrent programming system based on
the RTP/C paradigm.  We then discuss the results of adapting an interactive
graphics program to use the RTP/C programming model.2

1 . Introduction

The Real-Time Producer/Consumer Paradigm (RTP/C) is a paradigm for the design and

analysis of real-time systems [Jeffay 89].  Associated with the RTP/C paradigm is a

programming model, Communicating Real-Time Processes (CRTP).  This paper describes

a prototype implementation of an operating system kernel to support systems constructed

using the RTP/C paradigm and CRTP, and some experience using this kernel with an

interactive graphics application.

We will assert that the RTP/C paradigm is helpful in working with real programs and

provides real benefits compared to traditional approaches.  For example, we can determine

bounds on response time for a thread of execution on the critical path through the program.

We explain how we adapted a program to use the RTP/C paradigm and CRTP, and the

insights we gained as a result.

*  Supported in part by a Digital Faculty Program Grant from the Digital Equipment Corporation.

1  Unix is a trademark of AT&T Bell Laboratories.

2  Head-mounted Display support provided by ONR Contract #N00014-86-K-0680, NIH Grant #5-R24-
RR02170, and DARPA-NSF Contract #DAEA 18-90-C-0044.
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We will show that the RTP/C paradigm and CRTP can be implemented efficiently by

describing our prototype kernel.  This kernel implements light-weight tasks within a Unix

process, which communicate via message passing.  While the use of Unix prevents us

from offering any rigorous response-time guarantees, it does enable us to test the suitability

of the RTP/C paradigm and CRTP for actual programs.

Some features of the implementation include:

• Use of a single stack by all tasks to decrease context-switching overhead and
improve memory utilization.

• Optimized scheduling so that tasks may be split into smaller tasks for modularity
without incurring excessive overhead or lengthening the time it takes a message to
propagate through the system.

• Use of ordinary Unix signals as input for the system.

• Built-in instrumentation to record how often tasks are executed.

Sections 2 and 3 will describe the RTP/C paradigm and the CRTP programming model.

Section 4 gives an overview of our kernel design, with special attention to properties of the

model that help to create an efficient implementation.  Section 5 then gives details of our

adaptation of a program to use RTP/C, and the results of that work.  Finally, the appendix

provides more details of our prototype kernel and may serve as a programmer’s guide.

2 . The Real-Time Producer/Consumer Paradigm

The Real-Time Producer/Consumer (RTP/C) paradigm was developed as part of a

framework for the design and analysis of real-time systems.  It defines a real-time

semantics of inter-process communication.

As the name implies, the Real-Time Producer/Consumer paradigm focuses on a producer-

consumer relationship between processes, in which one process, the producer, is

generating data items and sending them to another process, the consumer.  It assumes that

the consumer cannot control the producer.  The rate r at which data items arrive at the

consumer can be measured in terms of the worst-case minimum inter-arrival time, pmin: r =

1/pmin.  (See Figure 1.)

If the output rate can be realized over an arbitrarily long interval of time, and the consumer

does not consume data items at rate r, then no amount of data buffering will suffice to make

the system behave correctly (i.e., without losing data items).  Therefore, in such a system,

the consumer must consume data items at the rate at which they are produced.  In other
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r =1/pmin
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Figure 1:  The Real-Time Producer/Consumer Paradigm
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Figure 2:  Communicating Real-Time Processes

words, the RTP/C paradigm requires that the ith output of the producer be consumed before

the (i + 1)st output is produced.

For more information about the RTP/C paradigm, see [Jeffay 89, Section 2.2].

3 . The Communicating Real-Time Processes Programming Model

The Communicating Real-Time Processes programming model (CRTP) allows us to apply

the RTP/C paradigm to the analysis of systems larger than two processes.  CRTP includes

three abstractions: processes, data repositories, and communication channels.

CRTP views a program as a directed graph, in which nodes are processes and edges are

unidirectional communication channels.  Processes send messages along communication

channels.  Processes may be either sequential programs that execute on a single processor

or physical processes in the environment external to the processor (such as input devices)

that communicate with internal processes by interrupting the processor.

We postulate that each communication channel has a period p, which is the minimum inter-

arrival time of messages on that channel.  The maximum rate r at which messages are

transmitted on a channel is therefore 1/p.  (See Figure 2.)

For simplification, we assume that the system has no global variables, and that tasks do not

maintain state between execution requests.  Therefore, an abstraction called a data
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repository models any state that needs to be preserved between task executions or shared

among different processes.  Tasks may store data in, and retrieve data from, these

repositories.

The RTP/C paradigm and the CRTP programming model, and the analyses they make

possible, are described in greater detail by Jeffay [Jeffay 89].

4 . Implementation

We have implemented the programming model inside a single Unix process, using the C

programming language.  While the use of Unix precludes getting true real-time results, it is

good enough as a prototype to investigate the usefulness of the model for real applications.

We call our implementation a “kernel,” although it might be more appropriate to describe it

as a library of support routines.

4 . 1 Tasks and scheduling

While the programming model deals with processes, the implementation consists of tasks.

A process graph designed using the CRTP programming model is implemented by a set of

sporadic tasks, one per process.  Sporadic tasks are tasks that are invoked repeatedly, with

some minimum time between execution requests.  This minimum time is also called a

period p.

In this case, when a process receives a message, the corresponding task makes an

execution request.  Since the tasks have minimum times between execution requests

(determined by the minimum time between message arrivals), but may wait arbitrarily long

between requests, they are called sporadic.  Sporadic tasks are a generalization of periodic

tasks, which are tasks that, once started, request execution at precise intervals.  The first

execution request of any task is called its release time.

When a message arrives, a deadline d is assigned to the task to ensure that the task

processes the message before another one arrives on that channel.  Each task must complete

execution before its deadline.  The minimum time before another message arrives is the

channel’s period, so the deadline is the arrival time of the message plus the channel’s

period, d = tarrival + pchannel.
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Scheduling requires deciding which task to execute next.  Scheduling in the kernel follows

a non-preemptive earliest deadline first (EDF) policy.  In EDF scheduling, the task with the

earliest deadline is always run.

Non-preemptive EDF is an optimal scheduling discipline3  for sporadic tasks with arbitrary

release times [Jeffay et al. 90].  In other words, if it is possible to schedule such a set of

tasks without any of them missing a deadline, EDF will do so.  We have also developed an

algorithm to determine, a priori, whether it will be possible to schedule such a set of tasks

[Jeffay et al. 90].

Our ability to schedule a collection of tasks is a function of the execution costs and periods

of the tasks, and not of the topology of the process graph (although we use the graph to

derive the periods using the RTP/C paradigm).  This is one reason for distinguishing

between processes and tasks.  One consequence of this is that our decision procedure

assumes the tasks are independent, and in particular that the worst case interleaving of

execution requests can occur.  But execution requests in fact correspond to message

arrivals.  In a process graph the tasks are decidedly not independent, and the worst case

sequence of message arrivals may not occur.  The decision procedure does not take this

into account and thus is overly conservative.  A set of tasks that is schedulable may be

rejected by the decision procedure.

On the other hand, if the analysis decides that the tasks are schedulable, then we know that

they are schedulable for any interleaving of requests, that is, any pattern of message

arrivals in the program.  This allows us to optimize our implementation to prevent poor

performance that might occur when messages are passed along a string of tasks in series,

due to the effects of propagation delay of such messages.

For example, suppose we have processes A, B, and C.  Task A receives a message and

sends another message to B, which then sends a message to C.  We arrange that the tasks

implementing processes A, B, and C all request execution when a message is received by

process A, with scheduling ties broken in the order the tasks are connected (A before B

before C).  Thus, the deadline of the last task (task C) is determined by the message arrival

time at the first (task A), and there is no delay added by a message traversing a string of

3  With respect to scheduling disciplines that do not insert idle time.
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such tasks.  Showing that this is correct (and advantageous) is beyond the scope of this

paper.

4 . 2 Unix signals

Unix signals are a class of software interrupts within Unix for which application programs

can specify special handling.  Programs can also request delivery of particular signals in

certain circumstances.  For example, Unix can interrupt a program with the signal SIGIO

when specified I/O channels are ready for reading or writing.  Unix can also interrupt a

program at (roughly) regular intervals with the signal SIGALRM.

Our implementation allows programs to be driven by Unix signals.  A task may be

associated with each signal, so that delivery of that signal is treated as the arrival of a

message for that task, and the task is scheduled for execution.  The use of the SIGIO signal

allows asynchronous input, while SIGALRM permits a task to act as a clock for the

system.

4 . 3 Versions of the kernel

There are two versions of the kernel.  They provide the same features, but differ in

approach.

4.3.1 Initial version

The first version of the kernel implemented multiple threads of control within a Unix

process.  Each task consisted of some C code and its own execution stack.  This required

the use of in-line assembly code to perform context switches.  It was hard to get the kernel

working right, and it was also difficult to debug applications that used the kernel, since the

typical Unix debuggers could not cope with an application that switched stacks.

This was in some sense a more faithful implementation of the CRTP model, since it

provided actual multiple tasks.  Each task consisted of an infinite loop which was blocked

until a message arrived and the task was scheduled to execute.  Then that task’s context

was restored and the task ran until it was ready to receive another message, whereupon it

blocked again.  A special “ACCEPT” call was used to block the task until a message was

received and the task was scheduled to run again.

A typical task in the first version looked like this:

void task()
{
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  loop
     Accept message (block until message received)
     Compute, possibly emit messages
  end loop

  /* never exits */
}

Interrupts (Unix signals) were handled by preempting the current task, placing an interrupt-

handling task on the ready queue, and then continuing the interrupted task.  This required

mutual exclusion around the queue-manipulating code.

This first version of the kernel consisted of about 1800 lines of C, including comments.

4.3.2 Second version

The reason for the threads implementation was to allow each task to maintain its context

between invocations.  However, a closer examination of the CRTP model suggests that this

is not necessary, since tasks do not maintain state, and our scheduling is non-preemptive.

We therefore designed a new implementation without a separate stack for each task.

In the second version, each task is a C function.  The scheduler runs a task by calling its

function using a normal procedure call, with the received message as argument.  The

function returns when the task is complete.  The only stack used is that of the main

program; in fact, the whole system is in reality a sequential program.  Scheduling is non-

preemptive (each task runs until it completes), and tasks do not save state between

invocations (except in data repositories), so letting all the tasks share one stack avoids

messy and potentially expensive context-saving and stack-switching.  No special

statements are necessary for blocking tasks or receiving messages.

A task in the second version looks like this:

void task(message)
{
    /* Compute based on message */
    /* Optionally send messages */

    return;
}

When an interrupt occurs, a flag is set and execution of the current task continues

immediately.  Only when it is safe to do so does the kernel check the flag and add the

interrupt handler to the ready queue.  No explicit mutual exclusion is necessary.
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Since there is no logical concurrency, understanding the system is much easier.  The

implementation also becomes more efficient due to the lack of mutual exclusion, since

blocking and unblocking interrupts required the overhead of a Unix system call.

Debugging under Unix is also easier.

The second implementation is simpler than the first.  It consists of only about 1300 lines of

C, including comments.

5 . An Application of the RTP/C

The RTP/C concept has been tested by applying it to a real application, a program used by

the Head-Mounted Display project in our department [Chung et al. 89].

5 . 1 Description of problem

The Head-Mounted Display project creates a virtual world by using special input and

display devices to logically immerse the user in a computer-controlled reality.  Two

television screens are mounted on a helmet worn by the user, so that the user sees only

what is displayed on the screens.  Other hardware senses the position and orientation of the

user’s head, so that the appropriate part of the virtual world can be displayed to the user as

he or she turns his or her head or moves around the room.

Another sensor detects the position of a hand-held ball, which acts as a three-dimensional

mouse (complete with buttons), allowing the user to interact with the artificial reality.

5.1.1 Head-mounted Display System Design

The head-mounted display system consists of a VAX host computer running Unix, some

position sensing hardware, and a special-purpose computer for graphics output.  The

sensing hardware is called a Polhemus4.  The graphics computer is Pixel-Planes 4 [Eyles et

al. 87, Fuchs & Poulton 81], a special purpose high performance SIMD computer

developed at UNC for interactive graphics work.  (See Figure 3.)

Polhemus VAX

Pixel
Planes

4

video to
head-mounted

display

Figure 3:  The head-mounted display system

4  A 3SPACE Tracker, made by Polhemus Navigation Sciences.
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In operation, an application program (running on the host computer) sends a request to the

Polhemus.  The Polhemus determines the current position and orientation of the user’s

head and the mouse, and sends a report back to the application.  Based on the new

information, the application sends requests to Pixel-Planes 4 to update its internal model of

the virtual world and display a new picture for each of the user’s eyes (slightly different

pictures are displayed for each eye to provide stereo vision).

5.1.2 Time and the Head-mounted Display

The head-mounted display team has two time-related concerns in making their virtual world

seem real.  First, they wish to

minimize lag time, the time that elapses between movement of the user’s head (or the

mouse) and a display update reflecting the motion.  Second, they wish the time between

new pictures to be fast enough to create the illusion of smooth motion in the virtual world.

The first problem involves sensing the current position, communicating that position

through the operating system to the application, and displaying a new picture based on that

position.  The hardware and operating system components of the lag time are out of our

control.

The second problem is largely a graphics problem, depending on the speed of our

application and Pixel-Planes 4.  Again, the speed of the hardware is out of our control.

There are no hard and fast rules on what the times should be.  A lag time of even 5 ms may

be noticeable, and even that is very difficult to achieve.  The head-mounted display team

currently has a goal of 30 ms [Robinett 90].

For the appearance of smooth motion, 10 updates per second is too slow, while motion

pictures use 24 updates per second, and television 30 [Robinett 90]. It has also been

observed that usually, 12 new frames per second is indistinguishable from 24, except in

certain circumstances such as moving point-of-view with changing perspective [Azuma

90].  In this application, the hardware imposes a maximum rate of 30 frames per second,

since output is via NTSC standard video.

We were interested in studying lag-time in the head-mounted display system.  Several

questions arise: how is lag time defined?  how much is there in our system?  where does it

come from?  and what can we do to reduce it?.  We weren’t sure if we’d be able to reduce

the lag time, but we hoped to get some idea of where it came from.
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5 . 2 Applying CRTP and the RTP/C paradigm to the Head-mounted display

In order to test the applicability of CRTP and the RTP/C paradigm to real applications, we

decided to adapt one of the programs used with the head-mounted display to the CRTP

programming model, and see what analysis could reveal about the real-time behavior of the

head-mounted display system.

5.2.1 The original program

The head-mounted display project has developed a variety of applications.  We chose a

simple one for our use, which displays a box floating in space.  When a button on the

mouse is pressed, the sides of the box move apart, revealing a white sphere inside, and a

yellow square moving back and forth while spinning.

Most head-mount programs consist of a single control loop, as shown below.  At the

beginning of the loop, the program reads a report from the Polhemus to determine where

the user’s head and the mouse are.  The rest of the loop computes and displays the new

picture, and then everything repeats.

However, instead of requesting the report and waiting for it (it takes some time for the

Polhemus to determine the positions of its sensors), the next report is requested

immediately after receiving the previous one:

    request a report
    loop
       wait until report is ready
       read report
       request another report
       compute
       display
    end loop.

Since there is a delay between requesting a report from the Polhemus and getting it, this

refinement overlaps I/O with graphics processing.  The application does computation while

the Polhemus is preparing the next report, allowing more frequent reports and display

updates.  Even so, the update rate is fundamentally tied to the rate of Polhemus reports.

5.2.2 Process Graph

We implemented the floating box virtual world using CRTP.  Our program consists of

seven processes and two data repositories (Figure 4).  We make heavy use of Unix signals

(see Section 4.2).
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Figure 4:  Our system

In the original program, the update rate was tied strictly to the rate at which Polhemus

reports were received.  This would be fine if the view changed only when we found out

that the user or the mouse had moved, but our program included some animation (the

square moves and spins, and when a button is pressed, the sides of the box move apart).

Many head-mount programs include more detailed animation, which helps to make the

virtual world seem real.  By separating the display update rate from the Polhemus report

rate, we could update the display more frequently to get smoother animation.

In our program, we arrange for the Unix signal SIGIO to be delivered whenever input is

available from the Polhemus.  A task called SigioHandler requests execution whenever we

receive a SIGIO.  When run, this task determines if a complete report has arrived yet.  If

so, it reads it and sends the report in a message to a second task, ReportProcessor.  This

task interprets the report to determine the position and orientation of the user’s head and the

mouse.  It then stores the information in two data repositories.

Meanwhile, we have arranged for the Unix signal SIGALRM to be delivered periodically.

A task called TickServer is scheduled whenever the SIGALRM occurs.  This task counts

SIGALRM’s and regularly sends a message to the fourth task, UpdateDisplay.  It reads the

position and orientation information from the data repositories, and begins the processing

needed to update the display, which is continued in tasks Display2, Display3, and Display4

by sending messages from each task to the next one.  The result is a regular, periodic new

display, at a rate unrelated to the input rate from the Polhemus.
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5.2.3 Evolution of the program

In our original design, the UpdateDisplay task did all of the display processing.  The

display processing takes far longer than any other part of the system (see Section 5.3), and

it must run to completion whenever scheduled (since our scheduler is non-preemptive).

The execution time of the display processing task, UpdateDisplay, turned out to be longer

than the period of many of the other tasks, so that it was impossible for them to run as

frequently as they needed to.  Breaking the task UpdateDisplay into four pieces lessened

the delays in scheduling tasks with shorter periods, in effect providing explicit preemption

points in our non-preemptive system.

We also changed the way we requested new reports from the Polhemus.  A new request

needed to be made only when the previous report had been completely received.  Since the

ReportProcessor task was invoked whenever a complete report was received, it was natural

in our first design to request a new report in ReportProcessor.  The alternative, to have the

SigioHandler task request a new report immediately whenever a complete report was

received, would have increased the maximum computation cost of SigioHandler even

though this code was seldom needed (SigioHandler is invoked many times for each

complete report received).

However, the delay between SigioHandler reading a complete report and ReportProcessor

being scheduled to process it (and request a new report) was imposing a needless

restriction on the rate at which we could receive Polhemus reports.  We therefore made the

SigioHandler task request a new report whenever a complete report was received.

In our present design, the TickServer task is unnecessary, since we could schedule

UpdateDisplay directly when SIGALRM’s occur.  TickServer remains part of the design

for generality.  We may decide to schedule a task to read the Polhemus periodically instead

of in response to SIGIO’s.  TickServer could count SIGALRM’s and send messages to the

tasks at different intervals to simulate multiple clocks.  The execution of TickServer costs

about 30 ms at each SIGALRM, but this is smaller than any other task by an order of

magnitude.

5 . 3 Data

To assess real-time performance, we need computation times and periods of each task.  We

timed the original program and our version on a lightly loaded system (we were the only

active user).  For measuring programs and program fragments, the best clock resolution we

could come up with was Unix’s gettimeofday call, with a 10 ms resolution on our VAX.
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Wherever possible we made repeated runs and divided the total time by the number of runs.

Thus, all times given are average elapsed time, rather than the worst-case processor time

we might have preferred to measure.  Given the uniformity of the code and light system

load the average case is probably little different from worst case (or best case).

5.3.1 Original program

In a test program we found that just reading Polhemus reports in a tight loop took about 67

ms per report.  The entire original program, which looked like

   request report
   loop
      wait for report
      read report
      request next report
      update display
   endloop,

also took 67 ms per iteration.  It was immediately obvious that the program was bound by

the Polhemus report rate.  Indeed, updating the display only took about 28 ms, and the rest

of each loop was spent waiting for the next Polhemus report.  Thus, the original program

had an update rate of about 15 updates/second.

This is a little misleading.  Our program had a pretty simple virtual world to display.  A

more involved program would take more than 28 ms to calculate each update.  However,

any program that took less than 67 ms to display could benefit from dissociating the display

update rate from the Polhemus report rate, and even slower programs would become more

flexible, allowing lag-time to be traded off against update rate by varying the priorities of

the tasks that read the Polhemus and update the display.

5.3.2 Adapted program

Task Time (ms)

SigioHandler 0.720

ReportProcessor 0.778

TickServer 0.030

UpdateDisplay 8.280

Display2 5.900

Display3 8.020

Display4 8.060

UpdateDisplay—Display4 27.840
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The execution times for our tasks are shown above.  In our first design, the tasks

UpdateDisplay and Display2 through Display4 were combined into a single task, shown

here as UpdateDisplay – Display4.

Note that the combined times of UpdateDisplay and the three Display tasks run separately

are greater than the time of the four tasks run together.  This is a measurement anomaly that

probably resulted from running the display tasks separately for timing.  We split our

original single display task, UpdateDisplay, at three completely arbitrary points.  This made

no different to Pixel-Planes 4 as long as we ran the four parts in sequence.

However, it happens that the graphics processing done by the first two tasks is handled by

Pixel-Planes 4’s front-end floating point processors, while the processing in the last two

tasks occurs on the smart frame buffer.  When run in sequence, the tasks are somewhat

faster due to the multiprocessing between the parts of Pixel-Planes 4, but that advantage is

lost when we run the same task over and over [Ellsworth 90].

We were hoping to continue getting Polhemus reports at close to 15 per second (apparently

the maximum rate the Polhemus will support in our configuration), while increasing the

update rate.  Thus, we assigned periods to our tasks as follows (in ms):

Updates/second
Period (ms) 10 20 30

SigioHandler 7 7 7

ReportProcessor 67 67 67

TickServer 100 50 33.3

UpdateDisplay 100 50 33.3

Display2 100 50 33.3

Display3 100 50 33.3

Display4 100 50 33.3

The period for the TickServer and display update tasks is set to 1/(the desired update rate),

which we varied from 10--30 per second.  The 7 ms period for SigioHandler was

determined empirically from measurements of a test program (SIGIO’s were delivered

about every 7 ms).

It is clear at this point that it is not possible for our implementation to guarantee that all

tasks meet their deadlines.  We would like to execute SigioHandler every 7 ms, but 3 of
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our tasks take over 8 ms to execute and will block SigioHandler for too long to achieve our

desired rate.  However, SigioHandler is potentially called every time Unix receives another

byte of input from the Polhemus.  As long as we manage to execute SigioHandler once per

complete report (30 bytes), we won’t miss anything.  Thus, missing a few deadlines for

SigioHandler isn’t critical.  Unix ensures that we receive all incoming data, thus satisfying

the spirit of the RTP/C paradigm, that no data is lost.

We ran our program at various (attempted) update rates to see what actual rates we

observed, and whether the failure to guarantee meeting deadlines caused problems.  Here

are some of our results.  The nominal update rate is the rate at which we requested

SIGALRM signals (to trigger display updates) and the rate upon which we based the

periods of the update tasks.

Nominal updates/sec

10 20 30

Observed updates/sec 9.98 19.92 27.15

Polhemus reports/sec 14.84 14.84 11.59

Missed reports/sec 0 0.016 1.15

Missed reports occur when the SigioHandler sends a report to the ReportProcessor but the

ReportProcessor has not yet been scheduled to process the previous report.

Looking first at the rate of polhemus reports, we sustained about the original 15

reports/second at 10 and 20 updates/second, but slowed to about 11 reports/second at the

fastest update rate of 30 updates/second.  This happens partly because the processor is

becoming saturated and we take longer to request a new report after receiving one, and

partly because we’re missing some reports altogether.

With our clock set at 30 ticks per second, we managed to get update rates of over 27

updates per second, which is enough for smooth animation.

We had no easy way to measure lag time, but it was still noticeably slow in our program,

just as it had been in the original.  Since it takes 67 ms for each Polhemus report in our

system, it’s possible that up to 67 ms of lag-time is caused by the Polhemus, which we

can’t do anything about.
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5 . 4 Analysis

We have no control over the time it takes the Polhemus to deliver a report (once requested),

so for purposes of our analysis we will define response time as the time from our receipt of

a Polhemus report to the display of a new image reflecting that report.

Although we could not guarantee that our tasks met their deadlines, we will make the

analysis with the assumption that we could, to show the guarantees possible with analysis

using the RTP/C paradigm.  See Figure 5.  This figure shows the worst case occurrence of

execution requests for the tasks SigioHandler, ReportProcessor, and UpdateDisplay

starting from the arrival of a Polhemus report.  The line for each task represents the time

from the execution request to the deadline of the task.

0 7 67 100 (ms)

SigioHandler (7 ms period)

ReportProcessor (67 ms period)

UpdateDisplay (33 ms period)

Report
Arrives

SigioHandler
must finish

ReportProcessor
must finish

UpdateDisplay
must finish

Figure 5:  Analysis of response time

Starting our analysis from the arrival of a Polhemus report, the first thing that happens is

that a SIGIO signal is delivered and we schedule the task SigioHandler.  It reads the report

and sends a message to ReportProcessor.  We apply our scheduling optimization to

SigioHandler and ReportProcessor, scheduling ReportProcessor as though it made its

execution request at the same time as SigioHandler (at the arrival of the SIGIO).  When

ReportProcessor executes, it computes the positions of the user’s head and the mouse and

stores them in data repositories.  Since the period of ReportProcessor is 67 ms, and it

makes its execution request at the time of the original SIGIO, we can guarantee that the task

will complete and the data will be placed in the data repositories within 67 ms of the

report’s arrival (assuming the tasks were feasible).  In the worst case, it takes a full 67 ms.
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Once the data is in the data repositories, the next execution of UpdateDisplay will use the

new data.  The worst case for this occurs when UpdateDisplay makes a new execution

request exactly at the end of ReportProcessor’s 67 ms request interval, and does not

execute until the end of its request interval.  If it made an execution request any earlier, it

would execute earlier (not worst case); if its request were later, its previous request would

have had a later deadline than ReportProcessor, would have executed after

ReportProcessor, and used the new data, and we’d be considering that execution request

instead of this one.

With an update rate of 30 updates/second, UpdateDisplay has a period of 33 ms.  Our

worst case delay is therefore about 67 ms (from ReportProcessor) + 33 ms (from

UpdateDisplay), or 100 ms.  Again, this assumes that the tasks are feasible and we can

guarantee these deadlines will be met.

5.4.1 Improving performance guarantees

How could we improve the system’s response time?  One way is to look more carefully at

the Polhemus report.  It consists of two parts, one describing the head position and the

other the mouse position.  If we process each piece separately when it arrives, we will

double the rate of ReportProcessor and halve its execution cost.  Its period will be 33.5 ms

(half of 67 ms).  We can then guarantee that our response time from the arrival of a head

report is 33.5 + 33 ms, or 66.7 ms.  The response time from the arrival of a mouse report

is the same.  Unfortunately, the response time from arrival of a particular report (head or

mouse) is not visible external to the system.

We might also notice the lack of synchronization between ReportProcessor and

UpdateDisplay.  ReportProcessor could send a message to UpdateDisplay when new data

was ready.  Then we would schedule UpdateDisplay as though it made an execution

request at the same time as ReportProcessor, and assign it the same deadline, so we could

guarantee a response time of only 67 ms.  Unfortunately, this too has a drawback.

UpdateDisplay is already executing with a period of 33 ms when the update rate is 30

updates/second.  If we added another execution request every 67 ms, we would increase

UpdateDisplay’s CPU utilization by 50%.  Its utilization is already 28 ms out of every 33

ms (at 30 updates/second), so a 50% increase would overload the processor even if there

were no other tasks.  Using RT-P/C analysis, we could experiment with slower update

rates and determine how slowly we would have to run for our system to be feasible again.
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Note that this change would make our system more closely resemble the original program,

in which display updates were tied directly to Polhemus reports.  The difference is that our

system allows us to schedule more frequent display updates independent of the Polhemus

report rate, to achieve smoother animation if desired.

Finally, we could increase the priority of ReportProcessor by making its period artificially

short.  If we had a faster processor so that we could meet our tasks’ deadlines, this would

be an entirely reasonable way to proceed.  A shorter period for ReportProcessor would

directly affect the response time we could guarantee.

6 . Conclusions
• The RTP/C paradigm and the CRTP programming model are useful for real

programs.  We were able to adapt an interactive program with real-time
requirements without too much trouble.

• Splitting the program into separate tasks allowed us to vary the update rate
independent of the rate of Polhemus reports.  RTP/C allowed us to analyze the
system at various update rates, and determine what response time we could expect.
Given a faster processor, we could have traded update rate for response time, using
RTP/C to a priori assess the feasibility of different configurations.

• The CRTP programming model can be implemented efficiently.  The state-less
nature of tasks, together with the decision to use non-preemptive scheduling,
allows low-cost “context switches” on a single stack.  We only save state when we
need to, by using data repositories.

The appendix gives further details of programming using our kernel.
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Appendices

A.1 Usage

This section will begin with some additional details about the programming model.  It will

then give instructions and a reference for using the kernel.

A . 1 . 1 More on Communicating Real-Time Processes

The high-level description of CRTP in Section 3 left out some details that are only relevant

when actually designing a system.

Tasks exist only while executing and therefore cannot maintain state from one invocation to

the next, nor can they share data with other tasks (thus the need for data repositories).  This

property makes a simpler implementation possible (see Section 4.3.2).

A process may only have one connection to each other process, and may only send one

message on each channel during an execution (although that message may contain many

logical messages).  Since tasks have minimum periods between invocations, and each

channel is associated with a particular sending task, each channel has a minimum period

between messages.  A programmer specifies this period when building the system.

Input to the system is through special processes called input devices, which execute in

response to external events and emit messages into the system.  They have no incoming

channels, but have handlers which interface directly with the kernel as described later.

There may also be output devices, which are processes with no outgoing channels.

Communication between a process and a data repository is synchronous; i.e., the process

sends a message to the repository and waits for a reply.  Data repositories and their

connections to processes form a part of the process graph.

The rest of this appendix will consist of a short program example using our implementation

of CRTP, then a section giving some description of how to use the features of CRTP, and

finally references for the header files, data types, and functions provided.

A.2 Example

Here is an example program that uses two tasks, a data repository, and a signal handler.

Task1 is invoked by the Unix signal SIGALRM (details of setting up SIGALRM have been
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omitted; see your Unix manual).  Task1 keeps a count of the number of times it has been

executed using a data repository Repos, and sends this count as a message to task2, which

prints it out.

#include <stdio.h>
#include <signal.h>

#include <sys/types.h>
#include "kernel_public.h"

struct repos_msg {
    int what;  /* 0 to read, 1 to write */
#define READ 0
#define WRITE 1
    int value;
};

Channel channel; /* Channel declared here so it’s in
                              scope for task1 */

/*
 * Repos
 *
 * A data repository.  Stores an integer value, which
 * can be retrieved or updated depending on the message
 * sent to it.
 */
MessageP
Repos(message)
    MessageP message;
{
    struct repos_msg *r;
    static int stored_value = 0;

    r = (struct repos_msg *) message;

    switch(r->what) {
    case WRITE:
        stored_value = r->value;
        break;
    case READ:
        r->value = stored_value;
        break;
    }
    return (MessageP) r;
}

/*
 * task1
 *
 * Invoked by SIGALRM, increments the count in Repos
 * and sends it to task2.
 */
void
task1(message)
    MessageP message;
{
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    int execution_count;
    struct repos_msg rp;
    struct repos_msg *answer;

    rp.what = READ;                   /* Read number of
                                         previous executions */
    answer = SynchEmit(&rp);
    execution_count = answer->value;

    ++execution_count;

    rp.what = WRITE;                  /* Save new count */
    rp.value = execution_count;
    SynchEmit(&rp);

    Emit(channel, (MessageP) execution_count);
}

/*
 * task2
 *
 * Prints the value sent to it by task1.
 */
void
task2(message)
    MessageP message;
{
    int execution_count;

    execution_count = (int) message;
    printf("%d\n", execution_count);
}

main()
{
    TaskP Task1, Task2;

    /* Declare tasks */
    Task1 = CreateTask("Task 1", task1);
    Task2 = CreateTask("Task 2", task2);

    /* Create channel to task 2 with period 10 ms */
    BindChannel(&channel, Task2, 10);

    /* Arrange for SIGALRM to invoke task 1,
       with period 10 ms */
    AssignSignalHandler(SIGALRM, Task1, 10);

    /* Details omitted of arranging for SIGALRM to occur */

    /* Start system */
    MainLoop();
    /*NOTREACHED*/  /* Tell lint this is the end */
}
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A.3 Using the kernel

This section will give instructions for what needs to be done in a program using the kernel.

Refer back to Section A.2 for the example program.

A . 3 . 1 Defining tasks

For each task, write a function of the form

void
function(message)
        MessageP message;
{
        /* code */
}

Then call CreateTask, passing it a name for the function and the function address.

CreateTask will return a pointer of type TaskP.

A . 3 . 2 Defining channels

For each communication channel, define a variable of type Channel.  Call BindChannel

with the address of the channel, the task pointer to the receiving task, and the period (in

ms) for the channel.

If several tasks will send messages to the same receiving task, a channel must be set up for

each sending task, to establish the proper buffering.  Otherwise, messages can (and

probably will) be lost.

A . 3 . 3 Defining Data Repositories

For each data repository, write a function of the form

MessageP
function(message)
       MessageP message;
{
       /* code */
       return answer;
}

where the answer returned is a MessageP.

A . 3 . 4 Sending Messages Between Tasks

To send a message to another task, call Emit with the address of the appropriate channel

and a message pointer.  You may only send one message to each task during an execution,
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so if you need to communicate several pieces of data you must bundle them up into one

message.

A . 3 . 5 Using Data Repositories

To use a data repository, send it a message by calling SynchEmit with the address of the

data repository function and a message pointer.  SynchEmit will return the message pointer

returned by the data repository.

A . 3 . 6 Using Signals

To arrange for a task to be scheduled when a Unix signal occurs, call AssignSignalHandler

with the signal number, the task pointer (returned by CreateTask), and the period (in ms) to

be used in scheduling the task.

To return the signal to its normal handling (whatever it was before calling

AssignSignalHandler), call RevokeSignalHandler with the signal number.

A . 3 . 7 Starting the System

To start the system, call MainLoop.  This function will not return.

A . 3 . 8 Statistics

If compiled with the option DSTATISTICS, the kernel will keep count of various

interesting statistics and print them on demand.  To use this facility, you should arrange for

your system to stop at some point and immediately call StopTime to record the elapsed time

when the system stops.  You should then disable any signals or other input.  Finally, call

PrintStatistics to print out the collected statistics.

The figures kept include, for tasks:

• Number of times scheduled (placed on ready queue)

• Number of times executed

• Number of times scheduled but not executed

• Rate of execution (number of times executed/elapsed time)

• Number of messages that were sent to the task but not delivered because the
previous message had not been processed yet

For signals, the kernel records
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• Number of times the signal occurred

• Number of times a task was run in response to the signal

• Number of times a task was not run because a previous signal was still outstanding
(lost signals)

• Total of run and lost signals

• Rate (occurrences/second)

A.4 Kernel interface reference

A . 4 . 1 Header files

The header files needed for using the kernel are

• types.h  A few generic types used in the kernel

• public.h  Partial definitions of types specific to the kernel, and declarations of all
kernel functions

• channel.h  Full type definition for channels

• kernel.h  Type definitions needed by the kernel itself

• message.h  Type definition for messages

• sig.h  Type definitions for signal handling

• task.h  Type definitions for tasks

You do not need to include all these files.  Instead, you can just include sys/types.h (a

system header file) and kernel_public.h, which includes all the other files.

On our system, these files are placed in the directory /currituck/csystemsD/rtpc/CRTP.

A . 4 . 2 Types

Public type names in the kernel are capitalized (each word is capitalized if the name has

several words).  A capital “P” is appended to pointer type names.  Thus, Task is the type

that describes a task, while TaskP is a pointer to an instance of Task.

Most of these names are typedefs defined in public.h with an incomplete structure

definition; the complete definition is given in another file.  For example, in public.h you

will find

typedef struct task Task, *TaskP;
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while in task.h there is a full definition of struct task:

struct task {
   ...
};

In the list below, if two files are listed, the first is public.h where the incomplete type

definition occurs, and the second is the file with the full definition.  You can take advantage

of this information hiding by only including the header files necessary for your application.

• Boolean (types.h) Values of FALSE and TRUE are defined for this type.  It is
used in the kernel, and available for convenience.

• Channel (public.h, channel.h)  Information about the connection between two
tasks (sender and receiver).

• ChannelP (public.h) A pointer to a Channel.

• MessageP (public.h) There is no Message type.  A MessageP is a “generic”
pointer, currently of type (void *), which is used by tasks to point to whatever type
of message they wish to send.  The kernel imposes no restrictions on the message.
It just hands the pointer to the receiving task.

• Task (public.h, task.h)  A data structure used by the kernel to keep track of
information about tasks.

• TaskFuncP (public.h)  A pointer to a function implementing a task.  Such a
function should be declared as follows:

void task_function(message)
        MessageP message;
{
   ...
}

For maximum portability, the argument should be declared of type MessageP and
then cast to a pointer to the message type actually used.

• TaskP (public.h)  A pointer to a Task.

• Time (types.h) A time value in milliseconds.

A . 4 . 3 Functions

TaskP CreateTask( name, entry)
   char *name;
   TaskFuncP entry;

• name A name used to describe the task in kernel output.

• entry A pointer to the function that implements the task.
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The CreateTask function declares a new task.  The name is only used in informational

messages and does not need to be unique or even meaningful.  If name is NULL, a

meaningless name will be assigned.

void BindChannel}( channel, receiver, period)
   ChannelP channel;
   TaskP receiver;
   Time period;

• channel  A pointer to a Channel data structure that can be used to store information
about this channel.  The user program must provide this structure.  It will also be
used when sending messages, so having the user provide it gives more options for
making it available to the tasks.

• receiver  The task pointer returned by CreateTask for the task that will receive
messages on this channel.

• period  The minimum time in milliseconds between messages sent on this channel.

The BindChannel function sets up a channel that can be used to send messages to a task.

See sections A.3.2 and A.3.4 for more information about creating and using channels.

void Emit( channel, message)
   ChannelP channel;
   MessageP message;

• channel  A pointer to a Channel data structure that has been initialized for a
receiving task by BindChannel.

• message  A pointer to some data.

Emit sends a message from the currently executing task, along the specified channel, to the

task that was specified in BindChannel for that channel.  The “message” sent by Emit is

just a generic pointer.  You may pass a pointer to any data structure you like, remembering

that when the receiver accesses it, the current task will no longer be active (so the data

should be static or global).

When Emit sends a message to a task, the schedule calculates the task’s deadline and places

it on the run queue in earliest deadline first order.

void NullTask(message)
   MessageP message;

The null task is run whenever no other task has an outstanding execution request.  The

default null task does nothing.  You may provide a replacement by writing your own

NullTask and linking it into your program before the kernel library.

void AssignSignalHandler(signal, task, period)
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   int signal;
   TaskP task;
   Time period;

• signal  A UNIX signal number.

• task  A pointer returned by CreateTask.

• period  A time in milliseconds.

The kernel can arrange to trap UNIX signals and run a task when they occur.  This

function will schedule the given task whenever the specified signal occurs, with a deadline

based on the time of the signal and the period given.  The signal number will be passed as

the message (cast to a MessageP, of course).

void RevokeSignalHandler( signal)
   int signal;

• signal  A UNIX signal number.

This function returns handling of the given signal to its status before calling

AssignSignalHandler.  We don’t use this function, but it’s available for completeness.

MessageP SynchEmit(repository, message)
   MessageP (*repository)();
   MessageP message;

• repository  A pointer to a function implementing a data repository.

• message  A pointer to a message.

This function (actually a macro defined in public.h) passes message as an argument to the

repository function, and returns the MessageP returned by the repository.  In the older,

partially-preemptive version of the kernel, this function implemented mutual exclusion on

data repositories.  It is kept primarily to make repository access look like message sending

(instead of the function call used to implement it).

void MainLoop()

MainLoop is the main loop of a system.  It does not ordinarily return.  It repeatedly runs

the task at the head of the ready queue by calling the associated function with the

appropriate message as an argument.


